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Abstract. In a surprising result, Korupolu, Plaxton, and Rajaraman [13] showed that a simple local search
heuristic for the capacitated facility location problem (CFLP) in which the service costs obey the triangle
inequality produces a solution in polynomial time which is within a factor of 8+ ε of the value of an optimal
solution. By simplifying their analysis, we are able to show that the same heuristic produces a solution which is
within a factor of 6(1+ε) of the value of an optimal solution. Our simplified analysis uses the supermodularity
of the cost function of the problem and the integrality of the transshipment polyhedron.

Additionally, we consider the variant of the CFLP in which one may open multiple copies of any facility.
Using ideas from the analysis of the local search heuristic, we show how to turn any α-approximation algo-
rithm for this variant into a polynomial-time algorithm which, at an additional cost of twice the optimum of
the standard CFLP, opens at most one additional copy of any facility. This allows us to transform a recent
2-approximation algorithm of Mahdian, Ye, and Zhang [17] that opens many additional copies of facilities
into a polynomial-time algorithm which only opens one additional copy and has cost no more than four times
the value of the standard CFLP.

1. Introduction

We consider the capacitated facility location problem (CFLP). In this problem, we are
given a set of facilities F and a set of clients D. Each client j ∈ D has a demand dj that
must be serviced by one or more open facilities. There is a cost fi for opening facility
i ∈ F , and it costs cij for facility i to service one unit of demand from client j . We call
the first type of cost facility cost and the second service cost. Furthermore, no facility
may service more than U units of demand. We wish to service all clients at minimum
total cost. The capacitated facility location problem and variations of it have been well-
studied in the literature (see, for example, the book of Mirchandani and Francis [18]) and
arise in practice (see, for example, the paper of Barahona and Jensen [4] for an instance
of a parts warehousing problem from IBM).
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The CFLP is NP-hard even in the case that U = ∞, sometimes called the uncapaci-
tated facility location problem (UFLP) [10]. Thus we turn our attention to approximation
algorithms. We say we have an α-approximation algorithm for the CFLP if the algorithm
runs in polynomial time and returns a solution of value no more than α times the value
of an optimal solution. The value α is sometimes called the performance guarantee of
the algorithm.

It is possible to express any instance of the well-known set cover problem as an
instance of the UFLP of the same cost, which implies that unless P = NP , there is no
approximation algorithm for the UFLP with performance guarantee better than c ln |D|,
where c is some constant [15, 11, 21, 2]. Thus we turn to special cases of the CFLP. In
particular, we assume that for any k, l ∈ F ∪D a service cost ckl is defined, and the ser-
vice costs are symmetric and obey the triangle inequality. This is a natural assumption,
since service costs are often associated with the distance between points in Euclidean
space representing facilities and clients. From now on, when we refer to the CFLP or
UFLP, we refer to this metric case.

Korupolu, Plaxton, and Rajaraman (KPR) gave the first approximation algorithm
for the CFLP with constant performance guarantee [13]. Surprisingly, KPR show that a
simple local search heuristic is guaranteed to run in polynomial time and to terminate
with a solution of value no more than (8+ ε) times optimum, for any ε > 0. The cen-
tral contribution of our paper is to simplify and improve their analysis of the heuristic,
showing that it is a 6(1+ ε)-approximation algorithm for the CFLP. Although our proof
follows theirs closely at many points, we show that some case distinctions (e.g. “cheap”
versus “expensive” facilities) are unnecessary and some proofs can be simplified and
strengthened by using standard tools from mathematical programming. For example,
using the supermodularity of the cost function of the CFLP reduces a five page proof to
a half page, and using the notion of a transshipment problem and the integrality of its
polyhedron allows us to get rid of the extraneous concept of a “refined β-allocation,”
which in turn leads to the improved performance guarantee.

We are also able to use a concept translated from KPR to get an improved approxi-
mation algorithm for a variant of the CFLP. The variant we consider is the one in which
a solution may open up to k copies of facility i, each at cost fi and having capacity
U , and we denote this problem the k-CFLP (so that the ordinary CFLP is the same
as the 1-CFLP). Shmoys, Tardos, and Aardal [22] give a polynomial-time algorithm
for the 7

2 -CFLP which produces a solution of value no more than 7 times the optimal
value of the 1-CFLP. Chudak and Shmoys [8], building on previous work [6, 7] for the
UFLP, give a 3-approximation algorithm for the∞-CFLP. Mahdian,Ye, and Zhang [16]
give a 2.89-approximation algorithm, and the same authors [17] recently developed a
2-approximation algorithm. Here we show how to take any solution for the∞-CFLP and
produce from it a solution for the 2-CFLP adding cost no more than twice the optimal
value of the 1-CFLP. Thus by using the algorithm of Mahdian et al., we are able to
produce solutions in polynomial time for the 2-CFLP of cost no more than 4 times the
optimal value of the 1-CFLP, improving the previous result of Shmoys et al. [22].

The recent work on approximation algorithms for facility location problems was
started by the paper of Shmoys, Tardos, and Aardal [22], who gave a 3.16-approximation
algorithm for the UFLP, the first approximation algorithm for this problem with a con-
stant performance guarantee. There has been a substantial amount of research since then
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on the UFLP; the best currently known approximation algorithm for the problem has a
performance guarantee of 1.52 [16]. An observation of Sviridenko [23], combined with
a result of Guha and Khuller [12] implies that no approximation algorithm for the UFLP
with performance guarantee 1.46 is possible, unless P = NP .

Following the appearance of an extended abstract of this paper [9], Charikar and
Guha [5] have shown how to modify our algorithm slightly to obtain a performance
guarantee of 3 + 2

√
2 + ε ≈ 5.83 + ε. Pál, Tardos, and Wexler [20] give a 9-approxi-

mation algorithm for the case when the capacity of each facility is allowed to vary from
facility to facility (that is, the capacity of facility i is Ui).

The rest of the paper is structured as follows. We begin in Section 2, where we
introduce the local search algorithm of KPR, define some notation, and prove some
preliminary lemmas. We then, in Section 3, define the concept of a “swap graph”, anal-
ogous to the concept of the β-allocation problem in KPR, and show how it leads to our
algorithm for the 2-CFLP. Finally, we show how to obtain an improved analysis of the
local search algorithm using the swap graph in Section 4.

2. The local search algorithm

2.1. Preliminaries

In this section, we define some notation and give some preliminary lemmas that will be
needed in subsequent discussion. Given a set S ⊆ F of facilities to open, it is easy to
determine the minimum service costs for that set of facilities by solving the following
transportation problem: for each facility i ∈ F we have a supply node i with supply U ,
and for each client j ∈ D we have a demand node j with demand dj ; the unit shipping
cost from i to j is cij . When discussing the k-CFLP, we will let S be a multiset of facil-
ities (here l copies of i ∈ F in S corresponds to opening l facilities at location i). We let
x(S, i, j) denote the amount of demand of client j serviced by facility i in the solution
given by S. We will denote the overall cost of the location problem given by opening
the facilities in S by c(S). Furthermore, we let cf (S) denote the facility costs of the
solution S (i.e., cf (S) =∑

i∈S fi) and cs(S) denote the service costs of the solution S

(i.e., cs(S) =∑
i∈S,j∈D cij x(S, i, j)). Let S∗ denote the set of facilities opened by some

optimal solution; it will always be a solution to the 1-CFLP and hence not a multiset.
Let n = |F |.

The local search algorithm given by KPR for the CFLP is the following: given a cur-
rent solution S, perform any one of three types of operations that improve the value of
the solution by at least c(S)/p(n, ε), where p(n, ε) is a suitably chosen polynomial in n

and 1/ε, and continue doing so until none of these operations results in an improvement
of at least that much (We will show later that p(n, ε) = 8n/ε is a suitable choice). The
operations are: adding a facility i ∈ F − S to S (i.e., S ← S + i); dropping a facility
i ∈ S (i.e., S ← S − i); or swapping a facility i ∈ S for a facility i′ ∈ F − S (i.e.,
S ← S−i+i′). We call any operation that improves the solution by at least c(S)/p(n, ε)

an admissible operation; thus the algorithm runs until there are no more admissible oper-
ations. This heuristic runs in polynomial time, as KPR argued: start with some arbitrary
feasible solution (for instance, setting S = F ). Since in each step, the value of the
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solution improves by a factor of (1 − 1
p(n,ε)

), after p(n, ε) operations the value of the
solution will have improved by a constant factor. Since the value of the solution can’t be
smaller than c(S∗), after O(p(n, ε) log c(F )

c(S∗) ) operations the algorithm will terminate.
Each local search step can be implemented in polynomial time, and O(p(n, ε) log c(F ))

is a polynomial in the input size, so overall the algorithm takes polynomial time.
We now turn to proving some preliminary lemmas. These lemmas use the fact that

the cost function c is supermodular; that is, if A, B ⊆ F , we have that

c(A)+ c(B) ≤ c(A ∩ B)+ c(A ∪ B).

(See Babayev [3], Propositions 3.3 and 3.4 of Nemhauser, Wolsey, and Fisher [19].) In
particular, cs is supermodular, while cf is modular (that is, cf (A) + cf (B) = cf (A ∩
B)+ cf (A ∪ B)). We will use the fact that supermodularity holds even for multisets.

We will show the following three lemmas:

Lemma 2.1. If c(S) ≥ (1 + ε)c(S∗) and S ⊆ S∗, then there is an admissible add
operation.

Lemma 2.2. If c(S) ≥ (1 + ε)c(S∗) and S ⊇ S∗, then there is an admissible drop
operation.

Lemma 2.3. If for all u ∈ V −S, c(S+u)−c(S) > −βc(S), then cs(S) ≤ c(S∗)+nβ.

From the last lemma we derive the following corollary, previously shown in KPR.

Corollary 2.4 (KPR [13], Lemma 9.3). If there is no admissible add operation, then
cs(S) ≤ c(S∗)+ n·c(S)

p(n,ε)
.

Proof. Use β = 1/p(n, ε). ��
In addition, in Section 4, we show the following theorem.

Theorem 2.5. If neither S ⊆ S∗ nor S ⊇ S∗ and there are no admissible drops or
swaps, then

cf (S − S∗) ≤ 3cf (S∗ − S)+ 2cs(S)+ 2cs(S
∗)+ n · c(S)/p(n, ε).

2.2. The main theorem

Before proving the lemmas, we show how they lead to the 6(1 + ε)-approximation
algorithm for the CFLP.

Theorem 2.6. If there are no admissible operations, then

c(S) ≤ 6(1+ ε)c(S∗).

Proof. If there are no admissible operations and if S ⊆ S∗ or S ⊇ S∗, then by Lemmas
2.1 and 2.2 we know that c(S) ≤ (1+ ε)c(S∗). If there are no admissible operations and
neither S ⊆ S∗ nor S ⊇ S∗ then

cf (S − S∗) ≤ 3cf (S∗ − S)+ 2cs(S)+ 2cs(S
∗)+ n · c(S)/p(n, ε),
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by Theorem 2.5. Adding cf (S ∩ S∗)+ cs(S) to both sides, we obtain

c(S) ≤ 2cf (S∗ − S)+ cf (S∗)+ 3cs(S)+ 2cs(S
∗)+ n · c(S)/p(n, ε)

≤ 3c(S∗)+ 3c(S∗)+ 4n · c(S)/p(n, ε),

using Corollary 2.4. Then

c(S)

(

1− 4n

p(n, ε)

)

≤ 6c(S∗),

or

c(S) ≤ 6

1− 4n
p(n,ε)

c(S∗).

This gives that c(S) ≤ 6(1+ ε)c(S∗) for p(n, ε) ≥ 8n
ε

and ε < 1. ��

2.3. Proofs of preliminary lemmas

We start by proving somewhat more general forms of Lemmas 2.1 and 2.2, and deriving
those Lemmas as corollaries.

Lemma 2.7. Let f : V → � be any supermodular function. If S ⊂ S∗ ⊆ V , then there
exists u ∈ S∗ − S such that

f (S + u)− f (S) ≤ 1

|S∗ − S|
(
f (S∗)− f (S)

)
.

Proof. Let W = S∗ − S = {u1, u2, . . . , uk}. Let Wi = {u1, . . . , ui}. The statement
certainly holds if |S∗−S| = 1, so assume that |S∗−S| ≥ 2. Then by the supermodularity
of f we know that:

f (S +Wk−1)+ f (S + uk) ≤ f (S∗)+ f (S)

f (S +Wk−2)+ f (S + uk−1) ≤ f (S +Wk−1)+ f (S)

...

f (S +W2)+ f (S + u3) ≤ f (S +W3)+ f (S)

f (S + u1)+ f (S + u2) ≤ f (S +W2)+ f (S).

Summing the inequalities and subtracting
∑k−1

i=2 f (S +Wi) from both sides, we obtain

k∑

i=1

f (S + ui) ≤ f (S∗)+ (k − 1)f (S),

so that there exists some i such that

f (S + ui)− f (S) ≤ 1

k
(f (S∗)− f (S)). ��
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Proof of Lemma 2.1. It follows from Lemma 2.7 that if c(S) ≥ (1 + ε)c(S∗), then
there exists an add operation that changes the cost by no more than 1

n
(c(S∗)− c(S)) ≤

1
n

(
1

1+ε
− 1

)
c(S) ≤ −c(S)/p(n, ε), for p(n, ε) ≥ n(1+ε)

ε
. For our choice of p(n, ε) =

8n
ε

this statement holds (assuming ε < 1). So there is an admissible add operation. ��
Proof of Lemma 2.3. We prove the contrapositive. Suppose it is the case that cs(S) >

c(S∗)+nβ. Then by adding cf (S) to the left-hand side of this inequality and cf (S−S∗)
to the right-hand side, we have that

c(S) > cs(S
∗)+ cf (S ∪ S∗)+ nβ.

Observing that cs(S ∪ S∗) ≤ cs(S
∗), we obtain

c(S) > c(S∗ ∪ S)+ nβ.

Applying Lemma 2.7 to the sets S ⊆ S∗ ∪ S gives us that there is an add operation that
changes the cost by no more than 1

n
(c(S∗ ∪ S)− c(S)) ≤ −βc(S). ��

Lemma 2.8. Let f : V → � be any supermodular function. If S ⊃ S∗ then there exists
u ∈ S − S∗ such that

f (S − u)− f (S) ≤ 1

|S − S∗|
(
f (S∗)− f (S)

)
.

Proof. The following proof was given by an anonymous referee. Define g(S) = f (V −
S). Then by assumption, g is supermodular and V −S ⊆ V −S∗ ⊆ V satisfy the assump-
tions of Lemma 2.7. By Lemma 2.7, there exists u ∈ (V − S∗) − (V − S) = S − S∗
such that

g(V − S + u)− g(V − S) ≤ 1

|(V − S∗)− (V − S)|
(
g(V − S∗)− g(V − S)

)
.

This implies the lemma statement. ��
Proof of Lemma 2.2. It follows from Lemma 2.8 that if c(S) ≥ (1 + ε)c(S∗), then
there exists a drop operation that changes the cost by no more than 1

n
(c(S∗)− c(S)) ≤

1
n

(
1

1+ε
− 1

)
c(S) ≤ −c(S)/p(n, ε), for p(n, ε) ≥ n(1+ε)

ε
, which holds for our choice

of p(n, ε) = 8n
ε

(assuming ε < 1). So there is an admissible drop operation. ��

3. Path decompositions and the swap graph

3.1. A path decomposition

In this section, we define a path decomposition and a concept called the swap graph
which will be useful in both of our results. The path decomposition is more or less
equivalent to the “difference graph” of KPR [13], while the swap graph roughly corre-
sponds to their “β-allocation problem”. The path decomposition is useful in comparing
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Fig. 1. A sample of the path decomposition. The dashed lines are the assignment of the current solution S,
while the solid lines are the assignment of the optimal solution S∗. Each line represents one unit of demand.

the value of our current solution with the optimal solution. The swap graph will be used
in the analysis of the local search algorithm (in the proof of Theorem 2.5) and will be
used in the algorithm and analysis of our result for the 2-CFLP.

To obtain the path decomposition, we start with some current solution S and the
optimal solution S∗. We construct the following directed graph: we include a node j for
each client j ∈ D, and a node i for each facility i ∈ S ∪ S∗. We include an arc (j, i)

of weight w(j, i) = x(S∗, i, j) for all i ∈ S∗, j ∈ D when x(S∗, i, j) > 0, and an
arc (i, j) of weight w(i, j) = x(S, i, j) for all i ∈ S, j ∈ D when x(S, i, j) > 0. See
Figure 1 for an example. Observe that by the properties of x, the total weight of all arcs
incoming to a node j for j ∈ D is dj , as is the total weight of all outgoing arcs. The
total weight of arcs incoming to any node i for i ∈ S∗ is at most U , and the total weight
of arcs going out of any node i for i ∈ S is also at most U . Furthermore, notice that∑

cijw(i, j) = cs(S
∗)+ cs(S).

By standard path-stripping arguments (see, for example, Section 3.5 ofAhuja, Magn-
anti, and Orlin [1]), we can decompose this graph into a set of weighted paths and cycles.
The paths start at nodes in S and end at nodes in S∗. The cycles must be on nodes in
S ∩ S∗; we will ignore them, since they play no role in our results. We now introduce
some notation that we will use to discuss the paths.

Notation 3.1.

• Let P denote the set of weighted paths from nodes in S to nodes in S∗ obtained by
applying path-stripping to the graph defined above.
• Let w(P ) denote the weight of path P ∈ P .
• Let c(P ) denote the cost of path P ∈ P; that is, c(P ) =∑

(i,j)∈P cij .
• For any subset of paths P ′ ⊆ P:

– let P ′(A, ·) denote the set of paths in P ′ starting at nodes i ∈ A for A ⊆ S;
– let P ′(·, B) denote the set of paths in P ′ ending at nodes i′ ∈ B for B ⊆ S∗;
– let P ′(A, B) denotes the set of paths in P ′ from i ∈ A ⊆ S to i′ ∈ B ⊆ S∗;
– let w(P ′) =∑

P∈P ′ w(P );
– let val(P ′) =∑

P∈P ′ w(P )c(P ).

Observe that
∑

P∈P c(P )w(P ) ≤ cs(S)+ cs(S
∗). Thus val(P) ≤ cs(S)+ cs(S

∗).
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3.2. The swap graph

The swap graph simply corresponds to a transshipment problem from a specified subset
S′ of nodes of a current solution S (possibly a multiset) to a subset of facilities F ′ ⊂ F .
We place demands of 1 on the nodes of S′ and integer supplies on the facilities F ′, and
set the cost of an edge ĉkl from k ∈ S′ to l ∈ F − S to be Uckl + fl − fk . When using a
swap graph, we use the path decomposition to prove that a fractional solution of some
value β exists to the transshipment problem. Then by the integrality of the transshipment
polyhedra, we know that there exists an integral solution to the transshipment problem
of cost no more than β such that one unit of flow is shipped from each node in S′ to
exactly one node in F ′.

We then observe that in the integral solution to the transshipment problem, each unit
of flow from k ∈ S′ to l ∈ F ′ corresponds to a swap operation in our current solution
that can be performed while increasing the cost of the current solution by no more than
ĉkl : each unit of demand assigned from client j to k ∈ S′ in the current solution can be
assigned to l ∈ F ′ at a change in cost of

clj − ckj ≤ clk + ckj − ckj ≤ ckl .

There are at most U units of demand assigned to k ∈ S′, so the total change in cost of
transferring the demand assigned to k to l is at most Uckl , and the change in cost of
closing facility k and opening facility l is fl − fk . Thus the overall cost of performing
the swap is at most Uckl + fl − fk = ĉkl .

3.3. An algorithm for the 2-CFLP

To illustrate the use of the swap graph, we give an algorithm such that given any solution
to the k-CFLP, for k > 2, the algorithm returns a solution to the 2-CFLP at additional
cost no more than twice the cost of an optimal solution to the 1-CFLP. Given a solution
S to the k-CFLP (a multiset), the algorithm works as follows. As long as there exists an
add operation that reduces the cost, we add facilities from F − S to S one at a time. Let
S̃ be the solution when there are no longer add operations that improve the cost of the
solution. We then solve a transshipment problem via the swap graph between nodes in
S′ ⊆ S̃ and F , where S′ consists of all the copies of facilities that are used at full capacity;
let S̃1 = S̃ − S′ be the remainder copies of facilities in S. We put demands of 1 on the
nodes in S′, and supplies of 1 on the nodes in F , so that we have the following problem:

Min
∑

k∈S′,l∈F
ĉklxkl

subject to:
∑

l∈F
xkl = 1 ∀k ∈ S′

∑

k∈S′
xkl ≤ 1 ∀l ∈ F

xkl ≥ 0 ∀k ∈ S′, l ∈ F.
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Given the integral solution xkl to the transshipment problem, whenever xkl = 1, we
obtain a new solution Ŝ by swapping k ∈ S′ for l ∈ F at change in cost ĉkl . It is easy to
verify that in solution Ŝ we open at most 2 facilities for each i ∈ F , one possibly from
the assignment problem, and one from S̃1, so that we have a solution to the 2-CFLP.

Certainly the algorithm runs in polynomial time. We can now prove that this algo-
rithm does not increase the cost of the original solution by much.

Theorem 3.2. Suppose there exists a feasible solution to the 1-CFLP. The algorithm
above, given a solution S to the k-CFLP, produces a solution Ŝ to the 2-CFLP at addi-
tional cost at most twice the optimal value of a solution to the 1-CFLP.

Proof. We start with the solution S and apply add operations, each of which does not
increase the cost of the solution. Given the solution S̃ (after we have applied all add
operations to S that improve the cost of the solution), let P be the path decomposition
giving paths from facilities in S̃ to an optimal 1-CFLP solution S∗. We use the path
decomposition to give a fractional solution to the transshipment problem of cost no
more than

cs(S̃)+ cs(S
∗)− cf (S′)+ cf (S∗) ≤ cs(S̃)+ c(S∗).

By applying Lemma 2.3 with β = 0, we know that we must have cs(S̃) ≤ c(S∗). Since
the cost of the solution Ŝ obtained after swapping is at most the cost of c(S̃) plus the
cost of the solution to the transshipment problem, we know that

c(Ŝ) ≤ c(S̃)+ 2c(S∗).

To obtain a feasible fractional solution x̃ to the transshipment problem, we set x̃kl to be
1/U times the total weight of paths from k ∈ S′ to l ∈ S∗ (that is, x̃kl = w(P(k, l))/U ).
Clearly x̃ is a feasible solution for the transshipment problem, since the total weight of
paths leaving any k ∈ S′ is U , and the total weight of paths entering any l ∈ S∗ is at
most U . The cost of the solution x̃ is

∑

k∈S′,l∈S∗
ĉkl x̃kl =

∑

k∈S′,l∈S∗
(Uckl − fk + fl)(1/U)

∑

P∈P(k,l)

w(P )

≤
∑

k∈S′,l∈S∗

∑

P∈P(k,l)

w(P )ckl − cf (S′)+ cf (S∗)

≤
∑

P∈P
c(P )w(P )− cf (S′)+ cf (S∗)

≤ cs(S̃)+ cs(S
∗)− cf (S′)+ cf (S∗),

where the inequality ckl ≤ c(P ) follows from the triangle inequality. ��
Corollary 3.3. There is a polynomial-time algorithm that finds a solution to the 2-CFLP
of cost at most 4 times the optimal value of a 1-CFLP solution.

Proof. We apply the 2-approximation algorithm of Mahdian, Ye, and Zhang [17] for
the ∞-CFLP to obtain our initial solution S. Since the cost of the optimal solution
for ∞-CFLP is at most the cost of the optimal solution for the 1-CFLP, the corollary
follows. ��
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4. Analysis of the local search algorithm

We now use the path decomposition and swap graph tools from the previous section to
complete our analysis of the local search algorithm, and prove Theorem 2.5. The lemmas
we derive below are roughly similar to those of KPR [13]: Lemma 4.5 corresponds to
their Claim 9.8, and Lemma 4.6 to their Claims 9.9 and 9.10. However, we do not need an
analogue of their “refined β-allocation”, which gives us an improvement in the analysis
in Lemma 4.5.

The basic strategy of the proof is as follows. We need to bound the cost of the facil-
ities in S − S∗ in order to prove Theorem 2.5. To do this, we will demonstrate a set of
swap and drop moves that could be performed on the current solution, such that: (1) each
facility in S − S∗ occurs in exactly one of these moves; (2) the total cost of these moves
is bounded by 3cf (S∗ − S)+ 2cs(S)+ 2cs(S

∗)− cf (S − S∗). By hypothesis, none of
these moves is admissible, so we also know that each move costs at least−c(S)/p(n, ε),
so that the total cost is at least −|S − S∗|c(S)/p(n, ε). Thus,

3cf (S∗ − S)+ 2cs(S)+ 2cs(S
∗)− cf (S − S∗) ≥ −|S − S∗|c(S)/p(n, ε),

and rearranging terms gives the desired inequality. We emphasize that the set of swap
and drop moves we construct are solely for the purpose of analysis and constructing a
bound on the cost of the facilities in S − S∗; the moves are not used in the algorithm. In
particular, the set of moves could contain multiple swaps for the same facility in S∗ −S;
since this is for the purpose of the analysis, it is not problematic.

We begin by defining some notation we will need. Let S be a solution meeting the
conditions of Theorem 2.5; namely, neither S ⊆ S∗ nor S ⊇ S∗ and there are no admis-
sible drops or swaps. Let P be the path decomposition for S and an optimal solution S∗
as defined in Notation 3.1. We will be particularly interested in three subsets of paths
from P , and we define them as follows.

Definition 4.1. Define T = P(S − S∗, S ∩ S∗); that is, the set of all paths from nodes
in S − S∗ to S ∩ S∗ (if any). We call these the transfer paths.

The basic idea of the transfer paths in the proof is that for any path P ∈ T , we claim
we can transfer w(P ) of the demand assigned to the start node of the path to the end
node of the path at a cost of c(P )w(P ) without violating the capacity constraints. We
establish this claim later.

Definition 4.2. Define S = P(S − S∗, S∗ − S); that is, the set of all paths from S − S∗
to S∗ − S. We call these the swap paths.

We use the swap paths to get a fractional feasible solution for a transshipment prob-
lem from S−S∗ to S∗−S in the swap graph, and get an integral solution of swap moves
whose cost is a simple expression in terms of cs(S), cs(S

∗), cf (S−S∗), and cf (S∗−S).
Thus, as argued above, if no swap is admissible, this implies a bound on cf (S − S∗).

This idea does not quite work as stated because we might not get a good bound on
the total cost of the swap/drop moves in this way. Thus, as in KPR [13], we split the
nodes of S − S∗ into two types.
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Definition 4.3. We define heavy nodes H ⊆ S−S∗ such that the weight of the swap paths
from any i ∈ H to S∗ − S is at least U/2 (i.e., H = {i ∈ S − S∗ : w(S(i, ·)) ≥ U/2}).
We define light nodes to be all other nodes in S − S∗: L = S − S∗ −H .

We will be able to set up a transshipment problem for the nodes in H , which will
give us a set of swap moves for H and thus a bound on cf (H). To get a bound on
cf (L), we will have to set up a transshipment problem in a different manner and use
the observation that we can transfer the demand assigned from one light node to another
light node without violating capacity constraints.

To build towards our proof of Theorem 2.5, we now formalize the statements above
in a series of lemmas.

Lemma 4.4. Given the current assignment, a new assignment can be created in which
weight w(T (i, ·)) of the demand assigned to facility i ∈ S − S∗ is transferred to nodes
in S ∩ S∗. The new assignment has cost at most that of the current assignment plus
val(T (i, ·)).
Proof. To prove the lemma, consider a path P ∈ T (i, ·), with start node i and end node
i′. We observe that the first edge (i, j) in path P corresponds to a demand w(P ) assigned
to i by client j in the current assignment. We reassign this demand to i′ ∈ S ∩ S∗; the
increase in cost is at most (ci′,j −ci,j )w(P ) ≤ c(P )w(P ) by the triangle inequality. We
now must show that such a reassignment does not violate the capacity constraints at i′.
To see this, observe that by the properties of path-stripping, the total weight of paths in T
ending at any node i′ ∈ S∗ ∩S is the difference between the total weight of arcs coming
into node i′ and the total weight of arcs going out of node i′. Since the total weight of
arcs coming into node i′ corresponds to the total amount of demand assigned to i′ by
the optimal solution, and the total weight of arcs going out of node i′ corresponds to the
total amount of demand assigned to i′ by the current solution, and the optimal solution
must be feasible, we can increase the demand serviced by i′ by this difference and still
remain feasible. ��
Lemma 4.5. If there is not an admissible swap operation, then

cf (H) ≤ 2cf (S∗ − S)+ 2val(S(H, ·))+ val(T (H, ·))+ |H |c(S)/p(n, ε).

Proof. As suggested in the exposition, we set up a transshipment problem from H to
S∗ − S, as follows:

Min
∑

k∈H,l∈S∗−S

ĉklxkl

subject to:
∑

l∈S∗−S

xkl = 1 ∀k ∈ H

∑

k∈H
xkl ≤ 2 ∀l ∈ S∗ − S

xkl ≥ 0 ∀k ∈ H, l ∈ S∗ − S.

As stated in the exposition, we will give a fractional solution to this LP of relatively low
cost and derive from it an integral solution of no greater cost corresponding to swaps for
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the nodes in H . The first set of constraints of the LP indicates that each node in H will
be involved in exactly one swap. The second set of constraints indicates that each node
in S∗ − S will be in no more than two swaps. The number of swaps in which nodes in
S∗ − S are involved determines the factor in front of the term cf (S∗ − S) in the lemma
statement; we would like it to be as small as possible, and we show below that two is
feasible.

We claim that we can give a fractional solution to the transshipment problem of
cost no more than 2val(S(H, ·))+ 2cf (S∗ − S)− cf (H). Thus there exists an integral
solution of no greater cost. Given an integral solution x, when xkl = 1, we can swap
facility k ∈ H for l ∈ S∗−S and transfer the demand w(S(k, ·)) assigned to k at change
in cost at most ĉkl . By Lemma 4.4, we can transfer the remaining demand w(T (k, ·))
assigned to k to nodes in S ∩ S∗ at change in cost at most val(T (k, ·)). By the hypoth-
esis of the lemma, we know that any swap for a facility results in a change in cost of at
least −c(S)/p(n, ε). Summing over all swaps for k ∈ H given by the solution to the
transshipment problem, we have that

2val(S(H, ·))+ 2cf (S∗ − S)− cf (H)+ val(T (H, ·)) ≥ −|H |c(S)

p(n, ε)
.

Rearranging terms gives us the lemma.
To complete the proof, we give a fractional solution x̃ for this transshipment problem

by setting

x̃kl = w(S(k, l))

w(S(k, ·)) .

Certainly the constraints
∑

l∈S∗−S x̃kl = 1 are obeyed for all k ∈ H . The constraints∑
k∈H x̃kl ≤ 2 are also obeyed since

∑

k∈H
x̃kl =

∑

k∈H

w(S(k, l))

w(S(k, ·)) ≤
∑

k∈H

w(S(k, l))

U/2
≤ 2,

where the first inequality follows by the definition of H and the second since the total
weight of paths adjacent to any node is at most U . The cost of this fractional solution is

∑

k∈H,l∈S∗−S

ĉkl x̃kl =
∑

k∈H,l∈S∗−S

(Uckl + fl − fk)
w(S(k, l))

w(S(k, ·))

≤
∑

k∈H,l∈S∗−S

[

(Uckl + fl)
w(S(k, l))

U/2
− fk

w(S(k, l))

w(S(k, ·))
]

≤
∑

k∈H,l∈S∗−S

2cklw(S(k, l))+ 2cf (S∗ − S)− cf (H)

≤ 2val(S(H, ·))+ 2cf (S∗ − S)− cf (H). ��
Lemma 4.6 (KPR [13], Claims 9.9 and 9.10). If there are no admissible drop and swap
operations, then

cf (L) ≤ cf (S∗ − S)+ 2val(T (L, ·))+ 2val(S(L, ·))+ |L|c(S)/p(n, ε).
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Proof. The proof of this lemma is similar to the proof of the previous lemma, although
here we will have to set up a transshipment problem to capture both swap and drop
operations. One difficulty with translating the previous proof to this case is ensuring
that one can find a feasible fractional solution such that each facility in S∗ − S is in no
more than a small constant number swap/drop operations. As in the previous lemma,
the number of times each facility in S∗ −S is involved in a swap/drop operation implies
the factor in front of the term cf (S∗ − S) and thus we would like it to be as small as
possible. We keep the number small by choosing exactly one “primary” facility k in L

that can be swapped for a given facility l in S∗ − S; i.e. xkl > 0 for exactly one k ∈ L.
We make a careful choice of this facility k so that any other facility i to which we might
otherwise normally make a fractional assignment xil > 0, we can drop i and reassign
its demand to k, the primary facility of l, at not much more cost.

In order to set up the needed transshipment problem, we first need to define a cost
function θ(k) on nodes k ∈ L. In words, the cost θ(k) is the cost per unit capacity for
making U/2 units of capacity available at node k, either through the unused capacity at
k (which incurs zero cost per unit), or through transferring demand via the transfer paths
T (k, ·) (which incurs cost val(T (k, ·))/w(T (k, ·)) per unit).1 Note that since k ∈ L,
w(S(k, ·)) ≤ U/2, and thus the unused capacity at node k plus w(T (k, ·)) is at least
U/2. Let Nk denote the amount of unused capacity at k. If Nk ≥ U/2 then θ(k) = 0,
otherwise

θ(k) =
(

0 ·Nk + val(T (k, ·))
w(T (k, ·)) (U/2−Nk)

)

/(U/2).

Note that U
2 θ(k) ≤ val(T (k, ·)).

We can now define the needed transshipment problem from L to (F − S) ∪ L by
setting cost ĉkl = w(S(k, ·))ckl+fl−fk for l ∈ F−S, ĉkl = w(S(k, ·))(ckl+θ(l))−fk

for l ∈ L, l �= k, and ĉkk = ∞. The transshipment problem is then:

Min
∑

k∈L,l∈(F−S)∪L
ĉklxkl

subject to:
∑

l∈(F−S)∪L
xkl = 1 ∀k ∈ L

∑

k∈L
xkl ≤ 1 ∀l ∈ F − S

xkl ≥ 0 ∀k ∈ L, l ∈ (F − S) ∪ L.

The first set of LP constraints ensures that each k ∈ L is in exactly one drop or swap oper-
ation; the second set of constraints ensures that the facilities in F −S are in no more than
one drop/swap operation. We claim that we can give a fractional solution to the transship-
ment problem of cost no greater than 2val(S(L, ·))+val(T (L, ·))−cf (L)+cf (S∗−S).

Thus there exists an integral solution of no greater cost. Given an integral solution x,
when xkl = 1 for k ∈ L, l ∈ F − S, we can swap facility k ∈ L for l ∈ F − S and
transfer the demand w(S(k, ·)) assigned to k at change in cost at most ĉkl . By Lemma

1 The same cost function, including the definition of θ , was used by KPR [13].
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4.4, we can transfer the remaining demand w(T (k, ·)) assigned to k to nodes in S ∩ S∗
at change in cost at most val(T (k, ·)). When xki = 1 for k ∈ L, i ∈ L, k �= i, we can
drop facility k from S and transfer the demand w(S(k, ·)) assigned to k to i at change in
cost ĉki = w(S(k, ·))(cki + θ(i)), as this cost covers transferring these units of demand
to i and transferring the same amount of demand from i to nodes in S ∩ S∗. By Lemma
4.4, we can transfer the remaining demand w(T (k, ·)) assigned to k to nodes in S∩S∗ at
change in cost at most val(T (k, ·)). By the hypothesis of the lemma, we know that any
swap or drop of a facility results in a change in cost of at least−c(S)/p(n, ε). Summing
over all swaps and drops for k ∈ L given by the solution to the transshipment problem,
we have that

2val(S(L, ·))+ 2val(T (L, ·))− cf (L)+ cf (S∗ − S) ≥ −|L|c(S)

p(n, ε)
.

Rearranging terms gives us the lemma.
To complete the proof, we give a fractional solution x̃ for this transshipment prob-

lem. For each l ∈ S∗ − S we find k ∈ L that minimizes ckl + θ(k) and designate k as
the primary node π(l) for l. We then set x̃kl as follows. For each l ∈ S∗ − S, if k is the
primary node for l, we set x̃kl = w(S(k, l))/w(S(k, ·)), otherwise x̃kl = 0. For each
i ∈ L, we set

x̃ki =
∑

l∈S∗−S:i=π(l),k �=π(l)

w(S(k, l))

w(S(k, ·)) .

In other words, the fractional solution is constructed by rerouting the swap paths S(k, l)

to l’s primary node if k is not l’s primary; x̃ki gets the corresponding fraction of the paths
S(k, ·) rerouted to i. This solution is feasible since certainly

∑
l∈F xkl = 1 for all k ∈ L.

Also, since for at most one k ∈ L is x̃kl > 0 for l ∈ F − S,
∑

k∈L xkl ≤ 1. Observe that
when x̃ki > 0 for k ∈ L, i = π(l), l ∈ S∗ − S, then

ĉki = w(S(k, ·))(cki + θ(i))− fk

≤ w(S(k, ·))(ckl + cil + θ(i))− fk

≤ w(S(k, ·))(2ckl + θ(k))− fk, (1)

since cil + θ(i) ≤ ckl + θ(k) by the definition of primary nodes. Then the cost of this
fractional solution is

∑

k∈L,l∈F
ĉkl x̃kl =

∑

k∈L,l∈S∗−S,k=π(l)

ĉkl

w(S(k, l))

w(S(k, ·))

+
∑

k∈L,i∈L
ĉki

∑

l∈S∗−S:i=π(l),k �=π(l)

w(S(k, l))

w(S(k, ·)) (2)

≤
∑

k∈L,l∈S∗−S,k=π(l)

ĉkl

w(S(k, l))

w(S(k, ·))

+
∑

k∈L,l∈S∗−S,i=π(l),k �=i

ĉki

w(S(k, l))

w(S(k, ·)) (3)

≤
∑

k∈L,l∈S∗−S,k=π(l)

[w(S(k, ·))ckl
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+fl − fk]
w(S(k, l))

w(S(k, ·))
+

∑

k∈L,l∈S∗−S,k �=π(l)

[w(S(k, ·))(2ckl + θ(k))− fk]
w(S(k, l))

w(S(k, ·)) (4)

≤
∑

k∈L,l∈S∗−S

[w(S(k, ·))(2ckl + θ(k))− fk]
w(S(k, l))

w(S(k, ·))
+cf (S∗ − S) (5)

≤
∑

k∈L,l∈S∗−S

2cklw(S(k, l))

+
∑

k∈L
val(T (k, ·))− cf (L)+ cf (S∗ − S) (6)

≤ 2val(S(L, ·))+ val(T (L, ·))− cf (L)+ cf (S∗ − S).

Equation (2) follows from separating the sum into two types of non-zero terms according
to the definition of x̃kl . Inequality (3) follows from rewriting the double sum. Inequality
(4) follows from expanding the definition of ĉkl and from inequality (1). Inequality (5)
follows by collecting common terms of the two sums in (4) and bounding the summation
over fl in the first sum by cf (S∗ − S). Inequality (6) follows since the definition of L

and θ implies that
∑

l∈S∗−S w(S(k, l))θ(k) ≤ U
2 θ(k) ≤ val(T (k, ·)). ��

We can now complete the proof of Theorem 2.5.

Proof of Theorem 2.5. Lemma 4.5 implies that

cf (H) ≤ 2cf (S∗ − S)+ 2val(S(H, ·))+ val(T (H, ·))+ |H |c(S)/p(n, ε).

Lemma 4.6 implies that

cf (L) ≤ cf (S∗ − S)+ 2val(T (L, ·))+ 2val(S(L, ·))+ |L|c(S)/p(n, ε).

Summing the two together yields

cf (S − S∗) = cf (H)+ cf (L)

≤ 3cf (S∗ − S)+ 2val(S(S − S∗, ·))
+2val(T (S − S∗, ·))+ |S − S∗|c(S)/p(n, ε)

≤ 3cf (S∗ − S)+ 2(cs(S)+ cs(S
∗))+ |S − S∗|c(S)/p(n, ε),

which gives Theorem 2.5.

5. Conclusion

Most approximation algorithms compare the solution obtained against a polynomial-
time computable bound on the value of the optimal solution. This bound is sometimes
implicit, but it usually not too hard to discover. One surprising facet of the KPR result
is that it is not at all clear what the bound is. A typical bound is a linear programming



222 F.A. Chudak, D.P. Williamson: Improved approximation algorithms

relaxation of the problem. However, this bound can be quite weak for CFLP (see Section
3 of [22] for the relaxation and a bad example). Thus an interesting open question is to
determine a stronger lower bound for the CFLP. The fact that a 6(1+ ε)-approximation
algorithm exists for the problem seems to imply that such a bound must exist.

Acknowledgements. We thank the two anonymous referees for many useful comments on the presentation of
the paper.
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22. Shmoys, D., Tardos, É, Aardal, K.: Approximation algorithms for facility location problems. In: Proceed-
ings of the 29th ACM Symposium on Theory of Computing, 1997, pp. 265–274

23. Sviridenko, M.: Personal communication, July, 1998


