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Abstract. In this paper we study differentiability and semismoothness properties of functions defined as
integrals of parameterized functions. We also discuss applications of the developed theory to the problems of
shape-preserving interpolation, option pricing and semi-infinite programming.
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1. Introduction

The integral function F : R
n → R, defined by

F(x) :=
∫ b

a

[g(x, s)]+p(s)ds, (1.1)

where α+ := max{0, α} and p(s) ≥ 0 for all s ∈ [a, b], arises from nonsmooth equa-
tion reformulations of the shape-preserving interpolation problem and the option price
problem. It also arises in the aggregate reformulation of the semi-infinite program. Con-
vergence analyses of numerical methods designed for solving such problems via their
reformulations are highly related to differentiability properties of this integral function.

Differentiability properties and applications of the integral function (1.1) were dis-
cussed in recent publications by Dontchev, Qi and Qi [4],[5], Qi [16], Qi and Tseng [19],
Qi and Yin [20], and Wang, Yin and Qi [33]. The aim of this paper is an investigation
of smoothness, semismoothness, p-order semismoothness, strong semismoothness and
SC1 properties of a general class of integral functions which includes functions of the
form (1.1) as a particular case. We also discuss applications of the derived results to the
above mentioned problems.
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Let us remark that semismoothness, p-order semismoothness, and strong
semismoothness are the key conditions for superlinear, (1 + p)-order and quadratic
convergence, respectively, of the generalized Newton method for solving a system of
nonsmooth equations [14],[18],[17]. On the other hand, the SC1 property is the key
condition for superlinear convergence of the SQP method for solving one time, but not
twice, differentiable nonlinear programming problems [15],[7],[12].

In the last decade, the semismooth Newton method became a powerful tool for solv-
ing large scale nonlinear complementarity and variational inequality problems. This may
be seen in the fundamental monograph by Facchinei and Pang [8] and the abundant ref-
erences in that book. In the recent five years, while there are still further research work
on the semismooth Newton method for solving nonlinear complementarity and varia-
tional inequality problems, the semismooth Newton method has been further applied
to semidefinite problems [26], operator equations [30], shape-preserving interpolation
problems [4],[5] and option price problems [33].

In the applications of shape-preserving interpolation problems and option price prob-
lems, the integral function F , defined by (1.1), plays a central role. Its semismoothness
was established in [4]. This proved superlinear convergence of a Newton-like method
for solving the system of nonsmooth equations arising in that problem, which was a
conjecture for 15 years [9]. In [5], strong semismoothness of a particular form of the
integral function for that shape-preserving interpolation problem was established. This,
further, established quadratic convergence of the Newton-like method. In [20], this result
was generalized to a class of integral functions, which are still a special case of (1.1). A
counterexample was also given there showing that an integral function defined by (1.1)
may not be strongly semismooth. In [33], the semismooth Newton method was further
applied to the option price problem. Based upon the results of [4], semismoothness of
the integral function F , and hence superlinear convergence of the employed general-
ized Newton method, were established, but strong semismoothness of F and quadratic
convergence of the method still remained a question.

It was discovered in [5] that though the function [g(x, s)]+p(s) is piecewise smooth
as long as g and p are smooth (continuously differentiable), the integral function F

may not be piecewise smooth. Such function F , constructed in [5], is composed from
two-dimensional functions, which are strongly semismooth everywhere except at the
origin, where they are not differentiable. In [23], Rockafellar proved that a continuous
n-dimensional function, where n ≥ 2, is not piecewise smooth if it is smooth every-
where except at a point where it is not differentiable. Qi and Tseng [19] revealed that
such functions belong to a class of nonsmooth functions, which is totally different from
piecewise smooth functions. They call such functions almost smooth functions. Many
familiar functions, such as p-norm functions (1 < p < ∞), differentiable penalty func-
tions, smoothing functions, are actually almost smooth functions. In [16], Qi suggested
that the SQP method can be applied to the aggregate reformulation of the semi-infinite
program. This gives a further motivation for studying the SC1 properties of the integral
functions.

The aim of this paper is to answer, at least partially, these questions and to apply
the obtained results to the above mentioned applications. In the following sections 2–5
we give a basic analysis of differentiability and semismoothness properties of integral
functions, while section 6 is devoted to applications. We apply our theoretical results to
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the option pricing problem. We show that the generalized Newton method for solving
the no-arbitrage option price interpolation problem, proposed by Wang,Yin and Qi [33],
has at least 4

3 -order convergence. We give conditions when this method has 3
2 -order

or quadratic convergence. We also give a damped version of the generalized Newton
method and show that it is globally convergent and the convergence order is at least
4
3 . Applications to shape-preserving interpolation and semi-infinite programs are also
discussed.

2. Differentiability properties of integral functions

Consider an integral function F : R
n → R, defined by

F(x) :=
∫

�

f (x, s)dµ(s), (2.1)

where f : X × � → R, X is an open subset of R
n and µ is a finite measure defined

on a measurable space (�, F). We assume that for every x ∈ X, the function f (x, ·)
is F-measurable and µ-integrable, i.e.,

∫
�

|f (x, s)|dµ(s) < +∞. This implies that the
integral function F(x) is well-defined and finite valued. Denote fs(·) := f (·, s) and let
x ∈ X be fixed. We say that a property holds for almost every (a.e.) s ∈ � if it holds for
all s ∈ � except on a set of µ-measure zero. By f ′

s (x, h) we denote the directional deriv-
ative of fs(·) at x in direction h. The following result is a consequence of the Lebesgue
Dominated Convergence Theorem (e.g., [2, Proposition 5.108]).

Proposition 1. Suppose that: (i) there exists an integrable function κ : � → R+ such
that

|f (x1, s) − f (x2, s)| ≤ κ(s)‖x1 − x2‖ for all x1, x2 ∈ X and a.e. s ∈ �, (2.2)

(ii) for a.e. s ∈ �, fs(·) is directionally differentiable at a point x ∈ X. Then F(·) is
Lipschitz continuous on X, directionally differentiable at x and

F ′(x, h) =
∫

�

f ′
s (x, h)dµ(s). (2.3)

Condition (2.2) implies, of course, that for a.e. s ∈ � the function f (·, s) is Lipschitz
continuous on X. Note that the results of the above proposition have a local nature and
the set X can be reduced to a neighborhood of a considered point x. Note also that for
locally Lipschitz continuous functions the concepts of Fréchet and Gâteaux directional
differentiability do coincide (e.g., [25]). Hence, under the conditions of Proposition 1,
we may simply discuss directional differentiability (or differentiability) of F(·) at x.

It immediately follows from (2.3) that F ′(x, h) is linear in h, i.e., F(·) is differen-
tiable at x, if fs(·) is differentiable at x for a.e. s ∈ �. Moreover, we have the following
result (e.g., [24, Chapter 2]).

Proposition 2. Suppose that, in addition to the assumptions (i) and (ii) of Proposition
1, f ′

s (x, ·) is convex for a.e. s ∈ �. Then F(·) is differentiable at x and

∇F(x) =
∫

�

∇fs(x)dµ(s) (2.4)

if and only if fs(·) is differentiable at x for a.e. s ∈ �.
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Suppose now that the function f (x, s) is given as the maximum of a family of smooth
functions gj : X × � → R, j ∈ J . That is,

f (x, s) := sup
j∈J

gj (x, s). (2.5)

We make the following assumptions.

(A1) � is a compact metric space and F is its Borel sigma algebra.
(A2) For every s ∈ � and j ∈ J , the function gjs(·) := gj (·, s) is continuously

differentiable on X.
(A3) Gjs(x) := ∇gjs(x) is continuous on X × � × J .
(A4) The set J is a compact metric space.

Of course, if the set J is finite, then the last assumption (A4) holds automatically.
By the Danskin theorem (e.g., [2, Theorem 4.13]) it follows from assumptions

(A2)–(A4) that the max-function fs(·), defined in (2.5), is directionally differentiable at
every point x ∈ X and

f ′
s (x, h) = sup

j∈J ∗
s (x)

hT Gjs(x). (2.6)

Here J ∗
s (x) denotes the index set of active at x ∈ X constraints,

J ∗
s (x) := arg max

j∈J
gj (x, s). (2.7)

Note that since it is assumed that the set J is compact and gj (x, s) is continuous in
j ∈ J , the set J ∗

s (x) is nonempty and compact.
Let V ⊂ X be a compact neighborhood of a point x̄ ∈ X. By the Mean Value

theorem we have by assumptions (A2) and (A3) that for all x1, x2 ∈ V and κj (s) :=
supx∈V ‖Gjs(x)‖, the following holds

|gj (x
1, s) − gj (x

2, s)| ≤ κj (s)‖x1 − x2‖.
It follows that fs(·) is Lipschitz continuous on V with the Lipschitz constant κ(s) :=
supj∈J κj (s). Because of the assumption (A3) and since the sets � and J are compact,
the function κ(s) is bounded on �, and hence is integrable.

We have by formula (2.6) that f ′
s (x, ·) is given by the maximum of linear functions

and hence is convex. It also follows from (2.6) that fs(·) is differentiable at x iff Gjs(x)

is the same for all j ∈ J ∗
s (x), say Gjs(x) = Gs(x) for all j ∈ J ∗

s (x), in which case
∇fs(x) = Gs(x). Consider the set

ϒ(x) := {
s ∈ � : there exist i, j ∈ J ∗

s (x) such that Gis(x) �= Gjs(x)
}
. (2.8)

The set ϒ(x) is the set of those s ∈ � for which fs(·) is not differentiable at x. The
above discussion together with Propositions 1 and 2 imply the following result.

Theorem 1. Consider the integral function F(·) defined in (2.1) with f (·, ·) defined
in (2.5). Suppose that the assumptions (A1)–(A4) are satisfied. Then F(·) is locally
Lipschitz continuous, directionally differentiable and formula (2.3) holds. Moreover,
F(·) is differentiable at a point x ∈ X, and formula (2.4) holds, if and only if the set
ϒ(x) has µ-measure zero.
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Clearly, for x ∈ X, the set ϒ(x) is included in the set of such s ∈ � that J ∗
s (x) is

not a singleton. Therefore, it follows from the above theorem that if J ∗
s (x) is a singleton

for a.e. s ∈ �, then F(·) is differentiable at x.
Denote by XF the set of such x ∈ X that F(·) is differentiable at x. Since F(·) is

locally Lipschitz continuous, we have by Rademacher’s theorem that F(·) is differen-
tiable almost everywhere, i.e., the set X \ XF has Lebesgue measure zero. We say that
F(·) is continuously differentiable at a point x̄ ∈ X if x̄ ∈ XF and

lim
XF �x→x̄

∇F(x) = ∇F(x̄).

Note that it is assumed in the above that F(·) is differentiable at x̄, but not necessarily
at all x near x̄.

Proposition 3. Suppose that the set J is finite, assumptions (A1)–(A3) are satisfied
and, for x̄ ∈ X, the set J ∗

s (x̄) is a singleton for a.e. s ∈ �. Then F(·) is continuously
differentiable at x̄.

Proof. By the above discussion we have that, under the assumptions (A1)–(A3) and
since J ∗

s (x̄) = {js} is a singleton for a.e. s ∈ �, the integral function F(·) is differ-
entiable at x̄, i.e., x̄ ∈ XF . Also since Gjs(·) are continuous and J is finite, we have
that if J ∗

s (x̄) = {js} is a singleton for some s ∈ �, then J ∗
s (x) = {js} for all x in a

neighborhood (depending on s) of x̄. For such x and s we have that ∇fs(x) = Gjss(x).
Since � is compact and for every j ∈ J , Gjs(x) is continuous on X × �, there exists a
constant L > 0 such that ‖Gjs(x)‖ ≤ L for all s ∈ �, x in a neighborhood of a point
x̄ and j ∈ J . Consequently, by the Lebesgue Dominated Convergence theorem we can
take the following limit inside the integral

lim
XF �x→x̄

∇F(x) =
∫

�

lim
XF �x→x̄

Gjss(x)dµ(s).

Continuity of ∇F(x) then follows from the continuity of Gjs(·). 
�

In the remainder of this section we discuss the following particular case of integral
functions which is important for applications considered in section 6. Let g : X×� → R

and consider the integral function

F(x) :=
∫

�

[g(x, s)]+dµ(s). (2.9)

In particular, if � = [a, b] and dµ(s) = p(s)ds, then the above integral function F(·)
becomes the function defined in (1.1). Clearly the function fs(x) := [g(x, s)]+ can be
written as the maximum of the function g(x, s) and the identically zero function. The
corresponding assumptions (A2) and (A3) take here the following form:

(A5) For every s ∈ � the function gs(·) := g(·, s) is continuously differentiable.
(A6) Gs(x) := ∇gs(x) is continuous on X × �.
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We have then that fs(·) is directionally differentiable and

f ′
s (x, h) =




[hT Gs(x)]+, if s ∈ �0(x),

0, if s ∈ �−(x),

hT Gs(x), if s ∈ �+(x),

(2.10)

where

�0(x) := {s ∈ � : gs(x) = 0},
�−(x) := {s ∈ � : gs(x) < 0},
�+(x) := {s ∈ � : gs(x) > 0}.

We have here that for a given x ∈ X and any s ∈ �, the function fs(·) is differen-
tiable at x iff either s ∈ �−(x) ∪ �+(x) or s ∈ �0(x) and Gs(x) = 0. Therefore, the
following result is a consequence of Propositions 1 and 2 and Theorem 1.

Corollary 1. Consider the integral function F(·) defined in (2.9). Suppose that the
assumptions (A1),(A5) and (A6) are satisfied. Then F(·) is locally Lipschitz continu-
ous, directionally differentiable and formula (2.3) holds. Moreover, F(·) is differentiable
at a point x ∈ X if and only if

µ
( {s ∈ �0(x) : Gs(x) �= 0} ) = 0, (2.11)

in which case

∇F(x) =
∫

�+(x)

Gs(x)dµ(s). (2.12)

Note that because of the condition (2.11), the set �+(x) can be replaced by the set
�+(x)∪�0(x) without changing the value of the integral in the right hand side of (2.12).
We have by Corollary 1 that, under the specified assumptions, the set XF is formed by
such x ∈ X that condition (2.11) holds.

Let us denote by �1(x, h) the set of such s ∈ � that gs(x + h) and gs(x) have the
same sign, and by �2(x, h) = � \ �1(x, h) the set of such s ∈ � that gs(x + h) and
gs(x) have different signs. (By definition we say that gs(x +h) and gs(x) have the same
sign if one of these numbers is zero.)

Proposition 4. Consider the integral function F(·) defined in (2.9). Suppose that the
assumptions (A1),(A5) and (A6) hold and condition (2.11) is satisfied at a point x̄ ∈ X.
Suppose, further, that the following condition holds

lim
h→0

µ
(
�2(x̄, h)

) = 0. (2.13)

Then F(·) is continuously differentiable at x̄.

Proof. By Corollary 1, formula (2.12) holds for all x ∈ XF . Therefore, we have for all
x = x̄ + h ∈ XF in a neighborhood of x̄, that

‖∇F(x̄ + h) − ∇F(x̄)‖ ≤ ∫
�

‖Gs(x̄ + h) − Gs(x̄)‖dµ(s)

+ ∫
�2(x̄,h)

(‖Gs(x̄ + h)‖ + ‖Gs(x̄)‖)dµ(s).
(2.14)
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By the Lebesgue Dominated Convergence theorem we can take the following limit inside
the integral, and hence

lim
x→x̄

∫
�

‖Gs(x) − Gs(x̄)‖dµ(s) =
∫

�

lim
x→x̄

‖Gs(x) − Gs(x̄)‖dµ(s) = 0. (2.15)

We also have that the second integral in (2.14) is bounded by 2Lµ(�2(x̄, h)), where L

is a constant bounding ‖Gs(x)‖ for all s ∈ � and x in a neighborhood of x̄. It follows
then by (2.13) and (2.15) that

lim
XF �x→x̄

‖∇F(x) − ∇F(x̄)‖ = 0, (2.16)

which proves that F(·) is continuously differentiable at x̄. 
�

Let us note that condition (2.13) alone does not imply differentiability of F(·).
Think, for example, about g(x, s) ≡ g(x) independent of s and such that g(x̄) = 0
while ∇g(x̄) �= 0. In that case the set �2(x̄, h) is empty and hence condition (2.13)
holds. On the other hand, F(·) = µ(�)([g(·)]+) is not differentiable at x̄.

3. Semismoothness properties of integral functions

Consider the integral function F(·) defined in (2.1). Suppose that in addition to the
assumptions (i) and (ii) of Proposition 1, fs(·) is semismooth (Mifflin [11], see also
[14],[18]) for a.e. s ∈ �. That is, fs(·) is directionally differentiable and

∣∣f ′
s (x + h, h) − f ′

s (x, h)
∣∣ ≤ εs(h)‖h‖, (3.1)

where εs(h) → 0 as h → 0. Then

∣∣F ′(x + h, h) − F ′(x, h)
∣∣ ≤ ∫

�

∣∣f ′
s (x + h, h) − f ′

s (x, h)
∣∣ dµ(s)

≤ ‖h‖ ∫
�

εs(h)dµ(s).
(3.2)

Suppose, further, that εs(h) is dominated by an integrable function γ (s) for all h in a
neighborhoodV of 0∈R

n, i.e., suph∈V εs(h)≤γ (s) for a.e. s ∈ � and
∫
�

γ (s)dµ(s)<∞.
Then by the Lebesgue Dominated Convergence theorem we can take the limit inside the
integral, and hence

lim
h→0

∫
�

εs(h)dµ(s) =
∫

�

lim
h→0

εs(h)dµ(s) = 0. (3.3)

It follows from (3.2) and (3.3) that F(·) is semismooth.

Proposition 5. Suppose that f (x, s) is the max-function, defined in (2.5), and that the
assumptions (A1)–(A4) hold. Then the integral function F(·) is semismooth at every
x ∈ X.
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Proof. Assumptions (A2)–(A4) imply that for every s ∈ � the function fs(·) is semi-
smooth, [11, Theorem 2]. Consider a point x ∈ X. By the above discussion we only have
to verify that εs(h) is dominated by an integrable function for all h in a neighborhood
V of 0 ∈ R

n. We have that the constant

K := sup
{‖Gjs(x + h)‖ : j ∈ J, s ∈ �, h ∈ V

}

is finite, provided that the neighborhood V is compact. Also by (2.6) we have that
|f ′

s (x + h, h)| ≤ K‖h‖ for all s ∈ �, j ∈ J and h ∈ V . It follows that εs(h) is
dominated by the constant function γ (s) ≡ 2K , and hence the proof is complete. 
�

Suppose now that for every s ∈ �, fs(·) is p-order semismooth [18], at a point
x ∈ X, for 0 < p ≤ 1. (Note that 1-order semismoothness was later called strongly
semismooth [17].) That is, lim suph→0 cs(h) < ∞, where

cs(h) :=
∣∣f ′

s (x + h, h) − f ′
s (x, h)

∣∣
‖h‖1+p

, h �= 0.

We have that

∣∣F ′(x + h, h) − F ′(x, h)
∣∣ ≤ ‖h‖1+p

∫
�

cs(h)dµ(s). (3.4)

Therefore, in order to show that F(·) is p-order semismooth, at x, we need to verify that

lim sup
h→0

∫
�

cs(h)dµ(s) < ∞. (3.5)

As an example consider the integral function F(·) defined in (2.9), and suppose that
the corresponding assumptions (A1), (A5) and (A6) hold. It follows by Proposition 5
that the corresponding integral function F(·) is semismooth.

Let us study now p-order semismoothness of F(·). We have that cs(h) ≤ qs(h) with

qs(h) :=
{ ‖h‖−p ‖Gs(x + h) − Gs(x)‖ , if s ∈ �1(x, h),

‖h‖−p max {‖Gs(x + h)‖, ‖Gs(x)‖} , if s ∈ �2(x, h).
(3.6)

Theorem 2. Consider the integral function F(·) defined in (2.9). Suppose that the
assumptions (A1), (A5) and (A6) are satisfied. Then the integral function F(·) is semi-
smooth. Suppose, further, that the following two conditions hold: there exists an inte-
grable function η : � → R+ such that

∥∥∥Gs(x
1) − Gs(x

2)

∥∥∥ ≤ η(s)‖x1 − x2‖p, ∀ x1, x2 ∈ X and a.e. s ∈ �, (3.7)

and

µ(�2(x, h)) = O(‖h‖p). (3.8)

Then F(·) is p-order semismooth at x.
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Proof. Semismoothness of F(·) follows by Proposition 5. In order to show p-order
semismoothness of F(·) we need to verify (3.5). We have that∫

�

cs(h)dµ(s) ≤
∫

�1(x,h)

qs(h)dµ(s) +
∫

�2(x,h)

qs(h)dµ(s). (3.9)

By (3.6) and (3.7) we have∫
�1(x,h)

qs(h)dµ(s) ≤
∫

�

η(s)dµ(s) < ∞.

Since ‖Gs(x + h)‖ and ‖Gs(x)‖ are bounded for s ∈ �, we have by (3.6) and (3.8)
that the second integral in the right hand side of (3.9) is also bounded and the assertion
follows. 
�

The above condition (3.7) holds, in particular, if Gs(·) is differentiable and ∇Gs(x)

is continuous on X × �. Condition (3.8) is more delicate. It is clear that this condition
implies condition (2.13). In the following we will analyze cases in which condition (3.8)
holds. Before doing this, we remark that this condition for p = 1 may fail and the inte-
gral function F may not be strongly semismooth. An example of an integral function
F(·), of the form (2.9), which is not strongly semismooth was given in Qi and Yin [20].
That example was simplified further by Ralph [21]. Ralph’s example is as follows: F is
defined by (2.9), g(x, s) := s2 − x, s ∈ [0, 1], x ∈ R and dµ(s) = ds. Here, for x = 0
and h > 0, �2(0, h) = (0,

√
h), and hence condition (3.8) does not hold for p = 1.

And, indeed, the integral function is not strongly semismooth in this example.
We now assume that � is an interval [a, b] of the real line and dµ(s) = p(s)ds.

For the sake of convenience, we first recall the concept of tensors and discuss their
properties. We use A

(k)
n to denote a k-th order n-dimensional tensor and use A

(k)
n,i1···ik

to denote it elements. We assume that il = 1, · · · , n for l = 1, · · · , k, and that A
(k)
n is

totally symmetric, i.e.,

A
(k)
n,i1···ik = A

(k)
n,j1···jk

if j1, · · · , jk is any reordering of i1, · · · , ik . Let x ∈ R
n. Denote

A(k)
n xk :=

n∑
i1,··· ,ik=1

A
(k)
n,i1···ik xi1 · · · xik .

Let ‖ · ‖ be the F-norm of the tensor space, that is,

∥∥∥A(k)
n

∥∥∥ =
√√√√ n∑

i1,··· ,ik=1

(A
(k)
n,i1···ik )

2.

Note that the above concept extends the F-norm concepts of matrices and vectors.
The following proposition can be easily proved by mathematical induction.

Proposition 6. Let A
(k)
n be a k-th order n-dimensional tensor and x ∈ R

n. Then∣∣∣A(k)
n xk

∣∣∣ ≤
∥∥∥A(k)

n

∥∥∥ ‖x‖k. (3.10)
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Since semismoothness of F at a point x̄ is a local property which depends on only
the status of F near x̄, in order to study p-order semismoothness of F defined by (1.1),
we first establish the following lemma which characterizes the perturbation property of
the root s(x) of g(x, ·) = 0, where g : R

n+1 → R has continuous m-order derivative.
In this lemma we assume s(x) (but maybe not unique) exists for any x ∈ X, where X is
a certain open convex set containing x̄. Note that X can be a neighborhood of x̄.

Lemma 1. Let x̄ ∈ X, where X ⊂ R
n is an open convex set. Suppose that for any

x ∈ X, g(x, ·) = 0 has at least one root on [a, b], denoted as s(x). Let s̄ = s(x̄) and
assume that the following condition holds:

{
∇(k)

s g(x̄, s̄) = 0, k = 1, 2, · · · , m − 1,∣∣∇(m)
s g(x, s)

∣∣ > c, ∀x ∈ X, s ∈ [a, b],
(3.11)

where m is a positive integer and c is a positive number. Then s(x) → s̄ whenever
x → x̄, and there exists a positive constant L(x̄, s̄) such that

|s(x) − s̄|m ≤ L(x̄, s̄)‖x − x̄‖, (3.12)

and s̄ is the unique root of g(x̄, ·) = 0.

Proof. Write xn+1 = s, z = (x, xn+1), z̄ = (x̄, s̄) and

A
(k)
n+1,i1···ik (z) = ∂kg

∂xi1 · · · ∂xik

∣∣∣∣
z

, il = 1, · · · , n + 1, l = 1, · · · , k. (3.13)

It is clear that A(k)
n+1(z) is a totally symmetric tensor. By using (3.13), the standard Taylor

theorem for multivariate functions [3] can be written as:

g(z) = g(z̄) + A
(1)
n+1(z̄)
z + A

(2)
n+1(z̄)
z2

2!
+ · · · + A

(m−1)
n+1 (z̄)
zm−1

(m − 1)!
+ A

(m)
n+1(z(ξ))
zm

m!
, (3.14)

where 
z = z − z̄, and z(ξ) is a point in the segment connecting z and z̄. We obtain,
by direct computation, that

A
(k)
n+1(z)
zk = ∇(k)

s g(z)
sk + Ck−1
k

(
B

(1)
n,k(z)
x

)

sk−1

+Ck−2
k

(
B

(2)
n,k(z)
x2)
sk−2 + · · ·

+C1
k

(
B

(k−1)
n,k (z)
xk−1)
s (3.15)

+C0
k

(
B

(k)
n,k(z)
xk

)
, k = 1, · · · , m,

where

C
j
k = k!

(k − j)!j !
, j = 0, · · · , k

and B
(l)
n,k(z) is an lth order n-dimensional tensor with components

B
(l)
n,i1···il (z) = ∂kg

∂xi1 ···∂xil
∂sk−l

∣∣∣∣
z

, l = 1, · · · , k.
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From (3.15) and the condition given, the formula (3.14) can be rewritten as follows:

− 1

m!
∇(m)

s g(z(ξ))
sm =
[
B

(1)
n,1(z̄)
x + 1

2!
C1

2

(
B

(1)
n,2(z̄)
x

)

s + · · ·

+ 1

(m − 1)!
Cm−2

m−1

(
B

(1)
n,m−1(z̄)
x

)

sm−2

+Cm−1
m

(
B(1)

n,m(z(ξ))
x
)

sm−1

]

+
[

1

2!
C0

2

(
B

(2)
n,2(z̄)
x2)+ 1

3!
C1

3

(
B

(2)
n,3(z̄)
x2)
s + · · ·

+ 1

(m − 1)!
Cm−3

m−1

(
B

(2)
n,m−1(z̄)
x2)
sm−3

+ 1

m!
Cm−2

m

(
B(2)

n,m(z(ξ))
x2)
sm−2
]

+ · · ·

+
[

1

(m − 1)!
C1

m−1

(
B

(m−1)
n,m−1(z̄)
xm−1)

+ 1

m!
C1

m

(
B(m−1)

n,m (z(ξ))
xm−1)
s

]

+ 1

m!
C0

m

(
B(m)

n,m(z(ξ))
xm
)
. (3.16)

Since |∇(m)
s g(x, s)| > c, by Proposition 6, we have that

|
s|m ≤ m!
∣∣∇(m)

s g(z(ξ))
∣∣−1

{[∥∥B(1)
n,1(z̄)

∥∥+ 1

2!
C1

2

∥∥B(1)
n,2(z̄)

∥∥|
s| + · · ·

+ 1

(m − 1)!
Cm−2

m−1

∥∥B(1)
n,m−1(z̄)

∥∥|
s|m−2 + Cm−1
m

∥∥B(1)
n,m(z(ξ))

∥∥|
s|m−1
]

+
[

1

2!
C0

2

∥∥B(2)
n,2(z̄)

∥∥+ · · · + 1

(m − 1)!
Cm−3

m−1

∥∥B(2)
n,m−1(z̄)

∥∥|
s|m−3

+ 1

m!
Cm−2

m

∥∥B(2)
n,m(z(ξ))

∥∥|
s|m−2
]

‖
x‖ + · · ·

+
[

1

(m − 1)!
C1

m−1

∥∥B(m−1)
n,m−1(z̄)

∥∥+ 1

m!
C1

m

∥∥B(m−1)
n,m (z(ξ))

∥∥|
s|
]

‖
x‖m−2

+ 1

m!
C0

m

∥∥B(m)
n,m(z(ξ))

∥∥‖
x‖m−1
}

‖
x‖. (3.17)

It is clear that all coefficients of ‖
x‖k and |
s|k , (k = 1, 2, · · · , m − 1) are bounded.
Consequently, from the fact that

∣∣∇(m)
s g(z(ξ))

∣∣−1 is bounded, there exists a positive
constant L̄(x̄, s̄) such that

|
s|m ≤ L̄(x̄, s̄)‖
x‖.
This shows that s(x) → s̄ whenever x → x̄, and s̄ is the unique root of g(x̄, ·) = 0. The
proof is completed. 
�
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Remark. The second item in (3.11), i.e.,
∣∣∇(m)

s g(x, s)
∣∣ > c, ∀x ∈ X, s ∈ [a, b] charac-

terizes the uniform sharpness of the curve family {g(x, ·) : x ∈ X} on interval [a, b] in
a sense. For instance, in the case m = 2, since the value of ∇(2)

s g(x, s) characterizes the
“convexity degree" of curve g(x, ·), the second item in (3.11) shows the curve family
{g(x, ·) : x ∈ X} has at least “convexity degree" c on interval [a, b].

Now, we discuss the p-order semismoothness property of the integral function F(·)
defined by (1.1). We give a sufficient condition under which F is p-order semismooth
at a given point x̄. Note, this condition is easier to check than (3.8).

Theorem 3. Consider the integral function F(·), defined by (1.1), at a point x̄ ∈ R
n.

Suppose that: (i) gs(x) = g(x, s) is m-order continuously differentiable, jointly in x

and s, where m is a certain positive integer, (ii) �0(x̄) is a singleton set, denoted as {s̄},
(iii) s̄ is an m-th order root of g(x̄, ·) = 0, that is,

{
∇(k)

s g(x̄, s̄) = 0, k = 1, 2, · · · , m − 1,

∇(m)
s g(x̄, s̄) �= 0,

(3.18)

(iv) there exists an integrable function η(s) such that

‖Gs(x + h) − Gs(x)‖ ≤ η(s)‖h‖ 1
m .

Then F(·) is 1
m

-order semismooth at x̄.

Proof. By Theorem 2, we only need to check if (3.8) holds. Since ∇(m)
s g(x, s) is con-

tinuous at (x̄, s̄) and d̄ := ∇(m)
s g(x̄, s̄) �= 0, there exist a neighborhood U of x̄ and a

subinterval [s̄ − δ, s̄ + δ] such that

min
x∈U,s∈[s̄−δ,s̄+δ]

∣∣∣∇(m)
s g(x, s)

∣∣∣ >

∣∣∣∣ d̄2
∣∣∣∣ .

Take any h ∈ R
n with x̄ + h ∈ U . There are four cases: Case (i) d̄ < 0 and m is an even

number; Case (ii) d̄ < 0 and m is an odd number; Case (iii) d̄ > 0 and m is an even
number; Case (iv) d̄ > 0 and m is an odd number. We now only discuss cases (i) and
(ii), the proof for the other two cases is similar.

Case (i). In this case, it is not difficult to know that

g(x̄, s) ≤ g(x̄, s̄) = 0, ∀s ∈ [a, b]. (3.19)

We assume, without loss of generality, that a < s̄ < b. If �0(x̄ + h) = ∅, then
�−(x̄ + h) = [a, b]. Hence, �2(x̄ + h) = ∅. Now, we assume that �0(x̄ + h) �= ∅.
Write

ŝ(h) := sup{s : s ∈ �0(x̄ + h)},

s̃(h) := inf{s : s ∈ �0(x̄ + h)}.
We know, because of the continuity of g, that �0(x̄ + h) is a closed set. Consequently,
ŝ(h), s̃(h) ∈ �0(x̄ +h). We assume, shrinking U if necessary, that s(x) ∈ [s̄ − δ, s̄ + δ]
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for all s(x) ∈ �0(x) and x ∈ U . We also conclude that for any s ∈ (ŝ(h), b] or
s ∈ [a, s̃(h)),

g(x̄ + h, s) < 0.

In fact, if there exists, without loss of generality, an s′ ∈ (ŝ(h), b] such that

g(x̄ + h, s′) > 0,

then, since g(x̄, b) < 0, g(x̄ + h, b) < 0 whenever ‖h‖ is small enough. By the Mean-
Value Theorem, there exists an s′′ on the open line segment from s′ to b such that

g(x̄ + h, s′′) = 0,

contradicting the definition of ŝ(h). So,

�2(x̄, h) ⊆ [s̃(h), ŝ(h)].

Further, since ŝ(h), s̃(h) ∈ [s̄ − δ, s̄ + δ], applying Lemma 1 to the case that X = U

and [a, b] = [s̄ − δ, s̄ + δ], we have

µ(�2(x̄, h)) ≤ 
ŝ(h) + 
s̃(h) = O(‖h‖ 1
m ),

where 
ŝ(h) = |ŝ(h) − s̄| and 
s̃(h) = |s̃(h) − s̄|.
Case (ii). In this case, we have

g(x̄, s) > 0, ∀s ∈ [a, s̄),

g(x̄, s) < 0, ∀s ∈ (s̄, b].

That is, �+(x̄) = [a, s̄) and �−(x̄) = (s̄, b]. Hence, for any h ∈ R
n, �0(x̄ + h) �= ∅,

whenever ‖h‖ is small enough, and

g(x̄ + h, s) > 0, ∀s ∈ [a, s̃(h)),

g(x̄ + h, s) < 0, ∀s ∈ (ŝ(h), b].

So,

�2(x̄, h) ⊆ [s̃(h), s̄]
⋃

[s̄, ŝ(h)].

Similarly to case (i), we have also

µ(�2(x̄, h)) ≤ O(‖h‖ 1
m ).

The proof is completed. 
�
Remark. In Theorem 3, the condition (ii) is not essential since the sum of a finite number
of p−order semismooth functions is still a p−order semismooth function. Suppose the
set �0(x̄) = {s ∈ [a, b] : gs(x̄) = 0} is finite and the highest order of roots is m, then by
separating [a, b] into a certain number of subintervals such that every subinterval con-
tains only a single root of gs(x̄) = 0, we know that F is the sum of the corresponding
integral functions defined on these subintervals. By Theorem 3, these integral functions
are at least 1

m
-order semismooth at x̄ and so is F .

With the above results and the results of [19] at hand, we may identify whether a par-
ticular integral function F is smooth, (p-order) semismooth, piecewise smooth, almost
smooth or none of the above.
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4. SC1 properties of integral functions

A smooth function F(·) is called an LC1 (SC1) function if ∇F(·) is locally Lipschitz
continuous (semismooth) [7],[12],[15]. Hence, we may establish SC1 properties of F(·)
based upon the results of the last two sections.

Proposition 7. Consider the integral function F(·) defined in (2.9). Suppose that: the
assumptions (A1),(A5),(A6) and condition (3.7) hold, condition (2.11) is satisfied at
every x ∈ X, and there exists a constant K > 0 such that

µ
(
�2(x, h)

) ≤ K‖h‖, ∀ x, x + h ∈ X. (4.1)

Then F(·) is differentiable and ∇F(·) is Lipschitz continuous on X.

Proof. By Corollary 1, assumptions (A1),(A5) and (A6) and condition (2.11) imply that
F(·) is differentiable on X and formula (2.12) holds. By using (2.14) and (3.7) we obtain
that for x, x + h ∈ X,

‖∇F(x + h) − ∇F(x)‖ ≤ ‖h‖
∫

�

η(s)dµ(s) + 2Lµ(�2(x, h)),

where L is such that ‖Gs(x + h)‖ ≤ L for all s ∈ � and h in a neighborhood of 0.
Together with (4.1) this completes the proof. 
�

Note that condition (4.1) implies condition (3.8) “uniformly in x". Note also that one
can formulate a local version of the above theorem by assuming that conditions (3.7)
and (4.1) hold locally.

As an example, consider g(x, s) := v(x) + sT u(x), where v : X → R and
u : X → R

p, and suppose that µ is a Borel measure on R
p having density p(·)

(i.e., dµ(s) = p(s)ds) with support � ⊂ R
p. In that case

F(x) =
∫

�

[
v(x) + sT u(x)

]
+

p(s)ds. (4.2)

Proposition 8. Consider the integral function F(·) defined in (4.2). Suppose that: (i)
the functions v(·) and u(·) are continuously differentiable, and (ii) the set � is bounded.
Denote V (x) := ∇v(x) and U(x) := ∇u(x). Then F(·) is differentiable at a point
x ∈ X and

∇F(x) =
∫

�+(x)

[
V (x) + U(x)s

]
p(s)ds, (4.3)

if and only if either |v(x)| + ‖u(x)‖ �= 0, or v(x) = 0, u(x) = 0 and V (x) = 0,
U(x) = 0. Suppose that, in addition to the above assumptions (i) and (ii), V (·) and U(·)
are locally Lipschitz continuous and the density function p(·) is bounded. Then F(·) is
strongly semismooth, and if, moreover, F(·) is differentiable on X, then H(·) := ∇F(·)
is locally Lipschitz continuous.
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Proof. We can apply Corollary 1 to the present case. Since � is a support set of a mea-
sure, it is closed. Therefore, since it is assumed that � is bounded, it is compact. The
assumptions (A1),(A5) and (A6) then hold. We have here that �0(x) = � ∩ L0(x),
where

L0(x) :=
{
s ∈ R

p : v(x) + sT u(x) = 0
}

is an affine subspace of R
p. Consequently, L0(x) has Lebesgue measure zero un-

less L0(x) coincides with the whole space R
p. It follows that if u(x) �= 0, then

µ(�0(x)) = 0, and hence the corresponding integral function F(·) is differentiable
at x and formula (2.12) holds. If v(x) = 0 and u(x) = 0, then clearly L0(x) = R

p and
�0(x) = �. In that case F(·) is differentiable at x iff the set � \L1(x), where L1(x) :=
{s ∈ R

p : V (x) + U(x)s = 0}, has µ-measure zero.Again, since L1(x) is an affine (may
be empty) subspace of R

p it has Lebesgue measure zero if ‖V (x)‖ + ‖U(x‖ �= 0, in
which case µ(� \ L1(x)) = µ(�) �= 0, or L1(x) = R

p if V (x) = 0 and U(x) = 0, in
which case � \ L1(x) = ∅.

Suppose, further, that V (·) and U(·) are locally Lipschitz continuous and the density
function p(·) is bounded. Then condition (3.7) holds (locally) with η(s) := 
V +
U‖s‖,
where 
V and 
U are local Lipschitz constants of V and U . Moreover, since � is bounded
we have that the Lebesgue measure of the set �2(x, h) is of order O(‖h‖) if u(x) �= 0.
Indeed, we have that the set �2(x, h) is given by such s ∈ � that a1+sT b1 and a2+sT b2
have different signs, where a1 := v(x), b1 := u(x), a2 := v(x +h) and b2 := u(x +h).
Suppose that u(x) �= 0, i.e., b1 �= 0. Since, by continuity of u(·), we only need to
consider b2 sufficiently close to b1, we can assume that b2 �= 0 as well. If b1 = b2, then
the set �2(x, h) is formed by s ∈ � which lie between two hyperplanes defined by the
equations a1 + sT b1 = 0 and a2 + sT b1 = 0, and since � is bounded it follows in that
case that �2(x, h) ≤ c‖h‖ for some constant c independent of h. So let b1 �= b2. If
p = 1, i.e., s is one dimensional, then the assertion clearly holds. So suppose that p ≥ 2.
Let s̄ be a solution of the equations a1 + sT b1 = 0 and a2 + sT b2 = 0. By making the
transformation s �→ s̄ + s we can assume that a1 = a2 = 0. The angle between vector
b1 and b2 is of order O(‖b2 − b1‖), and ‖b2 − b1‖ = O(‖h‖) since u(·) is continuously
differentiable. Again since � is bounded this implies that �2(x, h) = O(‖h‖).

Since � is bounded, we have that if u(x) = 0 and v(x) �= 0, then �2(x, h) is empty
for all h sufficiently close to 0. If u(x) = 0 and v(x) = 0, then the set �2(x, h) is empty.
In any case we obtain that condition (3.8) holds, and hence F(·) is strongly semismooth
at x by Theorem 2.

In fact, we have then that condition (4.1) holds locally, and hence if F(·) is differ-
entiable, then H(·) is locally Lipschitz continuous by Proposition 7. 
�

Unfortunately, it is not possible to take second order derivatives of gs(·) inside the
integral. Consider, for example, g(x, s) := x − s, with x, s ∈ R, and � := [0, 1]. Then,
for x ∈ [0, 1], we have that F(x) = x2/2 while ∂2g(x, s)/∂x2 ≡ 0.

If we assume that, for some x ∈ X, the µ-measure of the set {s ∈ � : g(x, s) = 0}
is zero, then by Corollary 1 we have that F(·) is differentiable at x and

∇F(x) =
∫

g(x,s)≥0
Gs(x)dµ(s). (4.4)
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General formulas for derivatives of functions of the form given in the right hand side of
(4.4) are quite involved (see [31],[32]). Therefore, we restrict our discussion of the SC1

property of F(·) to the case (1.1) described in the beginning of the paper: x ∈ R
n, s ∈ R,

� := [a, b] and dµ(s) = p(s)ds. Actually, this case is very useful in practice. In the
next section, we discuss this case in detail.

5. The one dimensional case

In this section we discuss properties of the integral function F : R
n → R defined in

(1.1). That is, we assume that � is an interval [a, b] of the real line and µ(s) = p(s)ds.
We consider two special cases of (1.1).

The first case is g(x, s) := v(x) + su(x), where v, u : R
n → R are assumed to be

continuously differentiable. Then

F(x) =
∫ b

a

[v(x) + su(x)]+p(s)ds. (5.1)

Of course, the above is a particular case of (4.2) with � := [a, b] ⊂ R. Denote V (x) :=
∇v(x), U(x) := ∇u(x) and c(x) := − v(x)

u(x)
if u(x) �= 0. By Proposition 8 we have

that the function F(·) is differentiable at a point x iff either |v(x)| + |u(x)| �= 0 or
u(x) = v(x) = 0 and V (x) = U(x) = 0. If F(·) is differentiable at x, then for
H(x) := ∇F(x) formula (4.3) can be written as follows. If u(x) > 0 and c(x) ≤ b,
then

H(x) =
∫ b

max{a,c(x)}
[V (x) + sU(x)]p(s)ds. (5.2)

If u(x) < 0 and c(x) ≥ a, then

H(x) =
∫ min{b,c(x)}

a

[V (x) + sU(x)]p(s)ds. (5.3)

If u(x) = 0 and v(x) > 0, then

H(x) =
∫ b

a

V (x)p(s)ds. (5.4)

If u(x) > 0 and c(x) > b, or if u(x) < 0 and c(x) < a, or if u(x) = 0 and v(x) < 0,
or if u(x) = v(x) = 0 and U(x) = V (x) = 0, then

H(x) = 0. (5.5)

Clearly in all above cases H(x) is continuous at x.

Proposition 9. If u(·) and v(·) are twice continuously differentiable and p(·) is bounded,
then F(·) is a strongly semismooth function.
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Proof. Clearly assumptions (A1),(A5),(A6) and (3.7) of Theorem 2 are satisfied here.
Therefore, we only need to verify condition (3.8). We have that if u(x) = 0, then the set
�2(x, h) is empty for all h sufficiently close to 0, and if u(x) �= 0, then the Lebesgue
measure of the set �2(x, h) is of order O(|h|). Since p(·) is bounded, condition (3.8)
follows. 
�

In fact, if u(x) �= 0, then in order to verify strong semismoothness of F(·) at x it
suffices to assume in the above proposition boundedness of p(·) in a neighborhood of
c(x).

We now further discuss the SC1 property of F(·). This will be useful in investiga-
tion of semi-infinite programming problems. Recall that H(·) is semismooth at x if for
any h ∈ R

n, the limit limt↓0 H ′(x + th, h) exists (cf., [14],[18]). If this holds, then
this limit is equal to H ′(x, h). Note that if v(·) and u(·) are differentiable, then, of
course, c(·) := −v(·)/u(·) is also differentiable and c′(x, h) = hT ∇c(x) provided that
u(x) �= 0.

Theorem 4. Suppose that the functions u(·) and v(·) are twice continuously differen-
tiable. If |u(x)| + |v(x)| �= 0, then H(·) is semismooth at x, i.e., F(·) is SC1 at x. If,
moreover, U(·) and V (·) are strongly semismooth at x, then H(·) is strongly semismooth
at x. Furthermore, the following cases hold:

(A) If either u(x) > 0 and c(x) < a, or u(x) < 0 and c(x) > b, or u(x) = 0 and
v(x) > 0, then H is continuously differentiable at x and

∇H(x) = ∇U(x)

∫ b

a

sp(s)ds + ∇V (x)

∫ b

a

p(s)ds. (5.6)

(B) If either u(x) > 0 and c(x) > b, or u(x) < 0 and c(x) < a, or u(x) = 0 and
v(x) < 0, then H is continuously differentiable at x and

∇H(x) = 0. (5.7)

(C) If u(x) > 0 and a < c(x) < b, then H is continuously differentiable at x and

∇H(x) = ∇U(x)
∫ b

c(x)
sp(s)ds + ∇V (x)

∫ b

c(x)
p(s)ds

−∇c(x)[c(x)U(x) + V (x)]T p(c(x)).
(5.8)

(D) If u(x) < 0 and a < c(x) < b, then H is continuously differentiable at x and

∇H(x) = ∇U(x)
∫ c(x)

a
sp(s)ds + ∇V (x)

∫ c(x)

a
p(s)ds

+∇c(x)[c(x)U(x) + V (x)]T p(c(x)).
(5.9)

(E) If u(x) > 0 and c(x) = a, then for all h,

H ′(x, h) = U ′(x, h)
∫ b

a
sp(s)ds + V ′(x, h)

∫ b

a
p(s)ds

−[c′(x, h)]+[aU(x) + V (x)]T p(a).
(5.10)

(F) If u(x) > 0 and c(x) = b, then for all h,

H ′(x, h) = [−c′(x, h)]+[bU(x) + V (x)]T p(b). (5.11)
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(G) If u(x) < 0 and c(x) = a, then for all h,

H ′(x, h) = [c′(x, h)]+[aU(x) + V (x)]T p(a). (5.12)

(H) If u(x) < 0 and c(x) = b, then for all h,

H ′(x, h) = U ′(x, h)
∫ b

a
sp(s)ds + V ′(x, h)

∫ b

a
p(s)ds

+[c′(x, h)]+[bU(x) + V (x)]T p(b).
(5.13)

Proof. In cases (A),(B),(C) or (D) the set of points x defined by the corresponding con-
straints forms an open subset of R

n. Then continuous differentiability of H(·), in these
four cases, and formulas (5.6)–(5.9) follow by the twice continuous differentiability of
u(·) and v(·), formulas (5.2)–(5.5) and the Newton-Leibniz integration formula.

Consider case (E). If c′(x, h) > 0, we have c(x + th) > a for t > 0 small enough.
By (5.8), we have

lim
t↓0

H ′(x + th, h) = lim
t↓0

∇H(x + th)T h

= lim
t↓0

[
U ′(x + th, h)

∫ b

c(x+th)

sp(s)ds

+V ′(x + th, h)

∫ b

c(x+th)

p(s)ds

−c′(x + th, h)[c(x + th)U(x) + V (x)]T p(c(x + th))
]

= U ′(x, h)

∫ b

a

sp(s)ds + V ′(x, h)

∫ b

a

p(s)ds

−[c′(x, h)]+[aU(x) + V (x)]T p(a).

If c′(x, h) < 0, we have c(x + th) < a for small t > 0. By (5.6), we have

lim
t↓0

H ′(x + th, h) = lim
t↓0

∇H(x + th)T h

= lim
t↓0

[
U ′(x + th, h)

∫ b

c(x+th)

sp(s)ds

+V ′(x + th, h)

∫ b

c(x+th)

p(s)ds

]

= U ′(x, h)

∫ b

a

sp(s)ds + V ′(x, h)

∫ b

a

p(s)ds

−[c′(x, h)]+[aU(x) + V (x)]T p(a).

If c′(x, h) = 0, we have

H ′(x + th, h) = ∇H(x + th)T h

= U ′(x + th, h)

∫ b

c(x+th)

sp(s)ds + V ′(x + th, h)

∫ b

c(x+th)

p(s)

−c′(x + th, h)[c(x + th)U(x) + V (x)]T p(c(x + th))
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if c(x + th) > a and

H ′(x + th, h) = ∇H(x + th)T h

= U ′(x + th, h)

∫ b

c(x+th)

sp(s)ds + V ′(x + th, h)

∫ b

c(x+th)

p(s)

if c(x + th) ≤ a. Taking limit, we still have

limt↓0 H ′(x + th, h) = U ′(x, h)
∫ b

a
sp(s)ds + V ′(x, h)

∫ b

a
p(s)ds

−[c′(x, h)]+[aU(x) + V (x)]T p(a).

This shows that H is semismooth at x. This also prove (5.10). Similarly, we can prove
(5.11)–(5.13) and that H(·) is semismooth at x in (F)-(H). If U(·) and V (·) are strongly
semismooth, we may prove strong semismoothness of H at x similarly. 
�

We now consider the second case of (1.1).

Theorem 5. Consider the integral function F(·) defined by (1.1), at a point x̄ ∈ R
n.

Suppose that: (i) gs(x) = g(x, s) is continuously differentiable, jointly in x and s,
(ii) gs(·) is twice differentiable and ∇2gs(x) is continuous on R

n × [a, b], (iii) the set
�0(x̄) = {s ∈ [a, b] : gs(x̄) = 0} is finite, and (iv) ∇sg(x̄, s) �= 0, for all s ∈ �0(x̄).

Then F(·) is differentiable and H(·) := ∇F(·) is Lipschitz continuous in a neighbor-
hood of x̄. If, moreover, p(·) is continuous in a neighborhood of every s ∈ �0(x̄), then
H(·) is semismooth at x̄. If furthermore a, b �∈ �0(x̄), then F(·) is twice continuously
differentiable in a neighborhood of x̄.

Proof. Consider first the case where a, b �∈ �0(x̄). By the assumption (iii) we have
that the set �0(x̄) is finite, say �0(x̄) = {α1, ..., αm} with a < α1 < ... < αm < b.
Because of the assumption (iv) we have that ∇sg(x̄, αi) �= 0, i = 1, ..., m. Suppose
that ∇sg(x̄, α1) > 0 (if ∇sg(x̄, α1) < 0 the analysis is similar). Then g(x̄, a) < 0, the
function g(x̄, ·) changes signs at α1, ..., αm, and by the Implicit Function Theorem, for
all x sufficiently close to x̄ we have that �0(x) = {α1(x), ..., αm(x)} with αi(·) being
continuously differentiable in a neighborhood of x̄ and

∇αi(x) = −[∇sg(x, αi(x))]−1G(x, αi(x)). (5.14)

We also have that for all x near x̄,

F(x) =
∫ α2(x)

α1(x)

g(x, s)p(s)ds +
∫ α4(x)

α3(x)

g(x, s)p(s)ds + ..., (5.15)

F(·) is differentiable at x and and

H(x) =
∫ α2(x)

α1(x)

G(x, s)p(s)ds +
∫ α4(x)

α3(x)

G(x, s)p(s)ds + ... (5.16)

Since αi(x) are Lipschitz continuous and G(x, s) are bounded for all x in a neighbor-
hood of x̄ and all s ∈ [a, b], it follows from (5.16) that H(·) is Lipschitz continuous
in a neighborhood of x̄. (If α1 = a or αm = b, Lipschitz continuity of H(·) still holds
basically by the same arguments.)
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Suppose, further, that the function p(·) is continuous near every αi . Then for all x

in a neighborhood of x̄, the second order derivatives ∇2F(x) can be calculated by using
formula

∇x

[∫ αi+1(x)

αi (x) G(x, s)p(s)ds
]

= − p(αi+1(x))
∇sg(x,αi+1(x))

G(x, αi+1(x))G(x, αi+1(x))T

+ p(αi(x))
∇sg(x,αi (x))

G(x, αi(x))G(x, αi(x))T + ∫ αi+1(x)

αi (x) ∇Gs(x)p(s)ds,

(5.17)

which follows by the chain rule of differentiation from (5.14) and the Newton-Leibniz
formula. We obtain twice continuous differentiability of F(·) in a neighborhood of x̄. If
α1 = a or αm = b, semismoothness of H(·) still holds basically by the same arguments
as the proof of Theorem 5. 
�

Note that Proposition 9 and Theorem 4 have overlaps with Theorem 5, but do not
cover each other.

6. Applications

In this section, we discuss applications of our theoretical results. The application for
the shape-preserving interpolation problem is related with Theorem 4. We give a brief
summary on this application in Subsection 6.1. Then we discuss the application to the
option pricing problem in detail in Subsection 6.2. We show that the generalized New-
ton method for solving the no-arbitrage option price interpolation problem, proposed by
Wang,Yin and Qi in [33], has at least 4

3 -order convergence. We give conditions when this
method has 3

2 -order or quadratic convergence. We also outline a damped version of the
generalized Newton method and show that it is globally convergent and the convergence
order is at least 4

3 . The main tool there is Theorem 3 for the p-order semismoothness
of integral functions discussed in Section 3. In Subsection 6.3, we briefly discuss an
application of Theorems 4 and 5 to semi-infinite programs.

6.1. Shape-preserving interpolation

The constrained approximation problem comes from practical applications in computer
aided geometric design where one has not only to approximate data points but also to
achieve a desired shape of a curve or a surface. This is also called shape preserving
approximation.

Examples of a desired shape property include convexity and monotonicity. A special
case of shape preserving approximation is shape preserving interpolation. That is, to
find a function, whose graph has a desired shape, to interpolate given points.

Consider the following convex best interpolation problem:

Min ‖f ′′‖2
s.t. f (si) = yi, i = 1, · · · , n + 2,

f is convex on [a, b], f ∈ W 2,2[a, b],
(6.1)
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where a = s1 < s2 < · · · < sn+2 = b and yi, i = 1, . . . , n + 2 are given numbers,
‖ · ‖2 is the Lebesgue L2[a, b] norm, and W 2,2[a, b] denotes the Sobolev space of func-
tions with absolutely continuous first derivatives and second derivatives in L2[a, b], and
equipped with the norm being the sum of the L2[a, b] norms of the function, its first,
and its second derivatives.

Employing the normalized B-splines Bi of order two associated with (si, yi) and
the corresponding second divided differences di , and using the Lagrange duality theory,
the interpolation conditions can be equivalently written [4] as a system of nonsmooth
equations

F(x) = d, (6.2)

where d = (d1, · · · , dn) and the i-th component of F is defined by

Fi(x) =
∫ b

a

(
n∑

l=1

xlBl(s)

)

+
Bi(s)ds. (6.3)

We see that Fi is an integral function of the form (1.1), with

g(x, s) =
n∑

l=1

xlBl(s)

and

p(s) = Bi(s).

Irvine, Marin and Smith [9] proposed in 1986 a Newton-type method for solving
the equation (6.2). By monitoring the decrease of the norm of the residual F(λ) − d,
they observed fast convergence in their numerical experiments and raised the question
of theoretically estimating the rate of convergence. They wrote: “Although we have
not established rigorous convergence results for Newton’s method we have been very
encouraged by numerical experiments....”.

We may view the Newton-type method of Irvine, Marin and Smith as a generalized
Newton method [14],[18]. According to [14],[18], if F is semismooth at the solution
and all the matrices in the generalized Jacobian of F at the solution are nonsingular, we
get superlinear convergence of the method. If further more, F is strongly semismooth
at the solution, we get quadratic convergence of the method. The integral function F

defined by (6.3) was proved to be semismooth in [4], and further proved to be strongly
semismooth in [5]. The results of [4] and [5] was generalized and applied to the edge
convex minimum norm network interpolation problem in [20]. Now, in this paper, The-
orem 4 gives a complete analysis of differentiability of F defined by (5.1). This gives a
more coherent view/proof of the semismoothness and strong semismoothness property
of a certain generalized form for the convex interpolation problem.
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6.2. Option pricing problem

Wang, Yin and Qi [33] developed an interpolation method to preserve the shape of the
option price function. The interpolation is optimal in terms of minimizing the distance
between the implied risk-neutral density and a prior approximation function in L2-norm,
which is very important when only a few observations are available.

Since the seminal paper of Black-Scholes [1], numerous theoretical and empirical
studies have been done on the no-arbitrage pricing theory, see Duffie [6] and the refer-
ences therein. If the uncertainty of nature can be described by a stochastic process qt ,
then the absence of arbitrage opportunities implies that there exists a state-price density
(SPD) or risk-neutral density, which is denoted by p(qt2 |Ft1), where t2 is any time after
time t1, Ft1 is all the information available at time t1. The price of any financial security
can be expressed as the expected net present value of future payoffs, where the expecta-
tion is taken with respect to the risk-neutral density. In the call option pricing case, the
underlying asset price St can be used as the state variable, the risk-free rate is considered
as constant. So the price at time t is

C(St , s, τ, rt,τ ) = e−rt,τ τ

∫ ∞

0
(ST − s)+p(ST |St , τ, rt,τ )dST , (6.4)

where St is the underlying asset price at time t , s is the strike price of the option contract,
τ is the time-to-expiration, T = t + τ is the expiration time, rt,τ is the risk free rate
from time t to T = t + τ . No matter what kind of process of the underlying asset price
St is, and whether the market is complete or not, the equation above always holds.

Wang, Yin and Qi [33] also proved that the option price function is convex with
respect to the strike price s.

Without loss of the generality, we assume that 0 < a = s0 < s1 < · · · < sn+2 =
b < +∞ and consider the following constrained interpolation problem:

Min ‖f ′′(s) − h(s)‖2
s.t. f (si) = yi, i = 1, 2, · · · , n + 2,

f ′′(s) ≥ 0 for a.e. s ∈ [a, b], f ∈ W 2
2 [a, b],

(6.5)

where

h(s) = e−rt,τ τ 1

xσ
√

2πτ
exp

{
− (log s − log St − rt,τ τ + σ 2τ/2)2

2σ 2τ

}
. (6.6)

By using the duality theory and Lagrange multipliers, Wang, Yin and Qi [33] con-
verted the minimization problem (6.5) to a system of nonsmooth equations

F(x) = d, (6.7)

where d = (d1, d2, · · · , dn)
T , F = (F1, F2, · · · , Fn)

T : R
n → R

n and the i−th
component of F is defined by

Fi(x) =
∫ b

a

(
n∑

l=1

xlBl(s) + h(s)

)

+
Bi(s)ds. (6.8)
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Again, Fi is an integral function of the form (1.1), with

g(x, s) =
n∑

l=1

xlBl(s) + h(s)

and
p(s) = Bi(s).

Wang, Yin and Qi [33] applied the following generalized Newton method to solve (6.7):

M(xk)xk+1 = d −
∫ b

a

h(s)B(s)dx k = 1, 2, · · · , (6.9)

where B(s) = (B1(s), B2(s), · · · , Bn(s))
T , and M(x) ∈ R

n×n with components

Mij (x) =
∫ b

a

1(0,+∞)

(
n∑

l=1

xlBl(s) + h(s)

)
Bi(s)Bj (s)ds,

where 1(0,+∞)(·) is the characteristic function of the set (0, +∞), i.e., 1(0,+∞)(x) = 1
for x > 0 and 1(0,+∞)(x) = 0 for x ≤ 0.

By applying the results of [4], Wang, Yin and Qi [33] established semismoothness
of the integral function F defined by (6.8), and hence superlinear convergence of the
generalized Newton method (6.9). However, Wang, Yin and Qi [33] has not established
p-order semismoothness of the integral function F defined by (6.8), and hence has not
established a convergence rate of (6.9), higher than superlinear convergence.

Now, we apply Theorem 3 to the integral function F(·) defined by (6.8). Recall that
the B-spline Bi is given by

Bi(s) =



αi(s − si), for s ∈ [si, si+1],
ᾱi(si+2 − s), for s ∈ [si+1, si+2],
0, otherwise,

where we denote

αi = 2/((si+2 − si)(si+1 − si)), ᾱi = 2/((si+2 − si)(si+2 − si+1)).

In the sequel we study the following functions:

�1(x1) =
∫ s2

s1

(x1B1(s) + h(s))+ B1(s)ds,

�2(xn) =
∫ sn+2

sn+1

(xnBn(s) + h(s))+ Bn(s)ds,

�i(xi−1, xi) =
∫ si+1

si

(xi−1Bi−1(s) + xiBi(s) + h(s))+ Bi(s)ds, i = 2, . . . , n,

�i(xi, xi+1) =
∫ si+2

si+1

(xiBi(s) + xi+1Bi+1(s) + h(s))+ Bi(s)ds, i = 1, . . . , n − 1.
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Then

F1(x) = �1(x1) + �1(x1, x2),

Fi(x) = �i(xi−1, xi) + �i(xi, xi+1), i = 2, . . . , n − 1,

Fn(x) = �n(xn−1, xn) + �2(xn).

We may use Theorem 3 to establish p-order semismoothness of �i, �i and �i . This
implies p-order semismoothness of F . Since the h(·) possesses a very special structure,
it has at most two inflection points. For any x̄ = (x̄1, x̄2, · · · , x̄n)

T ∈ R
n, we assume,

separating [a, b] more finely if necessary, that
∑n

l=1 x̄lBl(s) + h(s) = 0 has at most a
root on [si, si+1]. So, the position relation between the line segment y = ∑n

l=1 x̄lBl(s)

on [si, si+1] and the curve y = −h(s) has four cases: (1) not intersected, (2) intersected
but not tangent, (3) tangent at a convex or concave arc point of the curve y = −h(s),
(4) tangent at an inflection point of the curve y = −h(s). On [si, si+1], the first two
cases happen if and only if the root of

∑n
l=1 x̄lBl(s) + h(s) = 0 is simple on this

subinterval. The third case happens if and only if
∑n

l=1 x̄lBl(s) + h(s) = 0 has a
2-order root on this subinterval. The fourth case happens if and only if the order of root
of
∑n

l=1 x̄lBl(s) + h(s) = 0 on this subinterval is 3. Therefore, the following result
immediately follows Theorem 3. This result strengthens Theorem 4.6 of [33].

Theorem 6. Consider the integral function F(·) defined by (6.8). For any x̄ ∈ R
n, the

following three cases hold: (1) If the roots of
∑n

l=1 x̄lBl(s) + h(s) = 0 are simple on
every subinterval [si, si+1] ⊆ [a, b], i = 1, 2, · · · , n + 1, then F is 1-order (strongly)
semismooth at x̄. (2) If there exists a certain subinterval [si, si+1] ⊆ [a, b] such that the
highest order of roots of

∑n
l=1 x̄lBl(s) + h(s) = 0 on [si, si+1] is 2, then F is 1

2 -order
semismooth at x̄. (3) If there exists a certain subinterval [si, si+1] ⊆ [a, b] such that the
highest order of roots of

∑n
l=1 x̄lBl(s) + h(s) = 0 on [si, si+1] is 3, then F is 1

3 -order
semismooth at x̄.

Let

L(x) = 1

2

∫ b

a

[
n∑

l=1

xlBl(s) + h(s)

]2

+
ds −

n∑
l=1

xldl.

The following algorithm is a “damped" globalization of Newton’s method based on
regularization controlled by the residual.

Algorithm 10 (Damped Newton method). (S.0)(Initialization) Choose x0 ∈ R
n, ρ ∈

(0, 1), σ ∈ (0, 1
2 ), and tolerance tol> 0. k := 0.

(S.1)(Termination criterion) If εk = ‖F(xk) − d‖ ≤ tol then stop. Otherwise, go to
(S.2).
(S.2)(Direction generation) Let sk be a solution of the following linear system

(M(xk) + εkI )s = −∇L(xk).

(S.3)(Line search) choose mk as the smallest nonnegative integer m satisfying

L(xk + ρmsk) − L(xk) ≤ σρm∇L(xk)T sk.

(S.4) (Update) Set xk+1 = xk + ρmk sk , k := k + 1, return to step (S.1).
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Using the technique employed in [12], we may establish the convergence results of
this algorithm as follows. Since these arguments are routine in the literature for semi-
smooth Newton methods, we do not go to details.

Theorem 7. Let x0 ∈ R
n and {xk} be generated by Algorithm 10. Then the sequence

{xk} converges to the solution x∗ of (6.7), and the convergence is at least of order 4
3 .

6.3. Semi-Infinite Programming

Consider the following semi-infinite programming (SIP) problem:

Min f (x)

s.t. hj (x) ≤ 0, j = 1, · · · , p,

gj (x, s) ≤ 0, s ∈ [a, b] j = 1, · · · , m,

(6.10)

where hj (x) ≤ 0, j = 1, · · · , p are conventional inequality constraints, while
gj (x, s) ≤ 0, s ∈ [a, b] j = 1, · · · , m are infinite functional constraints, g is
continuously differentiable (smooth) in x and s.

Such a SIP problem has wide applications [13],[22]. In 1989–1993, Teo and his
collaborators [10],[27],[28],[29] proposed to aggregate the functional constraints to

Gj(x) :=
∫ b

a

[gj (x, s)] + ds = 0, j = 1, · · · , m.

Then the SIP problem (6.10) is converted to a nonlinear programming problem:

Min f (x)

s.t. hj (x) ≤ 0, j = 1, · · · , p,

Gj (x) ≤ 0, j = 1, · · · , m,

(6.11)

where Gj may be nonsmooth. Teo and his collaborators [10],[27],[28],[29] proposed
a smoothing method to solve (6.11). We see that Gj is an integral function (1.1), with
p(s) ≡ 1.

Now, Theorems 4 and 5 give two cases in which Gj are SC1. We then may apply
SQP methods to solve (6.11) and get superlinear convergence and global convergence
by the results in [15],[12].
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