
Digital Object Identifier (DOI) 10.1007/s10107-004-0510-2

Math. Program., Ser. A 102: 167–183 (2005)

Liang Zhao · Hiroshi Nagamochi · Toshihide Ibaraki

Greedy splitting algorithms for approximating multiway
partition problems

Received: February 7, 2002 / Accepted: January 30, 2004
Published online: 28 April 2004 – © Springer-Verlag 2004

Abstract. Given a system (V , T , f, k), where V is a finite set, T ⊆ V , f : 2V → R is a submodular
function and k ≥ 2 is an integer, the general multiway partition problem (MPP) asks to find a k-partition
P = {V1, V2, . . ., Vk} of V that satisfies Vi ∩ T �= ∅ for all i and minimizes f (V1)+ f (V2)+ · · · + f (Vk),
where P is a k-partition of V if (i) Vi �= ∅, (ii) Vi ∩ Vj = ∅, i �= j , and (iii) V1 ∪ V2 ∪ · · · ∪ Vk = V hold.
MPP formulation captures a generalization in submodular systems of many NP-hard problems such as k-way
cut, multiterminal cut, target split and their generalizations in hypergraphs. This paper presents a simple and
unified framework for developing and analyzing approximation algorithms for various MPPs.

Key words. Approximation algorithm – Hypergraph partition – k-way cut – Multiterminal cut – Multiway
partition problem – Submodular function

1. Introduction

Let V be a finite set. A function f : 2V → R is said to be submodular if f (X)+f (Y) ≥
f (X ∩ Y) + f (X ∪ Y) holds for all X, Y ⊆ V . It is nonnegative (resp., symmetric) if
f (X) ≥ 0 (resp., f (X) = f (V−X)) holds for all X ⊆ V , and monotone if f (X) ≤ f (Y)

holds for all X ⊆ Y ⊆ V . We call (V , f) a submodular system if function f is submod-
ular. Analogous notations are also used.

The multiway partition problem (MPP) is defined as follows.

Problem 1 (MPP). Given a system (V , T , f, k), where (V , f) is a submodular system,
T ⊆ V called the target set, and k is an integer with 2 ≤ k ≤ |T |,

minimize f (V1)+ f (V2)+ · · · + f (Vk)

subject to V1 ∪ V2 ∪ · · · ∪ Vk = V, (1)

Vi ∩ Vj = ∅, 1 ≤ i < j ≤ k, (2)

Vi ∩ T �= ∅, i = 1, 2, . . ., k. (3)

L. Zhao: Dept. Information Science, Faculty of Engineering, Utsunomiya University,Yoto 7-1-2, Utsunomiya,
321-8585, Japan, e-mail: zhao@is.utsunomiya-u.ac.jp

H. Nagamochi: Dept. Information and Computer Sciences, Toyohashi University of Technology, Toyohashi,
Aichi, 441-8580, Japan, e-mail: naga@ics.tut.ac.jp

T. Ibaraki: Dept. Applied Mathematics and Physics, Graduate School of Informatics, Kyoto University, Kyoto,
606-8501, Japan, e-mail: ibaraki@i.kyoto-u.ac.jp

Mathematics Subject Classification (1991): 20E28, 20G40, 20C20

168 L. Zhao et al.

A family P = {V1, V2, . . ., Vk} of nonempty subsets of V satisfying (1) and (2)
is called a k-partition (of V). The weight of P is defined by f (P) �

∑k
i=1 f (Vi). A

feasible solution to MPP, i.e., a k-partition satisfying (3), is called a k-target-split (of V ,
with respect to T). We assume that function f is given by an oracle which returns the
value f (S) in at most θ time for any S ⊆ V .

1.1. MPP with no special target (MPP-NT)

We first consider the problem of finding a minimum k-partition, i.e., a special case of
MPP with T = V . We denote it by MPP-NT (MPP with No special Target). The next
problem classes are treated.

Problem 2 (k-PPSS). Given a nonnegative submodular system (V , f), the k-partition
problem in submodular system (k-PPSS) is to find a minimum weight k-partition.

Problem 3 (k-PPSSS). The k-partition problem in symmetric submodular system
(k-PPSSS) is k-PPSS with symmetric f .

Problem 4 (k-PPMSS). The k-partition problem in monotone submodular system
(k-PPMSS) is k-PPSS with monotone f .

We further treat three types of partition problems in hypergraphs. A hypergraph H

is a pair (V , E) of a set V of vertices and a set E of hyperedges, where hyperedges are
nonempty subsets of V . The degree of a hyperedge is defined as its cardinality. A hyper-
edge e = {v1, . . . , vj }may also be treated as the set {v1, . . . , vj } of vertices, where each
vi is called an endpoint of e. In general, we allow the existence of multiple hyperedges,
i.e., hyperedges with the same endpoints. Thus E should be viewed as a multiset that
allows the existence of multiple members. Graphs are hypergraphs in which each hyper-
edge (i.e., edge) has degree 2. Given a hypergraph H = (V , E) with a weight function
w : E → R+ on hyperedges (where R+ denotes the set of nonnegative numbers), we
define two functions wex, win : 2V → R+ by

wex(S) =
∑

∅⊂e∩S⊂e

w(e), win(S) =
∑

e⊆S

w(e), S ⊆ V. (4)

It is well-known and can be easily verified that function wex (called the cut function)
is symmetric and submodular. It is also easy to see that function wex+win is monotone
and submodular, whereas function −win is submodular. Denote the weight of a subset
E′ of hyperedges by w(E′) �

∑
e∈E′ w(e). We define the next problems.

Definition 1. Given a hypergraph H = (V , E) with a weight function w : E→ R+ on
hyperedges, the k-partition problem in hypergraphs of type i (k-PPH-Ti) is MPP with
system (V , V, fi, k), i = 1, 2, 3, where functions fi are defined as

f1 � w(E)

k
−win, f2 � wex and f3 � wex+win−w(E)

k
.

Greedy splitting algorithms for approximating multiway partition problems 169

Remark. Let P = {V1, V2, . . ., Vk} be a k-partition of V , and let e be a hyperedge. Let

pe =
∣
∣{i | e ∩ Vi �= ∅}

∣
∣.

Clearly pe ≥ 1. It is easy to see that, if pe = 1 then the weight of e is not counted
in any fi(P), i = 1, 2, 3; otherwise it is counted once, pe times and pe − 1 times in
f1(P), f2(P) and f3(P), respectively. Thus three problems k-PPH-Ti, i = 1, 2, 3, are
equivalent if H is restricted to graphs, which we call the k-partition problem in graphs
(k-PPG). In general hypergraphs, if k is fixed to 2, they are also equivalent (called the
minimum cut problem in hypergraphs). �

Obviously the next inclusion relationship holds for the above problem classes.

k-PPG ⊂ k-PPH-T2 ⊂ k-PPSSS ⊂ k-PPSS.

Notice that k-PPH-T3 is equivalent to a k-PPMSS with system (V , V, wex+win, k)

(in the meaning of exact solution). Thus we may also say

k-PPG ⊂ k-PPH-T3 ⊂ k-PPMSS ⊂ k-PPSS.

Problem k-PPH-T2 was introduced by Lawler [17], who suggested many applica-
tions such as network analysis (where k-PPG was considered), information storage and
retrieval and others. Later Pulleyblank [24] (see [2]) formulated the k-way cut problem
(also called the k-cut problem) in connection with generating cutting planes for the trav-
eling salesman problem (TSP). Given a graph with nonnegative weights on edges, the
k-way cut problem is to find a minimum weight subset of edges whose removal leaves
the graph with k connected components. Obviously, this is equivalent to k-PPG (hence
we will not distinguish them). For other applications, see e.g., [18, 19, 30].

Goldschmidt and Hochbaum [8] showed that k-PPG is NP-hard even for unit edge
weights. This implies the NP-hardness of all the above problem classes. They also showed
that k-PPG is solvable in O(nk2

) time. (Throughout this paper, we use n and m to denote
|V | and the number of hyperedges/edges respectively.) Queyranne [26] claimed that
k-PPSSS is solvable in O(nk2

θ) time.
Problem 2-PPSS can be solved in O(n3θ) time ([25]). This implies that the mini-

mum cut problem in hypergraphs can be solved in O(n3D) time, where D is the sum of
degrees of hyperedges. This is improved to O(n2 log n+ nD) by Klimmek and Wagner
[16]. A minimum cut in graphs can be found in O(mn+ n2 log n) time ([22]).

Problems k-PPH-T1 and k-PPH-T3 arise from network reliability analysis ([30])
and VLSI design ([4]), respectively. On the other hand, we note that k-PPMSS can be
viewed as a partition problem in polymatroid, where f is the rank function. For more
about polymatroid, see e.g., [15].

Due to the NP-hardness, it is of interest to develop approximation algorithms. An
algorithm (for MPP with nonnegative optimum) is said a ρ-approximation algorithm if
it always delivers a feasible solution whose weight is at most ρ times of the optimum.
Value ρ is called the performance guarantee, or simply guarantee.

Saran and Vazirani [27] proposed two approximation algorithms for k-PPG (see also
[29]). One is based on the cut tree structure of graphs (also known as the Gomory-Hu
tree, see [7]). The other greedily increases the size of partitions by one in each iteration.

170 L. Zhao et al.

Table 1. Approximation results for MPP-NTs.

problem class guarantee running time reference

k-PPG 2− 2
k

O(kn(m+ n log n)) [13, 27], this paper

k-PPSSS 2− 2
k

O(kn3θ) [26], this paper

k-PPSS k − 1 O(kn3θ) this paper

k-PPMSS 2− 2
k

O(kn3θ) this paper

k-PPH-T1 min{k, d+max}(1− 1
k
) † O(kn(n log n+D)) this paper

k-PPH-T{2,3} 2− 2
k

O(kn(n log n+D)) this paper

† d+max: the maximum degree of hyperedges with positive weight.

By a sophisticated proof using the cut tree structure, they showed that both algorithms
have a guarantee of 2 − 2

k
. Later Kapoor [13] pointed out that the greedy algorithm in

[27] can be implemented in O(kn(m + n log n)) time (on the other hand, the cut-tree
based algorithm requires O(n2(m+ n log n)) time).

Queyranne [26] claimed that the greedy algorithm in [13, 27] can be extended to
approximate k-PPSSS, enjoying the same performance guarantee of 2− 2

k
. Narayanan,

Roy and Patkar [23] showed (without showing the running time) that, k-PPH-T1 and
k-PPH-T3 can be approximated within factors dmax(1− 1

n
) and 2− 2

n
respectively, where

dmax is the maximum degree of hyperedges.
We note that, all the proofs in [23, 26, 27] use specific structures (cut tree or the so-

called principal partition), which are rather complicated and cannot be applied to general
submodular systems (see [1]). In this paper, we consider the greedy algorithm. We first
show a simple lemma (Lemma 1) that holds for all submodular systems, then derive
guarantees for various MPPs by easy calculations. In particular, the same or improved
results compared to [13, 23, 27, 26] can be obtained in a much simpler way. Table 1
shows the main approximation results (due to the greedy algorithm).

1.2. General MPPs

Similarly as in Subsection 1.1, we treat the next classes of the MPP. Given a nonneg-
ative submodular system (V , f) with a target set T ⊆ V , the k-target-split problem
in submodular systems (k-TPSS) is to find a minimum weight k-target-split. Problem
k-TPSSS (resp., k-TPMSS) is k-TPSS with symmetric (resp., monotone) f . Problem
k-TPH-T2 is a special case of k-TPSSS, in which V and f are respectively the vertex
set and the cut function of the input hypergraph. Problems k-TPH-T1 and k-TPH-T3
are MPPs with systems (V , T ,

w(E)
k
−win, k) and (V , T , wex+win− w(E)

k
, k), respec-

tively. Problems k-TPH-Ti (i = 1, 2, 3) reduce to k-TPG when restricted to graphs. The
inclusion relationships among these problem classes are

k-TPG ⊂ k-TPH-T2 ⊂ k-TPSSS ⊂ k-TPSS,

k-TPG ⊂ k-TPH-T3 ⊂ k-TPMSS ⊂ k-TPSS.

Greedy splitting algorithms for approximating multiway partition problems 171

Problem k-TPG with |T | = k is also known as the multiterminal cut problem
(k-MCP). Dahlhaus, Johnson, Papadimitriou, Seymour andYannakakis [6] showed that,
k-MCP with any fixed k ≥ 3 is NP-hard (actually MAXSNP-hard) even for unit edge
weights. They also provided a simple (2 − 2

k
)-approximation algorithm. Later Cǎline-

scu, Karloff and Rabani [3] gave a novel geometric relaxation for k-MCP to obtain a
(3

2 − 1
k
)-approximation algorithm. Karger, Klein, Stein, Thorup and Young [14] further

showed that the performance guarantee can be improved to 1.3438.
Garg, Vazirani and Yannakakis [11] considered a vertex weighted version of k-MCP,

where instead of edges, non-target vertices have nonnegative weights, and the objective
is to find a minimum weight subset of non-target vertices whose removal separates each
pair of targets. It is easy to reduce this problem to k-TPH-T1 with |T | = k, by replacing
each non-target vertex with a hyperedge of the same weight. Based on an LP relaxation,
Garg et al gave a (2 − 2

k
)-approximation algorithm. On the other hand, Chopra and

Owen [4] gave several formulations for k-TPH-T3 with |T | = k, and provided some
computational experiment results.

While all the previous papers treat k-MCP or its generalization in hypergraphs,
Maeda, Nagamochi and Ibaraki [21] considered the first target-split problem k-TPG.
They showed that it can be approximated within a factor of 2 − 2

k
. As far as we know,

there are no more results available for any of the other versions of target-split problems.
We note that the relaxations in [3, 11] exploit the fact |T | = k, i.e., there are exactly

k targets. They do not yield polynomial time algorithm for the target split problems. In
this paper, we give a greedy approach for approximating MPP by modifying the one for
MPP-NT. We show a simple key lemma (Lemma 4), from which an immediate result is
that the same guarantees as for MPP-NTs hold for the corresponding MPPs.

2. Greedy splitting algorithm (GSA) for MPP-NT

2.1. Greedy splitting approach

Let us first give a general description of the greedy splitting approach. The idea is sim-
ple. We start at the 1-partition P1 = {V }. In the ith iteration, i ≥ 1, we construct an
(i + 1)-partition Pi+1 by splitting some member of the previously obtained i-partition
Pi . We halt when i = k − 1 holds. Since it is desired to get a solution of small weight,
we want to minimize the weight increase f (Pi+1)− f (Pi) (called the splitting weight)
for each i. We will show that this can be done in polynomial time.

2.2. Algorithm description and main lemma

We first show that a variant of 2-PPSS can be solved in polynomial time.

Theorem 1 (Queyranne [25]). Given a symmetric submodular system (V , g), where
n = |V | ≥ 2 holds, a nonempty proper subset S∗ of V such that g(S∗) is minimum can
be found in O(n3θ) time, where θ is the time bound of the oracle for g. �
Theorem 2. Given a submodular system (V , f) and a set W ⊆ V with |W | ≥ 2, a
nonempty proper subset S∗ of W such that f (S∗)+f (W−S∗) is minimum can be found
in O(|W |3θ) time, where θ is the time bound of the oracle for f .

172 L. Zhao et al.

Input: A submodular system (V , f) and an integer k ≥ 1.
Output: A k-partition Pk of V .

1 P1 ← {V }
2 for i = 1, . . ., k − 1 do
3 (Si , Wi)← argmin {f (S)+ f (W−S)− f (W) | ∅ ⊂ S ⊂ W, W ∈ Pi}
4 Pi+1 ← (Pi − {Wi}) ∪ {Si , Wi − Si}
5 end /* for */

Fig. 1. Greedy splitting algorithm (GSA) for MPP-NT.

Proof. Define a function g: 2W → R by g(S) = f (S)+ f (W−S), S ⊆ W . Notice that
(W, g) is a symmetric submodular system. Thus the theorem holds by Theorem 1. �

We now present the greedy splitting algorithm (GSA) for MPP-NT, see Fig. 1.
We start at P1 = {V }. In the ith iteration, we compute a pair (Si, Wi) that minimizes

the splitting weight f (S) + f (W−S) − f (W) over all (S, W) satisfying ∅ ⊂ S ⊂ W

and W ∈ Pi . Pi+1 is obtained by replacing Wi with Si and Wi −Si . Obviously, for each
i = 1, 2, . . . , k, the weight of Pi is

f (Pi) = f (V)+
i−1∑

j=1

(
f (Sj)+ f (Wj − Sj)− f (Wj)

)
.

Clearly, the output Pk is a k-partition of V . Let us consider the running time of GSA.
For any (fixed) W ⊆ V , Theorem 2 shows that we can minimize f (S) + f (W−S),
hence f (S) + f (W−S) − f (W), in O(|W |3θ) time over ∅ ⊂ S ⊂ W . Hence Line 3
can be done in

∑
W∈Pi

O(|W |3θ) = O(
∑

W∈Pi
|W |3θ) = O(n3θ) time. This implies

that the running time of GSA is O(kn3θ).

Theorem 3. Given a submodular system (V , f) and an integer k ≥ 1, GSA finds an
i-partition Pi of V for all i = 1, 2, . . ., k in a total time of O(kn3θ). �

Remark. We may implement GSA by computing a nonempty S ⊂ W minimizing f (S)+
f (W−S) for each W ∈ Pi+1−Pi at the end of the ith iteration to avoid duplicate compu-
tations. We may also use an efficient 2-partition algorithm instead of calling the oracle.
E.g., Line 3 can be done in O(mn+ n2 log n) time for k-PPG by employing the mincut
algorithm [22]. This was first pointed out by Kapoor [13]. �

To derive the performance guarantees, we first show a technical lemma.

Lemma 1 (Main lemma). Let Pi be the i-partition of V found by GSA in the (i − 1)th

iteration, 1 ≤ i ≤ k. For any i-partition P = {V1, V2, . . ., Vi} of V , it holds that

f (Pi) ≤
i−1∑

j=1

(
f (Vj)+ f (V −Vj)

)− (i − 2)f (V). (5)

(Notice that the right hand side of (5) varies with the choice of the last member in P .)

Greedy splitting algorithms for approximating multiway partition problems 173

Proof. We proceed by induction on i. Clearly it holds for i = 1. Suppose that it holds
for i − 1. Let us consider an i-partition P = {V1, V2, . . ., Vi}.

Since Pi−1 is an (i − 1)-partition, there must exist W ∈ Pi−1 and Vh, V� ∈ P with
h < � satisfying W ∩ Vh �= ∅ �= W ∩ V�. Hence the pair (W ∩ Vh, W) is a candidate
for Line 3 in the (i − 1)th iteration of GSA. Therefore we have

f (Pi)− f (Pi−1) ≤ f (W ∩ Vh)+ f (W−Vh)− f (W)

≤ f (Vh)+ f (W−Vh)− f (W ∪ Vh) ≤ f (Vh)+ f (V −Vh)− f (V). (6)

(The last two inequalities are obtained by submodularity.)
By applying the induction hypothesis on i − 1 to Pi−1 and an (i − 1)-partition

P ′ � {V1, . . ., Vh−1, Vh+1, . . ., Vi−1, Vh ∪ Vi}, we have

f (Pi−1) ≤
∑

1≤j≤i−1, j �=h

(
f (Vj)+ f (V −Vj)

)− (i − 3)f (V). (7)

The induction is then complete by (6) and (7). �

Remark. The proof shows that Lemma 1 is valid if f (X ∩ Y)+ f (X−Y)− f (X) ≤
f (Y)+f (V−Y)−f (V) holds for all sets X, Y ⊆ V satisfying ∅ ⊂ X∩Y ⊂ X, which
is satisfied in a submodular system. �

Lemma 1 does not immediately provide the performance guarantee. Let us derive
them for some MPPs in the next two subsections.

2.3. Performance analysis for MPP-NTs

Theorem 4. Given a submodular system (V , f) and an integer k ≥ 2, where f (V) ≥ 0
holds, GSA finds a k-partition of V with weight at most (1 + α)(1 − 1

k
)opt , where

opt is the weight of a minimum k-partition of V and α is any constant that satisfies∑k
i=1 f (V −Vi) ≤ α

∑k
i=1 f (Vi) for all k-partitions {V1, . . ., Vk} of V .

Proof. Let P∗ = {V ∗1 , V ∗2 , . . ., V ∗k } be a minimum k-partition of V such that f (V ∗k)+
f (V −V ∗k) = max1≤i≤k{f (V ∗i) + f (V −V ∗i)} holds. Thus f (V ∗k) + f (V −V ∗k) ≥
1
k

∑k
i=1(f (V ∗i)+ f (V −V ∗i)) holds. Hence we have

k−1∑

i=1

(
f (V ∗i)+ f (V −V ∗i)

) ≤ (1− 1

k
)

k∑

i=1

(f (V ∗i)+ f (V −V ∗i))

≤ (1− 1

k
)(1+ α)

k∑

i=1

f (V ∗i) = (1+ α)(1− 1

k
)opt.

On the other hand, by Lemma 1 (and f (V) ≥ 0), GSA finds a k-partition with weight
at most

∑k−1
i=1

(
f (V ∗i)+ f (V −V ∗i)

)
. The proof is then complete. �

174 L. Zhao et al.

Obviously we can choose α = 1 for symmetric functions and obtain the next corollaries.

Corollary 1 (Queyranne [26]). The k-PPSSS for a nonnegative symmetric submodular
system (V , f) can be approximated within a factor of 2− 2

k
in O(kn3θ) time. �

Corollary 2 (Saran andVazirani [27], Kapoor [13]). The k-PPG can be approximated
within a factor of 2− 2

k
in O(kn(m+ n log n)) time. �

Let us consider an application of GSA. Given a graph G with a nonnegative weight
function w on edges, the strength σ(G, w) of G was introduced by Gusfield [10] and
Cunningham [5] as a measure of network invulnerability, which is defined as

σ(G, w) = min
2≤k≤n

{w(Ek)

k − 1

∣
∣
∣ Ek is a minimum k-way cut of G

}
.

The strength of a graph can be found in O(mn2(m + n log n)) time ([5]). On the
other hand, by applying GSA to n-PPG in G (which finds a near-minimum i-way cut
for every i = 2, . . ., n), we have the next result.

Corollary 3. Given a graph G with a nonnegative weight function w on edges, a value
σ satisfying σ(G, w) ≤ σ ≤ 2σ(G, w) can be found in O(n2(m+ n log n)) time. �

Let us next show that k-PPSS can be approximated within a factor of k − 1 by GSA.

Lemma 2. Let {V1, . . ., Vk} be a k-partition in a submodular system (V , f). Then

f (Vi)+ f (V −Vi) ≤
k∑

j=1

f (Vj)− (k − 2)f (∅), i = 1, 2, . . ., k.

Proof. For any two disjoint sets X, Y ⊆ V , f (X ∪ Y) ≤ f (X) + f (Y) − f (∅) holds
by submodularity. An easy induction then shows that f (V −Vi) = f (

⋃
j �=i Vj) ≤∑

j �=i f (Vj)− (k − 2)f (∅), proving the lemma. �

Theorem 5. Given a submodular system (V , f), where f (V)+ (k−1)f (∅) ≥ 0 holds,
MPP-NT can be approximated within a factor of k − 1 in O(kn3θ) time.

Proof. We first show that every k-partition P = {V1, V2, . . ., Vk} has nonnegative weight
(for the definition of performance guarantee). In fact, by Lemma 2, we have

f (P) =
k∑

i=1

f (Vi) ≥ f (V1)+ f (V −V1)+ (k − 2)f (∅)

≥ f (V)+ (k − 1)f (∅) ≥ 0.

The theorem is then shown by combining Lemma 1 and Lemma 2. �

Corollary 4. The k-PPSS can be approximated by GSA within factor k− 1 in O(kn3θ)

time. �

Greedy splitting algorithms for approximating multiway partition problems 175

Let us next derive the performance guarantee for k-PPMSS.

Theorem 6. Given a submodular system (V , f), where f (V)+f (∅) ≥ f (S) holds for
any nonempty subset S of V , MPP-NT can be approximated by GSA within a factor of
2− 2

k
in O(kn3θ) time.

Proof. We first show f (S) ≥ 0, ∅ ⊂ S ⊂ V . This is because f (S) + f (V −S) ≥
f (V)+ f (∅) holds by submodularity, and f (V)+ f (∅) ≥ f (V−S) holds by assump-
tion. Notice that this fact implies that MPP-NT in (V , f) has nonnegative optimum.

Let P∗ = {V ∗1 , V ∗2 , . . ., V ∗k } be a minimum k-partition, where f (V ∗k−1)+ f (V ∗k) =
max1≤i<j≤k{f (V ∗i)+ f (V ∗j)} ≥ 2

k

∑k
i=1 f (V ∗i) holds. By Lemma 1, we see that GSA

finds a k-partition Pk with weight

f (Pk) ≤
k−1∑

i=1

(
f (V ∗i)+ f (V −V ∗i)

)− (k − 2)f (V).

Notice that f (V −V ∗i) ≤ f (V)+ f (∅) holds by assumption. Hence we have

f (Pk) ≤
k−1∑

i=1

f (V ∗i)+ f (V −V ∗k−1)+ (k − 2)f (∅) ≤
k−1∑

i=1

f (V ∗i)+
∑

1≤i≤k, i �=k−1

f (V ∗i)

= 2
k∑

i=1

f (V ∗i)− f (V ∗k−1)− f (V ∗k) ≤ (2− 2

k
)

k∑

i=1

f (V ∗i).

(The second inequality is by Lemma 2.) �
Corollary 5. The k-PPMSS can be approximated by GSA within a factor of 2 − 2

k
in

O(kn3θ) time. �
Our derivation of the guarantees is not only simple and unified, but also allows us to

use approximation algorithms in Line 3 of GSA. Let us discuss this in the following.
Assume that f (S)+ f (W−S)− f (W) ≥ 0 holds for all ∅ ⊂ S ⊂ W ⊆ V (which

is true if f (∅) ≥ 0). Suppose that a ρ-approximation algorithm is used in Line 3 of
GSA. We observe that, by a straightforward induction as we used to prove Lemma 1,
the i-partition P ′i (1 ≤ i ≤ k) obtained by this variant of GSA has weight

f (P ′i) ≤ ρ

i−1∑

j=1

(
f (Vj)+ f (V −Vj)

)− (i − 2)f (V)

for any k-partition P = {V1, . . ., Vk}. Hence we have the next theorem.

Theorem 7. The variant of GSA that uses a ρ-approximation algorithm in Line 3 is a
2ρ(1− 1

k
)-approximation algorithm for k-PPSSS. �

As a result, we obtain the next corollary by using the linear-time (2+ ε)-approximation
algorithm [20] for the minimum cut problem in graphs with unit edge weights.

Corollary 6. The k-PPG with unit edge weight can be approximated within a factor of
(4+ ε)(1− 1

k
) in O(k(n+m)) time, where ε ∈ (0, 1) is an arbitrary constant. �

Obviously, similar approximation results can be obtained for other MPP-NTs.

176 L. Zhao et al.

2.4. Performance analysis for MPP-NTs in hypergraphs

Let us next consider the k-partition problems in hypergraphs. Let H = (V , E) be a
hypergraph with a hyperedge weight function w : E → R+. Recall that three types of
k-partition problems, k-PPH-T1, k-PPH-T2, and k-PPH-T3, employ objective functions
f1 = w(E)

k
− win, f2 = wex and f3 = win + wex − w(E)

k
, respectively.

First of all, observe that GSA is a (2 − 2
k
)-approximation algorithm for k-PPH-T2,

since it is a special case of k-PPSSS. Let us consider the running time. Since wex can be
evaluated in O(D) time in a straightforward manner (recall that D is the sum of degrees
of hyperedges), GSA can be implemented to run in O(kn3D) time. In the next theorem,
we show that a faster implementation is available.

Denote the set of hyperedges between two vertex subsets V1 and V2 by

E(V1 : V2) � {e ∈ E | e ∩ V1 �= ∅ �= e ∩ V2, e ⊆ V1 ∪ V2}.
Let δ(S) � E(S : V −S) = {e ∈ E | ∅ ⊂ e ∩ S ⊂ e} (note wex(S) = w(δ(S))).

Theorem 8. The k-PPH-T2 can be approximated by GSA within a factor of 2 − 2
k

in
O(kn(n log n+D)) time.

Proof. The guarantee is implied by Corollary 1. We give a fast implementation.
We will show that, for any fixed W ⊆ V , a nonempty subset S of W minimizing

wex(S)+ wex(W−S)− wex(W) can be found in O(|W |2 log |W | + |W |D) time. This
implies that Line 3 of GSA can be executed in O(

∑
W∈Pi

(|W |2 log |W | + |W |D)) =
O(n2 log n+ nD) time, hence the claimed running time. Let us show how to minimize
wex(S)+ wex(W−S)− wex(W). Since

wex(S)+ wex(W−S)− wex(W) =
∑

e∈δ(S)

w(e)+
∑

e∈δ(W−S)

w(e)−
∑

e∈δ(W)

w(e)

= 2

∑

e∈E(S:W−S)

w(e)+
∑

e∈δ(S)∩δ(W−S)∩δ(W)

w(e)

2

 ,

we see that the minimization of wex(S) + wex(W −S) − wex(W) can be reduced to
2-PPH-T2 (i.e., the minimum cut problem) in hypergraph H [W] � (W, E[W]), where
E[W] � {e ∩W |e ∈ E} − {∅}, with weight function w′ : E[W]→ R+ defined by

w′(e ∩W) =
{

w(e) if e ⊆ W ,
w(e)/2 if e ∈ δ(W).

(8)

(Notice that there may exist multiple hyperedges.) Using the algorithm in [16], we
can minimize it in O(|W |2 log |W | + |W |D) time. �

Next, let us consider k-PPH-T1 and k-PPH-T3. Functions f1 = w(E)
k
− win and

f3 = win +wex − w(E)
k

are not nonnegative or symmetric in general. Hence we cannot
apply Theorem 4 or Corollary 1. Nevertheless, since both Theorem 2 and Lemma 1 do
not require nonnegative or symmetric functions, we can still use GSA to find a k-parti-
tion in polynomial time (by Theorem 2), and estimate the guarantees by Lemma 1. We
obtain the next two theorems, where faster implementations are provided.

Greedy splitting algorithms for approximating multiway partition problems 177

Theorem 9. k-PPH-T1 can be approximated by GSA within factor min{k, d+max}(1− 1
k
)

in O(kn(n log n+D)) time, where d+max is the maximum degree of hyperedges of positive
weights.

Proof. We first derive the performance guarantee of GSA. Let P∗ = {V ∗1 , V ∗2 , . . ., V ∗k }
be an optimal solution with wex(V

∗
k) = max1≤i≤k{wex(V

∗
i)} ≥ 1

k

∑k
i=1 wex(V

∗
i). By

Lemma 1, GSA finds a k-partition whose weight is at most

k−1∑

i=1

(
f1(V

∗
i)+ f1(V −V ∗i)

)− (k − 2)f1(V)

=
k−1∑

i=1

(
(w(E)

k
− win(V

∗
i)

)+ (w(E)

k
− win(V −V ∗i)

)
)

−(k − 2)

(
w(E)

k
− win(V)

)

=
k−1∑

i=1

(
w(E)− win(V

∗
i)− win(V −V ∗i)

) =
k−1∑

i=1

wex(V
∗
i)

≤ (1− 1

k
)

k∑

i=1

wex(V
∗
i) ≤ (1− 1

k
) min{k, d+max}

k∑

i=1

f1(V
∗
i).

The last inequality is based on the remark of Definition 1. Notice that we only need
to consider hyperedges of positive weights, for which pe ≤ min{k, d+max} holds.

Since we can evaluate f1 = w(E)
k
− win in O(D) time, GSA for k-PPH-T1 can be

executed in O(kn3D) time. We give a faster implementation in the following. Similarly
to the proof of Theorem 8, we only need to show that a nonempty set S ⊂ W minimizing
f1(S) + f1(W−S) − f1(W) can be found in O(|W |2 log |W | + |W |D) time for any
fixed W ⊆ V . For this, notice that

f1(S)+ f1(W−S)− f1(W) = win(W)− win(S)− win(W−S)+ w(E)

k
.

Thus the minimization of f1(S)+ f1(W−S)− f1(W) can be reduced to 2-PPH-T1
(i.e., the minimum cut problem) in hypergraph HW � (W, EW), where EW = E(W :
W) = {e ∈ E | e ⊆ W }, and hyperedges in EW have the same weights as in H . Using
the algorithm in [16], we can minimize it in O(|W |2 log |W | + |W |D) time. �

Theorem 10. The k-PPH-T3 can be approximated by GSA within a factor of 2 − 2
k

in
O(kn(n log n+D)) time.

Proof. We first derive the guarantee (notice that it is not a conclusion of Corollary 5).
Let P∗ = {V ∗1 , V ∗2 , . . ., V ∗k } be an optimal solution with wex(V

∗
k) = max wex(V

∗
i) ≥

1
k

∑k
i=1 wex(V

∗
i). By Lemma 1, GSA finds a k-partition whose weight is at most

178 L. Zhao et al.

k−1∑

i=1

(
f3(V

∗
i)+ f3(V −V ∗i)

)− (k − 2)f3(V)

=
k−1∑

i=1

((
win(V

∗
i)+ wex(V

∗
i)− w(E)

k

)
+

(
win(V −V ∗i)+ wex(V −V ∗i)

− w(E)

k

))

− (k − 2)

(

win(V)+ wex(V)− w(E)

k

)

=
k−1∑

i=1

(
win(V

∗
i)+ wex(V

∗
i)+ win(V −V ∗i)+ wex(V −V ∗i)− w(E)

)

=
k−1∑

i=1

wex(V
∗
i) ≤ (1− 1

k
)

k∑

i=1

wex(V
∗
i) ≤ (2− 2

k
)

k∑

i=1

f3(V
∗
i).

Again, the last inequality is based on the remark of Definition 1. Similarly as before,
we next show how to minimize f3(S)+f3(W−S)−f3(W) in O(|W |2 log |W |+|W |D)

time for any fixed W ⊆ V . For this, notice that

f3(S)+ f3(W−S)− f3(W)

=
(

win(S)+ wex(S)− w(E)

k

)

+
(

win(W−S)+ wex(W−S)− w(E)

k

)

−
(

win(W)+ wex(W)− w(E)

k

)

=

∑

e∈E(S:W−S)

w(e) +
∑

e∈δ(S)∩δ(W−S)∩δ(W)

w(e)

− w(E)

k
.

Thus the minimization of f3(S)+ f3(W−S)− f3(W) can be reduced to 2-PPH-T3
(i.e., the minimum cut problem) in hypergraph H [W] = (W, E[W]), in which each
hyperedge has the same weight as in H . Again, we can use the algorithm in [16]. �

3. Modified GSA (M-GSA) for general MPP

3.1. Algorithm description and main lemma

We introduce in this section a slightly modified version of GSA for the general MPP
problems. Actually, by considering only k-partitions of target-split type, we can extend
GSA in a straightforward manner. We list the resulting algorithm M-GSA in Fig. 2.

Notice that only Line 3 is different from GSA, where we want to minimize f (S)+
f (W−S) − f (W) under an additional constraint: S ∩ T �= ∅ �= (W−S) ∩ T . This
ensures the feasibility of the output solution Pk . Let us first consider this minimization.
If W ⊆ T , the constraints reduce to ∅ ⊂ S ⊂ W only, hence the minimization can be
achieved in O(|W |3θ) time by Theorem 2. Otherwise, as will be shown in Theorem 11,
it can be achieved by solving the next partial s, t-partition problem.

Greedy splitting algorithms for approximating multiway partition problems 179

Input: A submodular system (V , f), a target set T ⊆ V and an integer k satisfying 1 ≤ k ≤ |T |.
Output: A target-split Pk of V .

1 P1 ← {V }
2 for i = 1, . . ., k − 1 do
3 (Si , Wi)← argmin{f (S)+ f (W−S)− f (W) | ∅ ⊂ S ⊂ W, W ∈ Pi ,

S ∩ T �= ∅ �= (W−S) ∩ T }
4 Pi+1 ← (Pi − {Wi}) ∪ {Si , Wi − Si}
5 end /* for */

Fig. 2. Modified greedy splitting algorithm (M-GSA) for MPP.

Problem 5 (Partial s,t-partition problem). Given a submodular system (V , f) with
a subset W of V and distinct s, t ∈ W , find a nonempty proper subset S of W such that

minimize f (S)+ f (W−S)

subject to s ∈ S, t ∈ W−S.

Lemma 3. The partial s,t-partition problem can be solved in O(θ |W |7 log |W |) time.

Proof. Let g(S) = f (S ∪ {s}) + f (W−(S ∪ {s})), S ⊆ W−{s, t}. Consider system
(W−{s, t}, g). Obviously, we only need to find an S′ ⊆ W−{s, t} to minimizes g, since
S∗ = S′ ∪ {s}will be an optimal solution of the partial s,t-partition problem. It is easy to
verify that g is submodular. An algorithm in [12] for minimizing submodular functions
has a running time of O(θ |W |7 log |W |), proving the lemma. �
Theorem 11. Given a submodular system (V , f), T ⊆ V and an integer k ≥ 1, M-GSA
has O(kθ |T |n7 log n) running time.

Proof. For a fixed W ⊆ V , the minimization of f (S)+f (W−S) with ∅ ⊂ S ⊂ W and
S ∩ T �= ∅ �= (W−S) ∩ T can be achieved by applying at most |T ∩W | − 1 partial
s, t-partition minimizations in the following manner. Choose an arbitrary s ∈ W ∩ T .
Compute a minimum partial s, t-partition for every t ∈ (W ∩ T − {s}). Obviously the
minimum minimum-partial-s,t-partition among all t is a desired solution. Hence Line 3
of M-GSA can be carried out in

∑
W∈Pi

O(θ |T ∩W ||W |7 log |W |) = O(θ |T |n7 log n)

time, implying the theorem. �
Remark. Of course we may have faster implementations in special cases. For instance,
it is easy to see that, the partial s,t-partition problem for k-TPG reduces to the minimum
s, t-cut problem (i.e. 2-MCP) which can be solved by a single maxflow computation.
Thus the running time of M-GSA for k-TPG is O(k|T |mn log(n2/m)) by using the
O(mn log(n2/m)) time maxflow algorithm [9]. �
Let us next consider the performance guarantees of M-GSA. We first give a technical
lemma which is analogous to Lemma 1.

Lemma 4. Let Pi be the i-target-split found by M-GSA in the (i − 1)th iteration, 1 ≤
i ≤ k. For any i-target-split P = {V1, V2, . . ., Vi}, it holds that

f (Pi) ≤
i−1∑

j=1

(
f (Vj)+ f (V −Vj)

)− (i − 2)f (V). (9)

Proof. Analogous to the proof of Lemma 1. �

180 L. Zhao et al.

3.2. Performance analysis

Analogously to the proof of Theorem 5, we have the next results by Theorem 11, Lemma 2
and Lemma 4.

Theorem 12. Given a system (V , T , k, f), where f (V)+ (k−1)f (∅) ≥ 0 holds, MPP
can be approximated by M-GSA within a factor of k − 1 in O(kθ |T |n7 log n) time. �
Corollary 7. Problem k-TPSS can be approximated by M-GSA within factor k − 1 in
O(kθ |T |n7 log n) time. �

Analogously to Corollary 1, the next result can be shown by Theorem 11 and
Lemma 4.

Theorem 13. The k-TPSSS can be approximated by M-GSA within a factor of 2− 2
k

in
O(kθ |T |n7 log n) time. �

We have the next corollary by combining Theorem 13 and the remark of Theorem 11.

Corollary 8 (Maeda, Nagamochi and Ibaraki [21]). The k-TPG can be approximated
by M-GSA within a factor of 2− 2

k
in O(k|T |mn log(n2/m)) time. �

The next two results can be shown analogously to the proofs of Theorem 6 and Corol-
lary 5, respectively.

Theorem 14. Given a system (V , T , k, f), where f (V)+ f (∅) ≥ f (S) holds for any
nonempty subset S of V , MPP can be approximated by M-GSA within a factor of 2− 2

k

in O(kθ |T |n7 log n) time. �
Corollary 9. The k-TPMSS can be approximated by M-GSA within a factor of 2− 2

k
in

O(kθ |T |n7 log n) time. �
Theorem 15. The k-TPH-T2 can be approximated by M-GSA within a factor of 2 − 2

k

in O(k|T |m′n′ log(n′2/m′)) time, where m′ = 2D +m, n′ = n+m.

Proof. The guarantee is implied by Theorem 13. We show a fast implementation.
Similarly as before, we see that, the partial s,t-partition problem for k-TPH-T2

reduces to 2-TPH-T2 with target set {s, t} in hypergraph H [W] = (W, E[W]) with a
modified weight function w′ (see (8)). It is known that the resulting problem can be
solved by a single maxflow computation ([17]). A calculation shows the theorem. �
Analogously to the proof of Theorems 15, 9 and 10, we have the next two theorems.

Theorem 16. Problem k-TPH-T1 can be approximated by M-GSA within a factor of
min{k, d+max}(1− 1

k
) in O(k|T |m′n′ log(n′2/m′)) time, where m′ = 2D+m, n′ = n+m.

�
Theorem 17. The k-TPH-T3 can be approximated by M-GSA within factor 2 − 2

k
in

O(k|T |m′n′ log(n′2/m′) time, where m′ = 2D +m, n′ = n+m. �

Greedy splitting algorithms for approximating multiway partition problems 181

Again, our proof allows us to use approximate algorithms in Line 3 of M-GSA.
Assume that f (S) + f (W −S) − f (W) ≥ 0 holds for ∅ ⊂ S ⊂ W , W ∈ Pi and
S ∩ T �= ∅ �= (W−S)∩ T (which is true if f (∅) ≥ 0 holds). We have the next theorem.

Theorem 18. The variant of M-GSA that uses a ρ-approximation algorithm in Line 3
is a ρ(k − 1)-approximation (resp., 2ρ(1 − 1

k
)-approximation) algorithm for k-PPSS

(resp., k-TPSSS). �
It is easy to see that similar results are available for other MPPs.

4. Tight example

In this section, we construct tight examples for GSA (clearly such examples are also
tight examples for M-GSA). For this, we need an easy preliminary property, whose proof
can be done in a straightforward manner and hence is omitted.

Lemma 5. Let (V , f) and (W, g) be two submodular systems, where V and W are not
necessarily disjoint. Define function h : 2V∪W → R by h(S) = f (S ∩ V)+ g(S ∩W),
S ⊆ V ∪W . Then (V ∪W, h) is a submodular system. �
Theorem 19. For any ε > 0, there exists a nonnegative submodular system for which
GSA always finds a k-partition whose weight is at least k− 1− ε times of the optimum.

Proof. Let V = {v0, v1, . . ., vk−1}, and let f : 2V → R+ be defined by f (S) = |S| if
S ⊂ V and f (V) = 0. Let W = {v0, w1, . . ., wk−1}, V ∩W = {v0}. Let g be the cut
function of graph (W, E) whose edges in E = {{v0, w1}, {v0, w2}, . . ., {v0, wk−1}} are
weighted k−ε

2 (see Fig. 3). Obviously f and g are submodular.
Let us consider a submodular system (V ∪ W, h), where h is defined by h(S) =

f (S ∩ V) + g(S ∩ W), S ⊆ V ∪ W . There is a k-partition (the optimal solution)
P = {{v1}, {v2}, . . ., {vk−1}, W } whose weight is k. On the other hand, since any 2-
partition separating some pair of members in V has weight at least k, the minimum
2-partition of (V ∪W, h) is {{wi}, (V ∪W)− {wi}}, 1 ≤ i ≤ k with weight k − ε.
Thus GSA first finds a 2-partition {{wi}, (V ∪W)−{wi}} for some i. And finally it will
output the k-partition Pk = {{w1}, {w2}, . . ., {wk−1}, V }, whose weight is (k−1)(k−ε).
Thus the guarantee is at least as bad as (k−1)(k−ε)

k
> k − 1− ε. �

v0

w1

wi

wk−1

v1

vi

vk−1

Fig. 3. A tight example for GSA applied to k-PPSS.

182 L. Zhao et al.

A tight example for k-PPG is known, see [27]. Notice that it also serves as a tight
example for k-PPH-Ti, i = 1, 2, 3, and k-PPSSS.

5. Conclusion and remark

In this paper, we have presented a simple and unified approach for developing and
analyzing approximation algorithms for various multiway partition problems (MPPs).
The main idea is to construct a near-optimal solution by greedily increasing the size of
partition by one in each iteration. Various approximation results are shown.

Naturally, one may consider to greedily increase the size of partition by two in one
iteration. Actually we can show that improved guarantees can be achieved for a number
of problem classes (see [31, 32]). On the other hand, however, polynomial time imple-
mentation for the general MPP-NT is still open (which would be available if the 3-PPSS
was solvable in polynomial time), whereas it seems not available for the general MPP
unless P = NP .

Finally, we note that our approach (actually the main lemmas) cannot be extended
to analyze the greedy algorithm that increases the size of partition by three (or more) in
each iteration, see [31]. Further details are available in the thesis [30].

Acknowledgements. This research is partially supported by the Scientific Grant-in-Aid from Ministry of Edu-
cation, Science, Sports and Culture of Japan. The authors would like to thank the anonymous referees for their
valuable comments and suggestions.

References

1. Benczúr, A.A.: Counterexamples for directed and node capacitated cut-trees. SIAM J. Comput. 24, 505–
510 (1995)

2. Burlet, M., Goldschmidt, O.: A new and improved algorithm for the 3-cut problem. Oper. Res. Lett. 21,
225–227 (1997)

3. Cǎlinescu, G., Karloff, H., Rabani,Y.:An improved approximation algorithm for multiway cut. J. Comput.
System Sci. 60, 564–574 (2000)

4. Chopra, S., Owen, J.H.: A note on formulations for the A-partition problem on hypergraphs. Discrete
Appl. Math. 90, 115–133 (1999)

5. Cunningham, W.H.: Optimal attack and reinforcement of a network. J.Assoc. Comput. Mach. 32, 549–561
(1985)

6. Dahlhaus, E., Johnson, D.S., Papadimitriou, C.H., Seymour, P.D, Yannakakis, M.: The complexity of
multiterminal cuts. SIAM J. Comput. 23, 864–894 (1994)

7. Gomory, R.E., Hu, T.C.: Multi-terminal network flows. J. Soc. Indust. Appl. Math. 9, 551–570 (1961)
8. Goldschmidt, O., Hochbaum, D.S.: A polynomial algorithm for the k-cut problem for fixed k. Math. Oper.

Res. 1,9 24–37 (1994)
9. Goldberg, A.V., Tarjan, R.E.: A new approach to the maximum flow problem. J. Assoc. Comput. Mach.

35, 921–940 (1988)
10. Gusfield, D.: Connectivity and edge-disjoint spanning trees. Inform. Process. Lett. 16, 87–89 (1983)
11. Garg, N., Vazirani, V.V., Yannakakis, M.: Multiway cuts in directed and node weighted graphs (extended

abstract). In Proc. ICALP 1994, LNCS 820, 487–498 (1994)
12. Iwata, S., Fleischer, L.L., Fujishige, S.: A combinatorial strongly polynomial time algorithm for mini-

mizing submodular functions. J. ACM 48, 761–777 (2001)
13. Kapoor, S.: On minimum 3-cuts and approximating k-cuts using cut trees. In Proc. IPCO 1996, LNCS

1084, 132–146 (1996)
14. Karger, D.R., Klein, P., Stein, C., Thorup, M.,Young, N.E.: Rounding algorithms for a geometric embed-

ding of minimum multiway cut. In Proc. STOC 1999, 668–678 (1999)

Greedy splitting algorithms for approximating multiway partition problems 183

15. Korte, B., Vygen, J. : Combinatorial Optimization. Theory and Algorithms. Springer, Berlin (2000)
16. Klimmek, R., Wagner, F.: A simple hypergraph min cut algorithm. Technical Report B 96-02, Freie

Universität Berlin (1996)
17. Lawler, E.L.: Cutsets and partitions of hypergraphs. Networks 3, 275–285 (1973)
18. Lengauer, T.: Combinatorial Algorithms for Integrated Circuit Layout. Wiley, New York (1990)
19. Lee, C.H., Kim, M., Park, C.I. : An efficient k-way graph partitioning algorithm for task allocation in

parallel computing systems. In Proc. IEEE Int. Conf. on Computer-Aided Design 1990, 748–751 (1990)
20. Matula, D.W.: A linear time 2+ ε approximation algorithm for edge connectivity. In Proc. SODA 1993,

500–504 (1993)
21. Maeda, N., Nagamochi, H., Ibaraki, T.: Approximate algorithms for multiway objective point split prob-

lems of graphs (in Japanese). Computing Devices and Algorithms (in Japanese) (Kyoto, 1993). Suri-
kaisekikenkyusho Kokyuroku 833, 98–109 (1993)

22. Nagamochi, H., Ibaraki, T.: Computing edge connectivity in multigraphs and capacitated graphs. SIAM
J. Discrete Math. 5, 54–66 (1992)

23. Narayanan, H., Roy, S., Patkar, S.: Approximation algorithms for min-k-overlap problems using the
principal lattice of partitions approach. J. Algorithms 21, 306–330 (1996)

24. Pulleyblank, W.R.: Presentation at SIAM Meeting on Optimization, MIT, Boston (1992)
25. Queyranne, M.: Minimizing symmetric submodular functions. Math. Program. B 82, 3–12 (1995)
26. Queyranne, M.: On optimum size-constrained set partitions. AUSSOIS 1999, France (1999)
27. Saran, H., Vazirani, V.V.: Finding k-cuts within twice the optimal. SIAM J. Comput. 24, 101–108 (1995)
28. Tittmann, P.: Partitions and network reliability. Discrete Appl. Math. 95, 445–453 (1999)
29. Vazirani, V.V.: Approximation Algorithms. Springer-Verlag, Berlin (2001)
30. Zhao, L.: Approximation algorithms for partition and design problems in networks. PhD Thesis, Graduate

school of Informatics, Kyoto University, Japan (2002)
31. Zhao, L., Nagamochi, H., Ibaraki, T.: Approximating the minimum k-way cut in a graph via minimum

3-way cuts. J. Comb. Optim. 5, 397–410 (2001)
32. Zhao, L., Nagamochi, H., Ibaraki, T.: On generalized greedy splitting algorithms for multiway parti-

tion problems. Discrete Appl. Math. (to appear). A preliminary version appeared in Proc. ISAAC 2001
(A unified framework for approximating multiway partition problems (extended abstract). LNCS 2223,
682–694) (2004)

