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Abstract. A long-standing conjecture in combinatorial optimization says that the integrality gap of the famous
Held-Karp relaxation of the metric STSP (Symmetric Traveling Salesman Problem) is precisely 4/3. In this
paper, we show that a slight strengthening of this conjecture implies a tight 4/3 integrality gap for a linear
programming relaxation of the metric ATSP (Asymmetric Traveling Salesman Problem). Our main tools are
a new characterization of the integrality gap for linear objective functions over polyhedra, and the isolation of
“hard-to-round” solutions of the relaxations.

1. Introduction

The Traveling Salesman Problem has guided and challenged the field of combinatorial
optimization for the past several decades. Let G = (V , E) be a directed (undirected)
graph. A Hamilton cycle (or tour) in G is a directed (undirected) simple cycle that spans
V . The Asymmetric Traveling Salesman Problem or ATSP (Symmetric Traveling Sales-
man Problem or STSP) is given G and a cost function on the edges, find a minimum
cost directed (undirected) Hamilton cycle. It is well-known that there can be no effi-
cient approximation algorithm unless P = NP [12]. However, for the metric ATSP and
metric STSP, where we restrict the distances to satisfy the triangle inequality, there are
algorithms that achieve a log n approximation on n node graphs [4] in the asymmetric
case, and a 3/2 approximation in the symmetric case [3]. Improving on the approximation
ratios for these problems has been an outstanding open problem for nearly two decades.
The best known lower bound on the approximability assuming a metric cost function
(for both problems) is (1 + ε) for some fixed ε much smaller than 1 (i.e., it is NP -hard
to find a (1 + ε) approximation) [11].

A promising direction for an improved approximation for the STSP is a linear pro-
gramming relaxation of the problem, proposed by Held and Karp [8]. The integrality
gap of the relaxation, i.e., the worst possible ratio of the true optimum to the optimum
over the relaxation, is conjectured to be 4/3 for the metric STSP (see Section 1.1). A
proof of this conjecture would lead to a 4/3 approximation for the metric STSP. (An
algorithmic proof that yields a TSP tour within 4/3 of this relaxation would lead to a 4/3
approximation algorithm.)
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In this paper, we study a linear programming relaxation of the ATSP. Our main result
is a reduction from the ATSP to the STSP which implies that a slight strengthening
(described below) of the 4/3 conjecture for the metric STSP yields a 4/3 approximation
for the metric ATSP also!

Our proof relies on two main tools. The first is a simple characterization of the inte-
grality gap that perhaps was known, but never explicitly stated (Goemans, [6], exploits
the main idea of this characterization). This is described in Section 2. Applying it to the
Held-Karp metric STSP relaxation implies that the integrality gap of the relaxation is
4/3 if and only if for any extreme point x∗ of the relaxation of a given instance G, 4

3x∗
can be expressed as a convex combination of Eulerian subgraphs of G. Throughout this
paper, we assume that in addition to the even degree requirements, Eulerian subgraphs
are also spanning, connected, and that multiple copies of an edge are permitted.

The strengthening of the STSP conjecture needs a simple definition.A graph is called
leafless if every vertex of degree 2 of the graph has at least two distinct neighbors. Then
the stronger conjecture is that for any extreme point x∗ of the Held-Karp STSP relaxa-
tion, 4

3x∗ can be expressed as a convex combination of leafless Eulerian subgraphs (and
thus using Eulerian subgraphs with leaves is no longer allowed here).

Our second important tool is the isolation of a subset of extreme points of the relax-
ation with the following property: if the true optimum is always within 4/3 of the cost
(objective function value) of extreme points in the subset, then it is within 4/3 of any
extreme point of the relaxation (and hence the integrality gap is 4/3). There is a striking
analogy here with the theory of NP -completeness (see Section 3). We refer to extreme
points in such a “complete” subset as fundamental extreme points. This technique has
been used in the context of the STSP in earlier work [2]; here we develop it further and
apply it to the ATSP.

To prove the main result, we identify the fundamental extreme points of the ATSP
relaxation (Section 3.3), describe a reduction to STSP instances (Section 4), and show
that if the stronger conjecture holds, then the integrality gap of the metricATSP relaxation
is 4/3, i.e., the metric ATSP is approximable to within 4/3 in polynomial time.

Both characterizations developed here, for the integrality gap and for the “hardest-
to-round” extreme points, are quite general in nature and seem well-suited to the study
of approximation algorithms.

1.1. Relaxations of the TSP

Given a complete edge-weighted graph G = (V , E), the symmetric TSP can be formu-
lated as the following integer program (IP) with a variable xij for each edge ij ∈ E.

min
∑

ij∈E

cij xij

∑

j∈V \{i}
xij = 2 ∀i ∈ V (1)

∑

ij :i∈S,j �∈S

xij ≥ 2 ∀S ⊂ V, S �= ∅ (2)

xij ∈ {0, 1} ∀ij ∈ E (3)
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The Held-Karp relaxation is the linear programming relaxation of this integer pro-
gram obtained by modifying constraints (3) to xij ≥ 0 for each ij ∈ E. Let Q= be
the polyhedron for the Held-Karp relaxation, where the “=” superscript indicates that
constraints (1) are equations.

Let Q be the polyhedron where these degree constraints (1) are relaxed to greater
than or equal to constraints. The two relaxations Q= and Q are closely related, as is
expressed in the lemma below which was proved first by Cunningham [10] and then by
Bertsimas and Goemans [5]. This lemma is a consequence of Lovász’s edge-splitting
Lemma [9].

Lemma 1. Assume that the costs in a cost vector c ≥ 0 satisfy the triangle inequality.
Then,

min
x∈Q= c · x = min

x∈Q
c · x.

For linear functions c · x, with c > 0 and x ≥ 0, the integrality gap is a measure of
the quality of the relaxation P of an integer polyhedron Z in the positive orthant, and
can be defined as

max
c>0

(
minx∈Z c · x

minx∈P c · x
).

One can also consider integrality gaps over more restrictive sets of cost functions, such
as those satisfying the triangle inequality. We will in fact impose this metric restriction
on our TSP cost functions from now on, since the integrality gap for the TSP would
otherwise be infinite. What is the integrality gap of the Held-Karp relaxation? A simple
example, illustrated in Figure 1 shows that it is at least 4/3. In this figure, the solid edges
have value 1 in the Held-Karp relaxation and the dashed edges have value 1/2. The cost
of the solid edges is 1, the cost of the dashed edges is 2, and the costs of the other edges
are determined by the triangle inequality. The conjecture that this is tight, i.e. the gap is
also at most 4/3, has been a subject of intensive study for the past decade.

Conjecture 1. The integrality gap of the Held-Karp STSP relaxation is 4/3.

Here we study a relaxation of the ATSP on the complete digraph G = (V , E),
which can be viewed as the asymmetric generalization of the Held-Karp relaxation. It
should be noted that this relaxation as well as the symmetric one, can both be solved in
polynomial-time [7].

Fig. 1. An example showing a 4/3 integrality gap
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min
∑

ij∈E

cij xij

∑

j∈V \{i}
xij = 1 ∀i ∈ V (4)

∑

i∈V \{j}
xij = 1 ∀j ∈ V (5)

∑

ij :i∈S,j �∈S

xij ≥ 1 ∀S ⊂ V, S �= ∅ (6)

xij ≥ 0 ∀ij ∈ E (7)

From the algorithm of Frieze et al. [4], it follows that the integrality gap of this
relaxation is at most log n. The largest known lower bound on the integrality gap, how-
ever, is just 4/3 (obtained by bi-directing every edge in the undirected 4/3 example).
Nevertheless, the following conjecture seems extremely rash.

Conjecture 2. The integrality gap of the ATSP relaxation is 4/3.

In what follows, we show that Conjecture 2 is only slightly stronger than Conjecture 1.

2. A characterization of the integrality gap

In this section we develop a simple characterization of the integrality gap in terms of an
associated polyhedron which we call the dominant.

Let P denote the polyhedron in Rn defined by Ax ≥ b, x ≥ 0.

Definition 1. The dominant D(P ) of a polyhedron P is the set of points y ∈ Rn which
dominate some point x ∈ P . That is,

D(P ) = {y ∈ Rn | ∃x ∈ P : ∀i ∈ {1, . . . , n} yi ≥ xi}.
The following facts are elementary but insightful.

Lemma 2. The dominant of a polyhedron is a polyhedron.

Lemma 3. For any linear function c · x with c ≥ 0,

min
x∈P

c · x = min
x∈D(P )

c · x.

We are now ready for the main theorem of this section.

Theorem 1. The integrality gap of a relaxation P of an integral polyhedron Z in the
positive orthant is the smallest real number r such that for any extreme point x∗ of P ,
rx∗ ∈ D(Z).

Proof. First we note that it suffices to show that the integrality gap of P with respect
to Z is at most r iff rx∗ ∈ D(Z) for every extreme point x∗ of P . Suppose that for
any extreme point x∗ of P , rx∗ ∈ D(Z). Let a cost vector c > 0 be given. Choose an
extreme point x∗ ∈ P having minimum cost. Since rx∗ ∈ D(Z), we can express rx∗ as
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a convex combination rx∗ = ∑
i λixi , where each xi dominates an extreme point of Z.

Denote the extreme point in Z that is dominated by the minimum cost such xi by y ∈ Z.
By an averaging argument, we have that c · (rx∗) ≥ c · y, i.e. rc · x∗ ≥ c · y. Hence, the
integrality gap for P is at most r .

Conversely, suppose that the integrality gap for P is at most r . Assume for the pur-
pose of a contradiction that there is an extreme point x∗ of P such that rx∗ cannot
be expressed as a convex combination of points from D(Z). Since D(Z) is a polyhe-
dron, there must be a hyperplane w · x = t which separates rx∗ from D(Z). That is,
w · (rx∗) < t ≤ w · y for every y ∈ D(Z). For such a vector w, it must be the case that
every component is non-negative. Otherwise, if some component we is negative, then by
using a y with ye equal to a large enough value, we would violate the above inequality.
Hence there exists a vector w > 0 such that

w · (rx∗) < min
y∈D(Z)

w · y.

That is,

r <
miny∈D(Z) w · y

w · x∗ ≤ miny∈D(Z) w · y

minx∈P w · x
= miny∈Z w · y

minx∈P w · x
.

But this means the integrality gap of P with respect to Z is greater than r , a contradiction.

�

For a polyhedron P , let Z(P ) denote the convex hull of the integer points within P .
Thus P is a relaxation of Z(P ). In particular, Z(Q=) is the convex hull of all (undirected)
Hamilton cycles and Q= its relaxation (since adding integrality constraints to Q= yields
an IP formulation for STSP). If we let ZE denote the convex hull of all (undirected)
Eulerian graphs, then the following lemma establishes a useful relationship.

Lemma 4. Let the costs c satisfy the triangle inequality. Then, we have

min
x∈ZE

c · x = min
x∈Z(Q=)

c · x.

Proof. Since Z(Q=) ⊂ ZE , the minimum over ZE is at most that over Z(Q=). Let
a minimizing Eulerian graph T be given. Take an Euler tour of T and shortcut it by
bypassing any node v after leaving it for a second time as follows. Add the edge which
completes a triangle with the last two edges (an edge into v and an edge out of v), and
remove these last two edges. This results in a Hamilton cycle that has equal or smaller
cost since c is metric. 
�

The next lemma will be useful in applying the characterization to the STSP.

Lemma 5.
D(ZE) = ZE.

Proof. It is clear that ZE ⊆ D(ZE). For the opposite inequality, consider some y ∈
D(ZE), and let x ∈ ZE be a point such that y ≥ x component-wise, and further x

differs from y in the fewest possible components (edges). Let e be a component such
that ye > xe. Consider the point x′ obtained by setting x′

e = xe + t , where t is an even
integer greater than ye − xe, and x′

f = xf for all other components f . Then x′ ∈ ZE .



574 R. Carr, S. Vempala

Consider the convex combination x′′ = (1−α)x+αx′ where α = ye−xe

t
. Then x′′ ∈ ZE

also. Further, x′′ is dominated by y and has one less component different from y than
does x. This contradicts our assumption that x differs from y in the fewest possible
components. 
�
Lemma 6. The integrality gap between Z(Q=) and Q= for metric c equals the inte-
grality gap between ZE and its relaxation Q for any c > 0.

Proof. From Lemmas 4 and 1, for any cost vector c > 0 satisfying the triangle inequal-
ity, we have that (i) the optimal value over ZE is equal to the optimal value over Z(Q=),
and (ii) the optimal value over the Held-Karp relaxation Q= is equal to the optimal value
for c over the relaxation Q (note: Q is the relaxation obtained by dropping the degree
constraints from Q=). Hence, when c is metric in both cases, these gaps are the same.

We will now show that the gap of Q with respect to ZE over cost vectors satisfying
the triangle inequality is the same as the integrality gap of Q with respect to ZE (i.e.,
over all cost vectors c > 0). Let c > 0. Define dij to be the length of the shortest path
from i to j , where the edge lengths are given by c. Let minx∈ZE

d · x occur at x∗ ∈ ZE .
For each edge ij ∈ E such that cij > dij and x∗

ij ≥ 1, replace ij in x∗ by a path of
c-length equal to dij . The resulting solution x∗∗ then satisfies d · x∗ = c · x∗∗, and so
minx∈ZE

d · x = minx∈ZE
c · x. We similarly have minx∈Q d · x = minx∈Q c · x. Hence,

the integrality gap is unchanged. 
�
Theorem 1 can be applied to the STSP to yield the following characterization.

Theorem 2. The 4/3 Conjecture for the Held-Karp relaxation is equivalent to the fol-
lowing statement: For any extreme point x∗ of the relaxation Q=, 4

3x∗ can be expressed
as a convex combination of Eulerian graphs.

Proof. We have the following:

(i) The 4/3 Conjecture is equivalent to this Held-Karp integrality gap being at most
4/3, since it is already known to be at least 4/3.

(ii) The Held-Karp integrality being at most 4/3 is equivalent to the gap of Q with
respect to ZE being at most 4/3, by Lemma 6.

(iii) The gap of Q with respect to ZE being at most 4/3 is equivalent to saying that
for any extreme point x∗ of Q, 4

3x∗ can be expressed as a convex combination of
points from D(ZE), by Theorem 1.

(iv) But D(ZE) = ZE , by Lemma 5.

Hence the assertion equivalent to the 4/3 Conjecture is that 4
3x∗ can be expressed as

a convex combination of Eulerian graphs for all x∗ ∈ Q. Certainly then, the 4/3 Con-
jecture implies that 4

3x∗ can be expressed as a convex combination of Eulerian graphs
for all x∗ ∈ Q=. Now suppose that 4

3x∗ can be expressed as a convex combination of
Eulerian graphs for all x∗ ∈ Q=. We could proceed to show that any x ∈ Q can also
be so decomposed into Eulerian graphs, from which the 4/3 Conjecture follows. But, an
easier approach is to take the minimum cost Eulerian graph in the decomposition of x∗
and shortcut it as in Lemma 4. 
�

Theorem 1 can also be applied to the ATSP relaxation, producing a result that is
completely analogous with our STSP result, but a new idea is needed since Lemma 5
does not hold in the directed case.
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Fig. 2. An ATSP extreme point

Theorem 3. The integrality gap of the ATSP relaxation is at most r iff for any extreme
point x∗ of the relaxation, rx∗ can be expressed exactly as a convex combination of
directed Eulerian graphs.

Proof. If for any extreme point x∗ of the relaxation, rx∗ is a convex combination of
directed Eulerian graphs, then clearly our integrality gap is at most r .

Now suppose the integrality gap of the ATSP relaxation is at most r . Let an extreme
point x∗ of that relaxation be given. Choose a convex combination of Eulerian graphs by
Theorem 1 (and an analysis similar to that in our STSP result) that is dominated by rx∗.
Removing these weighted Eulerian graphs from rx∗ results in a weighted graph where
the indegree equals the outdegree at each vertex. Such a graph can be decomposed into
weighted cycles, which can be arbitrarily added to the Eulerian graphs of our convex
combination. 
�

We now give an example of such a convex combination. Consider the ATSP extreme
point x∗ in Figure 2 analogous to the STSP point shown in Figure 1.

Weighting the three directed Eulerian graphs in Figure 3 by 1/3 each yields a decom-
position of 4

3x∗ into a convex combination of directed Eulerian graphs.

3. Fundamental extreme points

The notion of fundamental extreme points of the STSP relaxation was first developed in
[2]. Intuitively, these are a subset of extreme points that are the most difficult to round
to true (integer) solutions. This is shown by taking any extreme point and reducing it to
a fundamental extreme point while preserving the integrality gap. In this sense the set
of fundamental extreme points forms a complete subset for the set of extreme points.

3.1. Fundamental STSP extreme points

Suppose we have a subclass S of extreme points x such that being able to express 4
3x

as a convex combination of Eulerian graphs for all extreme points x belonging to this
particular subclass is sufficient to prove Conjecture 1. Then we say that S is sufficient
to prove Conjecture 1. In [2, 1], two different subclasses (with two variations of each,
making four in all) of extreme points which are sufficient to prove Conjecture 1 were
found. We call the extreme points in one particular such a subclass fundamental (STSP)
extreme points, which we define as follows.
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Fig. 3. Tours in convex decomposition

Consider any STSP extreme point x∗. Pick the smallest integer k such that x∗
e is a

multiple of 1
k

for every edge e ∈ E. Then form a 2k-regular 2k-edge connected mult-
igraph Gk = (V , Ek) as follows. For every edge e = uv ∈ E, put l edges between u

and v, where l := kx∗
e . Then x∗ = 1

k
χEk , and thus showing that 4

3k
Ek can be expressed

as a convex combination of Eulerian graphs is equivalent to showing that 4
3x∗ can

be so expressed. We will construct a larger 2k-regular 2k-edge connected multigraph
Gk = (V , Ek) from Gk . We then use the above process in reverse on Gk to construct an
extreme point x∗. We will show that x∗ has more special structure than x∗ (structure that
defines when an extreme point is a fundamental extreme point), but that for any r ≥ 1,
rx∗ is as hard to express as a convex combination of Eulerian graphs as rx∗ is.

We construct Gk = (V , Ek) and x∗ as follows.

(i) Replace each v ∈ V with a circle of nodes

v1, v2, . . . , v2k,

and define v2k+1 := v1. Now, V := ∪v∈V {vi | i ∈ {1, . . . , 2k}}.
(ii) For each v ∈ V , order the edges in δ(v) ⊂ Ek by

ev
1, ev

2, . . . , ev
2k.

(iii) For each edge e ∈ Ek with endpoints u and v, place an edge e ∈ Ek as follows.
(a) Find i and j such that e = eu

i and e = ev
j .

(b) Place e so its endpoints are ui and vj .
(iv) Make an Euler tour on Gk , numbering the edges

e1, e2, . . . ek|V |, ek|V |+1 := e1.
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(v) Do the following for each v ∈ V .
(a) Find k disjoint consecutive index pairs i, i + 1 with ei, ei+1 ∈ δ(v).
(b) Let Fv := {(eir , eir+1) | r ∈ {1, . . . , k}} be all these edge pairs, with the ir ’s

in increasing order. Have ik+1 := i1, and note ∪(e,f )∈Fv
{e, f } = δ(v).

(c) For each r ∈ {1, . . . , k +1}, find vlr and vjr that are endpoints of eir and eir+1
respectively. Do the following for r = 1, . . . , k.
• Place k − 1 edges between vlr and vjr .
• Place k edges between vjr and vlr+1 .

(d) Relabel the v indices so that the cycle Cv resulting from the edges placed in
(c) visits v1 through v2k in order.

(vi) x∗ := 1
k
χEk .

Figure 4 is an example of an Eulerian tour on a 2k-regular 2k-connected graph for
k = 2, and how it expands by the above procedure.

Theorem 4. The support graph of x∗ is 3-regular, with its fractional edges forming
a Hamilton cycle. Also, for each v ∈ V , there is a cycle of alternating 1-edges and
k−1
k

-edges spanning the vertices of Cv := {v1, v2, . . . , v2k}.
Theorem 5. x∗ in Theorem 4 is a subtour extreme point.

Proof. We first show that x∗ is a feasible subtour point. If it were not, there would have
to be a cut in the graph Gk = (V , Ek) of value less than 2k. Clearly, such a cut C would
have to go through some cycle Cv since Gk is 2k-edge connected. But the contribution
of the edges from the cycle Cv to any cut crossing it is at least 2k − 2. Clearly, the
contribution from the non-circle edges in the cut C is at least 2 because of the fractional
Hamilton cycle in x∗. Hence, x∗ is a feasible subtour point.

We show that x∗ is an extreme point by showing that it cannot be expressed as
1
2x1+ 1

2x2, where x1 and x2 are distinct subtour points. Suppose x∗ could be so expressed.
Then the support graphs of x1 and x2 would coincide with or be subgraphs of the support
graph Ek of x∗. Because of the structure of the support graph, setting the value of just
one fractional edge determines the entire solution due to the degree constraints. Hence,
all the edges e ∈ Ek such that xe = 1

k
would have to say be smaller than 1

k
in x1 and

larger than 1
k

in x2. But, then a cut separating any cycle Cv from the rest of the vertices
in x1 would have a value less than 2, which contradicts x1 being a subtour point. 
�

Next we establish the main property of x∗.

Theorem 6. If 4
3x∗ can be expressed as a convex combination of Eulerian graphs span-

ning V , then 4
3x∗ can be expressed as a convex combination of Eulerian graphs spanning

V .

Proof. Suppose 4
3x∗ can be expressed as a convex combination 4

3x∗ = ∑
i λiχ

Hi ,
where the Hi’s are Eulerian graphs spanning V . For each i, contract each node set of Cv

back to the vertex v ∈ V in Hi . Call the resulting graph Hi . Since contraction preserves
the Eulerian property, Hi is an Eulerian graph spanning V . When one performs this
contraction on x∗, one gets x∗. As a result, we obtain that 4

3x∗ = ∑
i λiχ

Hi . 
�
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Fig. 4. a) Eulerian tour in numerical order. b) Expansion of tour
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We can now define the subclass of fundamental STSP extreme points and state their
main property.

Definition 2. A fundamental STSP extreme point is an extreme point of the STSP relax-
ation satisfying the following conditions.

(i) The support graph is 3-regular,
(ii) There is a 1-edge incident to each vertex,

(iii) The fractional edges form a Hamilton cycle.

Theorem 7. The subclass of fundamental STSP extreme points is sufficient to prove
Conjecture 1.

Proof. If there is an extreme point x∗ such that 4
3x∗ cannot be expressed as a convex

combination of Eulerian graphs, then by Theorem 6, the fundamental extreme point x∗
is such that 4

3x∗ cannot be expressed as a convex combination of Eulerian graphs either.
The theorem follows. 
�

3.2. Ultra-fundamental STSP extreme points

To further restrict the class of extreme points that are sufficient to prove Conjecture 1
we replace each 1-edge uv in a fundamental extreme point x∗ by the (first) construction
shown in Figure 5, where the new vertices u′, v′, w, x, y, and z are created. In Figure 5,
there is a long 1-path from u to u′, a 1/2-cycle between u′, w, and x, long 1-paths from
w to y and from x to z, a 1/2-cycle between v′, y, and z, and a long 1-path from v′ to v.
It is not hard to see that the resulting solution continues to be an extreme point. We call
these ultra-fundamental extreme points.

The idea behind these extreme points is that every Eulerian decomposition of 4
3x∗ for

an ultra-fundamental extreme point x∗ can be easily converted into an Eulerian decom-
position of 4

3x∗ of the corresponding fundamental extreme point x∗ by contracting the
nodes u′, v′ and the nodes in between them in each gadget and each Eulerian graph. On
the other hand, one can imagine Eulerian decompositions of 4

3x∗ that cannot be extended
to an Eulerian decomposition of 4

3x∗. So, in this particular sense, the ultra-fundamen-
tal extreme points are harder than the fundamental extreme points to decompose into
Eulerian graphs.

The following lemma, which involves the special case of leafless Eulerian graphs,
will be very useful in the proof of the main reduction.

Lemma 7. Let x∗ be an ultra-fundamental STSP extreme point, and assume that 4
3x∗

can be expressed as a convex combination of leafless Eulerian graphs,

4

3
x∗ =

∑

i

λiχ
Ki .

Then each 1-path P of x∗ must occur singly in Eulerian graphs that contribute 2/3 to
the convex combination and must occur doubly in the remaining. That is,

∑

i:P occurs singly

λi = 2

3
,

∑

i:P occurs doubly

λi = 1

3
.
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Fig. 5. Gadgets for ultra-fundamental extreme points

Further, the path from u to u′ in Figure 5 must occur with the same cardinality as the
path from v′ to v.

Proof. Since the graphs Ki are leafless, if part of a 1-path is present in Ki then the
entire 1-path must be present. Since the 1-paths are all in cuts of exactly 3 edges (at
the triangle vertices), in order to acheive a usage of 4

3 times each 1-path in the convex
combination, it is necessary to traverse each 1-path exactly once 2/3’rds of time in the
convex combination and exactly twice the other 1/3’rd of the time. That is to say, when
λ is the vector of convex multiples, we have

∑

i:P occurs once
λi = 2/3,

where P is one of these newly created 1-paths. If P is from u to u′ in Figure 5, it and
its partner P ′ from v′ to v form a cut of exactly 2 edges. Hence, these 1-paths are both
traversed exactly once or both traversed exactly twice for every Eulerian graph in the
convex combination. 
�

The proof of the next theorem is outlined by the explanation following “the idea
behind these extreme points” at the beginning of this section.

Theorem 8. The subclass of ultra-fundamental STSP extreme points is sufficient to prove
Conjecture 1.

Proof. Suppose Conjecture 1 is false. Then since the class of fundamental extreme points
is sufficient to prove Conjecture 1, there must be a fundamental extreme point x∗ such
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that 4
3x∗ cannot be expressed as a convex combination of Eulerian graphs. Form an

ultra-fundamental extreme point x∗ from x∗. Then 4
3x∗ cannot be expressed as a convex

combination of Eulerian graphs either, since otherwise a contraction argument similar
to that in Theorem 6 would show that 4

3x∗ could be so expressed as well. Therefore, the
ultra-fundamental extreme points are also sufficient to prove Conjecture 1. 
�

3.3. Fundamental ATSP extreme points

Here we study fundamental extreme points of the ATSP relaxation, which are analogous
to those of the symmetric relaxation. The basic idea is to map any ATSP extreme point
onto a fundamental ATSP extreme point by creating a directed multigraph. Consider any
extreme point x∗. Pick the smallest integer k such that x∗

e is a multiple of 1
k

for every
arc e. Then form a k-regular k-edge connected directed multigraph Gk = (V , Ek) as
follows. For every arc e = uv ∈ E, put l arcs between u and v, where l := kx∗

e . Then
x∗ = 1

k
χEk , and thus showing that 4

3k
Ek can be expressed as a convex combination of

Eulerian graphs is equivalent to showing that 4
3x∗ can be so expressed.

We construct Gk and x∗ by amending our STSP construction (please refer back to)
of these objects as follows.

(iii)(b) If e = (u, v), then e := (ui, vj ).
(iv) We make a directed Euler tour.
(v)(a) Choose i, i + 1 so that ei ∈ δ−(v), ei+1 ∈ δ+(v).
(v)(c) We place k − 1 arcs (vjr , vlr ) and k arcs (vlr+1 , vjr ).
(v)(d) When the v indices are relabeled, Cv is now a directed cycle.

Theorem 9. The support graph of x∗ is 3-regular, with its fractional edges forming
a Hamilton cycle, but of alternating directions. Also, for each v ∈ V , there is a
directed cycle of alternating 1-edges and k−1

k
-edges spanning the vertices of Cv :=

{v1, v2, . . . , v2k}.
The following Theorems are the directed analogues of Theorems 5 and 6 respectively.

Their proofs are very similar.

Theorem 10. x∗ in Theorem 9 is an ATSP extreme point.

Theorem 11. If 4
3x∗ can be expressed as a convex combination of Eulerian graphs

spanning V , then 4
3x∗ can be expressed as a convex combination of Eulerian graphs

spanning V .

We can now define the class of fundamental ATSP extreme points and state their
main property.

Definition 3. A fundamental ATSP extreme point is an extreme point for the subtour
relaxation satisfying the following conditions.

(i) The support graph is 3-regular,
(ii) There is a 1-arc incident to each vertex,

(iii) The fractional arcs, when considered as edges, form a Hamilton cycle,
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(iv) Any two fractional arcs incident to any vertex v are both into v or both out of v.

The proof of the next theorem is analogous to that of Theorem 7.

Theorem 12. The class of fundamental ATSP extreme points is sufficient to prove
conjecture 2.

3.4. Ultra-fundamental ATSP extreme points

Suppose now that we replace each 1-arc uv of a fundamental extreme point by the
(second) construction in Figure 5. Then the resulting ultra-fundamental extreme points
are harder to decompose into Eulerian graphs than fundamental extreme points for the
same reasons as their symmetric counterparts, yielding the following theorem.

Theorem 13. The ultra-fundamental ATSP extreme points are sufficient to prove Con-
jecture 2.

4. The main reduction

We now will establish a strong connection between Conjecture 1 and Conjecture 2:

Theorem 14. The integrality gap of the metric ATSP relaxation is at most 4
3 iff for every

ultra-fundamental STSP extreme point x∗, one can express 4
3x∗ as a convex combination

of leafless Eulerian graphs.

Although the use of ultra-fundamental STSP extreme points is critical in our current
proof, this theorem might still remain true if “ultra-fundamental STSP extreme point” is
replaced in its statement by just “STSP extreme point”. Also, this theorem works only
when the ratio used is 4

3 , which we note in its proof and in the next section.

Proof of if part of Theorem 14. Suppose that for any STSP extreme point xS , 4
3xS can

be expressed as a convex combination

4

3
xS =

∑

i

λiχKi (8)

of leafless Eulerian graphs. Let an ultra-fundamental ATSP extreme point xA be given.
Let xS denote the corresponding STSP extreme point obtained by ignoring the directions
on the edges. Note that xS is an ultra-fundamental STSP extreme point. Express 4

3xS as
a convex combination of leafless Eulerian graphs. Consider an Eulerian graph Ki in the
convex combination. We will prove that the edges of Ki can be directed to get a graph
Hi which is a directed Eulerian subgraph of xA, and we can express 4

3xA as a convex
combination of these Hi’s, which completes the proof.

Consider a vertex v of Ki . If v is an internal vertex of a 1-path of xS then, from
Lemma 7 we see that this path must occur in each Ki either singly or doubly, and we
direct the edges incident to v according to their direction in xA. It is easy to see that we
maintain indeg(v) = outdeg(v) in this process.



On the Held-Karp relaxation for the asymmetric and symmetric traveling salesman problems 583

We now show the fractional triangle edges of a gadget are never doubled. Consider
such a fractional triangle of vertices u′, w, and x, see Figure 5. Each of the following
three mutually exclusive cases occurs exactly 1/3’rd of the time in a leafless Eulerian
decomposition.

(a) The 1-edge into u′ is doubled.
(b) The 1-edge into w is doubled.
(c) The 1-edge into x is doubled.

In each above case, the total number of triangle edges used in any Euler tour (including
multiplicities) is at least 2 so as to avoid leaves. If any triangle edge is used twice in one
of the Euler tours, this tour would use at least 3 triangle edges (including multiplicities)
in all. But, the sum of the triangle fractional edge values is only 3/2, which when multi-
plied by 4/3 yields exactly 2. Therefore, 3 triangle edges may never be used in any Euler
tour of the decomposition (since at least 2 triangle edges are used in every such Euler
tour). This consideration yields the following unique solution for both the symmetric
and asymmetric case.

(a) We use (u′, w), (u′, x), and a 1-path from x to z.
(b) We use (u′, w), (x, w), and a 1-path from z to x.
(c) We use (u′, x), (x, w), a 1-path from z to x, and a 1-path from x to z.

So, if v = u′, w, or x, we again have indeg(v) = outdeg(v). Moreover, the 1/2 edges in
the paths between x and z in the asymmetric case are being used in the correct amounts
by the directed Eulerian tours in our decomposition.

Finally, consider when v is a vertex of degree 3 that is incident to two of the edges of
the fractional Hamilton cycle in xS . It has one 1-edge qv and two fractional edges vw

and vz incident to it in xS . Since Ki is leafless, at least one copy of qv must be present.
Also there are at most two copies of qv. Since the fractional edges sum to 1 in xS , their
total usage has to be at most 4

3 . Their minimal usage in any Ki is one fractional edge if
there is one copy of qv and two fractional edges if there are two copies of qv. Since qv

occurs singly 2/3 of the time and doubly the other 1/3 by Lemma 7, this already leads to
a combined usage of 4/3 for the fractional edges. Hence this indeed must be the actual
usage. (In particular, when qv occurs singly, we cannot have 3 fractional edges, even
though this satisfies the even degree constraint. However, we could have this case if the
ratio in this theorem were not 4

3 since the usage of these fractional edges may then be
more than 4

3 , from which this theorem would not follow.) Now there are two possibilities
for the edges incident to v in Ki :

1. Only one of the fractional edges occurs. That is either the edge qv occurs singly, and
one of the two fractional edges, say vw also occurs singly or qv occurs doubly and
vw occurs doubly. In this case if qv is directed into (out of) v in xA, then vw must
be directed out of (into) v and we can make these their directions in Hi .

2. qv occurs doubly and vw and vz occur singly. In this case too we direct the edges
according to their direction in xA.

In both cases we maintain indeg(v) = outdeg(v) in Hi . Thus each Hi obtained is a directed
Eulerian subgraph of xA. From this and equation (8), it follows that
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4

3
xA =

∑

i

λiχ
Hi .

This establishes the if implication of the theorem. 
�
The “only if” part of this proof relies on the following lemma, which has an inter-

esting proof (follows this proof).

Lemma 8. If the integrality gap of the ATSP relaxation is at most 4
3 , then for every

ultra-fundamental ATSP extreme point x∗, we have that 4
3x∗ can be expressed as a con-

vex combination of directed Eulerian graphs where every 1-arc occurs singly in exactly
2
3 ’rds of these graphs.

Proof of only if part of Theorem 14: . Suppose the integrality gap of theATSP relaxa-
tion is at most 4

3 . Let an ultra-fundamental STSP extreme point xS be given. By directing
the edges appropriately, form a corresponding ultra-fundamental ATSP extreme point
xA. By Lemma 8, we have that 4

3xA can be expressed as a convex combination of directed
Eulerian graphs where every 1-arc occurs singly in exactly 2

3 ’rds of these graphs. One is
then free to have each 1-arc occur doubly in the other 1

3 ’rd of these graphs. Then clearly,
these directed Eulerian graphs can be leafless. By undirecting the arcs in these Eulerian
graphs, one obtains that 4

3xS can be expressed as a convex combination of the resulting
Eulerian graphs. 
�
Proof of Lemma 8. . Suppose the integrality gap of the ATSP relaxation is at most 4

3 .
Let an ultra-fundamental ATSP extreme point x∗ be given. Consider the corresponding
fundamental ATSP extreme point x. If x satisfies the consequent of this lemma, then it
is an easy exercise to show that x∗ will also.

We are going to use linear programming methods to form convex combinations of
Eulerian graphs. Consider listing the incidence vectors of all the Eulerian graphs on the
support graph of x. Denote the index set by I . Denote the support graph arcs of x by E.
Denote the set of 1-arcs by E1. For each arc e ∈ E, let Me, (resp. Ne) denote the index
sets of all the Eulerian graphs where e occurs singly (resp. doubly). Let λi be the convex
multiplier for the ith Eulerian graph. Consider the following linear program.

min ε

subject to∑
i∈Me

λi + ∑
i∈Ne

2λi ≤ 4
3xe ∀e ∈ E∑

i∈Me
λi ≤ 2

3 + ε ∀e ∈ E1∑
i∈Me

λi ≥ 2
3 − ε ∀e ∈ E1∑

i∈I λi = 1
λi ≥ 0 ∀i ∈ I

(9)

If the minimum of this linear program were always 0, then this lemma would follow.
Suppose the minimum is ε∗ > 0. It is clear that each 1-arc e ∈ E1 is present either
singly or doubly in Eulerian graph i for every i ∈ I . Hence, the constraints

∑

i∈Me

λi ≥ 2

3
− ε

are unnecessary in our linear program.
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From the fundamental ATSP extreme point x, form the ultra-fundamental ATSP
extreme point xk with k internal vertices in every 1-path. Refer back to figure 5. There
are k + 1 1/2-arcs from z to x, which we call up arcs, and k + 1 1/2-arcs from x to z,
which we call down arcs. Suppose every up arc down arc pair are either both present or
both absent in the Eulerian graphs in a given convex combination for 4

3xk exactly zd of
the time. Since, in every such Eulerian graph, at most one up arc down arc pair is absent,
the most used up arc down arc pair is used at least k

k+1zd of the time. The remaining
1− zd of the time, either all of the up arcs are present or all of the down arcs are present.
Since the total usage in our convex combination of edges in a 1-path is at most 4

3 , we
have

1 − zd + 2
k

k + 1
zd ≤ 4

3
.

Simplifying this yields

zd ≤ 1

3
· k + 1

k − 1
.

Denote by yd the fraction of the time that the path from w to y is doubled. Denote by
xd the fraction of the time that the paths from u to u′ and v′ to v are doubled, and by
xs = 1 − xd the fraction of the time that they are single. We clearly have

yd ≤ 1

3
.

We also have

xd + yd + zd ≥ 1,

from which we derive that

xd ≥ 2

3
− 1

3
· k + 1

k − 1
.

But this means that

xs ≤ 2

3
+ 1

3
· 2

k − 1
.

So, we choose k so that

1

3
· 2

k − 1
< ε∗.

Our given convex combination of Eulerian graphs trivially yields a convex combination
of Eulerian graphs for 4

3x by removing the extra vertices of xk from each Eulerian graph.
But this new convex combination contradicts the idea that the optimal solution to (9) is
greater than or equal to ε∗, from which this lemma follows. 
�
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5. Remarks

The results of this paper lead us to formulate the following conjecture:

Conjecture 3. For any ultra-fundamental extreme point x∗ of the Held-Karp relaxation,
4
3x∗ can be expressed as a convex combination of leafless Eulerian graphs.

An affirmative resolution of the above conjecture would result in a nice advance in
approximability. On the other hand, a negative answer (i.e., there is an extreme point x∗
such that expressing 4

3x∗ as a sum of Eulerian graphs requires that at least one of them
has a leaf), would indicate the crucial role played by Eulerian graphs with leaves and
thus provide a valuable insight towards resolving the integrality gap of the Held-Karp
relaxation.

Finally, we would like to highlight a rather mysterious aspect of our reduction — 4/3
is the only constant for which it seems to work! To see this, refer back to Theorem 14,
but replace 4/3 by an r ∈ R such that r ≥ 4/3. In our theorem’s proof, we first produce
a convex decomposition of rxS into leafless Eulerian graphs, where xS is an arbitrary
ultra-fundamental STSP extreme point. Then we consider the ultra-fundamental ATSP
extreme point xA that corresponds to xS . We show that our convex decomposition of
rxS implies a convex decomposition of rxA into directed Eulerian graphs by taking the
leafless Eulerian graphs in the convex decomposition and directing each edge from xS

according to the direction of the arc in xA that corresponds to it. However, this technique
fails when the resulting indegree and outdegree of a vertex v differ.

But if we could guarantee that 1-edges always occurred singly or doubly in our con-
vex combination, then the indegree and outdegree of v could not differ for the following
reason. The usage of the fractional edges incident to v could never be less than the usage
of the 1-edges incident to v in any of these Eulerian graphs because of the leafless con-
dition, but the average usage of these fractional edges is the same as the average usage
of the 1-edges. We can ensure (by Lemma 7) that 1-edges always occur either singly or
doubly only for r = 4/3.
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