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Abstract. Garg [10] gives two approximation algorithms for the minimum-cost tree spanning k vertices in an
undirected graph. Recently Jain and Vazirani [15] discovered primal-dual approximation algorithms for the
metric uncapacitated facility location and k-median problems. In this paper we show how Garg’s algorithms
can be explained simply with ideas introduced by Jain and Vazirani, in particular via a Lagrangean relaxation
technique together with the primal-dual method for approximation algorithms. We also derive a constant factor
approximation algorithm for the k-Steiner tree problem using these ideas, and point out the common features
of these problems that allow them to be solved with similar techniques.

1. Introduction

Given an undirected graph G = (V , E) with non-negative costs ce for the edges e ∈ E

and an integer k, the k-MST problem is that of finding the minimum-cost tree in G that
spans at least k vertices. A rooted version of the problem has a root vertex r as part of
its input, and the tree output must contain r . Unless otherwise stated, we will consider
the rooted version of the problem. The more natural unrooted version of the problem
reduces easily to the rooted one, by trying all n possible roots and returning the cheapest
of the n solutions obtained.

The k-MST problem is known to be NP-hard [9]; hence, researchers have attempted
to find approximation algorithms for the problem. An α-approximation algorithm for a
minimization problem runs in polynomial time and produces a solution of cost no more
than α times that of the optimal solution. The value α is the performance guarantee or
approximation ratio of the algorithm. The first non-trivial approximation algorithm for
the k-MST problem was given by Ravi et al. [18], who achieved an approximation ratio
of O(

√
k). This ratio was subsequently improved to O(log2 k) byAwerbuch et al. [4] and

O(log k) by Rajagopalan and Vazirani [17] before a constant-factor approximation algo-
rithm was discovered by Blum et al. [7]. Garg [10] improved upon the constant, giving
a simple 5-approximation algorithm and a somewhat more involved 3-approximation
algorithm for the problem. Using Garg’s algorithm as a black box, Arya and Ramesh [3]
gave a 2.5-approximation algorithm for the unrooted version of the problem, and Arora
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and Karakostas [2] gave a (2 + ε)-approximation algorithm for any fixed ε > 0 for
the rooted version. Finally, Garg [11] has announced that a slight modification of his
3-approximation algorithm gives a performance guarantee of 2 for the unrooted version
of the problem.

In addition to the practical motivations given in [18, 4], the k-MST problem has been
well-studied in recent years in part due to its applications in the context of other approx-
imation algorithms, such as the k-TSP problem (the problem of finding the shortest tour
visiting at least k vertices) [10, 2] and the minimum latency problem (the problem of
finding the tour of n vertices minimizing the average distance from the starting vertex
to any other vertex along the tour) [6, 12, 1].

This paper is an attempt to simplify Garg’s two approximation algorithms for the
k-MST problem. In particular, Jain andVazirani [15] recently discovered a new approach
to the primal-dual method for approximation algorithms, and demonstrated its applica-
bility with constant-factor approximation algorithms for the metric uncapacitated facility
location and k-median problems. One novel aspect of their approach is the use of their
facility location heuristic as a subroutine in their k-median approximation algorithm, the
latter based on the technique of Lagrangean relaxation. This idea cleverly exploits the
similarity of the integer programming formulations of the two problems. We show that
Garg’s algorithms can be regarded as another application of this approach: that is, as a
Lagrangean relaxation algorithm employing a primal-dual approximation algorithm for
a closely related problem as a subroutine. We also give a constant-factor approximation
algorithm for the k-Steiner tree problem, via a similar analysis. We believe that these
results will give a clearer and deeper understanding of Garg’s algorithms, while simul-
taneously demonstrating that the techniques of Jain and Vazirani should find application
beyond the two problems for which they were originally conceived.

This paper is structured as follows. In Section 2, we give linear programming relax-
ations for the k-MST problem and the closely related prize-collecting Steiner tree prob-
lem. In Section 3 we describe and analyze Garg’s 5-approximation algorithm for the
k-MST problem. In Section 4 we discuss extensions to the k-Steiner tree problem and
outline improvements to the basic 5-approximation algorithm. We conclude in Section 5
with a discussion of the applicability of Jain and Vazirani’s technique.

2. Two related LP relaxations

The rooted k-MST problem can be formulated as the following integer program

Min
∑

e∈E

cexe

subject to:

(kMST )
∑

e∈δ(S)

xe +
∑

T :T ⊇S

zT ≥ 1 ∀S ⊆ V \ {r} (1)

∑

S:S⊆V \{r}
|S|zS ≤ n − k (2)

xe ∈ {0, 1} ∀e ∈ E

zS ∈ {0, 1} ∀S ⊆ V \ {r}
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where δ(S) is the set of edges with exactly one endpoint in S. The variable xe = 1
indicates that the edge e is included in the solution, and the variable zS = 1 indicates
the set of vertices S that are not spanned by the tree. Thus the constraints (1) enforce
that for each S ⊆ V \ {r} either some edge e is selected from the set δ(S) or that the set
S is contained in the set T of unspanned vertices. Collectively, these constraints ensure
that all vertices not in any S such that zS = 1 will be connected to the root vertex r .
The constraint (2) enforces that at most n − k vertices are not spanned. We can relax
this integer program to a linear program by replacing the integrality constraints with
nonnegativity constraints.

Although the above formulation is not the most natural one, we chose it to highlight
the connection of the k-MST problem with another problem, the prize-collecting Steiner
tree problem. In the prize-collecting Steiner tree problem, we are given an undirected
graph G = (V , E) with non-negative costs ce on edges e ∈ E, a specified root vertex
r , and non-negative penalties πi on the vertices i ∈ V . The goal is to choose a set
S ⊆ V \ {r} and a tree F ⊆ E spanning the vertices of V \ S so as to minimize the cost
of F plus the penalties of the vertices in S. An integer programming formulation of this
problem is

Min
∑

e∈E

cexe +
∑

S⊆V \{r}
π(S)zS

subject to:

(PCST )
∑

e∈δ(S)

xe +
∑

T :T ⊇S

zT ≥ 1 ∀S ⊆ V \ {r}

xe ∈ {0, 1} ∀e ∈ E

zS ∈ {0, 1} ∀S ⊆ V \ {r},

where π(S) = ∑
i∈S πi . The interpretation of the variables and the constraints is as

above, and again we can relax the integer program to a linear program by replacing the
integrality constraints with nonnegativity constraints.

The existing constant approximation algorithms for the k-MST problem [7, 10, 2]
all use as a subroutine a primal-dual 2-approximation algorithm for the prize-collecting
Steiner tree due to Goemans and Williamson [13, 14] (which we will refer to on occasion
as “the prize-collecting algorithm”). The integer programming formulations for the two
problems are remarkably similar, and recent work on the k-median problem by Jain and
Vazirani [15] gives a methodology for exploiting such similarities. Jain and Vazirani
present an approximation algorithm for the k-median problem that applies Lagrangean
relaxation to a complicating constraint in a formulation of the problem (namely, that at
most k facilities can be chosen). Once relaxed, the problem is an uncapacitated facility
location problem for which the Lagrangean variable is the cost of opening a facility.
By adjusting this cost and applying an approximation algorithm for the uncapacitated
facility location problem, they are able to extract a solution for the k-median problem.

One can show that the same dynamic is at work in Garg’s algorithms. In particular, if
we apply Lagrangean relaxation to the complicating constraint

∑
S:S⊆V \{r} |S|zS ≤ n−k

in the relaxation of (kMST ), we obtain the following for fixed Lagrangean variable
λ ≥ 0:
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Min
∑

e∈E

cexe + λ




∑

S⊆V \{r}
|S|zS − (n − k)





subject to:

(LRk)
∑

e∈δ(S)

xe +
∑

T :T ⊇S

zT ≥ 1 ∀S ⊆ V \ {r}

xe ≥ 0 ∀e ∈ E

zS ≥ 0 ∀S ⊆ V \ {r}.

For fixed λ, this is nearly identical to (PCST ) with πi = λ for all i, except for the
constant term of −(n − k)λ in the objective function. Observe that any solution feasible
for the (kMST ) is also feasible for (LRk) with no greater cost, and so the value of
(LRk) is a lower bound on the cost of an optimal k-MST.

In order to discuss how Garg’s algorithms work, we first need to say a little more
about the primal-dual approximation algorithm for the prize-collecting Steiner tree. The
algorithm constructs a primal-feasible solution (F, A), where F is a tree including the
root r , and A is the set of vertices not spanned by F . The algorithm also constructs a
feasible solution y for the dual of (PCST ), which is

Max
∑

S⊆V \{r}
yS

subject to:

(PCST − D)
∑

S:e∈δ(S)

yS ≤ ce ∀e ∈ E

∑

T :T ⊆S

yT ≤ π(S) ∀S ⊆ V \ {r}

yS ≥ 0 ∀S ⊆ V \ {r}.

Then the following is true:

Theorem 2.1 (Goemans and Williamson [13]). The primal solution (F, A) and the
dual solution y produced by the prize-collecting algorithm satisfy

∑

e∈F

ce +
(

2 − 1

n − 1

)
π(A) ≤

(
2 − 1

n − 1

) ∑

S⊆V \{r}
yS.

Note that, by weak duality and the feasibility of y,
∑

S⊆V \{r} yS is a lower bound for
the cost of any solution to the prize-collecting Steiner tree problem.

Suppose we set πi = λ ≥ 0 for all i ∈ V and run the prize-collecting algorithm.
The theorem statement implies that we obtain (F, A) and y such that

∑

e∈F

ce + 2|A|λ ≤ 2
∑

S⊆V \{r}
yS. (3)
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We wish to reinterpret the tree F as a feasible solution for the k-MST instance, and
extract a lower bound on the cost of an optimal k-MST from y. Toward this end, we
consider the dual of the (LRk) LP, as follows (recall that λ is a fixed constant):

Max
∑

S⊆V \{r}
yS − (n − k)λ

subject to:

(LRk − D)
∑

S:e∈δ(S)

yS ≤ ce ∀e ∈ E

∑

T :T ⊆S

yT ≤ |S|λ ∀S ⊆ V \ {r}

yS ≥ 0 ∀S ⊆ V \ {r}.
The dual solution y created by the prize-collecting algorithm is feasible for (LRk − D)

when all prizes πi = λ. Furthermore, its value will be no greater than the cost of an
optimal k-MST. After subtracting 2(n − k)λ from both sides of (3), by weak duality we
obtain the following:

∑

e∈F

ce + 2λ(|A| − (n − k)) ≤ 2




∑

S⊆V \{r}
yS − (n − k)λ



 (4)

≤ 2 · OPTk, (5)

where OPTk is the optimal solution to the k-MST problem. In the lucky event that
|A| = n−k, F is a feasible solution having cost no more than twice optimal. Otherwise,
our solution will either not be feasible (if |A| > n − k) or the relations (4) and (5) will
not give a useful upper bound on the cost of the solution (if |A| < n − k). However,
in the next section we combine these ideas with a Lagrangean relaxation approach to
derive an algorithm that always produces a near-optimal feasible solution (though with
a somewhat inferior performance guarantee).

Observe that it is crucial for the analysis given above that there is no loss in per-
formance guarantee for the cost of the primal associated with the Lagrangean variable;
in this case, the cost of vertices not spanned by the tree is bounded above by the dual
objective function for (PCST − D). This condition seems necessary for this technique
to be applied to approximation algorithms. We discuss this observation a bit further
in Section 5; see also Section 3.6 of Jain and Vazirani [15], and the discussion of the
“Lagrangean Multiplier Preserving” property in Jain, Mahdian, and Saberi [16].

3. Garg’s 5-approximation algorithm

We begin with three assumptions, each without loss of generality. First, by standard
techniques [18], one can show that it is no loss of generality to assume that the edge
costs satisfy the triangle inequality. Second, we assume that the distance between any
vertex v and the root vertex r is at most OPTk; this is accomplished by “guessing” the
distance D of the farthest vertex from r in the optimal solution (there are but n − 1
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“guesses” to enumerate) and deleting all nodes of distance more than D from r . Note
that D ≤ OPTk . The cheapest feasible solution of these n − 1 subproblems is the final
output of the algorithm. Third, we assume that OPTk ≥ cmin, where cmin denotes the
smallest non-zero edge cost. If this is not true, then OPTk = 0 and the optimal solution
is a connected component containing r of at least k nodes in the graph of zero-cost edges.
We can easily check whether such a solution exists before we run Garg’s algorithm.

Garg’s algorithm is essentially a sequence of calls to the prize-collecting algorithm,
each with a different value for the Lagrangean variable λ. First, the behavior of the algo-
rithm is such that for λ sufficiently small (e.g., λ = 0), the prize-collecting algorithm
will return (∅, V \ {r}) as a solution (that is, the degenerate solution of the empty tree
trivially spanning r) and for λ sufficiently large (e.g., λ = ∑

e∈E ce) the prize-collecting
algorithm will return a tree spanning all n vertices. Second, if any call to the prize-col-
lecting algorithm returns a tree T spanning precisely k vertices, then by the analysis in
the previous section, T is within a factor 2 of optimal, and the k-MST algorithm can halt
with T as its output.

By a straightforward binary search procedure consisting of polynomially many sub-
routine calls to the prize-collecting algorithm, Garg’s algorithm either finds a tree span-
ning precisely k vertices (via a lucky choice of λ) or two values λ1 < λ2 such that the
following two conditions hold:

(i) λ2 −λ1 ≤ cmin
2n(2n+1)

, where (as above) cmin denotes the smallest non-zero edge cost
and

(ii) for i = 1, 2, running the prize-collecting algorithm with λ set to λi yields a primal
solution (Fi, Ai) spanning ki vertices and a dual solution y(i), with k1 < k < k2.

To be more precise, we maintain an interval [λ1, λ2] such that running the prize-
collecting algorithm with λ set to λi yields a primal solution spanning ki vertices, with
k1 < k < k2. By the discussion above, the interval can initially be [0,

∑
e ce]. We then

run the prize-collecting algorithm using λ = 1
2 (λ1 + λ2). If a tree is returned with k

vertices, we are done. If it has more than k vertices, we update λ2 to be 1
2 (λ1 + λ2);

otherwise it has less than k vertices and we update λ1 to this value. After O(log n2 ∑
e ce

cmin
)

calls to the prize-collecting algorithm, we have λ1, λ2 with the two desired properties
above.

Henceforth we assume the algorithm failed to find a value of λ resulting in a tree
spanning exactly k vertices. Then, the final step of the algorithm combines the two primal
solutions, (F1, A1) and (F2, A2), into a single tree spanning precisely k vertices. For the
analysis, the two dual solutions will also be combined.

From Theorem 2.1, we have the following inequalities:

∑

e∈F1

ce ≤
(

2 − 1

n

) 


∑

S⊆V \{r}
y

(1)
S − |A1|λ1



 (6)

∑

e∈F2

ce ≤
(

2 − 1

n

) 


∑

S⊆V \{r}
y

(2)
S − |A2|λ2



 (7)

We would like to take a convex combination of these two inequalities so as to
get a bound on the cost of F1 and F2 in terms of OPTk . Let α1, α2 ≥ 0 satisfy
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α1|A1|+α2|A2| = n−k andα1+α2 = 1, and for allS ⊆ V \{r}, letyS = α1y
(1)
S +α2y

(2)
S .

Note that

α1 = n − k − |A2|
|A1| − |A2| and α2 = |A1| − (n − k)

|A1| − |A2| .

Lemma 3.1.
α1

∑

e∈F1

ce + α2

∑

e∈F2

ce < 2OPTk.

Proof. From inequality (6) we have

∑

e∈F1

ce ≤
(

2 − 1

n

) 


∑

S⊆V \{r}
y

(1)
S − |A1|(λ1 + λ2 − λ2)





≤
(

2 − 1

n

) 


∑

S⊆V \{r}
y

(1)
S − |A1|λ2



 +
(

2 − 1

n

)
cmin|A1|

2n(2n + 1)

<

(
2 − 1

n

) 


∑

S⊆V \{r}
y

(1)
S − |A1|λ2



 + cmin

2n + 1
.

By a convex combination of this inequality and inequality (7), it follows that

α1

∑

e∈F1

ce + α2

∑

e∈F2

ce <

(
2 − 1

n

) 


∑

S⊆V \{r}
yS − λ2(α1|A1| + α2|A2|)



 + α1cmin

2n + 1

=
(

2 − 1

n

) 


∑

S⊆V \{r}
yS − λ2(n − k)



 + α1cmin

2n + 1
(8)

≤
(

2 − 1

n

)
OPTk + α1cmin

2n + 1
(9)

≤
(

2 − 1

n

)
OPTk + 1

2n + 1
OPTk (10)

≤ 2OPTk.

Equality (8) follows by our choice of α1, α2. Inequality (9) follows since y is feasible for
(LRk−D) with the Lagrangean variable set to λ2 by the convexity of the feasible region,
and the fact that λ2 > λ1. Inequality (10) follows since α1 ≤ 1 and OPTk ≥ cmin. 	


Garg considers two different solutions to obtain a 5-approximation algorithm. First,
if α2 ≥ 1

2 , then F2 is already a good solution; since |A2| < n − k, it spans more than k

vertices, and ∑

e∈F2

ce ≤ 2α2

∑

e∈F2

ce ≤ 4 · OPTk

by Lemma 3.1. Now suppose α2 < 1
2 . In this case the tree F1 is supplemented by vertices

from F2. Let � ≥ k2 − k1 be the number of vertices spanned by F2 but not F1. Then
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by doubling the tree F2, shortcutting the resulting tour down to a simple tour of the �

vertices spanned solely by F2, and choosing the cheapest path of k − k1 vertices from
this tour, we obtain a tree (in fact, a path) on k − k1 vertices of cost at most

2
k − k1

k2 − k1

∑

e∈F2

ce.

This set of vertices can be connected to F1 by adding an edge from the root to the set,
which will have cost no more than OPTk (due to the second assumption made at the
beginning of this section). Since

k − k1

k2 − k1
= n − k1 − (n − k)

n − k1 − (n − k2)
= |A1| − (n − k)

|A1| − |A2| = α2,

the total cost of this solution is

∑

e∈F1

ce + 2α2

∑

e∈F2

ce + OPTk ≤ 2



α1

∑

e∈F1

ce + α2

∑

e∈F2

ce



 + OPTk

≤ 4OPTk + OPTk,

since α2 < 1
2 implies α1 > 1

2 , and by Lemma 3.1.

4. Extensions

The k-Steiner tree problem is defined as follows: given an undirected graph G = (V , E)

with non-negative costs ce for the edges e ∈ E, a set R ⊆ V of required vertices (also
called terminals), and an integer k, find the minimum-cost tree in G that spans at least
k of the required vertices. Of course, the problem is only feasible when k ≤ |R|. The
k-Steiner tree problem includes the classical Steiner tree problem (set k = |R|) and is
thus both NP-hard and MAX SNP-hard [5]. The problem was studied by Ravi et al. [18],
who gave a simple reduction showing that an α-approximation algorithm for the k-MST
problem yields a 2α-approximation algorithm for the k-Steiner tree problem. Thus, the
result of the previous section implies the existence of a 10-approximation algorithm
for the problem. However, we can show that a modification of Garg’s 5-approximation
algorithm achieves a performance guarantee of 5 for this problem as well. Consider the
following LP relaxation for the k-Steiner tree problem

Min
∑

e∈E

cexe

subject to:

(kST )
∑

e∈δ(S)

xe +
∑

T :T ⊇S

zT ≥ 1 ∀S ⊆ V \ {r}
∑

S:S⊆V \{r}
|S ∩ R|zS ≤ |R| − k

xe ≥ 0 ∀e ∈ E

zS ≥ 0 ∀S ⊆ V \ {r}.
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We modify Garg’s algorithm at the point where the prize-collecting algorithm is called
as a subroutine with a fixed value of λ inside the main Lagrangean relaxation loop.
To reflect that we are only interested in how many required vertices are spanned by a
solution, we assign required vertices a penalty of λ and Steiner (non-required) vertices a
penalty of 0. In the notation of the linear program (PCST ), we put πi = λ for i ∈ R and
πi = 0 for i �∈ R. Then an analog of Lemma 3.1 can be shown, leading as in Section 3
to a 5-approximation algorithm for the k-Steiner tree problem.

We now discuss improving the approximation ratio of the two algorithms. Using
ideas of Arora and Karakostas [2], the k-MST and k-Steiner tree algorithms can be
refined to achieve performance guarantees of (4 + ε), for an arbitrarily small constant ε.
Roughly speaking, their idea is as follows. Garg’s algorithm essentially “guesses” one
vertex that appears in the optimal solution, namely the root r . Instead, one can “guess”
O( 1

ε
) vertices and edges in the optimal solution (for fixed ε, there are but polynomially

many guesses to enumerate) such that any other vertex in the optimal solution has dis-
tance at most O(εOPT ) from the guessed subgraph H . After H is guessed, all vertices
of distance more than O(εOPT ) from H can then be deleted. It is not difficult to mod-
ify the prize-collecting algorithm to handle the additional guessed vertices. Then, when
creating a feasible solution from two subsolutions as at the end of Section 3, the final
edge connecting the two subtrees costs no more that εOPT , leading to a final upper
bound of (4 + ε)OPT . The reader is referred to [2] for the details of this refinement.
Note, however, that the running time of the algorithm becomes �(nO(1/ε)) in order to
enumerate all possible guesses of O(1/ε) vertices and edges that appear in the solution.

In addition to the 5-approximation algorithm discussed in Section 3, Garg [10] gave
a more sophisticated 3-approximation algorithm for the k-MST problem. Unfortunately,
the analysis seems to require a careful discussion of the inner workings of the prize-
collecting algorithm, a task we will not undertake here. (Similarly, improving Jain and
Vazirani’s 6-approximation algorithm for the k-median problem to a 4-approximation
algorithm required a detailed analysis of the primal-dual facility location subroutine; see
the paper of Charikar and Guha [8].) However, we believe that Garg’s 3-approximation
algorithm can also be recast in the language of Jain and Vazirani and of this paper, and
that it will extend to a 3-approximation algorithm for the k-Steiner tree problem as well.
The same ideas that led from a 5-approximation algorithm to one with performance
guarantee (4 + ε) should then yield (2 + ε)-approximation algorithms for the k-MST
problem (as in [2]) and the k-Steiner tree problem.

5. Conclusion

We have shown that the techniques of Jain and Vazirani [15], invented for a constant-
factor approximation algorithm for the k-median problem, also give constant-factor
approximation algorithms for the k-MST problem (essentially reinventing older algo-
rithms of Garg [10]) and the k-Steiner tree problem.A natural direction for future research
is the investigation of the applicability and limitations of this Lagrangean relaxation
approach. The three problems solved in this framework so far share several charac-
teristics. First, each problem admits an LP relaxation with an obvious “complicating”
constraint. Moreover, once the complicating constraint is lifted into the objective func-
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tion, the new linear program corresponds to the relaxation of a problem known to be
well-approximable (in our cases by a primal-dual approximation algorithm). Lastly,
and perhaps most importantly, the subroutine for the relaxed problem produces a pair
of primal and dual solutions such that the portion of the primal cost corresponding to
the constraint of the original problem (e.g., the

∑
S π(S)zS term in the prize-collecting

Steiner tree objective function) is bounded above by the value of the dual. Note that
this is a stronger condition than merely ensuring that the primal solution has cost no
more than some constant times the dual solution value. For example, in Theorem 2.1,
the total primal cost is upper-bounded by twice the value of the dual solution, 2

∑
S yS ,

and in addition the second term of the primal cost is bounded above by the dual solu-
tion,

∑
S yS . (Note such a statement does not hold in general for the first primal cost

term of Theorem 2.1.) This last property seems necessary for extracting lower bounds
for the problem of interest (via the dual LP) from the dual solutions returned by the
subroutine, and may turn out to be the primary factor limiting the applicability of the
Lagrangean relaxation approach. It would be of great interest to find further problems
that can be approximately solved in this framework, and to devise more general variants
of the framework that apply to a broader class of problems.
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