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Abstract. We introduce a general adaptive line search framework for solving fixed point and variational
inequality problems. Our goals are to develop iterative schemes that (i) compute solutions when the under-
lying map satisfies properties weaker than contractiveness, for example, weaker forms of nonexpansiveness,
(ii) are more efficient than the classical methods even when the underlying map is contractive, and (iii) unify
and extend several convergence results from the fixed point and variational inequality literatures. To achieve
these goals, we introduce and study joint compatibility conditions imposed upon the underlying map and the
iterative step sizes at each iteration and consider line searches that optimize certain potential functions. As a
special case, we introduce a modified steepest descent method for solving systems of equations that does not
require a previous condition from the literature (the square of the Jacobian matrix is positive definite). Since
the line searches we propose might be difficult to perform exactly, we also consider inexact line searches.

Key words. Fixed point problems – Variational inequalities – Averaging schemes – Nonexpansive maps –
Strongly-f-monotone maps

1. Introduction

Fixed point and variational inequality problems define two closely related and broad clas-
ses of problems that arise in the context of optimization as well as in fields as diverse as
economics, game theory, transportation science, and regional science. Their widespread
applicability motivates the need to develop and study efficient solution algorithms.

The variational inequality problem that we consider

V I (f, K) : Find x∗ ∈ K ⊆ Rn : f (x∗)t (x − x∗) ≥ 0, ∀x ∈ K (1)

is defined over a closed, convex (constraint) set K in Rn. In this formulation, f : K ⊆
Rn → Rn is a given function. The literature for solving variational inequalities is vast.
Review papers by Harker and Pang [25], Pang [43] and Florian and Hearn [19], and books
by Harker [24], Nagurney [39] and more recently by Facchinei and Pang [18] summa-
rize and categorize many algorithms for the problem as well as the application of these
methods to special settings such as the traffic equilibrium problem. Often algorithms for
solving variational inequalities establish an algorithmic map T : K ⊆ Rn → K and a
fixed point problem,

FP(T , K) : Find x∗ ∈ K ⊆ Rn satisfying T (x∗) = x∗, (2)
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whose solution solves the original problem. Examples of algorithmic maps include a
projection operator T = PrK(I − ρf ) for some positive constant ρ or, more gener-
ally, a map T (x) determined by solving a simpler variational inequality or minimization
subproblem (see, for example, [11] and [42]). Moreover, often algorithms for solving
variational inequality problems in various applied settings are related to the solution of
fixed point problems (see, for example, [10], [24], [39]).

A standard method for solving fixed point problems for contractive maps T is to apply
function iteration, xk+1 = T (xk). The classical Banach fixed point theorem shows that
for contractive maps this method converges from any starting point to the unique fixed
point of T . When the map is not contractive (e.g, is nonexpansive), function iteration
need not converge and, indeed, the map T need not have a fixed point (or it might have
several). For example, when T (y, z) = b(z, −y), for some constant b, then the sequence
that function iteration induces (i) does not converge to the solution x∗ = 0 when b = 1,
but rather induces a 90o degree rotation about this point, and (ii) when b > 1, moves away
from the solution. Is there a way to remedy this cycling and nonconvergent behavior?

In the case of cycling behavior, researchers (see [1], [8], [12], [27], [35], [36], [40],
[44]) have established convergence of recursive averaging (line search) schemes of the
type

xk+1 = xk + ak(T (xk) − xk) = (1 − ak)xk + akT (xk),

assuming that 0 < ak < 1 and
∑∞

k=1 ak(1−ak) = +∞. We will refer to this sequence of
step sizes as a Dunn sequence. Equivalently, this condition states that

∑∞
k=1 min(ak, 1−

ak) = +∞, implying that the iterates lie far “enough” from the previous iterates as well
as from the image of the previous iterates under the fixed point mapping. For variational
inequality problems, averaging schemes of this type give rise to convergent algorithms
using algorithmic maps T that are nonexpansive rather than contractive (see Magnanti
and Perakis [35]).

Even though recursive averaging methods converge to a solution whenever the under-
lying fixed point map is nonexpansive, they might converge very slowly. In fact, when
the underlying map T is a contraction, recursive averaging might converge more slowly
than the classical function iteration.

Motivated by these observations, in this paper we introduce and study a recursive
line search framework for solving fixed point and variational inequality problems. Our
goals are to (i) design methods permitting a larger range of step sizes and/or better rates
of convergence than prior methods (for example, function iteration even when applied
to contractive maps), (ii) impose assumptions on the map T that are weaker than con-
tractiveness, (iii) understand the role of nonexpansiveness, and (iv) unify and extend
several convergence results from the fixed point and variational inequality literature.

To achieve these goals, we:

1. Introduce, in Section 2, a general adaptive line search framework that relies on step
sizes that are “compatible" with a given problem map T . The convergence results
from this section highlight, and quantify, tradeoffs inherent in imposing properties
(e,g., contractiveness assumptions) on the underlying fixed point map and restrictions
on the iterative step sizes. The convergence results include as special cases, classical
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function iteration for contractive maps and various averaging methods (Dunn’s aver-
aging results ([12], [35])) for nonexpansive maps.

2. Introduce and study, in Section 3, several line search procedures that dynamically
optimize potential functions and, in doing so, “intelligently” choose step sizes. These
methods are special, implementable, cases of the general framework developed in
Section 2. For example, to determine step sizes for nonexpansive maps, we general-
ize the condition mentioned previously for ensuring convergence of certain (Dunn)
averaging methods: unless the current iterate lies close to a fixed point solution, the
next iterate should not lie close to either the current iterate or its image under the
fixed point map T .

As a side benefit of our analysis, we are able to show that a modification of the
classical steepest descent method for solving fixed point problems (or, equivalently,
unconstrained asymmetric variational inequality problems) does not require the square
of the Jacobian matrix to be positive definite as does the classical steepest descent
method, but rather that the Jacobian matrix be positive semidefinite. The method is
globally convergent even in the general nonlinear case.

In Section 4, we show that under appropriate conditions, the general framework
and the potential methods we examine have better rates of convergence than function
iteration and yield a “close to optimal” rate of convergence. In Section 5, as an aid to
implementation, we consider inexact line searches. Finally, in Section 6, we state some
open questions.

1.1. Preliminaries

We will impose several conditions on the underlying fixed point map T . In the state-
ment of these conditions and elsewhere in this paper, G or Ḡ denotes a positive definite
matrices.

Definition 1. A map T : K → K is Lipschitz continuous relative to the ‖.‖G norm on
the set K if for some Lipschitz constant A > 0,

‖T (x) − T (y)‖2
G ≤ A‖x − y‖2

G ∀x, y ∈ K. (3)

If x∗ is a fixed point solution, then the map T is Lipschitz continuous (contractive or
nonexpansive respectively) around the solution x∗ if

‖T (x) − T (x∗)‖2
G ≤ A‖x − x∗‖2

G ∀x ∈ K.

Special cases
When 0 < A < 1, the map T is a contraction on K relative to the ‖.‖G norm, and

when A = 1, the map T is nonexpansive on K , relative to the ‖.‖G norm.
When a map T is a contraction, we will sometimes refer to the constant A as the

contraction constant.

The map T (y, z) = b(z, −y) that we introduced previously is nonexpansive when
b = 1 and contractive when 0 < b < 1.
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The following bounds will be useful at later points of the paper.

Proposition 1. If T is a Lipschitz continuous relative to the ‖.‖G norm with a Lipschitz
constant A > 0, x∗ is a fixed point of T , and x 
= x∗, then the following inequalities are
valid:

(1 +
√

A)‖x − x∗‖G ≥ ‖x − T (x)‖G ≥ (1 −
√

A)‖x − x∗‖G. (4)

Proof. Lipschitz continuity implies that

||x − x∗||2G + ||x − T (x)||2G − 2(x − T (x))tG(x − x∗) = ||T (x) − x∗||2G
= ||T (x) − T (x∗)||2G
≤ A||x − x∗||2G.

From this expression, the inequality |(x −T (x))tG(x −x∗)| ≤ ‖x −T (x)‖G‖x −x∗‖G

implies that

‖x − T (x)‖G‖x − x∗‖G ≥ 1 − A

2
‖x − x∗‖2

G + 1

2
‖x − T (x)‖2

G.

If x = x∗, then the inequalities (4) are trivially valid. Otherwise, dividing both sides
of the previous inequality by ‖x − x∗‖2

G and setting w = ‖x−T (x)‖G

‖x−x∗‖G
, we obtain the

valid inequality 1
2w2 − w + 1−A

2 ≤ 0. This inequality holds only for values of w lying
between the two roots w1 = 1 + √

A and w2 = 1 − √
A of the binomial, which implies

the inequality (4). �

As a final preliminary, we introduce a definition and a simple proposition that relate

limit points of a sequence to fixed point solutions.

Definition 2. The sequence {xk} is asymptotically regular (with respect to the map T )
if limk→∞ ‖xk − T (xk)‖G = 0, for some positive definite matrix G.

Proposition 2. (i) If T is a continuous map and the sequence {xk} converges to some
fixed point x∗, then the sequence {xk} is asymptotically regular.

(ii) If T is a continuous map and the sequence {xk} is asymptotically regular, then every
limit point, if any, of this sequence is also a fixed point solution.

Proof. Property (i) is a direct consequence of continuity since if the sequence converges
to some fixed point x∗, then the continuity of T implies that limk→+∞ ‖xk−T (xk)‖2

G =0.
Property (ii) follows from the observation that if the sequence {xk} has a limit point,
then asymptotic regularity implies that it is also a fixed point solution. �

Lemma 1. If the sequence {xk} has a limit point, all of its limit points are fixed points,
and the sequence {‖xk − x∗‖G} is convergent for every fixed point solution x∗, then the
sequence {xk} converges to a fixed point solution.

Proof. Let x̄ be any limit point of the subsequence of xk (and so a fixed point of the
map T ). By hypothesis, the sequence ‖xk − x∗‖G converges to zero, and so the entire
sequence {xk} converges to the fixed point solution x̄. �


We will use this simple result, together with Property (ii) of Proposition 2, to establish
the main convergence result of Section 2.
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2. Compatible maps and step sizes: A general case

An adaptive line search framework

One of the main goals of this paper is to determine “good” step sizes ak , possibly nega-
tive, for the general iterative scheme

xk+1 = xk(ak) = xk + ak(T (xk) − xk).

We will achieve this objective by choosing step sizes that are “compatible" with the
underlying map T . That is, we will achieve convergence by imposing conditions jointly
on the underlying map T and the step sizes ak .
Motivation:

We will draw our motivation from two results.

1. When the fixed point map T is contractive and the step size ak = 1 at each iter-
ation k, the line search framework coincides with the classical function iteration
xk+1 = T (xk) and, as a result, the sequence induced converges to the fixed point
solution at rate A. This case imposes a strong condition on the underlying map T .

2. When the fixed point map T is nonexpansive and the step sizes satisfy the condi-
tions of Dunn’s theorem, namely, 0 < ak < 1 and

∑∞
k=1 ak(1 − ak) = +∞, then

the general line search framework converges (see [12]). This case imposes a strong
condition on the step sizes (which slows convergence).

Our analysis will strive to generalize these results by considering the following quantity
that simultaneously considers the nature of the underlying fixed point map and the step
sizes.

Ak(x
∗) ≡

‖xk − x∗‖2
Ḡ

− ‖T (xk) − T (x∗)‖2
Ḡ

‖xk − T (xk)‖2
Ḡ

+ (1 − ak). (5)

In the expression Ḡ is a positive definite matrix. Notice that when the map T is non-
expansive with Lipschitz constant 0 < A ≤ 1, the numerator of the first term in the
definition of A∗

k is at least (1 − A)‖xk − x∗‖2
Ḡ

and so the first term is nonnegative and
therefore for Examples 1 and 2, the quantity Ak(x

∗) > 0. To permit tradeoffs between
the nature of the underlying map and the step sizes, we will impose two assumptions:

Definition 3. A map T and step sizes ak are A1-A2 compatible if they satisfy the follow-
ing two conditions.

A1. For any fixed point x∗ of the map T , at each iteration k, akAk(x
∗) is nonnegative.

A2. For any fixed point x∗ of the map T , if akAk(x
∗) converges to zero, then every limit

point of the sequence {xk} is a fixed point solution.

We wish to show that if the map T and the step sizes ak satisfy Assumptions A1 and
A2, then the line search scheme xk+1 = xk + ak(T (xk) − xk) converges to a fixed point
solution.

Let us first restate the definition of Ak(x
∗) in a different, but equivalent, form. Note

that since x∗ = T (x∗), by adding and subtracting xk from the first term and expanding,
we obtain

‖T (xk)−T (x∗)‖2
Ḡ

= ‖xk −x∗‖2
Ḡ

+‖xk −T (xk)‖2
Ḡ

−2(xk −T (xk))
t Ḡ(xk −x∗) (6)
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which when substituted into the definition of Ak(x
∗), gives

Ak(x
∗) =

‖xk − x∗‖2
Ḡ

− ‖T (xk) − T (x∗)‖2
Ḡ

‖xk − T (xk)‖2
Ḡ

+ (1 − ak)

= 2(xk − T (xk))
t Ḡ(xk − x∗)

‖xk − T (xk)‖2
Ḡ

− ak. (7)

Theorem 1. Assume that the map T has a fixed point solution x∗. If the map T and step
sizes ak are A1-A2 compatible, then the sequence of iterates {xk} converges to a fixed
point solution.

Proof. Consider any fixed point x∗ of the map T . Since xk+1 = xk + ak(T (xk) − xk),

‖xk+1 − x∗‖2
Ḡ

= ‖xk − x∗‖2
Ḡ

− 2a(xk − T (xk))
t Ḡ(xk − x∗) + a2

k‖xk − T (xk)‖2
Ḡ
. (8)

Expression (8) implies that

‖xk+1 − x∗‖2
Ḡ

= ‖xk − x∗‖2
Ḡ

−ak

[
‖xk − x∗‖2

Ḡ
− ‖T (xk) − T (x∗)‖2

Ḡ
+ ‖xk − T (xk)‖2

Ḡ

]

+a2
k‖xk − T (xk)‖2

Ḡ
.

Therefore,

‖xk+1 − x∗‖2
Ḡ

= ‖xk − x∗‖2
Ḡ

− ak‖xk − T (xk)‖2
Ḡ

×
[‖xk − x∗‖2

Ḡ
− ‖T (xk) − T (x∗)‖2

Ḡ

‖xk − T (xk)‖2
Ḡ

+ (1 − ak)

]

.

Equation (7) implies that

‖xk+1 − x∗‖2
Ḡ

= ‖xk − x∗‖2
Ḡ

− akAk(x
∗)‖xk − T (xk)‖2

Ḡ
. (9)

Relation (9) and assumption A1 imply that the sequence ‖xk − x∗‖2
Ḡ

is nonincreasing

and, therefore, is convergent. This result implies that either (a) ‖xk −T (xk)‖2
Ḡ

converges
to zero, or (b) akAk(x

∗) converges to zero. Therefore either Proposition 2 (for case (a))
or assumption A2 (for case (b)) implies that every limit point of the sequence of iterates
{xk} is also a fixed point solution. Relation (9) implies that ‖xk − x∗‖2

Ḡ
is convergent

for every fixed point x∗, and Lemma 1 then implies that the entire sequence of iterates
{xk} converges to a fixed point solution. �


This theorem extends Banach’s fixed point theorem since, when T is a contraction,
a choice of ak = 1 for all k satisfies assumptions A1 and A2 (since from Proposition 1,
Ak(x

∗) ≥ (1 − A)/(1 + √
A)2 > 0). As we next show, this theorem also includes as

special case Dunn’s averaging results (see [12], [35]).

Theorem 2. Suppose that T is a nonexpansive map, the step sizes ak constitute a Dunn
sequence (that is,

∑
k ak(1 − ak) = +∞), and the map T has a fixed point solution x∗.

Then the map T and the step sizes ak satisfy assumptions A1 and A2.
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Proof. Assume as in Dunn’s Theorem that T is a nonexpansive map and that ak ∈ [0, 1]
satisfies the condition

∑
k ak(1 − ak) = +∞. Since T is a nonexpansive map and

ak ∈ [0, 1], Ak(x
∗) ≥ 0 (that is, assumption A1 applies).

To establish the validity of assumption A2, we suppose that it does not hold. That is,
akAk(x

∗) converges to zero and some limit point of the sequence {xk} is not a solution.
In the proof of Theorem 1, we showed that

‖xk+1 − x∗‖2 − ‖xk − x∗‖2 = −akAk(x
∗)‖xk − T (xk)‖2, (10)

which implies (since akAk(x
∗) ≥ 0) that the sequence {‖xk − x∗‖2} converges to some

constant q for every fixed point solution x∗. Adding and subtracting T (xk) implies that

||xk+1 − T (xk+1)|| = ||xk + ak(T (xk) − xk) − T (xk+1)||
= ||(1 − ak)(xk − T (xk)) + (T (xk) − T (xk+1))||.

Applying the triangle inequality together with the fact that T is a nonexpansive map
implies (since xk+1 − xk = a(Tk(xk) − xk)) that

‖xk+1 − T (xk+1)‖ ≤ (1 − ak)‖xk − T (xk)‖ + ‖xk+1 − xk‖ = ‖xk − T (xk)‖. (11)

Therefore, the sequence {‖xk − T (xk)‖} converges. Since we assumed that some limit
point of the sequence {xk} will not be a solution, Proposition 2 implies that ‖xk −
T (xk)‖ ≥ B > 0 for all k ≥ k0, for a sufficiently large constant k0. Then by adding the
telescoping equations (10) for all k ≥ k0 implies that

lim
k

‖xk+1 − x∗‖2 − ‖xk0 − x∗‖2 ≤ −
∑

k≥k0

akAk(x
∗)B.

But since T is nonexpansive,
∑

k akAk(x
∗) ≥ ∑

k ak(1 − ak) = +∞. Therefore,∑
k akAk(x

∗) = +∞.
This result is a contradiction since it implies that

q − ‖xk0 − x∗‖2 = lim
k

‖xk+1 − x∗‖2 − ‖xk0 − x∗‖2 ≤ −
∑

k≥k0

akAk(x
∗)B = −∞.

Therefore, if akAk(x
∗) converges to zero, then every limit point of the sequence

{xk} is a fixed point solution (that is, assumption A2 is valid). We conclude that the
assumptions of Dunn’s theorem imply assumptions A1 and A2 and, therefore, Dunn’s
theorem is a special case of Theorem 1. �


The next example shows that Theorem 1 is a more general result.

Example 1. The map T (x) = x
√

1 − ‖x‖ has a unique fixed point x∗ = 0 over the set
{x : ‖x‖ ≤ 1} and is nonexpansive around solution x∗ (see Definition 1) since

‖T (x) − T (x∗)‖ = ‖x‖
√

1 − ‖x‖ ≤ ‖x‖ = ‖x − x∗‖.
If we choose step sizes ak = 1 for all k, then Dunn’s averaging result does not apply since∑

k ak(1 − ak) = 0 < +∞. Banach’s fixed point theorem also does not apply since T ,
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although nonexpansive, is not a contractive map. Nevertheless, Theorem 1 ensures con-
vergence since ak = 1 for all k is bounded away from zero and Ak(x

∗) = ‖xk‖
‖1−√

1−‖xk‖‖2

and so, assumptions A1 and A2 apply. Therefore, Theorem 1 applies for this choice of
the map T and step sizes.

Remark. Observe that the steps sizes for the iterates satisfying assumptions A1 and A2
of Theorem 1 need not necessarily lie between zero and one and that the map T need
not be nonexpansive. To achieve the joint conditions of assumptions A1 and A2 imposed
upon the maps T and step sizes, we might (i) restrict the line searches to a subset of
[0, 1) or (−1, 0] permitting maps that satisfy a condition weaker than nonexpansive-
ness, or (ii) extend the line searches, but as a result, impose stronger assumptions on the
map T .

3. Potential optimizing methods

Theorem 1 shows that if we impose joint conditions on the underlying map T and step
sizes ak , the general line search scheme

xk+1 = xk(ak) = xk + ak(T (xk) − xk)

converges. This result provides little guidance, however, concerning the choice of the
step sizes. In this section, to develop more operational versions of the general frame-
work, we will choose the step sizes by solving, at each iteration, from a given point xk

of the previous iteration, a one dimensional optimization problem:

ak = arg min
a∈S

gxk (a), (12)

for some step size choice set S and potential function gxk : R → R.
We consider several choices for the potential function and examine the convergence

behavior for the sequence each generates. We also consider specializations when the
map T is affine, allowing us to find closed form solutions for the step sizes ak .

Instead of solving a sequence of optimization problems, we might try to solve a
single problem since for any positive definite and symmetric matrix G, the fixed point
problem FP(T , K) is equivalent to the minimization problem

min
x∈K

‖x − T (x)‖2
G. (13)

As is well known (see for example [26]), the difficulty in using this equivalent opti-
mization formulation is that even when T is a contractive map relative to the ‖.‖G norm,
the potential function ‖x − T (x)‖2

G need not be convex. The following example illus-
trates this behavior.

Example 2. Let T (x) = x1/2 and K = [1/2, 1]. Then the fixed point problem becomes

Find x∗ ∈ [1/2, 1] : (x∗)1/2 = x∗.
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x∗ = 1. The mapping T is contractive on K since

‖T (x) − T (y)‖ = ‖x1/2 − y1/2‖ = ‖x − y‖
‖x1/2 + y1/2‖ ≤

√
2

2
‖x − y‖,

for all x, y ≥ 1/2. The potential g(x) = (x −T (x))2 = (x −x1/2)2 is not convex for all

x ∈ [1/2, 9/16). In fact, since g′′(x) = 4−3 1√
x

2 < 0 for all x < 9/16, g(x) is concave
in the interval [1/2, 9/16).

The one-dimensional version of problem (13) (that is, along a line segment) will, in
general also be nonconvex, though we can solve it approximately via any one-dimen-
sional search technique.

To implement the framework of Section 2, we will, in general, restrict the choice of
potentials.

3.1. Convergence results

Definition 4. A potential g is A1-A2 compatible (with respect to the step size search
sets) if the step sizes it generates, together with the map T , satisfies conditions A1 and
A2.

From Theorem 1, we immediately have the following result.

Theorem 3. Assume that the fixed point map T has a fixed point solution x∗. If the
potential g is A1-A2 compatible, then the sequence of iterates {xk} generated by the
one-dimensional optimization problem (12) converges to a fixed point solution.

Specializations:
We next consider several specific potential functions. They all are variations of the

following two potential functions (with x(a) = x + a(T (x) − x) for a given point x).

1. Gx(a) = ‖x(a) − T (x(a))‖2
G.

2. Hx(a) = [(x(a) − T (x(a)))tG(x − T (x))]2.

The second potential is motivated by the steepest descent method (see Hammond
and Magnanti [23]) for solving the unconstrained variational inequality problem,

find x ∈ Rn satisfying f (x) = 0, V I (f, Rn).

Given a point xk , the steepest descent method sets xk+1 = xk − akf (xk), choosing the
step size ak by solving the following one-dimensional optimization problem

min
a

(f (xk(a))tGf (xk))
2,

with xk(a) = xk + a(−f (xk)). This problem computes the next iterate along the half
line originated at iterate xk in the direction of −f (xk) so that the vector f (xk(a)) is per-
pendicular to vector f (xk) with respect to the matrix G. In the fixed point formulation,
we set f (x) = x − T (x).
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We consider the following variations of the potentials Gx and Hx :
Scheme Potential

I gx
1 (a) = Gx(a) + β‖x(a) − x(0)‖2

G = Gx(a) + a2β‖x − T (x)‖2
G

II gx
2 (a) = Gx(a)

III gx
3 (a) = Gx(a) − β‖x(a) − x(0)‖2

G

IV gx
4 (a) = Gx(a) − β‖x(a) − x(0)‖G‖x(a) − x(1)‖G

V gx
5 (a) = Hx(a)

VI gx
6 (a) = Hx(a) − β[(x(a) − x(0))tG(x − T (x))][(x(a) − x(1))tG(x − T (x))]

In all these schemes, β is a positive constant. We choose the step size a within a
search set S ⊆ R+ that is either the entire half line R+ or is a subset of [0, 1]. For ease
of notation, in the follows discussion we will let Gxk (a) = Gk(a), Hxk (a) = Hk(a)

and g
xk

i (a) = gk
i (a), i = 1, ..., 6.

By introducing terms of the form −β||x(a)−x(0)||2G, several of these schemes (III,
IV and VI) force the iterates xk+1 = xk(ak) away from the starting point xk = xk(0),
thus assuring sufficient movement from this point. Two of the schemes (IV and VI) repel
the iterate xk+1 away from the image T (xk) = xk(1) of the starting point under map T .
Doing so can ensure convergence for situations when function iteration might cycle.

An additional motivation for introducing Scheme VI comes from trying to remedy a
cycling behavior that can occur in Scheme V. The next example illustrates this behavior.

Example 3. When K = Rn and T (x) = [x2, −x1], then x∗ = (0, 0) is the solution
of the fixed point problem FP(T , Rn). Starting from the point x0 = (1, 1), Scheme V
(which coincides with the steepest descent algorithm for solving systems of equations)
generates the iterates x1 = (1, −1), x2 = (−1, −1), x3 = (−1, 1), x4 = x0 = (1, 1)

and, therefore, cycles.

In this example, matrix M = I − T =
[

1 −1
1 1

]

is positive definite, but M2 =
[

0 −2
2 0

]

is positive semidefinite. This example violates known convergence conditions

(see Hammond and Magnanti [23]), namely that the matrices M and M2 are posi-
tive definite. Scheme VI remedies this cycling without requiring that M2 be positive
definite.

The following result summarizes convergence properties for these six schemes.

Theorem 4. The iterates generated by the special cases of the general averaging frame-
work (Schemes I-VI) converge to a fixed point solution under the following conditions:

Scheme Convergence conditions Step size set S

I T contractive, A: 0 ≤ β < 1 − A S = R+

II T contractive (or affine, nonexpansive) S = R+ (or S ⊆ (0, 1))
III T nonexpansive S = [0, c1] ⊆ [0, 1), 0 < c1 < 1
IV T nonexpansive S = R+

V T affine, M , M2 positive definite matrices S = R+

VI T nonexpansive, β > 4 (or affine, β > 1) S = R+

To prove this theorem, we show that for each scheme, the corresponding potential is
A1-A2 compatible so that Theorem 1 applies. We establish these results in Appendix A.
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3.2. Convergence rates

Theorem 4 shows that the six special cases of the general averaging framework satisfy
assumptions A1-A2. The next theorem establishes rates of convergence for five of these
schemes.

Theorem 5. Schemes I-V have the following rates of convergence:

Scheme Convergence rate

I ‖xk+1 − T (xk+1)‖2
G ≤ [A + β(1 − a2

k )]‖xk − T (xk)‖2
G.

II ‖xk+1 − T (xk+1)‖2
G ≤ A‖xk − T (xk)‖2

G.

III ‖xk+1 − T (xk+1)‖2
G ≤ (A − β(c2

1 − a2
k ))‖xk − T (xk)‖2

G, 0 < ak ≤ c1 < 1.

IV ‖xk+1 − T (xk+1)‖2
G ≤ [1 − β(ak − 1

2 )2]‖xk − T (xk)‖2
G.

V ‖xk+1 − x∗‖2
Ḡ

≤ [1 − λmin((Ḡ)−1 M2+(Mt )t

2 )

λmax (Ḡ)
]‖xk − x∗‖2

Ḡ
.

Proof.
Scheme I:
First, as we illustrated in Theorem 4, the sequence of iterates {xk} that Scheme I induces
converges to the fixed point solution. The iteration of Scheme I implies the inequality

‖xk+1 − T (xk+1)‖2
G + βa2

k‖xk − T (xk)‖2
G ≤ ‖T (xk) − T 2(xk)‖2

G + β‖xk − T (xk)‖2
G.

Since the map T is a contraction,

‖xk+1 − T (xk+1)‖2
G ≤ (A + β(1 − a2

k ))‖xk − T (xk)‖2
G,

implying the result. with contractive constant 0 < A + β < 1.

Scheme II:
For nonlinear, contractive mappings T ,

‖xk+1 − T (xk+1)‖2
G ≤ ‖T (xk) − T (T (xk))‖2

G ≤ A‖T (xk) − xk‖2
G.

Scheme III:
The iteration of Scheme III imply that

‖xk+1−T (xk+1)‖2
G−βa2

k‖xk−T (xk)‖2
G ≤ ‖xk(c1)−T (xk(c1))‖2

G−βc2
1‖xk−T (xk)‖2

G.

Therefore, ‖xk+1 − T (xk+1)‖2
G ≤ (A − β(c2

1 − a2
k ))‖xk − T (xk)‖2

G.



446 T.L. Magnanti, G. Perakis

Scheme IV:
The iteration of Scheme IV implies that

‖xk+1 − T (xk+1)‖2
G − βak(1 − ak)‖xk − T (xk)‖2

G

≤ ‖xk(a
∗) − T (xk(a

∗))‖2
G − βa∗(1 − a∗)‖xk − T (xk)‖2

G,

with a∗ = 1/2. The nonexpansiveness of map T implies that ‖xk(a
∗)−T (xk(a

∗))‖2
G ≤

‖xk − T (xk)‖2
G and, therefore, setting h(a) = a(1 − a),

‖xk+1 − T (xk+1)‖2
G − βak(1 − ak)‖xk − T (xk)‖2

G

≤ ‖xk − T (xk)‖2
G − βh(a∗)‖xk − T (xk)‖2

G.

After reordering the terms, we obtain the desired result.
Scheme V:
The proof of this result can be found in [23]. �


3.3. Relationship to variational inequalities

We have considered several special cases of the general line search (averaging) frame-
work. The general framework also includes several other well-known schemes in the
literature.As noted in the introduction, in several instances, a variational inequality prob-
lem V I (f, K) is equivalent to a fixed point problem FP(T , K) (see for example [11],
[20], [42], [53]) and so we can apply our prior results.

1. For the variational inequality problem V I (f, K), Fukushima [20] considered the
projection operator T (x) = PrG

K (x − ρG−1f (x)) = arg miny∈K [f (x)t (y − x) +
1
2‖y − x‖2

G]. The fixed point solutions corresponding to this map T are the solutions
of variational inequality V I (f, K). Using the potential

gx(a) = −f (x(a))t (T (x(a)) − x(a)) − 1

2
‖T (x(a)) − x(a)‖2

G, (14)

Fukushima showed that when f is strongly monotone, the scheme xk+1 = xk(ak) =
xk + ak(T (xk) − xk), with ak arg mina∈[0,1] gk(a) computes a variational inequality
solution. This scheme and the accompanying convergence result is a special case
of our general framework for the choice of potential g given by expression (14).
Observe that when f (x) = G(x − T (x)), the potential the Fukushima potential
becomes gx(a) = ‖T (x(a)) − x(a)‖2

G − 1
2‖T (x(a)) − x(a)‖2

G and so is equivalent
to optimizing the potential we considered in Scheme II.

2. Wu, Florian and Marcotte [53] have generalized Fukushima’s scheme. They con-
sidered an operator T that maps a point x onto the unique solution of the problem
miny∈K

[
f (x)t (y − x) + 1

ρ
φ(x, y)

]
, for a function φ : K × K → R satisfying the

following properties:
(a) φ is continuously differentiable,
(b) φ is nonnegative,
(c) φ is uniformly strongly convex with respect to y,
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(d) φ(x, y) = 0 is equivalent to x = y,
(e) ∇xφ(x, y) is uniformly Lipschitz continuous on K with respect to x.

Observe that when φ(x, y) = ‖x − y‖2
G, then T (x) becomes the projection operator

as in Fukushima [20]. The fixed point solutions corresponding to this map T are
solutions of the variational inequality problem V I (f, K) (see [53] for more details).
Wu, Florian and Marcotte [53] considered the potential

gx(a) = −f (x(a))t (T (x(a)) − x(a)) − 1

ρ
φ(T (x(a)), x(a)). (15)

Notice as in the previous case, this scheme becomes a special case of our general
framework for the choice of potential gx given in (15).

The convergence of these schemes follows from Theorem 1. Observe that when f

is strongly monotone (which the developers of these schemes impose), assumptions A1
and A2 hold. These assumptions are valid because (i) the quantity Ak(x

∗) is bounded
away from zero, and (ii) when f (x) = x − T (x) and function f is strongly mono-
tone then, for the function φ as defined above (and for the particular Fukushima case,
φ(x, y) = ‖x −y‖2

G), it is possible to show that the potentials (14) and (15) “repel” step
sizes ak from zero unless the current iterate is a solution.

3.4. Lessons

The analysis of these schemes leads to the following conclusions:

1. When the fixed point map T is affine, except for Scheme V, the schemes converge
for nonexpansive maps.

2. When the fixed point map T is affine, we need not impose any restrictions on the
step sizes for Schemes I, II and V (provided that map T satisfies some additional
properties).

3. If the scheme repels the iterates from both boundaries xk and T (xk) (as in Schemes
IV and VI), then we need not impose restrictions on the step size search set S, but
rather we can allow it to be the entire half line R+.

4. If the scheme does not repel the iterates from both boundaries, then we either need
to impose stronger conditions on the fixed point map T (such as contractiveness) or
restrict the step size search set S within a subset of (0, 1).

4. Optimal rates of convergence

In this section, we examine the following question: when is the rate of convergence for
the general adaptive line search framework and its special cases better than that of
function iteration?

For contractive maps, the function iteration estimate ‖xk+1 − x∗‖2
G = ‖T (xk) −

T (x∗)‖2
G ≤ A‖xk − x∗‖2

G, provides a guaranteed convergence rate of A. We will show
that if the step sizes generated by the line search procedure in the general adaptive frame-
work lie within a certain range, then the adaptive line search procedure yields a better
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guaranteed rate of convergence. We also show that the six schemes we have introduced
give rise to such step sizes.

As an example, from the starting point of xk = (0, 1) for the map T (y, z) = b(z, −y),
then xk+1 = xk + ak(T (xk) − xk) = (akb, 1 − ak) and

‖xk+1 − x∗‖2 = ‖xk+1 − 0‖2 = ‖(akb, 1 − ak)‖2 = a2
kb

2 + a2
k + 1 − 2ak.

Therefore, the step size ak = 1
1+b2 minimizes ‖xk+1 − 0‖2 and the norm minimizing

step size ranges from ak = 1
2 when b = 1 to ak = 1 as b approaches 0. The analysis to

follow will generalize this observation.

Theorem 6. For contractive maps with constant A, if the quantities (ak−1)(Ak(x
∗)−1),

for all k, are nonnegative then the adaptive line search framework has at least as good
a rate of convergence as function iteration. If the quantities (ak − 1)(Ak(x

∗) − 1) are
bounded away from zero (that is, for all k, (ak − 1)(Ak(x

∗) − 1) ≥ q2, for some con-
stant q > 0), then the adaptive line search framework has a better guaranteed rate of
convergence than function iteration.

Proof. The definition xk+1 = xk + ak(T (xk) − xk), the expansion

‖xk+1 −x∗‖2
Ḡ

= ‖xk −x∗‖2
Ḡ

+a2
k‖xk −T (xk)‖2

Ḡ
−2ak(xk −T (xk))

t Ḡ(xk −x∗), (16)

and a substitution for ‖xk+1 − x∗‖2
Ḡ

from (6) implies that

‖xk+1 − x∗‖2
Ḡ

= ‖T (xk) − T (x∗)‖2
Ḡ

+ (a2
k − 1)‖xk − T (xk)‖2

Ḡ

−2(ak − 1)(xk − T (xk))
t Ḡ(xk − x∗). (17)

Substituting for Ak(x
∗) from expression (7) gives

‖xk+1 − x∗‖2
Ḡ

= ‖T (xk) − T (x∗)‖2
Ḡ

+ [(a2
k − 1) − (ak − 1)(Ak(x

∗) + ak)]

×‖xk − T (xk)‖2
Ḡ

= ‖T (xk) − T (x∗)‖2
Ḡ

− [(ak − 1)(Ak(x
∗) − 1)]

×‖xk − T (xk)‖2
Ḡ
.

(18)

Using the fact that T is contractive, we obtain

‖xk+1 − x∗‖2
Ḡ

= A‖xk − x∗‖2
Ḡ

− (ak − 1)(Ak(x
∗) − 1)‖xk − T (xk)‖2

Ḡ
. (19)

Consequently, if (ak − 1)(Ak(x
∗) − 1) ≥ 0 then Proposition 1 implies that

‖xk+1 − x∗‖2
Ḡ

≤ [A − (ak − 1)(Ak(x
∗) − 1)(1 −

√
A)]‖xk − x∗‖2

Ḡ
. (20)

As a result, whenever when (ak − 1)(Ak(x
∗) − 1) ≥ 0, the guaranteed rate of con-

vergence for adaptive line search is at least as good a that for function iteration, and
when (ak − 1)(Ak(x

∗) − 1) ≥ q2 for some constant q > 0, then adaptive line search
has a better rate of convergence than function iteration. �
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The similarity between the term (ak − 1)(Ak(x
∗) − 1) that arises in this result and

the term akAk(x
∗) that plays such a central role in analyzing the general adaptive line

search framework is striking.
We obtain the best possible improvement with the largest possible value of the quan-

tity (ak − 1)(Ak(x
∗) − 1). We will refer to any step size giving this maximum value as

an “optimal” step size.
The previous theorem shows that for certain types of maps and for a certain range of

step sizes, the adaptive line search framework provides a better rate of convergence than
the classical function iteration xk+1 = T (xk). The next result provides several examples.

Proposition 3. For suitable choice of step sizes ak , the condition (ak−1)(Ak(x
∗)−1) ≥

q2 > 0 is valid in any of the following circumstances.

1. The map T contractive, but with a contraction constant close to 1, that is, for some
constants A ∈ (0, 1)] and Ā ∈ (0, 1),

A‖x − x∗‖2
Ḡ

≥ ‖T (x) − T (x∗)‖2
Ḡ

≥ ‖x − x∗‖2
Ḡ

− Ā‖x − T (x)‖2
Ḡ
.

2. The map T is a tightly nonexpansive map, that is, ‖T (x) − T (x∗)‖2
Ḡ

≈ ‖x − x∗‖2
Ḡ
.

3. The map T is firmly contractive, that is, ‖T (x) − T (x∗)‖2
Ḡ

≤ A‖x − x∗‖2
Ḡ

− ‖x −
T (x) − x∗ + T (x∗)‖2

Ḡ
, for some constant A ∈ (0, 1).

Proof. 1. Using expression (6) to eliminate the first two terms from the inequality

‖T (xk) − T (x∗)‖2
Ḡ

≥ ‖xk − x∗‖2
Ḡ

− Ā‖xk − T (xk)‖2
Ḡ

gives

‖xk − T (xk)‖2
Ḡ

− 2(xk − T (xk))
t Ḡ(xk − T (xk)) ≥ −Ā‖x − T (x)‖2

Ḡ
.

Consequently, expression (7) implies that Ak(x
∗)+ak ≤ 1− Ā, from which we con-

clude that (ak −1)(Ak(x
∗)−1) ≥ (ak −1)(−ak − Ā), whenever ak < 1. The choice

ak = 1−Ā
2 maximizes the righthand side of the last inequality and so is an optimal

step size. For this choice of step size, (ak − 1)(Ak(x
∗) − 1) ≥ 1

4 (Ā + 1)(Ā + 2).

2. If the map T is tightly nonexpansive, then Ā in case 1. is approximately 0. Similarly
to case 1., the optimal step size is approximately 1

2 , and so (ak −1)(Ak(x
∗)−1) ≥ 1

4 .

3. For the firmly contractive map T , expression (6) implies that

(x − T (x) − x∗ + T (x∗))t Ḡ(x − x∗) ≥ 1 − A

2
‖x − x∗‖2

Ḡ
+ ‖x − T (x)‖2

Ḡ
,

and Proposition 1 implies that

(x −T (x)− x∗ +T (x∗))t Ḡ(x − x∗) ≥ 1 − A

2(1 + √
A)2

‖x −T (x)‖2
Ḡ

+‖x −T (x)‖2
Ḡ
.

But then from expression (7), Ak(x
∗) + ak ≥ 1−A

(1+√
A)2 + 2 and so, if ak > 1,

then (ak − 1)(Ak(x
∗) − 1) ≥ (ak − 1)

(
1−A

(1+√
A)2 + 1 − ak

)
. The step size ak =

1 +
(

1−A

2(1+√
A)2

)
maximizes the righthand side of the previous inequality, specifying

an optimal step size greater than 1.
�
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Suppose the underlying fixed point map is affine, that is, x − T (x) = Mx for some
matrix M . Then the step sizes in the six schemes we introduced in the previous section
always satisfy the condition of Theorem 6. As a result, these schemes (I–V) have better
rates of convergence than the classical function iteration. In particular, this condition
holds in the following situations.

• The map T is firmly contractive and β < (1 − A)/2 for Scheme I.
• The map T is contractive, and the matrix MtM−M or the matrix M−MtM is strongly

positive definite (i.e., for some C > 0, for all x ∈ Rn, xt (MtM − M)x ≥ Cxtx or
xt (M − MtM)x ≥ Cxtx) for Scheme II.

• The map T is contractive for Scheme III.
• The map T is firmly contractive and β < 1 − A for Scheme IV.
• The map T is contractive and M is a symmetric matrix, and the matrix M − I or the

matrix I − M is strongly positive definite for Scheme V.

We establish these results in Appendix B. We also show that the guaranteed rates of
convergence for Schemes II and V are always at least as good as function iteration even
without the additional conditions imposed upon the matrix M .

This discussion shows that for certain fixed point maps T , the six schemes exhibit
better rates of convergence than the classical function iteration.

5. Inexact line searches

One issue arises naturally when attempting to implement any of the methods exam-
ined in Section 3: suppose we perform line searches inexactly (especially in the general
nonlinear case), will the various schemes still converge?

We can determine step sizes at each step by applying an Armijo-type rule of the fol-
lowing form. Let gi denotes the potential function we have used previously for scheme
i and dk denote T (xk) − xk . For positive constants D > 0 and 0 < b < 1, we wish to
find the smallest nonnegative integer lk so that a step length ak = blk in the appropriate
line search set S that satisfies the condition

gk
i (ak) − gk

i (0) ≤ −Dblk‖dk‖2
G. (21)

This condition aims to ensure that the potential function decreases by a sufficient amount
at each iteration. We next establish convergence of the Armijo-type inexact line searches
(21) for the potentials of Schemes II and IV that we considered in Section 3 if we impose
appropriate conditions on the fixed point map T . We first consider Scheme II.

Theorem 7. Suppose that in a fixed point problem FP(T , K), T is a contractive map
relative to the ‖.‖G norm with a Lipschitz constant A ∈ (0, 1). Then with a choice of
D ≤ 1 − √

A in an Armijo-type search (21), the potential minimization scheme with a
potential gk

2(a) = ‖xk(a) − T (xk(a))‖2
G and step sizes in the set S = [0, 1] generates

a sequence that converges to a fixed point solution.

Proof. We first show that the Armijo-type line search (21) has a solution. Adding and
subtracting T (xk) implies that

||xk(a) − T (xk(a))||G = ||xk + a(T (xk) − xk) − T (xk(a))||G
= ||(1 − a)(xk − T (xk)) + (T (xk) − T (xk(a)))||G.
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Applying the triangle inequality together with the fact that T is a contractive map with
constant A, further implies that

‖xk(a) − T (xk(a))‖G ≤ (1 − a)‖xk − T (xk)‖G +
√

A‖xk(a) − xk‖G

= (1 − a(1 −
√

A))‖xk − T (xk)‖G.

Consequently, for all 0 ≤ a ≤ 1,

‖xk(a) − T (xk(a))‖2
G ≤ [1 − a(1 −

√
A)]2‖xk − T (xk)‖2

G

≤ [1 − a(1 −
√

A)]‖xk − T (xk)‖2
G.

Therefore, gk
2(a) − gk

2(0) ≤ −(1 − √
A)a‖dk‖2

G and so if we choose D ≤ 1 − √
A and

a = blk with lk = 1, then the constants D, and lk satisfy the Armijo-type rule (21) for
any choice of 0 < b < 1.

Consequently,

‖xk − T (xk)‖2
G − ‖xk+1 − T (xk+1)‖2

G ≥ b(1 −
√

A)‖xk − T (xk)‖2
G. (22)

and so
‖xk+1 − T (xk+1)‖2

G ≤ (1 − b(1 −
√

A))‖xk − T (xk)‖2
G

and, as a result, the sequence ‖xk − T (xk)‖2
G converges to zero. Proposition 1 implies

that the entire sequence {xk} converges to a fixed point solution. �

Theorem 8. Consider the fixed point problem FP(T , K) with nonexpansive maps T

relative to the ‖.‖G norm. Suppose the fixed point problem has a solution. If we apply
an Armijo-type (21) line search to the potential function gk

4 in Scheme IV, with step sizes
a ∈ S = [0, 1], then the sequence of iterates xk that this line search generates converges
to a fixed point solution.

Proof. We will first show that the Armijo-type (21) line search havs a solution and then
that when the step sizes satisfy the Armijo inequality, the iterates converge to a fixed
point solution.

For Scheme IV, we can rewrite the potential gk
4(a) as

gk
4(a) = ‖xk(a) − T (xk(a)‖2

G − βh4(a)‖xk − T (xk)‖2
G,

with h4(a) = a(1 − a). As shown in expression (11), for nonexpansive maps T ,

‖xk(a) − T (xk(a)‖2
G − ‖xk − T (xk)‖2

G ≤ 0,

for all 0 ≤ a ≤ 1, implying that

gk
4(a) − gk

4(0) ≤ −βh4(a)‖xk − T (xk)‖2
G, (23)

for all 0 ≤ a ≤ 1.
Therefore, the step sizes ak will satisfy the Armijo-type line search condition (21)

whenever βh4(ak) ≥ Dak .
For the potential gk

4(a), the condition βh4(ak) ≥ Dak becomes βak(ak − 1) ≥ Dak

and so ak ≤ 1 − D/β. The step size ak = blk satisfies this condition whenever lk ≥
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ln (1−D/β)
ln b

= q. Any value of lk satisfying this inequality satisfies the Armijo step size
condition and so the smallest value of lk satisfying Armijo-type inequality (21) is no
more than �q�, the integer round up of q.

We have shown that for potential gk
4(a), the Armijo-type inequality (21) has a solu-

tion. To establish convergence, we will use Theorem 1. Since the map T is nonexpansive,
Ak(x

∗) ≥ (1 − ak) ≥ 0 and so by Theorem 1, akAk(x
∗) ≥ ak(1 − ak). For any b < 1

and lk ≤ �q�, b�q� ≤ ak = blk ≤ b and so ak(1 − ak) ≥ b�q�(1 − b) > 0. Therefore,
akAk(x

∗) is bounded away from zero and so by Theorem 1, the iterates converge to a
fixed point solution. �


6. Conclusions-open questions

We have introduced and studied adaptive line search methods for solving fixed point and
variational inequality problems. Motivated by a desire to integrate, in a single result,
the convergence behavior of classical Banach functional iteration and several averaging
methods, we first established a convergence framework that imposes conditions jointly
on the underlying fixed point (or variational inequality) map and the iterative step sizes.
Adaptive line search methods that satisfy the joint condition are able to compute fixed
points when the underlying maps satisfy properties weaker than contractiveness. As a
specific instantiation of the general framework, we considered a general scheme for
determining step sizes dynamically by optimizing potential functions. We considered
several choices of potential functions that optimize, in some sense, the distance between
the current iterate and the image of the fixed point mapping of the current iterate. We
established convergence and convergence rates for these choices of potential functions.
We also showed that under appropriate conditions the general methods we have consid-
ered have a better rate of convergence than function iteration. Since the line searches we
proposed might be hard to perform exactly, we also considered inexact line searches.

The results in this paper apply to more general potentials of the type

gk(a) = P(xk(a), T (xk(a))) − βh(a)P (xk, T (xk)).

In this more general setting, the function h : R → R+ might be, for example, h(a) = a2

or h(a) = a(1−a) while function P : Rn×Rn → R+ generalizes the notion of a norm.
Examples of P include P(x, y) = ‖x − y‖2

G and P(x, y) = (f (x) − f (y))t (x − y).
Several open questions arise naturally from our analysis:

• How does the behavior of the schemes we introduced compare for various choices of
potentials in practice?

• It might be preferable to consider averages of the type xk = a1x1+a2T (x1)+···+akT (xk−1)

a1+···+ak ,

and optimize potentials involving all ai’s, instead of using xk(a) = xk+ak(T (xk)−xk)

and optimize potentials involving only ak = ak

a1+···+ak .

• Would these results still be valid if we impose conditions that are weaker than nonex-
pansiveness?

• Can we establish rates of convergence for other choices of potentials?
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In closing, we note that some computational experience reported by Bottom [3] and
Bottom et al. [4], though hardly conclusive, provides limited evidence concerning the
potential computational benefits of the schemes we have introduced. These researchers
have used the adaptive line search framework introduced in this paper to solve an antic-
ipatory route guidance problem in the area of Intelligent Transportation Systems, using
the Boston Central Artery network during the morning traffic period as a test exam-
ple. Their empirical results showed that the adaptive averaging framework outperforms
averaging with a step size ak = 1/k at each iteration. Scheme IV proved to be slightly
more effective than using line searches with constant step sizes. Functional iteration did
not converge for these test problems. More extensive computational testing would be
required to properly access the efficiency of the methods we have examined and might
even suggest useful enhancements of these methods.

Acknowledgements. We are grateful to the associate editor and the referees for their insightful comments and
suggestions that have helped us improve both the exposition and the content of this paper.
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Appendix A - Convergence of the six schemes

To establish the convergence of the averaging framework for each of the Schemes I–VI,
we will show that the potential function for each case isA1-A2 compatible and, therefore,
Theorem 3 applies.
Scheme I:
We first establish the following lemma.

Lemma 1. Suppose T is a contractive map relative to the ‖.‖G norm and β < 1 − A.
Then if limk→+∞ ak = 0, the sequence {xk} converges to the unique solution (that is,
assumption A2 is valid).

Proof. Suppose ‖xk − T (xk)‖2
G > 0. If limk→+∞ ak = 0, then

lim
k→+∞

‖xk − T (xk)‖2
G ≤ lim

k→+∞
‖T (xk) − T 2(xk)‖2

G + β lim
k→+∞

‖xk − T (xk)‖2
G ≤

(since β < 1 − A)

(A + β) lim
k→+∞

‖xk − T (xk)‖2
G < lim

k→+∞
‖xk − T (xk)‖2

G.

This contradiction implies that limk→+∞ ‖xk − T (xk)‖2
G = 0, and then Proposition 2

implies that the sequence {xk} converges to the unique fixed point solution. �

If we restrict the line searches so that ak ∈ [0, 1], assumption A1 follows from the

contractive property of the map T so Lemma 1 implies that for any choice β < 1 − A,
the step sizes ak satisfy assumptions A1 and A2.

To develop an alternative proof of convergence for Scheme I, we could perform
unrestricted line searches, choosing step sizes ak ∈ R+. Then the general iteration of
Scheme I implies that

‖xk+1 − T (xk+1)‖2
G + βa2

k‖xk − T (xk)‖2
G ≤ ‖xk − T (xk)‖2

G

and so

‖xk+1 − T (xk+1)‖2
G − ‖xk − T (xk)‖2

G ≤ −βa2
k‖xk − T (xk)‖2

G ≤ 0.

Consequently, limk→+∞ a2
k‖xk − T (xk)‖2

G = 0.
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This result implies that (i) either limk→+∞ ak =0, or (ii) limk→+∞ ‖xk−T (xk)‖2
G =0.

In the former case, Lemma 1 implies that for any choice β < 1 − A, the sequence {xk}
converges to a solution. In case (ii), Proposition 2 and the fact that map T is contractive
imply that the sequence {xk} converges to the solution.
Scheme II:
To establish assumptions A1-A2, we establish the following lemma, demonstrating the
validity of assumption A2.

Lemma 2. If T is a contraction with contraction constant A, then limk→∞ ak = 0
implies that the sequence of iterates {xk} converges to the unique fixed point solution.

Proof. If limk→∞ ak = 0, but limk→∞ ‖xk − T (xk)‖G 
= 0, then

‖xk − T (xk)‖2
G ≤ ‖T (xk) − T (T (xk))‖2

G.

Since T is a contraction, ‖T (xk) − T (T (xk))‖2
G ≤ A‖xk − T (xk)‖2

G and, therefore,
limk→∞ ‖xk − T (xk)‖2

G ≤ A limk→∞ ‖xk − T (xk)‖2
G, which is a contradiction. Con-

sequently, limk→∞ ‖xk − T (xk)‖G = 0 and so Proposition 2 together with the contrac-
tiveness of map T (implying uniqueness of solution for the fixed point problem) implies
the conclusion. �


Lemma 2 showed that the step sizes ak satisfy assumption A2. Moreover,

1. If T is a contractive map relative to the ‖.‖G norm and we restrict the line search to
[0, 1], then assumptions A1 and A2 follow from Theorem (3).

2. In the affine, nonexpansive case when I − T = M for some matrix M , we do not
need to restrict the line search. In fact, since ‖T (d)‖2

G = ‖(I − M)d‖2
G ≤ ‖d‖2

G

is equivalent to dtMd ≥ 1
2‖Md‖2

G, ak = dt
kGM(dk)

‖Mdk‖2
G

≥ 1
2 , a choice of Ḡ = MtGM

implies, using strong-f-monotonicity, that Ak(x
∗) = ak ≥ 1

2 . That is, assumptions
A1 and A2 are valid.

Alternatively, for nonlinear, contractive mappings, the convergence of the iterates of
Scheme II follows from the observation that

‖xk+1 − T (xk+1)‖2
G ≤ ‖T (xk) − T (T (xk))‖2

G ≤ A‖xk − T (xk)‖2
G.

This result implies that the sequence {‖xk − T (xk)‖2
G} converges to zero. Proposition 2

and the contractiveness of map T then imply convergence to a fixed point solution. �

Scheme III:

Lemma 3. If T is a nonexpansive map relative to the ‖.‖G norm, then assumptions
A1-A2 are valid.

Proof. Observe that in Scheme III, gk
3(ak) = Gk(ak)−β‖xk(ak)−xk(0)‖2

G, ak ∈ [0, c1].
In addition, if c1 < 1, then the facts that ak ≤ c1 < 1 and T is a nonexpansive map
imply that Ak(x

∗) ≥ 1 − c1 > 0 and, as a result, assumptions A1 and A2 are valid.
On the other hand, if c1 = 1, then we need to assume that T is a contractive

map, that is, 0 < A < 1. Assumptions A1 and A2 are valid because Ak(x
∗) ≥

(1 − A)
‖xk−x∗‖2

G

‖xk−T (xk)‖2
G

> 0. �
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Scheme IV:
The next lemma shows that assumptions A1-A2 are valid.

Lemma 4. Consider a nonexpansive map T relative to the ‖.‖G norm. If
limk→+∞ ak = 1, then every limit point of the sequence of iterates {xk} is a fixed
point solution. Then assumptions A1 and A2 are valid.

Proof. If we choose step sizes ak ∈ [0, 1], then assumption A1 is valid. Moreover, since

‖xk+1 − T (xk+1)‖2
G ≤ ‖xk(

1

2
) − T (xk(

1

2
))‖2

G − β(ak − 1

2
)2‖xk − T (xk)‖2

G

≤ [1 − β(ak − 1

2
)2]‖xk − T (xk)‖2

G,

(we establish this result as part of Theorem 4), if a limit point of {xk} is not a solution,
then ak converges to 1

2 . This result combined with the nonexpansiveness of the map T ,
implies that for k0 large enough, for all k ≥ k0, Ak(x

∗) ≥ 1−ak ≥ 0, that is, assumption
A2 applies. �

Scheme V:
To prove assumptions A1-A2, we first establish the following lemma.

Lemma 5. If T is a contraction map, then limk→+∞ ak = 0 implies that the sequence
of iterates {xk} converges to the fixed point solution.

Proof. Assume T is a contraction with contractive constant A ∈ (0, 1) and so the
fixed point problem has a unique solution. If limk→+∞ ak = 0, then limk→+∞[(xk −
T (xk))

t (xk − T (xk))]2 ≤ limk→+∞[(T (xk) − T 2(xk))
t (xk − T (xk))]2. This result

implies that limk→+∞ ‖xk − T (xk)‖4 ≤ limk→+∞ A2‖xk − T (xk)‖4, but since A < 1,
this conclusion is a contradiction unless limk→+∞ ‖xk − T (xk)‖G = 0. �


Since ak = dt
kdk

dt
kMdk

, assumption A1 is valid when M2 and M are positive definite

matrices. In particular, if we select Ḡ = M+Mt

2 , then Ak(x
∗) becomes

Ak(x
∗) = (xk − x∗)tM2(xk − x∗) + (xk − x∗)tMtM(xk − x∗)

(xk − x∗)tMt (M+Mt

2 )M(xk − x∗)
− ak =

(replacing ak = dt
kdk

dt
kMdk

),

(xk − x∗)tM2(xk − x∗) + dt
kdk

dt
kMdk

− ak = (xk − x∗)tM2(xk − x∗)
dt
kMdk

.

Therefore, whenever M2 is a positive definite matrix,

Ak(x
∗) = (xk − x∗)tM2(xk − x∗)

dt
kMdk

≥ λmin(
M2+(M2)t

2 )

λmax(MtḠM)
= c > 0,

(for x 
= x∗). This relation implies assumptions A1-A2. �
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Scheme VI:
To establish assumptions A1-A2, we first establish the following lemma.

Lemma 6. Let T be a nonexpansive map relative to the G norm and suppose β > 4 in
the general nonlinear case (or β > 1 in the affine case). If either ak converges to zero
or to one, then every limit point of the sequence {xk} is a fixed point solution.

Proof. If ak converges to zero, then

lim
k→+∞

gk
6(0) = lim

k→+∞
‖dk‖4

G ≤ lim
k→+∞

g6(a) ≤ [1 − βa(1 − a)] lim
k→+∞

‖dk‖4
G. (24)

If limk→+∞ dk 
= 0, then for all a ∈ (0, 1), limk→+∞ gk
6(0) > [1 − βa(1 − a)]‖dk‖4

G,
contradicting (24). We conclude that limk→+∞ dk = 0 and, therefore, every limit point
of xk is a fixed point solution. Moreover, if ak converges to one, then

(i) If T is an affine map and if we choose β > 1, then every limit point of the sequence
{xk} is a fixed point solution.

0≤ lim
k→+∞

(dt
kM

tGdk)
2+(β − 1) lim

k→+∞
‖dk‖4

G+ lim
k→+∞

(‖dk‖2
G − dt

kM
tGdk)

2 = 0.

This result implies that ‖dk‖G converges to zero. Therefore, Proposition 2 implies
that every limit point of the sequence {xk} is a fixed point solution.

(ii) If T is a nonlinear, nonexpansive map, and β > 4, then every limit point of the
sequence {xk} is a fixed point solution.

Suppose that ak converges to one, β > 4, and no limit point of the sequence {xk} is a fixed
point solution. For ease of notation, let P xk (a) = [(xk(a)−T (xk(a)))tG(xk −T (xk))],
with xk(a) = xk + a(T (xk) − xk). If no limit point of the sequence xk is a fixed point
solution, then limk→+∞ P xk (0) = limk→+∞ ||xk − T (xk)||2G 
= 0. Notice that

lim
k→+∞

gk
6(ak) = lim

k→+∞
P xk (ak)

2 = lim
k→+∞

P xk (0)2 > 0.

For β > 4, we can choose an ā so that 1
2 −

√
1
4 − 1

β
< ā < 1

2 +
√

1
4 − 1

β
. which

implies that 1 −βā(1 − ā) < 0. Furthermore, since T is a nonexpansive map, Cauchy’s
inequality implies that,

P xk (ā)2 = [(xk(ā) − T (xk(ā)))tG(xk − T (xk))]
2

≤ ‖xk(ā) − T (xk(ā))‖2
G‖xk − T (xk))‖2

G ≤ ‖xk − T (xk))‖4
G = P xk (0)2.

Notice that

lim
k→+∞

gk
6(ā) = lim

k→+∞
P xk (ā)2 − βā(1 − ā) lim

k→+∞
P xk (0)2

< lim
k→+∞

P xk (0)2 − lim
k→+∞

P xk (0)2 = 0.

Therefore, 0 < limk→+∞ gk
6(ak) ≤ limk→+∞ gk

6(ā) < 0, which is a contradiction. This
result implies that limk→+∞ P xk (0) = ‖xk − T (xk))‖2

G = 0 and, therefore, that every
limit point of the sequence {xk} is a fixed point solution. �


Finally, Lemma 6 together with the nonexpansiveness of T imply assumptions A1
and A2.
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Appendix B - Optimal convergence rates for affine problems

Using Theorem 6, we will show that under appropriate conditions, when applied to
affine maps, the six potential optimization schemes have a better rate of convergence
than function iteration. In this discussion, we let aj

k and A
j
k(x

∗) with j = I, ..., V denote
the step size and the quantity Ak(x

∗) for Scheme j at the kth iteration.
Throughout this discussion, we assume I − T = M for some matrix M and let

T (xk) − xk ≡ dk = −Mxk so that xk(a) − T (xk(a) = Mxk(a) = Mxk + aM(T (xk) −
xk) = −dk + aMdk .

Notice that since I − T = M , the fixed points of the map T are any solution to the
homogeneous linear system Mx = 0. In particular, x∗ = 0 is a fixed point, which we
will use in some of our bounds (e.g., the use of Proposition 1). It is easy to extend this
analysis when x − T (x) = Mx − c for some given vector c so that fixed points are
solutions to the linear system Mx = c.

• T is firmly contractive and β < 1−A
2 for Scheme I. Let Ḡ = MtM + βI in

the definition of Ak(x
∗) and let G = I in the potential function. Then g

xk

1 (a) =
‖xk(a)−T (xk(a)))‖2+a2β‖xk−T (xk))‖2 = ‖dk−aMdk‖2+a2β‖dk‖2, which upon

expanding and setting the derivative with respect a to zero gives, aI
k = dt

kMdk

‖Mdk‖2+β‖dk‖2 .
If T is a firmly contractive map, that is,

‖T (x) − T (y)‖2 ≤ A‖x − y‖2 − ‖x − T (x) − y + T (y)‖2,

then the fact that x − T (x) = Mx implies, by expanding ‖T (x) − T (y)‖2, that

(x − y)tM(x − y) ≥ 1 − A

2
‖x − y‖2 + ||Mx − My‖2.

Since Proposition 1 implies that ‖Mdk‖ ≤ (1 + √
A)‖dk‖, then if β < 1−A

2 ,

aI
k − 1 ≥ 1 − A − 2β

2

‖dk‖2

‖Mdk‖2 + β‖dk‖2 ≥ 1 − A − 2β

2(β + (1 + √
A)2)

≡ q > 0.

In this case,
dt
kḠ(x∗−xk)

‖dk‖2
Ḡ

= dt
kMdk+β(xk−x∗)tM(xk−x∗)

‖Mdk‖2+β‖dk‖2 . Since T is firmly contractive, the

second term in the numerator is nonnegative and so
dt
kḠ(x∗−xk)

‖dk‖2
Ḡ

≥ aI
k and, therefore,

relation (7) implies that

(aI
k − 1)(AI

k(x
∗) − 1) ≥ (aI

k − 1)(aI
k − 1) ≥ q2.

Therefore, the condition of Theorem 6 holds and so optimizing the potential gx
1 (a)

has a better rate of convergence than function iteration.
• T is contractive for Scheme II. Observe that a choice of Ḡ = MtM and G = I

in g
xk

2 (a) implies from relation (7) that Ak(x
∗) = −2dt

kM
tM(xk−x∗)

‖dk‖2
Ḡ

− aII
k =

−2dt
kM

tM(xk−x∗)
‖Mdk‖2 − aII

k . But since aII
k = dt

kM
tdk

‖Mdk‖2 = dt
kM

tM(x∗−xk)

‖Mdk‖2 , Ak(x
∗) = aII

k

and so (aII
k − 1)(AII

k (x∗)− 1) = (aII
k − 1)2 ≥ 0. Therefore, Scheme II always has a
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guaranteed rate of convergence at least a good as function iteration. Furthermore, if the
matrix MtM−M is strongly positive definite (i.e. for all x, xt (MtM−M)x ≥ C‖x‖2,
for some C > 0) then since K1‖x‖2

Ḡ
≤ ‖x‖2 ≤ K2‖x‖2

Ḡ
for some positive con-

stants K1 and K2 and Ḡ = MtM , 1 − xtMx

‖x‖2
Ḡ

≥ C
‖x‖2

‖x‖2
Ḡ

≥ K1C ≡ q. Therefore,

(aII
k −1)(AII

k (x∗)−1) = (
dt
kM

tdk

‖Mdk‖2 −1)2 ≥ q2 > 0, satisfying the condition of Theo-

rem 6. In this case, aII
k = AII

k (x∗) ≤ 1−K1C are bounded away from 1 from below.
If M − MM is strongly positive definite (i.e. for all x, xt (M − MtM)x ≥ C‖x‖2,
for some C > 0), we obtain a similar result with aII

k = AII
k (x∗) ≥ 1 + K1C > 0

bounded away from 1 from above and so (aII
k − 1)(AII

k (x∗) − 1) ≥ q2 > 0 with
q ≡ K1C.

Note that for our example T (y, z) = b(z, y), when b < 1, the matrix MtM − M =
b

[
b −1
1 b

]

is strongly positive definite (with C = b2) and so the result we have just

established applies. In a simple single dimensional case, when T (x) = 1
2x, the matrix

MtM − M = − 1
4 is strongly negative definite. In this instance M = 1

2 , the optimal
step size is 2, and the potential optimization procedure finds a fixed point in one step.

• T is contractive for Scheme III. The argument is very similar to that for Scheme I.

For G = I , as in Scheme I, aIII
k = dt

kMdk

‖Mdk‖2−β‖dk‖2 , if ‖Mdk‖2 > β‖dk‖2 and
dt
kMdk

‖Mdk‖2−β‖dk‖2 < c1. Otherwise aIII
k = c1.

Observe that 1 − aIII
k ≥ 1 − c1 ≡ q > 0. If Ḡ = MtM − βI then

dt
kḠ(x∗−xk)

‖dk‖2
Ḡ

=
dt
kMdk−β(xk−x∗)tM(xk−x∗)

‖Mdk‖2−β‖dk‖2 . Since T is firmly contractive, the second term in the numer-

ator is nonnegative and so relation (7) implies that AIII
k (x∗) ≤ aIII

k and therefore
(1 − aIII

k )(1 − AIII
k (x∗)) ≥ q2, satisfying the condition of Theorem 6.

• T is firmly contractive for Scheme IV. If G = I , then aIV
k = β‖dk‖2+2dt

kMdk

2β‖dk‖2+2‖Mdk‖2 ≥
β‖dk‖2+2dt

kMdk

2‖Mdk‖2 . Arguing as in the analysis of Scheme I shows that

aIV
k −1 ≥ (1−A−β)

‖dk‖2

2(β‖dk‖2 + ‖Mdk‖2)
≥ (1−A−β)

1

2(β + (1 + √
A)2)

≡ q.

Therefore, a choice of β < 1 − A guarantees that aIV
k − 1 ≥ q = (1 − A − β)

1
2(β+(1+√

A)2)
> 0.

For a choice of Ḡ = MtM ,
dt
kḠ(x∗−xk)

‖dk‖2
Ḡ

= dt
kMdk

‖Mdk‖2 . If T is firmly contractive, then

relation (7), as in the discussion for Scheme I, implies that

AIV
k (x∗) − 1 = 2dt

kMdk − ‖Mdk‖2

‖Mdk‖2 − aIV
k

≥ dt
kMdk + 1−A

2 ‖dk‖2

‖Mdk‖2 − aIV
k ≥ (

1−A−β
2 )‖dk‖2

‖Mdk‖2 ≥ q,
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for all β < 1 − A. Therefore, a choice of β < 1 − A guarantees that (aIV
k − 1)

(AIV
k (x∗) − 1) ≥ q2, satisfying the condition of Theorem 6.

• T is contractive and M is symmetric for Scheme V (that is, for the steepest
descent method) Since M = Mt , choices of Ḡ = M and G = I imply that aV

k =
dt
kM(x∗−xk)

‖dk‖2
M

= ‖dk‖2

‖dk‖2
M

= AV
k (x∗). This scheme always at least as good a rate of conver-

gence as function iteration since (aV
k −1)(AV

k (x∗)−1) = (aV
k −1)2 ≥ 0. If the matrix

M−I is strongly positive definite (i.e. for allx,xt (M−I )x ≥ C‖x‖2, for someC > 0)
then for an appropriate constant K1, as in the analysis of Scheme II with Ḡ = M ,

(aV
k −1)(AV

k (x∗)−1) = (
dt
kdk

‖dk‖2
M

−1)2 ≥ (K1C)2 > 0. If I−M is strongly positive def-

inite, then we obtain a similar result and bound (aII
k −1)(AII

k (x∗)−1) ≥ (K1C)2 > 0.


