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Abstract. An interior point method for monotone linear complementarity problems acting in a wide neigh-
borhood of the central path is presented. The method has O(

√
nL)-iteration complexity and is superlinearly

convergent even when the problem does not possess a strictly complementary solution.
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1. Introduction

A large body of theoretical and experimental work done over the past decade has estab-
lished primal-dual interior point methods as the most efficient interior point methods
for linear programming (LP), quadratic programming (QP), and linear complementar-
ity problems (LCP). An excellent monograph [17] dedicated to this field describes the
most relevant theoretical results obtained prior to 1997, and contains insightful com-
ments on software development. Predictor-corrector methods play a special role among
primal-dual interior point methods. The classical representative of such methods is the
Mizuno-Todd-Ye algorithm (MTY) for LP [10]. This method operates between two l2
neighborhoods of the central path, N2(.25) ⊂ N2(.5). At a typical iteration of MTY one
is given a point z ∈ N2(.25) and one “predicts” a point z ∈ N2(.5) by carefully choosing
a steplength along the affine-scaling direction at z. It is shown that the predictor reduces
the primal dual gap by a factor of at least (1− χ̂/

√
n), where χ̂ = 1/

4
√

8 ≈ .5946. The
corrector produces a point z+ ∈ N2(.25) by taking a unit steplength along the centering
direction at z . It is shown that while improving centering, the corrector maintains the
same duality gap. Thus the predictor-corrector associates with each point z from the
neighborhood N2(.25) of the central path, a point z+ in the same neighborhood such
that the duality gap at z+ is smaller by a factor of at least (1− χ̂/

√
n) than at z. It follows

that the corresponding iterative procedure has O(
√

nL)-iteration complexity. The same
complexity is achieved by many primal-dual algorithms developed prior to MTY. How-
ever, it turns out that the duality gap of the sequence generated by MTY converges faster
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than indicated by the above complexity result, as shown by Ye et al. [20] who proved
that the duality gap converges quadratically to zero. This result answered a question
that had been open for a while in the interior-point literature : are there interior point
methods for LP that have both polynomial complexity and superlinear convergence?
MTY was the first algorithm for which both properties were proved to hold. MTY was
generalized to (monotone) LCP in [8], and the resulting algorithm was proved to have
O(
√

nL) iteration complexity under general conditions and superlinear convergence,
under the assumption that the LCP has a strictly complementary condition (i.e., when
the LCP is nondegenerate) and the iteration sequence converges. From [3] it follows
that the latter assumption always holds. Subsequently Ye and Anstreicher [19] proved
that MTY converges quadratically assuming only that the LCP is nondegenerate. The
nondegeneracy assumption is not restrictive, since according to [11] a large class of
interior point methods, which contains MTY, can have only linear convergence if this
assumption is violated. However as shown in [15, 16] it is possible to obtain superlinear
convergence even in the degenerate case by using higher order predictors.

In a recent paper [13], we have analyzed a predictor-corrector method for LCP with
the l2-neighborhoods replaced by δ-neighborhoods, where δ is the proximity measure
introduced in [7] (see also [14]), and proved that in this case the constant χ̂ determining
the guaranteed decrease of the primal dual gap is greater than 1. However, the neigh-
borhoods considered in that paper are still “small”. Or, as it is well known, the practical
performance of primal-dual interior point methods is better in “wide” neighborhoods of
the central path. Paradoxically, the iteration complexity of the methods that use wide
neighborhoods is worse than the complexity of the corresponding methods for small
neighborhoods. The most commonly used wide neighborhoods are based on the δ∞ or
the δ−∞ proximity measures (see the definitions in the next section). The best iteration
complexity achieved by interior point methods that act in these neighborhoods and use
only first order derivatives is O(nL) (see the monographs [14, 17, 18]). By using higher
order derivatives the iteration complexity can be reduced arbitrarily close to O(

√
nL),

as shown in [6] , or even to O(
√

nL) [21].
Predictor-corrector methods of MTY type are more difficult to develop and analyze

in wide neighborhoods of the central path. This is due to the fact that correctors based
on the first order centering direction (first order correctors) are rather inefficient in such
neighborhoods. It is known for example that one needs O(n) centering steps in order to
reduce the δ∞ proximity measure by a factor of .5 (see [2]).

Using a very elegant analysis, Gonzaga [5] has managed to show that a predictor-
corrector method based on a δ∞ neighborhood of the central path has O(nL)-iteration
complexity, the same as the best complexity achieved by any other known interior-point
method in this neighborhood that uses only first order derivatives. However, his predic-
tor-corrector method does no longer have the simple structure of MTY, where a predictor
is followed by just one corrector. In Gonzaga’s algorithm a predictor is followed by an
apriori unknown number of correctors. In fact the above mentioned complexity result is
proved by showing that the total number of correctors is at most O(nL). The structure
of Gonzaga’s algorithm makes it very difficult to analyze the asymptotic convergence
properties of the duality gap. No superlinear convergence results have been obtained so
far for this method.
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In the present paper we propose a predictor-corrector method based on a δ−∞ neigh-
borhood of the central path that has the same structure as the MTY algorithm: each
predictor is followed by exactly one corrector. We prove that this algorithm has O(nL)

iteration complexity under general conditions, and quadratic convergence of the primal-
dual gap under the assumption that the LCP is nondegenerate.

By using a higher order predictor we reduce the iteration complexity and prove su-
perlinear convergence even in the degenerate case. More precisely, by using a predictor
of order m we obtain algorithm with O(n1/2+ (n+2)1/(m+1)L) iteration complexity. If
m > 1, then the duality gap is superlinearly convergent under general conditions. The
Q-order of convergence of the primal-dual gap is m+ 1 in the nondegenerate case, and
(m+ 1)/2 in the degenerate case. Here m can be a constant, or can depend on the prob-
lem dimension. Since limn→∞ n(1/nω) = 1 for any constant ω > 0 (in fact, as shown in
Section 4, n(1/nω) ≤ e1/(ωe), for all n), it follows that by taking m = �(n+2)ω−1	, for
some ω ∈ (0, 1), the iteration complexity of our predictor-corrector algorithm reduces
to O(

√
nL), the same as the best complexity results for small neighborhoods (actually

the best iteration-complexity known so far for any interior point method for LP).
We mention that the numerical implementation of a predictor of order m involve

a matrix factorization, that costs O(n3) arithmetic operations and m + 1 backsolve,
each backsolve requiring O(n2) arithmetic operations. Therefore the cost of a predictor
of order �nω	 is still O(n3) arithmetic operations, and it is dominated by the cost of
the matrix factorization. A moderate order for the predictor suffices both for theoret-
ical and practical considerations. For example if we take ω = 0.1 then the values of
m = �(n+ 2)ω − 1	, corresponding to n = 106, n = 107, n = 108, and n = 109 are 3,
5, 6, and 7 respectively.

Higher order interior point methods in the wide neighborhood of the central path
have been considered before by Monteiro, Adler and Resende [12], Hung and Ye [6],
and Zhao [21]. The algorithms presented in those papers are not predictor-corrector
algorithms and no superlinear convergence results have been proved for any of them. In
fact it is very unlikely that any of those algorithms is superlinearly convergent.

Conventions. We denote by N the set of all nonnegative integers. R, R+, R++ denote
the set of real, nonnegative real, and positive real numbers respectively. For any real
number κ , � κ 	 denotes the smallest integer greater or equal to κ . Given a vector x, the
corresponding upper case symbol denotes, as usual, the diagonal matrix X defined by
the vector. The symbol e represents the vector of all ones, with dimension given by the
context.

We denote component-wise operations on vectors by the usual notations for real
numbers. Thus, given two vectors u, v of the same dimension, uv, u/v, etc. will denote
the vectors with components uivi , ui/vi , etc. This notation is consistent as long as com-
ponent-wise operations always have precedence in relation to matrix operations. Note
that uv ≡ Uv and if A is a matrix, then Auv ≡ AUv, but in general Auv �= (Au)v.
Also if f is a scalar function and v is a vector, then f (v) denotes the vector with com-
ponents f (vi). For example if v ∈ R

n+, then
√

v denotes the vector with components√
vi , and 1-v denotes the vector with components 1− vi . Traditionally the vector 1− v

is written as e− v, where e is the vector of all ones. Inequalities are to be understood in
a similar fashion. For example if v ∈ R

n, then v ≥ 3 means that vi ≥ 3, i = 1, . . . , n.
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Traditionally this is written as v ≥ 3 e. If ‖.‖ is a vector norm on R
n and A is a matrix,

then the operator norm induced by ‖.‖ is defined by ‖A‖ = max{‖Ax‖ ; ‖x‖ = 1}. As
a particular case we note that if U is the diagonal matrix defined by the vector u, then
‖U ‖2=‖ u ‖∞.

We frequently use the O(·) and �(·) notation to express order relationships between
functions. The most common usage will be associated with a sequence {xk} of vectors
and a sequence {τk} of positive real numbers. In this case xk = O(τk) means that there
is a constant K (dependent on problem data) such that for every k ∈ N,

∥
∥xk

∥
∥ ≤ Kτk .

Similarly, if xk > 0, xk = �(τk) means that (xk)−1 = O(1/τk). If we have both
xk = O(τk) and xk = �(τk), we write xk = �(τk).

Finally, we introduce a less standard notation. If x, s ∈ R
n, then the vector z ∈ R

2n

obtained by concatenating x and s will be denoted by � x, s �, i.e.,

z = � x, s � =
[

x

s

]

=
[

xT , sT
]T

. (1.1)

Throughout this paper the mean value of xs will be denoted by

µ(z) = xT s

n
. (1.2)

2. The horizontal linear complementarity problem

Given two matrices Q, R ∈ R
n×n, and a vector b ∈ R

n, the horizontal linear com-
plementarity problem (HLCP) consists in finding a pair of vectors z = � x, s � such
that

xs = 0
Qx + Rs = b

x, s ≥ 0.

(2.1)

The standard (monotone) linear complementarity problem (LCP) is obtained by taking
R = −I , and Q positive semidefinite. There are other formulations of the linear comple-
mentarity problems as well but, as shown in [1], all popular formulations are equivalent,
and the behaviour of a large class of interior point methods is identical on those formu-
lations, so that it is sufficient to prove results only for one of the formulations. We have
chosen HLCP because of its symmetry. The linear programming problem (LP), and the
quadratic programming problem (QP), can be formulated as an HLCP. Therefore, HLCP
provides a convenient, and general, framework for studying interior point methods.

Throughout this paper we assume that the HLCP (2.1) is monotone, in the sense that:

Qu+ Rv = 0 implies uT v ≥ 0, for any u, v ∈ R
n .

This condition is satisfied if the HLCP is a reformulation of a QP, and for many other
interesting classes of problems (see the excellent monograph [4]). If the HLCP is a
reformulation of an LP then the following stronger condition holds

Qu+ Rv = 0 implies uT v = 0, for any u, v ∈ R
n .
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In this case we say that the HLCP is skew-symmetric. Since in the skew-symmetric case
we can often obtain sharper estimates, we are going to consider this particular case as
well. Let us denote the set of all feasible points of HLCP by

F = {z = � x, s � ∈ R
2n
+ : Qx + Rs = b},

and the solution set (or the optimal face) of HLCP by

F∗ = {z∗ = � x∗, s∗ � ∈ F : x∗s∗ = 0}.
The relative interior of F ,

F0 = F
⋂

R
2n
++ ,

will be called the set of strictly feasible points, or the set of interior points. It is known
(see [9]) that if F0 is nonempty, then for any parameter τ > 0 the nonlinear system

xs = τe

Qx + Rs = b

has a unique positive solution. The set of all such solutions defines the central path C of
the HLCP. By denoting

z = � x, s �
and considering the quadratic mapping Fτ : R

2n→ R
2n

Fτ (z) =
[

xs − τe

Qx + Rs − b

]

we can write

C = {z ∈ R
2n
++ : Fτ (z) = 0, τ > 0} .

If Fτ (z) = 0, then necessarily τ = µ(z), where µ(z) is given by (1.2). The distance of
a point z ∈ F to the central path can be quantified by different proximity measures. The
following proximity measures have been extensively used in the interior point literature:

δ2(z) :=
∥
∥
∥
∥

xs

µ(z)
− e

∥
∥
∥
∥

2
, δ∞(z) :=

∥
∥
∥
∥

xs

µ(z)
− e

∥
∥
∥
∥∞

, δ−∞(z) :=
∥
∥
∥
∥
∥

[
xs

µ(z)
− e

]− ∥∥
∥
∥
∥∞

,

where [v]− denotes the negative part of the vector v, i.e. [v]− = max{−v, 0}.
By using the above proximity measures we can define the following neighborhoods

of the central path

N2(α) = {z ∈ F0 : δ2(z) ≤ α } ,

N∞(α) = {z ∈ F0 : δ∞(z) ≤ α } ,

N−∞(α) = {z ∈ F0 : δ−∞(z) ≤ α } ,
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where 0 < α < 1 is a given parameter. We have

N2(α) ⊂ N∞(α) ⊂ N−∞(α), and lim
α↑1

N−∞(α) = F .

Although the last relation above is well known, we give a short proof for the sake of
completeness. For any z ∈ F choose some z0 ∈ F0 and define z0(τ ) = (1− τ)z0+ τz.
Since z0(τ ) ∈ N−∞

(

δ−∞(z0(τ )
)

for any τ ∈ (0, 1), and limτ↑1 z0(τ ) = z, we deduce that
F = ⋃α∈(0,1) N−∞(α) =: limα↑1 N−∞(α). In this paper we will work with N−∞(α). We
note that this neighborhood can be written under the form:

N−∞(α) = D(1− α), where D(β) = {z ∈ F0 : xs ≥ βµ(z) } .

3. The first order predictor-corrector method

Let β be a given parameter in the interval (0, 1). At a typical iteration of our predictor-
corrector algorithm a point z = � x, s � ∈ D(β) has already been computed. Let z(θ)

be defined via a damped Newton step of the form

z(θ) = z+ θw ,

where

w = � u, v � = −F ′0(z)
−1F0(z) (3.1)

is the Newton direction of F0 at z. This direction is called the affine scaling direction,
and it can be computed as the solution of the linear system

su+ xv = −xs

Qu+ Rv = 0 .
(3.2)

We want to move along the affine scaling direction w as far as possible while preserving
the condition z(θ) ∈ D ((1− γ )β), where

γ := 1− β

n+ 1
. (3.3)

For any θ ≥ 0 we define

x(θ) = x + θu, s(θ) = s + θv, µ = µ(z), µ(θ) = µ(z(θ)) = x(θ)T s(θ)/n . (3.4)

Using (3.2) we obtain immediately

x(θ)s(θ) = (1− θ)xs + θ2uv , µ(θ) = (1− θ)µ+ θ2uT v/n . (3.5)

Let us denote

p = xs

µ
, q = uv

µ
.
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From Lemma 3.1 it follows that eT q ≤ .25n. It follows that

µ(θ) > µ(θ 0) = 0 , for all 0 ≤ θ < θ 0 = 2

1+
√

1− 4eT q/n
. (3.6)

The relation

x(θ)s(θ) ≥ (1− γ )βµ(θ) (3.7)

is equivalent with the following system of quadratic inequalities

(1− θ) (pi − (1− γ )β)+ θ2
(

qi − (1− γ )βeT q/n
)

≥ 0 , i = 1, . . . , n . (3.8)

Since z ∈ D(β) the above inequalities are satisfied for θ = 0. Let us denote by 
i the
discriminant of the i’th quadratic function in (3.8), i.e.


i = (pi − (1− γ )β)2 − 4 (pi − (1− γ )β)
(

qi − (1− γ )βeT q/n
)

.

The i-th equation in (3.8) is clearly satisfied for all θ ∈ (0, θ i ], where

θi =







∞ if 
i ≤ 0
1 if qi − (1− γ )βeT q/n = 0

2(pi−(1−γ )β)

pi−(1−γ )β+√
i
if 
i > 0 and qi − (1− γ )βeT q/n �= 0

.

Therefore we have

x(θ)s(θ) ≥ (1− γ )βµ(θ) > (1− γ )βµ(θ) ≥ 0 , for all 0 ≤ θ < θ , (3.9)

where

θ = min
{

θi : i = 0, 1, . . . , n
}

. (3.10)

From (3.2) and (3.4) it follows that Qx(θ)+Rs(θ) = b, and by using a standard conti-
nuity argument we can prove that x(θ) > 0, s(θ) > 0 for all θ ∈ (0, θ̌ ) . As a result of
the predictor step we obtain the the predicted point

z = z(θ ) . (3.11)

If θ = θ 0, then µ(z ) = 0, so that z is an optimal solution of our problem, i.e. z ∈ F∗.
If µ(z ) > 0 then z ∈ D((1 − γ )β) and a corrector step will be performed. Before
describing the corrector step, let us give a simple example that shows that it is possible
to have z ∈ F∗. We remark that if eT q = 0, which is always the case if HLCP is skew
symmetric, then θ ≤ 1. Indeed in this case there is an i such that qi ≤ 0 which implies
θ i ≤ 1. However if eT q > 0 then we can only guarantee that θ ≤ 2. This upper bound
is implied, for example, by the fact that θ 0 ≤ 2. In the following example we have
θ = 2 and z ∈ F∗.
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Example 1. Take n = 2 and

Q = I, R = −I, b = 0, x = s = e .

It is easily seen that z = � x, s � ∈ D(β), for any β ∈ (0, 1) and that the unique solution
of (3.2) is u = v = −.5e. In this case we have θ = 2 and z = � 0, 0 � ∈ F∗.

Let us assume now that z /∈ F∗.As we have seen above, in this case z ∈ D((1−γ )β) .
In the unlikely situation that z ∈ D(β), which can never happen if uT v = 0, then no
corrector is necessary. Otherwise we will use a corrector step based on the Newton
direction of Fµ(z ) at z

w = � u , v � = −F ′µ(z )(z )−1Fµ(z )(z ) , (3.12)

which is also called the centering direction at z . It can be computed by solving the
following linear system

s u + x v = µ(z )− x s

Qu + Rv = 0 .
(3.13)

Let us denote

x (θ) = x + θu , s (θ) = s + θv , z (θ) = � x (θ), s (θ) �,
µ = µ(z ), µ (θ) = µ(z (θ)) .

From (3.13) it follows that

x (θ)s (θ) = (1− θ)x s + θµ + θ2u v , µ (θ) = µ + θ2u T v /n . (3.14)

The relation

x (θ)s (θ) ≥ βµ (θ) (3.15)

is equivalent to the following system of quadratic inequalities in θ

f i(θ) := p i − β + θ (1− p i)+ θ2
(

q i − βeT q /n
)

≥ 0 , i = 1, . . . , n , (3.16)

where

p = x s

µ
, q = u v

µ
.

Let

αi = q i − βeT q /n , 
i = (1− p i)
2 − 4

(

q i − βeT q /n
)

(p i − β)

denote the leading coefficient, and the discriminant of f i(θ) . If 
i ≥ 0 and αi �= 0 we

denote by θ̌ i and θ̂ i the smallest and the largest root of f i(θ) respectively, i.e.

θ̌ i = p i − 1− sign(αi)
√


i

2αi

, θ̂ i = p i − 1+ sign(αi)
√


i

2αi

.
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In the proof of Theorem 3.2 we will show that (3.16) has a solution, so that the
following situation cannot occur for any i = 1, . . . , n


i < 0 and αi < 0 .

Therefore the i’th inequality in (3.16) will be satisfied for all θ ∈ Ti , where

Ti =







(−∞ , ∞) , if 
i < 0 and αi > 0

(

−∞, θ̌ i

]

∪
[

θ̂ i , ∞
)

, if 
i ≥ 0 and αi > 0

[

θ̌ i , θ̂ i

]

, if 
i ≥ 0 and αi < 0

(−∞ , (p i − β)/(p i − 1) ] , if αi = 0 and p i > 1

[ (p i − β)/(p i − 1) , ∞) , if αi = 0 and p i < 1

(−∞ , ∞) , if αi = 0 and p i = 1

.

It follows that (3.15) holds for all θ ∈ T where

T =
n
⋂

i=1

Ti . (3.17)

The steplength θ+ for the corrector is defined by

θ+ = min T . (3.18)

We note that if u T v > 0 then θ+ minimizes µ (θ) on T . If u T v = 0 then µ (θ) is
constant on T , and θ+ could be determined to minimize δ−∞(z (θ)) on T . In any case we
have

µ (θ+) ≤ µ (θ) , ∀θ ∈ T . (3.19)

With θ+ determined as above, the corrector step produces a point

z+ = z + θ+w ∈ D(β) , (3.20)

and another predictor-corrector iteration can be performed.
We can now define the whole algorithm by the following pseudo-code:

Algorithm 1
Given β ∈ (0, 1) and z0 ∈ D(β) :

Compute γ from (3.3);
Set µ0 ← µ(z0), k← 0;
repeat

(predictor step)
Set z← zk;
Compute affine scaling direction (3.1) by solving (3.2);
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Compute predictor steplength (3.10);
Compute z from (3.11);
If µ(z ) = 0 then STOP: z is an optimal solution;
If z ∈ D(β) then

set zk+1 ← z , µk+1 ← µ(z ) , k← k + 1, and RETURN;
(corrector step)
Compute centering direction (3.12) by solving (3.13);
Compute centering steplength (3.18);
Compute z+ from (3.20);

Set zk+1 ← z+ , µk+1 ← µ(z+) , k← k + 1, and RETURN;
until some stopping criterion is satisfied.

Polynomial Complexity. In what follows we will prove that the steplength θ com-
puted in the predictor step is bounded below by a quantity of the form χ/n, where χ is
a positive constant. This implies that Algorithm 1 has O(nL)-iteration complexity.

We start by recalling some well known facts from the interior point literature that
will be used in the proof of our main result (see, for example, [17]).

Lemma 3.1. Assume that HLCP (2.1) is monotone, and let w = � u, v � be the solution
of the following linear system

su+ xv = a

Qu+ Rv = 0

where z = � x, s � ∈ R
2n++ and a ∈ R

n are given vectors, and consider the index set:

I+(w) = {i ∈ {1, . . . , n} : uivi > 0} .
Then the following inequalities are satisfied:

‖ u v ‖∞ ≤
∑

i∈I+(w)

uivi ≤ 1

4

∥
∥
∥ (xs)−1/2 a

∥
∥
∥

2

2
.

The following result implies that Algorithm 1 has O(nL) iteration complexity.

Theorem 3.2. If HLCP (2.1) is monotone then Algorithm 1 is well defined and

µk+1 ≤
(

1− 3
√

(1− β)β

2(n+ 2)

)

µk, k = 0, 1, . . .

Proof. According to Lemma 3.1 we have

‖ q ‖∞ ≤ .25n, eT q ≤
∑

i∈I+(w)

qi ≤ .25n . (3.21)

Since z ∈ D(β), and the function t → t/(t + √t2 + 4at) is increasing on (0,∞) for
any a > 0, we deduce that

θi ≥ 2βγ

βγ +√
i

≥ 2βγ

βγ +
√

β2γ 2 + 4βγ (‖ q ‖∞ + eT q/n)

≥ 2

1+
√

1+ (βγ )−1(n+ 1)
.
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It follows that the quantity defined in (3.10) satisfies

θ ≥ 2

1+
√

1+ (βγ )−1(n+ 1)
= 2

√
β(1− β)√

β(1− β)+
√

(n+ 1)2 + β(1− β)
.

Since
√

β(1− β)+
√

(n+ 1)2 + β(1− β) ≤ .5+
√

(n+ 1)2 + .25 < n+ 2

we deduce that

θ > θ̃ := 2
√

(1− β)β

n+ 2
. (3.22)

Relations (3.9), (3.5) and (3.21) imply

µ = µ(θ ) < µ(θ̃) ≤
(

(1− θ̃ )+ .25 θ̃ 2
)

µ =
(

1− (1− .25 θ̃ ) θ̃
)

µ .

Since we assume that n ≥ 2, we have

1− .25 θ̃ = 1−
√

(1− β)β

2(n+ 2)
≥ 1−

√
(1− β)β

8
≥ 1− 1

16
= 15

16
,

and we obtain

µ ≤
(

1− 15
√

(1− β)β

8(n+ 2)

)

µ . (3.23)

Let us analyze now the corrector. Since z ∈ D((1− γ )β), we have

∥
∥
∥
∥
∥

√

x s

µ
−
√

µ

x s

∥
∥
∥
∥
∥

2

2

=
n
∑

i=1

µ

x is i

− 2n+
n
∑

i=1

x is i

µ

=
n
∑

i=1

µ

x is i

− n ≤ 1− (1− γ )β

(1− γ )β
n ,

and by applying Lemma 3.1 we deduce that

‖ u v ‖∞ ≤
ξn

4
µ ,

∑

i∈I+(w )

u iv i ≤ ξn

4
µ , where ξ := 1− (1− γ )β

(1− γ )β
. (3.24)

From (3.14) it follows that

x (θ)s (θ)

µ
≥ (1− θ)(1− γ )β + θ − .25ξnθ2

= (1− γ )β + θ(1− (1− γ )β)− .25ξnθ2

and

µ (θ) ≤
(

1+ .25 ξθ2
)

µ . (3.25)
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Therefore

x (θ)s (θ)− βµ (θ)

µ
≥ g(θ) := −γβ + θ(1− (1− γ )β)− .25ξ(n+ β)θ2 .

Using the definition of ξ together with the definition (3.3) of γ we obtain

g(θ) = 1− β

4β(n+ 1)

(

−4β2 + 4β(n+ 1+ β)θ − (n+ 1)(n+ 1+ β)θ2
)

.

Since

g(
2β

n+ 1
) = (1− β)β2

(n+ 1)2 ≥ 0 ,

we deduce that 2β/(n+ 1) ∈ T . By using (3.25) and n ≥ 2 we have

µ+ = µ (θ+) ≤ µ (
2β

n+ 1
) ≤

(

1+ (1− β)β(n+ 1+ β)

(n+ 1)2(n+ β)

)

µ .

Given that β(1− β) ≤ .25 and n ≥ 2 the above inequality implies that

µ+ ≤
(

1+ 3(1− β)β

2(n+ 1)2

)

µ . (3.26)

Finally, by using (3.23), we obtain

µ+ ≤
(

1− 15
√

(1− β)β

8(n+ 2)

)(

1+ 3(1− β)β

2(n+ 1)2

)

µ

≤
(

1− 15
√

(1− β)β

8(n+ 2)

)(

1+ 3β (1− β)

2n(n+ 2)

)

µ

≤
(

1− 15
√

(1− β)β

8(n+ 2)
+ 3β (1− β)

2n(n+ 2)

)

µ

≤
(

1−
(

15

8
− 3
√

(1− β)β

2n

) √
(1− β)β

(n+ 2)

)

µ

≤
(

1− 3
√

(1− β)β

2(n+ 2)

)

µ .

The proof is complete. ��

Quadratic Convergence We end this section by showing that if the HLCP has a
strictly complementary solution, then for large k the decrease of µk is much faster than
indicated by the bounds obtained in Theorem 3.2. In fact, we will prove that the sequence
{µ(zk)} is quadratically convergent in the sense that

µk+1 = O(µ2
k) . (3.27)

Let us denote by

F# := {z∗ = � x∗, s∗ � ∈ F∗ : x∗ + s∗ > 0}
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the set of all strictly complementary solutions of our HLCP. In what follows we will
assume that F# is nonempty. In this case we say that our HLCP is nondegenerate. As
mentioned in the introduction this assumption is not restrictive, since according to [11]
strict complementarity is a necessary condition for superlinear convergence for a large
class of interior point methods using only first order derivatives.

The following result was first proved for the standard monotone LCP in [19]. Its
extension for the HLCP is immediate, using for example the equivalences proved in [1]
(see also [3]).

Lemma 3.3. If F# �= ∅ then the solution w = � u, v � of ( 3.2) satisfies

| uivi | = O(µ2), ∀i ∈ {1, 2, . . . , n} ,
where µ = µ(z) is given by (1.2).

Theorem 3.4. If the HLCP has a strictly complementary solution, then the sequence
{µk} generated by Algorithm 1 converges quadratically to zero in the sense that (3.27)
is satisfied.

Proof. We use the same notation as in the proof of Theorem 3.2. In particular, we will
drop whenever possible the subscripts and superscripts k. From Lemma 3.3 it follows
that there is a constant ς1 such that

∑

i∈I+(w)

uivi ≤ ς1µ
2, ‖ u v ‖∞ ≤ ς1µ

2 .

Since z ∈ D(β) we deduce from (3.5) that

x(θ)s(θ) ≥ (1− θ)βµ− ς1θ
2µ2 ,

µ(θ) ≤ (1− θ)µ+ ς1θ
2µ2/n ∀θ ∈ (0, 1) . (3.28)

Therefore (3.7) holds for any θ satisfying the inequality

(1− θ)β − ς1θ
2µ ≥ (1− γ )β(1− θ)+ (1− γ )βς1θ

2µ/n ,

which is clearly valid if

γβ(1− θ) ≥ (1+ (1− γ )β/n)ς1µ .

It follows that the quantity defined in (3.10) satisfies the inequality

θ ≥ 1− (1+ (1− γ )β/n)ς1

γβ
µ = 1− ς2µ .

From (3.9) and (3.28) we deduce that

µ = µ(θ ) ≤ µ(1− ς2µ) ≤ (ς2 + ς1/n)µ2 ,

and by using (3.26) we obtain

µ(z+) ≤ (1+ 1.5β(1− β)/(n+ 1)2)µ

≤ (1+ 1.5β(1− β)/(n+ 1)2)(ς2 + ς1/n)µ2 .

The proof is complete. ��
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4. A higher order predictor-corrector

In this section we consider a predictor z(θ) = � x(θ), s(θ) � of order m of the form

z(θ) = z+
m
∑

i=1

wiθi , (4.1)

where the vectors wi = � ui, vi � are obtained as solutions of the following linear
systems

{

su1 + xv1 = −xs

Qu1 + Rv1 = 0
,

{

sui + xvi = −∑i−1
j=1 ujvi−j

Qui + Rvi = 0
, i = 2, 3, . . . , m

(4.2)

The m linear systems above have the same matrix, so that their numerical solution
requires only one matrix factorization and m backsolves. This involves O(n3) + m O(n2)

arithmetic operations.
We note that w1 is just the affine scaling direction used in the first order predictor. The

directions wi are related to the higher derivatives of the central path (see, for example,
[15]).

Given predictor (4.1) we define

θ̌ = sup
{

θ̃ > 0 : z(θ) ∈ D((1− γ )β) ,∀ θ ∈ [0, θ̃ ]
}

, (4.3)

where γ is given by (3.3). From (4.1) - (4.2) we deduce that

x(θ)s(θ) = (1− θ)xs +
2m
∑

i=m+1

θihi ,

µ(θ) = (1− θ)µ+
2m
∑

i=m+1

θi(eT hi/n) , (4.4)

where hi =
m
∑

j=i−m

ujvi−j .

Therefore the computation of (4.3) involves the solution of a system of polynomial
inequalities of order 2m in θ . Good lower bounds of the exact solution can be obtained
by a line search procedure. In what follows we will give simple lower bounds in explicit
form, that are sufficiently good for proving the theoretical results.

After computing θ̌ , or a suitable convenient lower bound, we define

θ = argmin
{

µ(θ) : θ ∈ [ 0, θ̌ ]
}

, z = z(θ ) . (4.5)

We have z ∈ D((1 − γ )β) by construction. Using the same corrector as in the previ-
ous section we obtain z+ ∈ D(β). By replacing the predictor in Algorithm 1, with the
predictor described above we obtain:
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Algorithm 2
Given a real number β ∈ (0, 1), an integer m ≥ 2, and a vector z0 ∈ D(β) :

Compute γ from (3.3);
Set k← 0;
repeat

(predictor step)
Compute directions wi = � ui, vi �, i = 1, . . . , m by solving (4.2);
Compute θ̌ from (4.3);
Compute z from (4.5) ;
If µ(z ) = 0 then STOP: z is an optimal solution;
Set z k ← z ;
If z ∈ D(β) then

set zk+1 ← z , µk+1 ← µ(z ) , k← k + 1, and RETURN;
(corrector step)
Compute centering direction (3.12) by solving (3.13);
Compute centering steplength (3.18);
Compute z+ from (3.20);

Set zk+1 ← z+ , µk+1 ← µ(z+) , k← k + 1, and RETURN;
until some stopping criterion is satisfied.

Let us denote

ηi =
∥
∥
∥Dui +D−1vi

∥
∥
∥

2
, where D = X−1/2S1/2 .

In the following lemma we obtain upper bounds for ηi . Our majorization technique is a
slight improvement over the one used in [6, 21].

Lemma 4.1.

√
∥
∥Dui

∥
∥2

2 +
∥
∥D−1vi

∥
∥2

2 ≤ ηi ≤ 2αi

√

βµ

(
1

2

√

n/β

)i

,

where the sequence

αi = 1

i

(

2i − 2
i − 1

)

≤ 1

i
4i

satisfies the following recurrence scheme

α1 = 1, αi =
i−1
∑

j=1

αj αi−j .

Proof. The first part of the inequality follows immediately, since by using (4.2) and the
monotony of the HLCP we deduce that ui T vi ≥ 0. Hence

∥
∥
∥Dui +D−1vi

∥
∥
∥

2

2
=
∥
∥
∥Dui

∥
∥
∥

2

2
+ 2ui T vi +

∥
∥
∥D−1vi

∥
∥
∥

2

2
≥
∥
∥
∥Dui

∥
∥
∥

2

2
+
∥
∥
∥D−1vi

∥
∥
∥

2

2
.
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By multiplying the first equations of (4.2) with (xs)−1/2 we obtain

Du1 +D−1v1 = −(xs)1/2

Dui +D−1vi = −(xs)−1/2
i−1
∑

j=1

DujD−1vi−j , i = 2, . . . , m .

Because z ∈ D(β) we have (xs)−1/2 ≤ 1/
√

βµ, and we deduce that

η1 = √nµ , ηi ≤ 1√
βµ

i−1
∑

j=1

∥
∥
∥Duj

∥
∥
∥

2

∥
∥
∥D−1vi−j

∥
∥
∥

2
, i = 2, . . . , m .

Since
∥
∥
∥Duj

∥
∥
∥

2

∥
∥
∥D−1vi−j

∥
∥
∥

2
+
∥
∥
∥Dui−j

∥
∥
∥

2

∥
∥
∥D−1vj

∥
∥
∥

2

≤
(∥
∥
∥Duj

∥
∥
∥

2

2
+
∥
∥
∥D−1vj

∥
∥
∥

2

2

)1/2 (∥
∥
∥Dui−j

∥
∥
∥

2

2
+
∥
∥
∥D−1vi−j

∥
∥
∥

2

2

)1/2

≤ ηj ηi−j ,

we obtain

ηi ≤ 1

2
√

βµ

i−1
∑

j=1

ηj ηi−j , i = 2, . . . , m .

The required inequalities are then easily proved by mathematical induction. ��
Theorem 4.2. If HCLP (2.1) is monotone then Algorithm 2 is well defined and for each
n ≥ 4 we have

µk+1 ≤
(

1− .027

√
β 3
√

1− β√
n m+1
√

n+ 2

)

µk , k = 0, 1, . . .

Proof. An upper bound of
∥
∥hi

∥
∥

2, i = m+1, m+2, . . . , 2m can be obtained by writing

∥
∥
∥hi

∥
∥
∥

2
≤

m
∑

j=i−m

∥
∥
∥Duj

∥
∥
∥

2

∥
∥
∥D−1vi−j

∥
∥
∥

2
≤

i−1
∑

j=1

∥
∥
∥Duj

∥
∥
∥

2

∥
∥
∥D−1vi−j

∥
∥
∥

2

= 1

2

i−1
∑

j=1

(∥
∥
∥Duj

∥
∥
∥

2

∥
∥
∥D−1vi−j

∥
∥
∥

2
+
∥
∥
∥Dui−j

∥
∥
∥

2

∥
∥
∥D−1vj

∥
∥
∥

2

)

≤ 1

2

i−1
∑

j=1

√
∥
∥Duj

∥
∥2

2 +
∥
∥D−1vj

∥
∥2

2

√
∥
∥Dui−j

∥
∥2

2 +
∥
∥D−1vi−j

∥
∥2

2

≤ 1

2

i−1
∑

j=1

ηj ηi−j ≤ 2βµ(.25n/β)i/2
i−1
∑

j=1

αj αi−j

= 2βµ(.25n/β)i/2αi ≤ 2βµ

i

(

2
√

n/β
)i

.
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It follows that

∥
∥
∥
∥
∥

2m
∑

i=m+1

θihi

∥
∥
∥
∥
∥

2

≤ 2βµ

m+ 1

(

2θ
√

n/β
)m+1 m−1

∑

j=0

(

2θ
√

n/β
)j

≤ 2βµ
(

2θ
√

n/β
)m+1

(m+ 1)
(

1− (2θ
√

n/β
)) .

For the remainder of this proof we assume that in the predictor step we have

θ ≤
√

β

6
√

n
. (4.6)

In this case, since m ≥ 2, we deduce that

∥
∥
∥
∥
∥

2m
∑

i=m+1

θihi

∥
∥
∥
∥
∥

2

≤ 3βµ

m+ 1

(

2θ
√

n/β
)m+1 ≤ βµ

(

2θ
√

n/β
)m+1

.

Using (4.4), ‖h ‖1 ≤
√

n ‖h ‖2, and z ∈ D(β) we obtain the following estimates

x(θ)s(θ) ≥ (1− θ)xs −
∥
∥
∥
∥
∥

2m
∑

i=m+1

θihi

∥
∥
∥
∥
∥

2

≥
[

(1− θ)β − β
(

2θ
√

n/β
)m+1

]

µ ,

µ(θ) = x(θ)T s(θ)

n
≤ (1− θ)µ+ 1

n

∥
∥
∥
∥
∥

2m
∑

i=m+1

θihi

∥
∥
∥
∥
∥

1

≤
[

(1− θ)+ β√
n

(

2θ
√

n/β
)m+1

]

µ .

Therefore the inequality

x(θ)s(θ) ≥ (1− γ )βµ(θ)

holds for any θ satisfying (4.6) and

γ (1− θ) ≥
(

1+ 1− γ√
n

)(

2θ
√

n/β
)m+1

.

It is easily seen that both the above inequality and (4.6) are satisfied by

θ̃ :=
√

β

6
√

n

m+1

√

γ

2
. (4.7)
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From (4.3) it follows that θ̃ ≤ θ̌ , and according to (4.5) we have

µ = µ(θ ) ≤ µ(θ̃) ≤
(

1−
√

β

6
√

n

m+1

√

γ

2
+ βγ

2
√

n 3m+1

)

µ

=
(

1−
(

1−
√

βγ

3m
m+1

√

2

γ

) √
β

6
√

n

m+1

√

γ

2

)

µ

≤
(

1−
(

1−
√

βγ

9
3

√

2

γ

) √
β

6
√

n

m+1

√

γ

2

)

µ

≤
(

1−
(

1− .14
√

βγ 2/3
)
√

β

6
√

n

m+1

√

γ

2

)

µ .

Since (1− β)/(n+ 2) ≤ γ ≤ (1− β)/n ≤ (1− β)/2 and
√

β(1− β)2/3 is maximized
for β = 3/7, we deduce that

µ ≤
(

1− .17

√
β√
n

m+1

√

γ

2

)

µ ≤
(

1− .17

√
β m+1
√

(1− β)/2√
n m+1
√

n+ 2

)

µ . (4.8)

Let us analyze now the corrector. From (3.26) and (4.8) we have

µ+ ≤
(

1+ 3β (1− β)

2(n+ 1)2

)

µ ≤
(

1+ 3β (1− β)

2(n+ 1)2

)(

1− .17

√
β m+1
√

(1− β)/2√
n m+1
√

n+ 2

)

µ

≤
(

1− .17

√
β m+1
√

(1− β)/2√
n m+1
√

n+ 2
+ 3β (1− β)

2(n+ 1)2

)

µ

≤
(

1− .13

√
β 3
√

1− β√
n m+1
√

n+ 2
+ 3β (1− β)

2n(n+ 2)

)

µ

≤
(

1−
(

1− 3
√

β
3
√

(1− β)2

.26
√

n(n+ 2)m/(m+1)

)

.13

√
β 3
√

1− β√
n m+1
√

n+ 2

)

µ .

Since n ≥ 4 and
√

β 3
√

(1− β)2 is maximized for β = 3/7, we deduce that

µ+ ≤
(

1− .027

√
β 3
√

1− β√
n m+1
√

n+ 2

)

µ ,

which completes the proof. ��
As an immediate consequence of the above theorem we obtain the following complexity
result:

Corollary 4.3. Algorithm 2 produces a point zk ∈ D(β) with xk T sk ≤ ε in at most
O
(

n1/2+1/(m+1) log
(

x0 T s0/ε
))

iterations.

Using an unpublished idea of Roos (used also in [21]) we can take

m = O(�(n+ 2)ω − 1	), for some ω ∈ (0, 1) ,

and obtain the following result:
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Corollary 4.4. Algorithm 2, with m = O(�(n+ 2)ω − 1	) produces a point zk ∈ D(β)

with xk T sk ≤ ε in a most O
(√

n log
(

x0 T s0/ε
))

iterations.

Proof. From Corollary 5.3 of [21] we have

lim
n→∞

(n+2)ω
√

n+ 2 = 1, and (n+2)ω
√

n+ 2 ≤ e1/ω e , n = 2, . . . ,

which proves our claim. ��
As we mentioned before, the numerical implementation of a predictor of order m requires
a matrix factorization and m backsolves. If the matrices Q and R are full, the cost of
a matrix factorization is O(n3) arithmetic operations, while the cost of a backsolve is
O(n2) arithmetic operations. Therefore, it appears that in order to minimize the cost,
we should choose ω close to 1. However, this reasoning is based on the “worst case
scenario” bounds given in Theorem 4.2. As we will see below, the convergence to zero
of the primal-dual gap is asymptotically much faster than indicated by those bounds, so
that in practice the optimal order m of the predictor should be chosen based on numerical
experiments. As mentioned in the introduction, a small value of ω seems to be reason-
able. For example if we take we take ω = 0.1, then the values of m = �(n+ 2)ω − 1	
corresponding to n = 106, n = 107, n = 108, and n = 109 are 3, 5, 6, and 7 respectively.

We end this paper by showing that the primal-dual gap of the sequence produced
by Algorithm 2 is superlinearly convergent. More precisely we will prove that µk+1 =
O(µm+1) if the HLCP (2.1) is nondegenerate, and µk+1 = O(µ(m+1)/2) otherwise. The
main ingredient of our proof is provided by the following lemma, which is an immediate
consequence of the results of [15] about the analyticity of the central path:

Lemma 4.5. The solution of (4.2) satisfies

ui = O(µi), vi = O(µi), i = 1, . . . , m , if HLCP (2.1) is nondegenerate ,

and

ui = O(µi/2), vi = O(µi/2), i = 1, . . . , m , if HLCP (2.1) is degenerate .

Theorem 4.6. The sequence µk produced by Algorithm 2 satisfies

µk+1 = O(µm+1) , if HLCP (2.1) is nondegenerate ,

and

µk+1 = O(µ(m+1)/2) , if HLCP (2.1) is degenerate .

Proof. Let us denote

ν =
{

m+ 1 , if HLCP (2.1) is nondegenerate ,

(m+ 1)/2 , if HLCP (2.1) is degenerate .

From Lemma 4.5 and equation (4.4) it follows that there is a constant � such that

x(θ)s(θ) ≥ β(1− θ)µ− θm+1�µν ,

µ(θ) ≤ (1− θ)µ+ θm+1�µν/n, ∀θ ∈ (0, 1) . (4.9)
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Hence x(θ)s(θ) ≥ (1− γ )βµ(θ) for any θ ∈ (0, 1) such that

βγ (1− θ) ≥ �(1+ (1− γ )β/n)µν−1 .

Therefore, there is a constant �1 such that

θ̌ ≥ 1−�1µ
ν−1 .

According to (4.5) , (4.9) we have

µ = µ(θ ) ≤ µ(1−�1µ
ν−1 ) ≤ �1µ

ν +�µν/n = (�1 +�/n)µν ,

and by using the first inequality in (4.9) we obtain

µ+ ≤
(

1+ β (1− β)

(n+ 1)2

)

µ ≤
(

1+ β (1− β)

(n+ 1)2

)

(�1 +�/n) µν .

The proof is complete. ��

5. Conclusions

We have presented a predictor-corrector interior point algorithm acting between two
wide neighborhoods of the central path of a monotone HCLP D(β) ⊂ D((1 − γ )β),
where β can be any number from the interval (0, 1) and γ is given by (3.3). The predictor
starts with a point z ∈ D(β) and produces a point z ∈ D((1− γ )β). The corrector uses
the centering direction at z and produces a point z+ ∈ D(β). The first order predic-
tor uses the affine scaling direction at z, and the corresponding algorithm has O(nL)

iteration complexity and is quadratically convergent for nondegenerate problems. If we
use a predictor of order m ≥ 2, then the corresponding algorithm is superlinearly con-
vergent even for degenerate problem. If we choose m = �(n + 2)ω − 1	, for some
ω ∈ (0, 1), then the algorithm has O(

√
nL) iteration complexity. To our knowledge this

is the first interior point algorithm acting in a wide neighborhood of the central path
that has both O(

√
nL) iteration complexity and superlinear convergence. An anony-

mous referee pointed out that our algorithm can be presented as a corrector-predictor
algorithm acting in D(β). In this variant one starts with a point in D(β) and performs a
corrector step, which produces a point closer to the central path, followed by a predictor
step that produces a point on the boundary of D(β). In this case the parameter γ does
not have to be explicitely given. While this can certainly be done, we have chosen to stay
within the “classical” setting of the original MTY predictor-corrector algorithm with
two explicitely defined neighborhoods of the central path.
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