
Digital Object Identifier (DOI) 10.1007/s10107-003-0469-4

Math. Program., Ser. A 100: 267–294 (2004)

Samir Elhedhli · Jean-Louis Goffin

The integration of an interior-point cutting plane method
within a branch-and-price algorithm

Received: March 19, 2001 / Accepted: July 1, 2003
Published online: September 30, 2003 – © Springer-Verlag 2003

Abstract. This paper presents a novel integration of interior point cutting plane methods within branch-and-
price algorithms. Unlike the classical method, columns are generated at a “central” dual solution by applying
the analytic centre cutting plane method (ACCPM) on the dual of the full master problem. First, we intro-
duce some modifications to ACCPM. We propose a new procedure to recover primal feasibility after adding
cuts and use, for the first time, a dual Newton’s method to calculate the new analytic centre after branching.
Second, we discuss the integration of ACCPM within the branch-and-price algorithm. We detail the use of
ACCPM as the search goes deep in the branch and bound tree, making full utilization of past information
as a warm start. We exploit dual information from ACCPM to generate incumbent feasible solutions and to
guide branching. Finally, the overall approach is implemented and tested for the bin-packing problem and the
capacitated facility location problem with single sourcing. We compare against Cplex-MIP 7.5 as well as a
classical branch-and-price algorithm.

Key words. branch-and-price – Column generation – Lagrangean relaxation – interior-point methods –
ACCPM

1. Introduction

The technique of using column generation within a branch-and-bound framework is
commonly called branch-and-price [1] or integer programming (IP) column generation
[38]. The approach was initiated by the pioneering work of Gilmore and Gomory on the
cutting stock problem [12], [13]; and prospered in the context of routing and schedul-
ing by Desrochers et al. [3], [4], [5]. Recently, there has been considerable interest in
this solution technique. Barnhart et. al. [1] give an overview of the approach describing
the different models and branching rules. Vanderbeck and Wolsey [38] develop a new
branching rule that generalizes existing ones and that is easily handled in the branch-
and-price framework.

By duality, branch-and-price is analogous to a Lagrangean-based branch-and-bound
where the Lagrangean dual problem is solved using a cutting plane method. Formulat-
ing the Lagrangean dual problem as a linear program yields the dual of the full master
problem that is solved at each node of the branch-and-price algorithm. Column genera-
tion solves the primal full master problem, starting with a restricted version and adding

S. Elhedhli: Department of Management Sciences, University of Waterloo, 200 University Ave. W. Waterloo,
ON, Ca N2L 3G1. e-mail: elhedhli@uwaterloo.ca

J.-L. Goffin: GERAD/Faculty of Management, McGill university, 1001 Sherbrooke W. Montreal, Qc, Ca
H3A 1G5. e-mail: jean-louis.goffin@mcgill.ca

Mathematics Subject Classification (1991): 20E28, 20G40, 20C20

268 S. Elhedhli, J.-L. Goffin

columns as needed; while cutting plane methods solve the dual full master problem,
starting with a relaxed version and appending constraints as necessary. In the sequel we
will not make a distinction between the primal and the dual full master problems, but
we will refer to the restricted master problem in the context of column generation and
relaxed master problem in the context of cutting plane methods. In this paper, we expose
the material from a Lagrangean relaxation perspective.

In a Lagrangean based branch-and-bound, the predominant task is the solution of
the Lagrangean dual problem, which is nondifferentiable. Most of the literature uses
subgradient optimization. Although simple to implement, subgradient methods are slow
to converge and have no clear stopping criteria [1]. Alternatively, the Lagrangean dual
can be formulated as a linear program with a large number of constraints and solved
using a cutting plane method. The approach starts with a subset of the constraints and
appends new ones as needed. The added constraints are chosen based on a query point
from the relaxed master problem. The choice of the query point distinguishes different
variants of cutting plane methods, equivalently, different variants of column generation
schemes. Classical branch-and-price methods use a dual extreme point of the restricted
master problem as a query point. By duality, this corresponds to Kelley’s cutting plane
method [21] where cuts are generated at an extreme point of the relaxed master prob-
lem. It is known that Kelley’s method suffers from tailing effects and that generating cuts
at a centre of the relaxed master problem’s feasible region is superior [30]. The main
difficulty with central point strategies resides in the calculation of centres of convex
sets. Calculating the centre of gravity, for example, is more difficult than optimizing the
original problem. The Analytic Centre Cutting Plane Method (ACCPM) [10] is designed
to overcome this difficulty. Cuts are generated based on the “analytic centre” concept
from the interior-point literature. The calculation of the analytic centre is comparable to
solving a linear program using an interior point method.

The first full implementation of ACCPM is provided in [6]. Since then, ACCPM
has shown promising results in practice on a variety of problems. See [11] for a survey
and [14] and [31] for the convergence analysis.

In this paper, we discuss the use of ACCPM within a branch-and-price framework
and describe in detail the different parts of this novel integration.

1.1. Contributions

Recent papers discussing branch-and-price methodologies have focused on the design
of a branching rule that is compatible with the branch-and-bound scheme [1], [37], [38],
[40]. This paper explores another venue in the efficient design of a branch-and-price
algorithm: the generation of columns. In classical branch-and-price methods, columns
are generated using a dual extreme point of the restricted master problem. We propose
to generate columns based on a dual central point. More precisely, the dual full master
problem is solved using ACCPM where the subproblems are called at the analytic centre
of a bounded subset of the dual feasible region.

From another perspective, the paper is a serious step in the efficient use of interior
point methods within branch-and-bound approaches for integer programming. Previous
attempts, mainly those by Mitchell [26] [27], have focused on the solution of the linear

The integration of ACCPM within a branch-and-price algorithm 269

programs using an interior-point method. Our approach is fundamentally different in
two ways. On the one hand, we use a Lagrangean bound rather than the linear-program-
ming (LP) bound. On the other hand, the interior point method is used in a cutting plane
context rather than as a direct solution method.

It is stated in [27] that the success of the simplex method in branch-and-bound
settings is mainly due to the warm start strategy in solving the linear programs. At a
child node, the dual simplex method is started using the final tableau at the parent node.
Exploiting this same warm start strategy when using an interior-point method is not pos-
sible. A recent paper by Gondzio [17] focuses on the use of a warm start strategy when
using an infeasible primal-dual method to solve the relaxed master problems. Before
reaching optimality of one problem, he saves a point that will be used as a warm start
for a subsequent problem. In this paper, we show how information generated at parent
nodes is used as a warm start in child nodes both within the branch-and-price framework
and within ACCPM. The computational experience clearly indicate the effectiveness of
this warm start strategy.

The contributions of this paper concern both ACCPM and the interior point branch-
and-price algorithm. First, we improve on ACCPM in three ways. We use a weighted
log barrier potential function instead of the Karmarkar potential function [20] in the
calculation of the analytic centre. In addition, we provide a new procedure for recover-
ing primal feasibility after adding cuts. When cuts are added, we extend the central-cut
procedure of [15] to the deep-cut case in order to generate a primal feasible point.

Second, we detail the different components of the interior point branch-and-price
method. We show how to use ACCPM as the search goes deep in the branch-and-bound
tree making use of past information as a warm start. We use, for the first time, a dual
Newton’s method within ACCPM to calculate the first analytic centre after branching
and exploit dual information from ACCPM to generate incumbent solutions and to guide
branching.

1.2. Outline

The remainder of the paper is organized as follows. In section 2, we use the capacitated
facility location problem with single sourcing (CFLSS) and the bin packing problem
(BP) to detail the branch-and-price algorithm. In Section 3, we discuss the solution
of the Lagrangean dual problems using ACCPM. In particular, the calculation of ana-
lytic centres and the recovery of primal feasibility after adding cuts. In section 4, we
describe the branching rule and the calculation of the analytic centre after branching.
Issues related to fathoming and generating incumbent feasible solutions are addressed
in section 5. In section 6, we present the computational results. Finally, we conclude and
provide venues for future research in section 7.

2. Branch-and-price algorithm

In this section we describe the branch-and-price algorithm. We use two related problems
for demonstration: the capacitated facility location problem with single sourcing and

270 S. Elhedhli, J.-L. Goffin

the bin-packing problem. The problems lead to two different formulations of the master
problems, with non-identical and identical subproblems respectively. We begin by dis-
cussing each problem, applying Lagrangean relaxation and formulating the Lagrangean
dual problems as linear programs with large number of constraints (master problems).

The branch-and-price algorithm proceeds like a branch-and-bound algorithm that
uses the solution of the master problems as a lower bound. The algorithm is sketched in
Figure 1 and its major components are detailed in the following sections.

It is worth noting that the solution of the master problem in step 2 can be done
using any cutting plane method, including ACCPM, Kelley’s classical method [21] and
Bundle methods [23].

2.1. The master problems

2.1.1. CFLSS: Non-identical subproblems. The capacitated facility location problem
with single-sourcing is a special case of the capacitated facility location problem where
each customer is serviced by a single facility. The problem has applications in tele-
communication and distribution networks design. It was treated in [22], [29], [32] and
recently in [18]. The formulation is given by

[CFLSS] : min
K∑

k=1

L∑

l=1
cklykl +

K∑

k=1
fkzk (1)

s.t.
K∑

k=1
ykl = 1 l = 1, .., L (2)

Initilaization: Intial upper bound: UB = ∞. Initial set of nodes to explore: S = {1}. Initial lower bound for
node 1 : LB0

1 = −∞. Initial matrix for node 1: A0
1 is empty.

Iteration: While there are nodes to explore (S is not empty)
1. Pick a node, say node n

2. Get a lower bound LBn from the full master problem.
– Use the matrix A0

n as a starting matrix.
– Use the lower bound LB0

n as an intial lower bound
– Get a lower bound LBn by applying a cutting plane/column generation method (ACCPM,

Kelley’s method [21] or Bundle methods [23]).
3. If possible, generate a feasible solution. This gives an upper bound UBn (section 2.3).
4. Update upper bound: UB = min (UBn, UB)

5. If LBn ≥ UB

– Fathom node n: S = S\{n}.
6. Else

– Branch: Create two new nodes n1 and n2 : S = S ∪ {n1, n2} (section 2.2).

7. Save warm starting information:
– Use the branching rule to split the columns of An into two matrices A0

n1
and A0

n2
. Use them as

initial matrices for the child nodes n1 and n2.
– The lower bound LBn is valid for the child nodes. Use it to initialize the lower bounds at child

nodes n1 and n2. LB0
n1
= LBn and LB0

n2
= LBn.

End while

Fig. 1. The main steps of the branch-and-price algorithm.

The integration of ACCPM within a branch-and-price algorithm 271

L∑

l=1
Dlykl ≤ Vkzk k = 1, ..., K (3)

ykl, zk ∈ {0, 1} k = 1, ..., K; l = 1, ..., L (4)

where the set of potential facilities and the set of customers are indexed by k and l

respectively. The facilities have capacity Vk and fixed cost fk. There is a variable cost
ckl for assigning customer demand Dl to facility k. The binary variables zk take value 1
when facility k is opened, while ykl take value 1 when customer l is assigned to facility
k. Constraints (2) are the single-sourcing constraints, while constraints (3) are capacity
constraints that force facilities to be opened before servicing any customer.

There are a number of papers that discuss the exact solution of [CFLSS]. An LP-
based branch-and-bound is used in [29]. Lagrangean-based heuristics and branch-and-
bound methods are proposed in [32] and [18]. Most of the Lagrangean methods relax
the single-sourcing constraints, which provides the sharpest Lagrangean bound. The
exact methods considered in [32] and [18] do not qualify as branch-and-price methods
since the master problems are not solved using a column generation approach. In [32],
subgradient optimization is used once at the root node and the multipliers determined
there are used without reoptimization throughout the branch-and-bound tree. In [18] ,
subgradient optimization is applied at every node, with the best dual multipliers at the
parent node being used to initialize the method at child nodes.

Relaxing constraints (3) in a Lagrangean fashion leads to a trivial problem that has
the integrality property. Thus it leads to the same bound as the LP-bound [9]. We choose
to relax constraint (2) using dual multipliers λl, l = 1, ..., L. This leads to the sub-
problem

[KPλ] : min
y,z

K∑

k=1

L∑

l=1
(ckl − λl)ykl +

K∑

k=1
fkzk (5)

L∑

l=1
Dlykl ≤ Vkzk k = 1, ..., K (6)

ykl, zk ∈ {0, 1} k = 1, ..., K; l = 1, ..., L. (7)

Subproblem [KPλ] decomposes into K independent problems that are easily
solvable as 0-1 knapsack problems. In the sequel, we use v(•) to denote the optimal

objective of problem (•). Therefore,
L∑

l=1
λl + v(KPλ) ≤ v(CFLSS) for all λ. The best

lower bound is given by the solution of the Lagrangean dual problem

max
λ

{
L∑

l=1

λl + v(KPλ)

}

. (8)

Problem (8) is a nondifferentiable optimization problem that can be re-formulated as a
linear program with a large number of constraints

max θ +
L∑

l=1
λl

s.t.
K∑

k=1

L∑

l=1
(ckl − λl)y

h
kl +

K∑

k=1
fkz

h
k ≥ θ; h = 1, ..., H

(9)

272 S. Elhedhli, J.-L. Goffin

where (yh, zh), h = 1, ..., H, denotes an enumeration of the integer solutions in the
bounded set

{

(y, z) :
L∑

l=1

Dlykl ≤ Vkzk, ∀k
}

where y = (ykl)k=1,...,K; l=1,...,L and z = (zkl)k=1,...,K .

Problem (9) is commonly called the full master problem. This formulation refers to
the aggregated case where the possibility of decomposing [KPλ] into K subproblems is
not exploited. In this paper, we use the disaggregated formulation where [KPλ] is split
into a set of K independent subproblems. Disaggregation is preferred to aggregation
since it allows the faster accumulation of cuts and accelerates the solution of the master
problem. The disaggregated full master problem is

[FMPCFLSS] : max
K∑

k=1
θk +

L∑

l=1
λl

s.t.
L∑

l=1
(ckl − λl)y

h
kl + fkz

h
k ≥ θk; h = 1, ..., Hk, k = 1, ..., K

(10)

where, for each k, ((yh
kl)l=1,...,L, zh

k), h = 1, ..., Hk, denotes an enumeration of the
integer solutions to the k-th bounded region:

{

(ykl, zk) :
L∑

l=1

Dlykl ≤ Vkzk

}

.

If we take the dual of [FMPCFLSS], we get the Dantzig-Wolfe master problem

min
K∑

k=1

Hk∑

h=1

(
L∑

l=1

ckly
h
kl + fkz

h
k

)

δkh

s.t.

Hk∑

h=1

δkh = 1 k = 1, ..., K

K∑

k=1

Hk∑

h=1

yh
klδkh = 1 l = 1, .., L

δkh ≥ 0 h = 1, ..., Hk, k = 1, ..., K.

(11)

This establishes the primal-dual relationship between the Lagrangean dual and the
Dantzig-Wolfe reformulation, subsequently, between branch-and-price and Lagrangean-
based branch-and-bound where the master problems are solved using a cutting plane
method. In the following section, we apply the same analysis to the bin-packing
problem.

The integration of ACCPM within a branch-and-price algorithm 273

2.1.2. BP: Identical subproblems. In the bin-packing problem (BP) we seek to find
the minimum number of bins of size V that can handle a set of L items, of varying sizes
Dl, l = 1, ..., L. Problem BP is a special case of CFLSS where ckl = 0 for k = 1, ..., K

and l = 1, ..., L, fk = 1 and Vk = V for all k = 1, ...K. The complete formulation
is

[BP] : min
K∑

k=1
zk (12)

s.t.
K∑

k=1
ykl = 1 l = 1, .., L (13)

L∑

l=1
Dlykl ≤ V zk k = 1, ..., K (14)

ykl, zk ∈ {0, 1} k = 1, ..., K; l = 1, ..., L (15)

where the set of bins and the set of items are indexed by k and l respectively. The
binary variable zk takes value 1 when bin k is used while ykl takes value 1 when item
l is assigned to bin k. Constraints (13) assign each item to exactly one bin. Constraints
(14) are capacity constraints that force bins to be used before containing any item. The
objective (12) minimizes the total number of bins used.

The bin-packing problem is a classical NP-hard problem for which different exact
solution methods were proposed. Martello and Toth [24] summarize previous work and
provide a branch-and-bound algorithm based on a combinatorial lower bound. Scholl
et. al. [34] use a hybrid method that combines tabu search and branch-and-bound. Vance
et al. [37] use a branch-and-price algorithm based on the Ryan-and-Foster branching
rule [33]. Valerio de Carvalho [36] applies a branch-and-price algorithm on an arc-flow
formulation of the bin-packing problem. Finally Vanderbeck [39] proposes a branch-
and-price algorithm based on the branching scheme in [38] and enhances the algorithm
using valid cuts, variable fixing and a rounding heuristic.

Since [BP] is a special case of [CFLSS], its Lagrangean relaxation leads to aggre-
gated and disaggregated full master problems as in (9) and (10), respectively. Exploit-
ing the fact that the subproblems are identical, the full disaggregated master problem
becomes

[FMPBP] max Kθ +
L∑

l=1
λl

s.t.
L∑

l=1
(−λl)y

h
l + zh ≥ θ, h = 1, ..., H

where H is the index set of the integer solutions to the K identical feasible regions

{

(yl, z) :
L∑

l=1

Dlyl ≤ V z; yl, z = 0, 1; l = 1, .., L

}

.

274 S. Elhedhli, J.-L. Goffin

The K subproblems are identical 0-1 knapsack problems of the form

min
y,z

L∑

l=1
(−λl)yl + z

L∑

l=1
Dlyl ≤ V z

yl, z ∈ {0, 1} l = 1, ..., L.

The dual of [FMPBP] is the Dantzig-Wolfe master problem

min
H∑

h=1

(
zh
)
δh

s.t.
H∑

h=1
δh = K

H∑

h=1
yh
l δh = 1 l = 1, ..., L

δh ≥ 0 h = 1, ..., H.

(16)

Note that in (11) there are K convexity constraints whereas in (16) there is a single
convexity constraint. In addition, K subproblems are solved and K cuts are added for
CFLSS, while a single subproblem is solved and a single cut is added for BP.

At each node of the branch-and-price algorithm, the Lagrangean dual problem is
solved using ACCPM. A node is fathomed if the solution of the Lagrangean problem
provides a feasible solution to the original problem, the node is infeasible or the lower
bound is greater than the incumbent. The solution of the Lagrangean dual problem is
feasible to the original problem if it satisfies the relaxed constraints (2). If the node is
not fathomed, branching is performed.

2.2. Branching

The branching rule should be designed to integrate easily into the column generation
scheme. The branching constraints are more efficient if they are appended to the sub-
problems so that infeasible columns are not generated in subsequent nodes. This implies
that the subproblem changes from one node to an other. The challenge is to design a
branching rule where the branching constraints are appended to the subproblems without
distorting its structure. Barnhart et al. [1] give a branching rule for set-partitioning type
of problems. The rule was originally proposed by Ryan-and-Foster [33] and is based
on the idea of putting variables into a single subset versus putting them in different
subsets. The rule is generalized in Vanderbeck [40], discussed in Barnhart et al. [1] and
is successfully used in Vance et al. [37], du Merle et al. [7] and Vanderbeck [39].

In this paper, we also use a Ryan-and-Foster branching rule. Investigating the coef-
ficient matrix in (11) or (16), we identify two rows ρ1 and ρ2 and two columns κ1 and
κ2 having this pattern

The integration of ACCPM within a branch-and-price algorithm 275

κ1 · · · κ2
ρ1 1 1
...

ρ2 1 0

For the bin-packing problem, there are always two rows ρ1 and ρ2 that correspond to
two items l1 and l2. The branching constraints are

ykl1 = ykl2 , k = 1, ..., K (17)

ykl1 + ykl2 ≤ 1, k = 1, ..., K. (18)

Note that (17) and (18) are not exclusive (they do not have to). If the inequality in (18)
is changed to an equality then it would imply that every bin should contain either of items

l1 or l2, violating the fact that every item is assigned to only one bin (
K∑

k=1
ykl = 1). In the

implementation, the columns are ordered according to the value of the dual multipliers
and those with the highest multipliers are checked first. This is motivated by the fact that
these columns are likely to be in an optimal solution. For the CFLSS, we look for two
customer indices l1 and l2 that correspond to rows ρ1 and ρ2 and use the branching rule
in (17-18). As there are K convexity constraints in (11), the first row ρ1 may correspond
to a convexity constraint k , while ρ2 corresponds to a customer index l. In this case, we
use the classical branching rule

yk l = 0; yk l = 1. (19)

See [1] for more details. In the algorithm presented in this paper, priority is given to the
Ryan-and-Foster branching rule (17-18). In case that is not possible, the classical rule
(19) is used.
For BP (correspondingly CFLSS), the left branching constraint (17) forces l1 and l2 to
be assigned to the same bin (served from the same facility), while the right branching
constraint (18) forces l1 and l2 to be assigned to different bins (served from different
facilities). Appending (17) is easily done by aggregating l1 and l2 into a single item

(customer zone) l̄ with demand Dl̄ = Dl1 + Dl2 and cost
ck1l1Dl1+ck1l2 Dl2

Dl1+Dl2
. Branching

constraint (18) is more difficult to deal with. Adding it to the subproblems will distort its
structure. According to Vance et al. [37], this difficulty at the subproblems pays back at
the master problem, as set-partitioning problems with disjoint constraints are more likely
to be integral. Furthermore, according to their computational experience, exploring the
right branches was hardly done. In du Merle et al., there was no difficulty incorporating
(18) into their quadratic 0-1 subproblem, as (18) is equivalent to yk1l1 .yk1l2 = 0, which
is reinforced by setting the corresponding cost coefficient to a sufficiently large number.
When using the classical branching rule, constraints (19) are easily handled when solv-
ing the knapsack problems. Item l is deleted from the list of items when yk l = 0 while
it is deleted and the capacity of facility k is changed to Vk −Dk l when yk l = 1.

276 S. Elhedhli, J.-L. Goffin

2.3. Generating feasible solutions

ACCPM has the advantage of providing a dual feasible solution at every iteration of the
cutting plane method. These dual solutions are feasible to the Dantzig-Wolfe formula-
tion in (11) (respectively (16)). By rounding them to 0 or to 1, a feasible solution can
be constructed. The dual multipliers δ that are nearer to 1 are rounded up, those that
are nearer to 0 are rounded down and the ones in between are rounded up or down in a
greedy manner so as to satisfy the constraints of (11) (respectively (16)).

For the CFLSS, we additionally use a rounding heuristic on the original variables
ykl =

∑

h

yh
klαkh. Generally, the resulting y does not satisfy both the single sourcing

constraints (2) and the capacity constraints (3). If the rounding threshold is significantly
high, say 0.9, it is likely that the capacity constraints are satisfied while the single sourc-
ing constraints are satisfied as inequalities. The heuristic tries to satisfy the demand for
the unassigned customers (ykl = 0) without exceeding the warehouse capacities. First
the opened facilities are investigated and if need arises those with the lowest fixed cost
are opened first.

For the BP, we look at the generated columns and try to select a subset of them that
satisfies (13). We put the columns in a sorted list and select them one by one until (13)
is satisfied or the heuristic fails. We use two sorting strategies: increasing order of the
dual multipliers and decreasing order of the bin waste, i.e. the slack in (14).

3. Solving the master problem: ACCPM

For ease of exposition, let us write the full master problem, whether [FMPCFLSS] or
[FMPBP], as

[FMP] : max{bT u : AT u ≤ c}.

Cutting plane methods use a subset of constraints to form a relaxed master problem

[RMP] : max{bT u : AT
q u ≤ cq}

where Aq is the matrix containing a subset of the rows of A and cq is the vector con-
taining the corresponding elements of c. The index q stands for a particular iteration of
the cutting plane method.

At each iteration, the solution of the relaxed master problem [RMP] is checked for
optimality for the full master problem [FMP]. If it is not optimal, an additional set of
constraints is appended and a new relaxed master problem is formed. The relaxation
becomes tighter as more constraints are added. The generation of constraints is done by
calling the oracle, i.e., solving the subproblems [KPλ] at a query point uq. In addition,
the oracle provides a lower bound zlower, that is updated as

zlower = max

{

zlower,

L∑

l=1

λl + v(KPλ)

}

.

The integration of ACCPM within a branch-and-price algorithm 277

Based on that, we form the localization set

Fq
D(zlower) =

{
u : bT u ≥ zlower; AT

q u ≤ cq

}

which is a bounded subset of the feasible region that contains any optimal solution to
[FMP]. To ensure its boundedness, the box constraints � ≤ u ≤ µ are added.

A cutting plane algorithm constructs a sequence of query points {uq} that are used
to generate cuts Bqu ≤ rq and to update the constraint matrix as follows

Aq+1 =
[
Aq, Bq

] ; cq+1 =
[

cq

rq

]

.

At each iteration, any dual feasible point of the relaxed master problem max{bT u :
AT

q u ≤ cq}, say xq , is dual feasible for the full master problem [FMP], and so it
provides an upper bound zupper = cT

q xq to v(FMP).

In Kelley’s cutting plane method [21], cuts are generated at the optimal solution of
[RMP]. Cuts generated at the centre of the localization set lead to faster methods [30].
Unfortunately, the calculation of the analytic centre of gravity is very hard. With this in
mind, ACCPM generates cuts at a central point that is fairly easy to compute. In par-
ticular cuts are generated at the analytic centre of Fq

D(zlower). The analytic centre is the
point that maximizes the product of the distances from the boundaries of the localization
set:

ua = arg max(bT u− zlower)
∏

j

(c
j
q − a

jT
q u)

where c
j
q is the j thcomponent of cq and a

j
q is the j th column of Aq. If we take the

Logarithm, ua is the point that maximizes the dual potential function .

ϕ
q
D(u) = log(bT u− zlower)+

∑

j

log(c
j
q − a

jT
q u).

To create a balance between the objective constraint bT u ≥ z lower and the rest of the
constraints, we use a weighted analytic centre that replicates the objective constraint m

times, i.e. it is given a weight of m :

ua = arg max(bT u− zlower)
m
∏

j

(c
j
q − a

jT
q u).

If we take the Logarithm, we get the weighted dual potential function

ϕ
q
D(u) = m log(bT u− zlower)+

∑

j

log(c
j
q − a

jT
q u). (20)

In this paper, we set m to the total number of cuts in the restricted master problem. The
analytic centre uq is used by the subproblems to generate new cuts and update the lower
bound zlower. The computation of analytic centers and the generation of cuts continues
until zupper − zlower falls below a desired tolerance level ε. The main steps of ACCPM
are described in Figure 2.

The main step inACCPM is the computation of the analytic centre, which is discussed
in the following section

278 S. Elhedhli, J.-L. Goffin

Initialization: Let F0
D = {u : bT u ≥ zlower : � ≤ u ≤ µ} = {u : bT u ≥ zlower : AT

0 u ≤ c0} where
A0 = [I,−I] and c0 =

(
µ
−�

)
. z0

lower and z0
upper are initial lower and upper bounds. The stopping

parameter is ε

Iteration: while
∣
∣zupper − zlower

∣
∣ > ε

1. Compute the analytic center uq of Fq

D(zlower).
2. The oracle returns the cuts BT

q u ≤ rq and a lower bound z
q

lower

3. Update the coefficient matrix Aq+1 = [Aq, Bq], cq+1 =
[
cq
rq

]

4. Update the lower bound zlower = max(z
q

lower , zlower)

5. Update the localization set
Fq+1

D (zlower) = {bT u ≤ zlower , AT
q+1u ≤ cq+1} and find an upper bound z

q
upper .

6. Update the upper bound zupper = min(zupper , z
q
upper)

End while

Fig. 2. The main steps of ACCPM.

3.1. Calculating the analytic centre

The analytic centre concept was introduced by Sonnevend [35] and is well studied in
the interior-point literature. Three different approaches are proposed to calculate it: the
primal, the dual and the primal-dual. For clarity of exposition, let us drop the iteration
index q.

The weighted analytic center of FD(zlower) is the unique point maximizing the
weighted dual potential function (20). More specifically, it is the point u that solves

max ϕD(s) = m log s0 +
m∑

i=1

log si

s.t. AT u+ s = c

bT u− s0 = zlower

s0,s > 0.

(21)

The necessary and sufficient first order optimality conditions of (21) are

Sx = e

s0x0 = m

x0b − Ax = 0, x, x0 > 0

AT u+ s = c, s > 0

bT u− zlower = s0, s0 > 0,

(22)

where e is the vector with appropriate dimension whose components are all ones.
Conditions (22) are also the first order optimality conditions when maximizing the
weighted primal log potential function

max ϕP (x) = −cT x + zlowerx0 +m log x0 +
m∑

i=1

log xi

s.t. Ax = x0b, x, x0 > 0,

(23)

The integration of ACCPM within a branch-and-price algorithm 279

and the primal-dual potential function

max ϕPD(x, s) = ϕP (x) +ϕD(s)

s.t. Ax = x0b, x, x0 > 0

AT u+ s = c, s > 0

bT u− s0 = zlower, s0 > 0.

(24)

Defining N as the diagonal matrix of (m, 1, ..., 1), x̃ = [x0
x

]
, c̃ = [−zlower

c

]
, s̃ = [s0

s

]

and Ã = [−b, A], the conditions in (22) are written as

S̃x̃ = Ne ≡ ν (25)

Ãx̃ = 0, x̃ > 0 (26)

ÃT u+ s̃ = c̃, s̃ > 0 (27)

In practice, an approximate analytic center is used. The quadratic centering condition
in (25) is replaced by the relaxed condition

∥
∥
∥S̃x̃ −Ne

∥
∥
∥ ≤ ξ, ξ < 1, (28)

which is usually called a proximity measure [41]. Any point (x̃, s̃) satisfying conditions
(28),(26),(27) is called a ξ -analytic center.

If only a primal feasible solution x̃ > 0 is available, then a primal Newton’s method
can be used to compute a ξ -center. If only a dual feasible solution s̃ > 0 is available,
then a dual Newton’s method can be used to compute a ξ -center. If both a primal and a
dual feasible point (x̃ > 0, s̃ > 0) is available then a primal-dual Newton’s method can
be used.

3.2. Computing the next analytic center after adding cuts

In ACCPM, the primal Newton’s method is favored over the dual or the primal-dual
ones. The reason is that the addition of cuts is likely to eliminate a big portion of the
dual feasible region leading to the infeasibility of the current analytic centre. Although,
it is difficult to recover dual feasibility, primal feasibility can be recovered easily. This
recovery is discussed next.

3.2.1. Recovering a primal feasible point. At iteration q ofACCPM, the relaxed master
problem is max{bT u : bT u ≥ zlower, A

T
q u ≤ cq}, for which the corresponding analytic

centre is uq, its dual slack is (s
q
0 , sq) and the corresponding primal analytic centre is

(x
q
0 , xq). Adding the cuts BT

q u ≤ rq and updating the lower bound to z lower, the new
relaxed master problem becomes max{bT u : bT u ≥ zlower, A

T
q u ≤ cq, BT

q u ≤ rq}. Not
only a new set of constraints BT

q u ≤ rq are added but also the objective cut bT u ≥ zlower
is shifted whenever the lower bound zlower is updated. Note that the old analytic centre
uq and its corresponding slack sq are not necessarily feasible with respect to the new

280 S. Elhedhli, J.-L. Goffin

cuts BT
q u ≤ rq . For clarity of exposition, let us drop the iteration index q and use a com-

pact notation where A← [−b, A], c← (−zlower, c), c← (−zlower, c), x ← (x0, x),

s ← (s0, s) as in (25-27).
Based on the first order optimality conditions at the old analytic centre u

X̄s̄ = ν̄,

AT u+ s̄ = c, s̄ > 0

Ax̄ = 0, x̄ > 0,

(29)

one must efficiently compute the new analytic centre u, that satisfies
(

Xs

�σ

)

=
[
ν

e

]

AT u+ s = c, s > 0

BT u+ σ = r, σ > 0

Ax + Bα = 0, x > 0, α > 0,

(30)

where α and σ are the new primal variables and dual slacks respectively, � =diag(α),

and ν̄ and ν are the old and new weights of the old cuts.As the objective cut bT u ≥ zlower

is the first constraint in AT u ≤ c, ν and ν̄ differ only in their first entry, where ν − ν̄

equals the number of rows of B.

Adding a cut to the localization set eliminates a portion of the dual space, which
leads in most cases to the infeasibility of the current analytic centre u. This corresponds
to introducing a new variable in the primal space. Dual feasibility is difficult to restore,
especially when the new cut is deep. Primal feasibility can always be recovered. The
idea is to find a search direction drecov

x and a step length ε that gets x̄ + εdrecov
x into the

interior of the dual feasible region of the new master problem, i.e.,

x = x̄ + εdrecov
x , Ax + Bα = 0, x > 0, α > 0.

We can generalize the direction proposed by Mitchell [25] to get

drecov
x = −N−1X̄2AT (AN−1X

2
AT)−1Be

α = ε.e

Hence, Adrecov
x = −AN−1X

2
AT (AN−1X

2
AT)−1Be = −Be and Ax + Bα = Ax̄ =

0. An appropriate step size ε should be taken to ensure that x > 0, i.e., x̄j + εdrecov
xj

> 0
for all j, the maximum value that ε can take is given by the ratio test

εmax = min
j
{− x̄j

drecov
xj

: dxj < 0}. (31)

We choose the step size ε∗ ∈ (0, εmax) as the minimizer of the potential function ϕp(x, α)

in the [drecov
x , e] direction.

A recent paper by Goffin and Vial [15] proposes a more rigorous way to recover
primal feasibility. In their paper they consider the non-weighted case with central cuts.

The integration of ACCPM within a branch-and-price algorithm 281

Here we extend their analysis to the weighted case with all types of cuts, especially deep
cuts.

Let us defineV = AX̄S̄−1AT as Dikin’s matrix at the point (x̄, s̄) andH = BT V −1B

as the variance-covariance matrix of the new cuts in the metric defined by Dikin’s matrix,
where X̄ = diag(x̄) and S̄ = diag(s̄). Taking the new iterates as u = u + drecov

u , x =
x̄ + drecov

x and s = s̄ + drecov
s , equations (30) reduce to

Sdrecov
x +Xdrecov

s = ν − ν̄ ≡ ν̂

AT drecov
u + drecov

s = c − c ≡ ĉ

Adrecov
x + Bα = 0

BT drecov
u + σ = r − BT u

�σ = e.

Solving the previous system leads to

drecov
u = −V −1(Bα + AS

−1
(ν̂ +Xĉ)); drecov

s = −AT drecov
y + ĉ

drecov
x = −S̄−1X̄drecov

s + S
−1

ν̂; σ = �−1e
(32)

where α is the solution to

−Hα + α−1 + g = 0, α > 0 (33)

where H and V are as defined previously, α−1=�−1e and g=BT ȳ−r−BT V AS−1[ν̂+
Xĉ].

Equation (33) is the first order optimality condition when maximizing

F(α) =
∑

j

ln αj − 1

2
αT Hα + gT α. (34)

F(α) is a concave, self-concordant barrier function corresponding to the quadratic
programming problem [2]

max
α>0
−1

2
αT Hα + gT α.

Furthermore,F(α) is bounded from above by the concave function eT α− 1
2αT Hα+gT α,

so it admits a finite solution. It can be maximized using Newton’s method where the
search direction dα is given by

dα = −[F
′′
(α)]−1F

′
(α) = (α−2 +H)−1(α−1 −Hα + g).

The complete procedure is summarized in Figure 3.
The new variables are then updated using the search direction (32), resulting in

u = u+ drecov
u ; s = s̄ + drecov

s

x = x̄ + drecov
x ; σ = α−1.

282 S. Elhedhli, J.-L. Goffin

Initialization: α0 > 0. ε accuracy.
Iteration: while ||dα || > ε

1. dα = (α−2 +H)−1(α−1 −Hα + g)

2. If ||dα || > 1 then
– β = max{F(α + βdα) : α + βdα > 0}

3. else
– β = 1

4. α← α + βdα

End while

Fig. 3. Maximizing F(α) using Newton’s method.

In our implementation, an initial α0 is calculated by approximating H by diag(Hjj).
Therefore, (33) reduces to a series of simple quadratic equations

Hjj (α
0
j)

2 − gjα
0
j − 1 = 0, ∀j (35)

whose positive solution is given by

α0
j =

gj +
√

g2
j + 4Hjj

2Hjj

, ∀j.

The Newton’s procedure then proceeds as described in Figure 3. This procedure does
not guarantee that x > 0 and s > 0. A primal point can be constructed by taking an
appropriate step ε so that x + εdrecov

x > 0 as done in (31). Unfortunately, there is
no guarantee to recover a dual feasible solution. This fact favors the primal Newton’s
method to calculate the next analytic centre when adding cuts.

3.2.2. The primal Newton’s method. In previous work [10], [11], the primal Newton’s
method in ACCPM was based on the maximization of Karmarkar’s potential function
[20]

{

max
x,x0>0

ϕKP (x) = (2m) log(cT x − zlowerx0)−
m∑

i=1

log xi : Ax = x0b

}

.

In this paper we use the weighted primal log potential function ϕp(x) defined in (23).
The primal Newton’s method starts from a strictly primal feasible point x and calculates
the primal direction dx as

dx = N−
1
2 X

[
ν

1
2 −N−

1
2 Xs(x)

]

s(x) = c − AT u(x)

u(x) = (AN−1X2AT)−1AN−1X2c.

The method proceeds iteratively, by updating the primal iterates as

x+ = x + αpdx.

The integration of ACCPM within a branch-and-price algorithm 283

The step size αp is chosen so that x+ > 0. In practice, a line search along dx is performed

on ϕp(x+αpdx). Let us define q(x) as ν
1
2 −N−

1
2 Xs(x). The quantity ηp(x) = ||q(x)||2

measures the proximity of a point x to the analytic centre. When far from the analytic
centre (ηp(x) > 1), the primal Newton’s procedure decreases the primal potential with
a constant amount. In the vicinity of the analytic centre (ηp(x) ≤ 1), a full Newton’s
step (αp = 1) guarantees strict primal feasibility and quadratic convergence [41]. The
full procedure is summarized in Figure 4.

3.3. Calculating the new analytic centre after branching

After branching, the constraint matrix is partitioned according to the branching con-
straints and the analytic centre is recalculated for each child node. In the generalACCPM
context, this corresponds to the case of calculating the analytic centre after dropping cuts.
To calculate the next analytic centre, we propose to use a dual Newton’s method.

Suppose that the master problem at a parent node is

max
{
bT u : bT u ≥ zlower, A

T u ≤ c, BT u ≤ r
}

where BT u ≤ r do not satisfy the branching constraints while AT u ≤ c do. In other
words, the matrix [A;B] corresponds to the coefficient matrix of the parent node, which
is partitioned to lead to the coefficient matrix A at one of the child nodes. Therefore, the
initial relaxed master problem at the child node is max

{
bT u : bT u ≥ zlower, A

T u ≤ c
}
.

Note that the lower bound z lower at the parent node is used as an initial lower bound at
the child node. Let us again use the compact notation as in paragraph 3.2.1. Therefore,
we have the analytic centre (x̄, s̄, u) of the following system

(
X̄s̄

�̄σ̄

)

=
[
ν̄

e

]

,

AT u+ s̄ = c, s̄ > 0,

BT u+ σ̄ = r, σ̄ > 0,

Ax̄ + Bᾱ = 0, x̄ > 0, ᾱ > 0.

(36)

Initialization: x0 > 0, Ax0 = 0. The centering parameter is 0 < ε < 1.

Iteration: while ||q(x)|| > ε

1. u(x) = (AN−1X2AT)−1AN−1X2c

2. s(x) = c − AT u(x)

3. q(x) = ν
1
2 −N−

1
2 Xs(x)

4. dx = N−
1
2 Xq(x)

5. If ||q(x)|| > 1 then
– αp = max{ϕp(x + αdx) : x + αdx > 0}

6. else
– αp = 1

7. x ← x + αpdx

End while

Fig. 4. The Primal Newton’s method to calculate the analytic centre.

284 S. Elhedhli, J.-L. Goffin

and we want to calculate the new analytic centre (x, s, u) to

Xs = ν,

AT u+ s = c, s > 0, (37)

Ax = 0, x > 0,

As the current analytic centre (u, s̄) is readily dual feasible, we use a dual Newton’s
method to compute the next analytic centre.

Starting from (u, s̄), the Newton’s method calculates search directions

du = −(ANS
−2

AT)−1ANS
−1

e

ds = −AT du = AT (ANS
−2

AT)−1ANS
−1

e

and selects a step size αd so that the new iterates (u + αddu, s + αdds) remain strictly
feasible, i.e. AT du + ds = 0 and s + αdds > 0. In practice, αd is found by a line search
along ϕD(s + αdds).

Let us define x(s) as NS
−1

(e− S
−1

ds) and q(s) as ν
1
2 −N−

1
2 Sx(s). The progress

of the method is measured by ||q(s)||which will approach 0 as the iterates approach the
analytic centre. When ||q(s)|| < 1, x(s) is primal feasible and the Newton’s procedure
will generate a sequence of iterates hat converges quadratically to the analytic centre.
When very far from the analytic centre, the step size αd is chosen so that the weighted
dual potential function is increased by a guaranteed constant amount. The complete dual
Newton’s algorithm is detailed in Figure 5.

4. Implementation and testing

The AC-BP algorithm is coded under the Matlab 5.3 environment. The subproblems
are solved using Cplex-MIP 7.5. Matlab is chosen for its sparsity handling capability
and easy programming environment that enables the testing of new ideas fairly quickly.
The testing is done on a Sun Ultra-10/440 workstation.

Initialization: s > 0, AT u+ s = c. The centering parameter is 0 < ε < 1.

Iteration: while ||q(s)|| > ε

1. q(s) = N
1
2 S−1AT (ANS−2AT)−1ANS−1e

2. x(s) = N
1
2 S−1(ν − q(s))

3. du = −(ANS−2AT)−1ANS−1e = −(ANS−2AT)−1Aq(s)

4. ds = N−
1
2 Sq(s)

5. If ||q(s)|| > 1 then
– α = max{ϕD(s + αds) : s + αds > 0}

6. else
– α = 1

7. s = s + αds

8. u = u+ αdu

End while

Fig. 5. The dual Newton’s method to calculate the analytic centre.

The integration of ACCPM within a branch-and-price algorithm 285

4.1. Implementation issues

For theAC-BP algorithm, we use a depth first search strategy until a first feasible solution
is identified. The algorithm exploits readily generated information both at the search tree
and ACCPM.

At the parent node, the columns that satisfy the branching rule and the best lower
bound zlower are used to initialize the problem at the child nodes. It usually takes few
calls to the subproblems to get to the new lower bound at the child node. At the level
of ACCPM, it takes few iterations to find the next analytic centre both when cuts are
added and when cuts are deleted. In addition, the incumbent is used to stop the iterations
at the level of ACCPM without the need to solve the full master problem to optimality.
As soon as the lower bound exceeds the incumbent, ACCPM is stopped and the node is
fathomed.

The predominant computational effort at every Newton’s iteration, is the solution of
the least squares problems. They are solved using Matlab’s standard least-squares solver
which is based on a Cholesky factorization.

To ensure the boundedness of the localization set, initial lower and upper bounds
(� ≤ u ≤ µ) are added. The choice of these box constraints is crucial since larger bounds
are expected to slow down the method. The choice of these bounds should be based on
the problem parameters. For instance, consider the relaxed Lagrangean problem [KPλ]

min
L∑

l=1
(ckl − λl)ykl + fkzk

s.t.
L∑

l=1
Dlykl ≤ Vkzk

ykl, zk = 0, 1 l = 1, ..., L.

This problem has a feasible solution of (ykl = 0, l = 1, ..., L; zk = 0), which
implies that the optimal objective value is nonpositive. Therefore the upper bound should
be set high enough to allow for the objective to be nonpositive. An upper bound of
maxk,l ckl +maxk fk achieves that. Let us suppose that the solution is given by ỹkl �= 0
and obviously z̃k = 1. Then, the following inequalities hold

L∑

l=1

(ckl − λl)ỹkl + fk̃zk =
L∑

l=1

(ckl −
{

max
k,l

(ckl)+max
k

fk

}

)ỹkl + fk̃zk

≤
L∑

l=1

(ckl −max
k,l

ckl)ỹkl −max
k

fk

L∑

l=1

ỹkl + fk ≤ 0.

The lower bound is set to mink(ckl), since for all λl < mink(ckl), the cost coefficients
(ckl − λl) are positive and so the optimal objective is zero.

At the level of ACCPM, we use a stopping criterion of

zupper − zlower

zlower
≤ 10−4

The criterion for the recovery of primal feasibility is 10−7, and for the approximate
analytic centre is 0.1 both for the primal and dual Newton’s methods.

286 S. Elhedhli, J.-L. Goffin

4.2. The test problems

To test the ACCPM-based branch-and-price approach (AC-BP), we use randomly gen-
erated instances of the capacitated facility location problem with single sourcing and the
bin-packing problem. The CFLSS instances are generated following the procedure in
[18].The coordinates of the facilities and customer zones are generated from Uniform(10,
200). The costs are determined as ckl = ρekl;where ekl is the Euclidean distance between
facility k and customer l and ρ is a positive scalar. The demand, capacities and fixed costs
are generated from Uniform(10,50), Uniform(100,500) and Uniform(300,700) respec-
tively. The instances range from 5 potential facility locations and 15 customers to 10
potential facility locations and 60 customers. They are denoted by CflssK L where K

is the number of potential facilities and L is the number of customer zones. The bin-
packing test problems are similar to the triplet instances in [8] where exactly 3 items are
assigned to each bin. These instances are denoted by BinT L where L is the number of
items. We also generate random instances of the bin-packing problem as done in [39].
The bin capacity is 100 and the item demands are generated from Uniform(1,100). These
instances are denoted by BinG L where L is the number of items.

4.3. The performance of ACCPM

In this section we evaluate the efficiency and stability of ACCPM. We assess the empir-
ical rate of convergence of the method and its speed in generating the analytic centres.

Figure 6 depicts the progress of the lower and upper bounds as iterations proceed
for an instance of CFLSS with 10 potential facility locations and 60 customers. As the
Figure reveals, the method does not suffer from tailing effects and the lower bound
converges rapidly when enough cuts are available. Two phases are identified. During
the first phase, the bound does not improve significantly as the method is still gathering
information about the problem by generating the necessary cutting planes. Then, the
bound improves sharply and approaches the optimum value. This aspect is very impor-
tant in a cutting plane scheme as once the bound improves the algorithm could be stopped
without sacrificing the quality of the lower bound.

During the first phase, it takes from 1 to 6 iterations to find the new analytic centre,
while during the second phase, it takes an average of 3 iterations. Similarly the Fig-
ure shows that during the first phase the recentering procedure takes a maximum of 2
iterations as compared to the second phase where it takes between 2 and 9 iterations.

Table 1 shows the average number of iterations to calculate the analytic centre (AC)
at the root node (Node 0) and at the rest of the nodes (Rest), the average number of
iterations to recover primal feasibility (recovering steps) at the root node (Node 0) and
at the rest of the nodes (Rest) and the number of dual iterations to recalculate the analytic
centre after branching (Dual Iters).

The number of Newton’s iterations to find the analytic centre ranges from 3 to 4 for
CFLSS and 1 to 2 for BP. Note that for CFLSS, the number of added cuts at every call
to the oracle corresponds to the number of potential facility locations, while for BP, it is
a single cut. Even though the number of added cuts for CFLSS ranges from 5 to 10, the

The integration of ACCPM within a branch-and-price algorithm 287

10 20 30 40 50 60 70 80 90

-2

-1

0

1

x 10
5

Bo
un

d
The progress of the bounds

 upper bound
 ____ lower bound
 best lower bound

10 20 30 40 50 60 70 80 90
0

5

10

Ne
wt

on
 i

te
rs

 Newton iters to compute the Analytic centre

10 20 30 40 50 60 70 80 90
0

5

10

 Phase I Phase II

Ne
wt

on
 it

er
s

 Newton iters to find a primal feasible point

Fig. 6. The progress of the lower and upper bounds in ACCPM.

number of iterations needed to calculate the analytic centre is fairly constant (between
3 and 4) for all nodes.

The number of steps to recover primal feasibility is around 3 for the CFLSS. For BP
it is 0 because the approximate solution of (35) for the single cut case gives the optimal
value.

The dual Newton’s method that is used to find the first analytic centre after branching
requires a number of iterations which is around 10 for the CFLSS and around 6 for the
BP. This relatively high number may be due to the fact that a large number of cuts from
the parent node is eliminated by the branching rule when initializing the child node.

4.4. The performance of the branch-and-price algorithm

In this section we discuss the performance of the analytic centre branch-and-price
(AC-BP) algorithm. We compare it against the commercial solver Cplex-MIP 7.5 as well
as against a classical branch-and-price algorithm (K-BP). K-BP is coded in Matlab and
is similar to AC-BP, except for the use of Kelley’s cutting plane method [21] instead of
ACCPM. We compare the three solution methods based on the number of nodes explored
and the CPU time required. We impose a time limit of 60 minutes for the randomly gen-
erated bin-packing instances (BinG), 120 minutes for the triplet bin-packing instances
(BinT). There is no time limit for the CFLSS instances.

Table 2 displays the quality of the Lagrangean bound (Lag Bnd) and the quality
of the LP bound (LP Bnd) as a percentage of the optimal solution. As expected, the

288 S. Elhedhli, J.-L. Goffin

Table 1. Summary statistics for ACCPM

AC Recentering Steps Dual

Node 0 Rest Node 0 Rest Iters

BinG 10 2 0.00 0 0.00 4.40
BinG 20 2 1.25 0 0.00 5.95
BinG 30 1 3.38 0 0.00 4.67
BinG 40 2 0.83 0 0.00 5.54
BinG 50 1 1.50 0 0.00 3.43
BinG 60 2 2.49 0 0.00 7.08
BinG 70 1 1.89 0 0.00 6.24
BinG 80 1 1.59 0 0.00 5.72
BinG 90 2 1.14 0 0.00 6.76
BinG 100 1 2.50 0 0.00 6.62
BinG 120 1 2.23 0 0.00 6.54
BinG 140 2 1.65 0 0.00 6.70
BinG 170 2 0.32 0 0.00 6.27
BinG 200 1 2.15 0 0.00 6.91
BinT 12 1 — 0 — —
BinT 21 1 — 0 — —
BinT 30 1 — 0 — —
BinT 51 1 — 0 — —
BinT 60 1 2.73 0 0.00 5.57
BinT 72 1 2.95 0 0.00 6.23
BinT 81 1 1.96 0 0.00 5.56
BinT 90 1 3.74 0 0.00 7.00
BinT 102 1 3.04 0 0.00 6.28
BinT 111 1 3.50 0 0.00 7.98
BinT 120 1 2.45 0 0.00 6.23
BinT 141 1 3.42 0 0.00 7.44
BinT 150 1 3.49 0 0.00 8.97
BinT 180 1 2.64 0 0.00 6.64
BinT 210 1 2.88 0 0.00 7.96
Cflss5 15 3 — 2 — —
Cflss5 20 4 2.10 2 1.54 9.46
Cflss5 25 3 4.28 2 3.29 9.26
Cflss5 30 3 3.23 2 3.28 10.07
Cflss8 24 4 3.74 3 2.74 9.43
Cflss8 32 4 — 3 — 0.00
Cflss8 40 4 3.68 2 2.29 10.66
Cflss8 48 3 3.25 3 3.24 12.25
Cflss10 30 3 2.93 2 2.31 9.36
Cflss10 40 3 2.76 3 1.64 9.34
Cflss10 50 3 3.03 2 3.29 10.19
Cflss10 60 4 3.23 2 2.79 9.73

—: no branching was done.

Lagrangean bound is superior to the LP bound on all instances. Specifically, the
Lagrangean bound is on average 99.12% , while the LP bound is on average 90.41%
over all BinG and CFLSS instances (for BinT instances, the two bounds are 100%). The
rest of the columns of Table 2 display the number of nodes of the search tree (Nodes)
and the CPU time (CPU) for AC-BP, Cplex-MIP 7.5 and K-BP respectively as well as
the optimality gap (Gap) for problems that Cplex-MIP 7.5 fails to solve to optimality.

For BinG instances, AC-BP and K-BP solve all the instances exploring a comparable
number of nodes (32.27 for K-BP and 37.07 for AC-BP). AC-BP, however, requires on

The integration of ACCPM within a branch-and-price algorithm 289

Table 2. Comparsion between AC-BP, K-BP and Cplex-MIP 7.5

LP Lag. AC- BP Cplex-MIP 7.5 K-BP

bound bound Nodes CPUb Nodes Gap CPUb Nodes CPUb

BinG 10 77 92.86 4 0.03 77 — 0.01 4 0.05
BinG 20 83 95.83 9 0.06 511 — 0.08 9 0.15
BinG 30 93.13 96.19 16 0.17 10082 7.14%(1)a 60 16 0.41
BinG 40 96.84 100 18 0.3 505 — 0.29 20 0.76
BinG 50 93.7 98.15 24 0.54 5327 3.84%(1) 60 23 1.38
BinG 60 89.12 100 18 0.69 223 — 0.93 26 2.16
BinG 70 87.74 100 20 1.04 460 — 2.47 25 3.62
BinG 80 97.17 99.07 31 2.79 4057 2.43%(1) 60 37 10.05
BinG 90 91 99.05 38 3.21 5494 1.92%(1) 60.1 31 7.86
BinG 100 92.98 100 41 5.07 1271 — 22.95 41 8.9
BinG 120 93.87 100 48 7.81 1458 — 30.93 52 23.42
BinG 140 91.91 99.35 60 17.78 1066 9.86%(7) 60 62 30.41
BinG 150 93.42 99.38 67 20.32 1009 7.89%(6) 60 66 39.67
BinG 170 96.55 99.89 69 28.75 527 ∗ ∗ ∗ 60 71 50.13
BinG 200 97.43 100 93 57.69 415 ∗ ∗ ∗ 60 1 71.18

Min 77 92.86 4 0.03 4 0.05
Max 97.43 100 93 57.69 71 71.18

Average 91.66 98.65 37.07 9.75 32.27 16.68

BinT 12 — — 1 0.02 10 — 0.01 1 0.06
BinT 21 — — 1 0.07 2066 — 0.06 1 0.31
BinT 30 — — 1 0.21 8686 10%(1)a > 120 1 0.89
BinT 51 — — 1 1.34 2085 5.88%(1) > 120 1 3.58
BinT 60 — — 1 1.94 3919 5%(1) > 120 1 21.41
BinT 72 — — 1 3.76 3280 4.16%(1) > 120 1 34.21
BinT 81 — — 1 6.41 10276 3.70%(1) > 120 1 37.68
BinT 90 — — 1 12.09 2439 3.33%(1) > 120 1 56.54

BinT 102 — — 1 15.69 9865 2.94%(1) > 120 1 78.62
BinT 111 — — 14 22.61 3130 2.70%(1) > 120 #(99.72%)d > 120
BinT 120 — — 20 34.03 7098 2.50%(1) > 120 #(99.90%) > 120
BinT 141 — — 36 55.96 5303 2.12%(1) > 120 #(99.50%) > 120
BinT 150 — — 34 88.8 5116 ∗ ∗ ∗ > 120 #(99.52%) > 120
BinT 180 — — 17 118.92 5594 ∗ ∗ ∗ > 120 #(82.75%) > 120

Min 1 0.02c 10 2.12c 0.06c

Max 36 15.69c 10276 10c 78.62c

Average 9.29 4.61c 4919.07 4.23c 25.92c

Cflss 5 15 92.07 100 1 0.1 1 — 0.02 1 0.55
Cflss 5 20 89.5 97 109 3.74 3 — 0.03 101 5.43
Cflss 5 25 84.8 99.96 5 0.73 1 — 0.04 3 0.68
Cflss 5 30 90.86 99.59 11 1.38 1 — 0.05 11 2.51

vCflss 8 24 87.87 100 1 0.58 1 — 0.06 1 2.1
Cflss 8 32 89.59 99.94 21 2.11 1 — 0.07 37 5.5
Cflss 8 40 95.87 99.98 25 3.71 16 — 0.21 27 20.33
Cflss 8 48 80.32 99.9 41 12.75 46 — 0.57 180 69.9
Cflss 10 30 91 99.03 193 14.51 44 — 0.56 192 30.4
Cflss 10 40 92.61 100 1 1.79 14 — 0.13 1 9.93
Cflss 10 50 90 99.98 47 8.92 40 — 0.67 55 29.78
Cflss 10 60 85.32 99.52 39 28.38 100 — 1.84 175 219.06

Min 80.32 97 1 0.1 1 0.02 1 0.55
Max 95.87 100 193 28.38 100 1.84 192 219.06

Average 89.15 99.58 41.17 6.56 22.33 0.35 65.33 33.01

Average over
BinG &CFLSS 90.41 99.12 39.12 8.16 48.85 24.85

Instances

(.)a : Difference between lower and upper bound.
(.)b : All CPU’s in minutes.
(.)c : Taken over the first 9 instances (those solved successfully by AC-BP and K-BP).
∗ ∗ ∗ : Failed to find a feasible solution within the allowed time.
: Did not get past node 0. (.)d : found lower bound as a percentage of best lower bound.
— : Gap = 0.

290 S. Elhedhli, J.-L. Goffin

Table 3. Comparsion between AC-BP and K-BP: Warm starting

Problem A-BP K-BP

SP0 SPrest CPU0 CPUrest SP0 SPrest CPU0 CPUrest
BinG 10 16 4 0.01 0 12 3 0.03 0.01
BinG 20 36 2.62 0.03 0 33 1.88 0.1 0.01
BinG 30 50 2.93 0.07 0 55 2.4 0.23 0.01
BinG 40 69 2.71 0.12 0.01 76 2.58 0.43 0.01
BinG 50 86 2.57 0.17 0.01 104 2.59 0.84 0.01
BinG 60 94 2.59 0.24 0.01 120 3.44 1.18 0.02
BinG 70 103 2.58 0.34 0.02 158 2.79 2.37 0.02
BinG 80 156 2.93 0.9 0.03 228 1.64 7.4 0.03
BinG 90 162 2.14 1.06 0.02 201 3.57 5.06 0.05

BinG 100 188 2.38 1.59 0.03 208 1.82 4.97 0.04
BinG 120 207 2 2.77 0.03 307 2.45 14.93 0.07
BinG 140 241 2.68 4.64 0.13 326 3.98 17.02 0.1
BinG 150 252 2.67 5.73 0.11 371 3.15 22.3 0.12
BinG 170 339 2.18 11.08 0.08 442 2.09 28.46 0.09
BinG 200 425 2 24.01 0.1 564 — 70.1 —

Min 16 2 0.01 0 12 1.64 0.03 0.01
Max 425 4 24.01 0.13 564 3.98 70.1 0.12

Average 161.6 2.6 3.52 0.04 213.67 2.67 7.52 0.04

BinT 12 22 — 0.02 24 — 0.06 —
BinT 21 48 — 0.07 62 — 0.3 —
BinT 30 74 — 0.2 96 — 0.87 —
BinT 51 142 — 1.3 167 — 3.53 —
BinT 60 178 — 1.88 299 — 21.24 —
BinT 72 210 — 3.66 336 — 33.95 —
BinT 81 247 — 6.26 355 — 37.38 —
BinT 90 268 — 11.92 409 — 56.14 —

BinT 102 301 — 15.47 471 — 78.07 —
BinT 111 351 2 17.56 0.18 521 — 120 #
BinT 120 382 2 26.85 0.15 537 — 120 #
BinT 141 456 2 40.89 0.17 554 — 120 #
BinT 150 495 2 67.32 0.31 564 — 120 #
BinT 180 614 2 95.84 0.68 539 — 120 #

Min 22 2 0.02 0.15 24 — 0.06 —
Max 614 2 95.84 0.68 564 — 120 —

Average 244.15 2 14.88 0.2 338.08 — 59.4 —

Cflss 5 15 18 — 0.1 — 114 — 0.55
Cflss 5 20 24 6.25 0.13 0.03 66 9.65 0.31 0.05
Cflss 5 25 32 9 0.3 0.11 88 9.5 0.49 0.09
Cflss 5 30 41 8 0.53 0.08 125 12.3 0.84 0.17
Cflss 8 24 29 — 0.58 — 190 — 2.1
Cflss 8 32 29 6 0.66 0.07 139 8.11 1.48 0.11
Cflss 8 40 42 6.79 1.21 0.1 276 11.73 4.25 0.62
Cflss 8 48 58 11.7 2.15 0.26 257 16.33 4.69 0.36

Cflss 10 30 38 5.73 0.77 0.07 93 6.93 1.77 0.15
Cflss 10 40 49 — 1.79 — 336 — 9.93
Cflss 10 50 44 7.04 2.01 0.15 162 10.69 4.42 0.47
Cflss 10 60 62 8.63 4.49 0.63 232 17.51 8.03 1.21

Min 18 5.73 0.1 0.03 66 6.93 0.31 0.05
Max 62 11.7 4.49 0.63 336 17.51 9.93 1.21

Average 38.83 7.68 1.23 0.17 173.17 11.42 3.24 0.36

Average over 148.19 7.43 6.54 0.14 241.64 7.05 23.39 0.2
all instances

: Did not get past node 0.
a : SPrest as a percent of SP0
b : CPUrest as a percent of CPU0
—: No branching was done.

The integration of ACCPM within a branch-and-price algorithm 291

average 58% the CPU time required by K-BP. Cplex-MIP 7.5, on the other hand, fails
to solve 8 out of the 15 instances. What is remarkable, is that it fails to find even a single
feasible solution to the largest two instances. Although the allowed CPU time for the
BinT instances was doubled, Cplex-MIP 7.5 solves the two smallest instances and fails
to find a feasible solution to the two largest instances. K-BP fails to get past the first node
on the five largest instances, whileAC-BP solves all the instances to optimality exploring
an average of 9.29 nodes. For CFLSS instances, Cplex-MIP 7.5 performs extremely well
solving most instances within a maximum of two seconds, outperforming both AC-BP
and K-BP. First it is worth mentioning that Cplex-MIP is written in C/C++ while AC-BP
and K-BP are written in Matlab. Programs written in Matlab are much slower than those
written in C/C++ by a factor that is over 30. When comparing AC-BP against K-BP,
AC-BP explores less nodes (41.17 vs 65.33) and requires less computational time (6.56
vs 33.01).

Table 3 gives a direct comparison of K-BP and AC-BP based on the average number
of subproblems called at the first node and at the rest of the nodes. It displays the number
of calls to the subproblem at the root node (SP0), the average number of calls to the
subproblem at the rest of the nodes (SPrest), the CPU time at the root node (CPU0) and
the average CPU at the rest of the nodes (CPUrest) both for AC-BP and K-BP.

The table reveals that AC-BP is consistently better than K-BP in making fewer calls
to the subproblems and requiring less computational time at node 0. AC-BP calls an
average of 148.19 subproblems and takes an average CPU time of 6.54 minutes, while
K-BP calls an average of 241.64 subproblems and takes an average CPU time of 23.39
minutes. When it comes to the efficient use of past information, K-BP and AC-BP call
around 7 subproblems at nodes other than the root node with K-BP requiring slightly
more computational time. Given these observations, we can safely make these remarks:

– While AC-BP and K-BP explore comparable number of nodes, AC-BP is more effi-
cient at processing each node. It calls fewer subproblems and requires less compu-
tational time. This implies that AC-BP has a clear advantage over K-BP as it does
not compromise in any other compartment of the algorithm (warm starting, efficient
branching) but improves in one: the solution of the master problems.

– The fact that AC-BP and K-BP explore comparable number of nodes reveals that
branching is done efficiently under the two cases (despite the fact that columns are
generated and ranked differently).

– As AC-BP spends less time per node, it is clear that the efficiency of AC-BP is mainly
attributed to ACCPM.

– Cplex-MIP on one hand and AC-BP and K-BP on the other hand perform differently
on different problems. This suggests that branch-and-cut methods, as in Cplex-MIP,
is suitable for CFLSS problems while branch-and-price, as in AC-BP and K-BP, are
suitable for bin-packing problems.

5. Conclusion

It is widely observed that despite the potential of interior-point methods in dealing with
large-scale linear programs, they were not widely used to solve large-scale integer pro-
grams. According to [19], this is because “ it is cumbersome to reoptimize an LP with an

292 S. Elhedhli, J.-L. Goffin

interior-point code after rows or columns have been added” [19]. In this paper we show
that it is possible to overcome this “cumbersomeness” by using a cutting plane method
(ACCPM) and a Lagrangean bounding scheme. We show that information in the form of
generated cuts, incumbent and lower bound is efficiently exploited in subsequent nodes
both by the search scheme and by ACCPM. Recentering when adding or deleting cuts
is done fairly quickly using a primal and dual interior point methods, respectively. In
addition, the initialization of the primal Newton’s method is done rigorously using a
primal-dual approach. Finally, ACCPM provides dual information during the course of
the iterations that are exploited by a dual heuristic and used to guide the branching rule.

The resulting approach is a branch-and-price algorithm where the Lagrangean dual
problem is solved using ACCPM. In a first step, we provided modifications to ACCPM,
specifically the use of a primal-dual approach to recover primal feasibility and the use
of the dual Newton’s method to calculate the analytic centre after branching. At an equal
level, we provided a new branch-and-price algorithm where columns are generated based
on central prices.

AC-BP was compared against the commercial solver Cplex-MIP 7.5 and a branch-
and-price algorithm that is based on Kelley’s cutting plane method. AC-BP was consis-
tently better than K-BP drawing most of its efficiency from ACCPM. On bin-packing
problems, AC-BP outperformed both Cplex-MIP and K-BP despite the fact that our
implementation is not fully optimized, while Cplex-MIP is a state-of-the-art commercial
solver. On CFLSS problems Cplex-MIP was better. This fact suggests that branch-and-
cut (Cplex-MIP) and branch-and-price (AC-BP and K-BP) methods are complementary
methodologies where each is suitable for certain type of problems.

Venues for future research include the incorporation of new improvements to AC-
CPM in terms of the effective management of the box constraints and the possibility of
eliminating them after branching. For the branch-and-price method an obvious item on
the research agenda is the use of valid cuts and variable fixing strategies as well as the
testing of different branching strategies.

Acknowledgements. We thank two anonymous referees for their valuable comments that helped improve the
presentation of the paper.

References

1. Barnhart, C., Johnson, E.L., Nemhauser, G.L., Savelsbergh, M.W.P., Vance, P.H.: Branch-and-price :
column generation for solving huge integer programs. Oper. Res. 46, 316–329 (1998)

2. Den Hertog, D.: Interior point approach to linear quadratic and convex programming. Kluwer, London,
1994

3. Desrochers, M., Desrosiers, J., Solomon, M.: A new optimization algorithm for the vehicle routing prob-
lem with time windows. Oper. Res. 40, 342–354 (1992)

4. Desrochers, M., Desrosiers, J., Soumis, F.: A column generation approach to the urban transit crew
scheduling problem. Transp. Sci. 23, 1–13 (1989)

5. Desaulniers, G., Desrosiers, J., Ioachim, I., Solomon, M.M., Soumis, F.: A unified framework for deter-
ministic time constrained vehicle routing and crew scheduling problems. In: Crainic, T.G., Laporte, G.,
(eds.), Fleet Management and Logistics. Kluwer, Boston, MA, 1998, pp. 57–93

6. duMerle, O.: Interior points and cutting palnes: development and implementation of methods for convex
optimization and large scale structured linear programming. Ph.D Thesis, Department of Management
Studies, University of Geneva, Geneva, Switzerland, 1995 (in French)

7. duMerle, O., Hansen, P., Jaumard, B., Mladenovic, N.: An interior point algorithm for minimum sum of
squares clustering. SIAM J. Sci. Comput. 21(4), 1485–1505

The integration of ACCPM within a branch-and-price algorithm 293

8. Falkenauer, E.: A Hybrid grouping genetic algorithm for bin-packing. Working paper CRIF Industrial
Management and Automation. CP 50, 106–4 (1994)

9. Geoffrion,A.M.: Lagrangean relaxation for integer programming. Math. Program. Study 2, 82–114 (1974)
10. Goffin, J.-L., Haurie,A., Vial, J.-P.: Decomposition and nondifferentiable optimization with the projective

algorithm. Manage. Sci. 38(2), 284–302 (1992)
11. Goffin, J.-L., Vial, J.-P.: Convex nondifferentiable optimization: a survey focussed on the analytic center

cutting plane method. GERAD Tech. Report G-99–17 1999, p. 47
12. Gilmore, P.C., Gomory, R.E.: A linear programming approach to the cutting stock problem. Oper. Res.

9, 849–859 (1961)
13. Gilmore, P.C., Gomory, R.E.: A linear programming approach to the cutting stock problem: Part II. Oper.

Res. 11, 863–888 (1963)
14. Goffin, J.-L., Luo, Z.-Q., Ye, Y.: Complexity Analysis of an Interior Cutting Plane Method for Convex

Feasibility Problems. SIAM J. Optim. 6, 638–652 (1996)
15. Goffin, J.-L., Vial, J.-P.: Multiple cuts in the analytic center cutting plane method. SIAM J. Optim. 11(1),

266–288 (1999)
16. Goffin, J.-L., Vial, J.-P.: On the computation of weighted analytic centers and dual ellipsoids with the

projective algorithm. Math. program. 60, 81–92 (1993)
17. Gondzio, J.: Warm start of the primal-dual method applied in the cutting plane scheme. Math. program.

83, 125–143 (1998)
18. Holmberg, K., Ronnqvist, M., Yuan, D.: An exact algorithm for the capacitated facility location problem

with single sourcing. Eur. J. Oper. Res. 113, 544–559 (1999)
19. Johnson, E.L., Nemhauser, G., Savelsbergh, M.W.P.: Progress in linear programming-based algorithms

for integer programming. An exposition. Informs JOC 12(1), 1–23 (2000)
20. Karmarkar, N.K.: A new polynomial-time algorithm for linear programming. Combinatorica 4, 373–395

(1984)
21. Kelley, J.E.: The cutting plane method for solving convex programs. J. SIAM 8, 703–712 (1960)
22. Klincewicz, J.G., Luss, H.: A Lagrangean relaxation heuristic for capacitated facility location with sin-

gle-source constraints. J. Oper. Res. Soc. 37(5), 195–500 (1986)
23. Lemarechal, C.: Bundle Methods in Nonsmooth Optimization. Nonsmooth Optimization, Proceedings

of the IIASA Workshop March 28 – April 8, 1977, Lemarechal, C., Mifflin, R., (eds.), Pergamon Press,
1978

24. Martello, S., Toth, P.: Knapsack problems:Algorithms and computer implementations. Wiley Interscience
Series in Discrete Mathematics and Optimization, Wiley, New York, 1990

25. Mitchell, J.E., Todd, M.J.: Solving combinatorial optimization problems using Karmarkar’s algorithm.
Math. Program. 56, 245–284 (1992)

26. Mitchell, J.E.: Computational experience with an interior point cutting plane algorithm. SIAM J. Optim.
10(4), 1212–1227 (2000)

27. Mitchell, J.E., Borchers, B.: Using an interior point method in a branch-and-bound algorithm for integer
programming, 1991. Revised 1992, Rensselaer Polytechnic Institute, Troy, N.Y.

28. Mitchell, J.E., Pardalos, P., Resende, M.G.C.: Interior point methods for combinatorial optimization.
Handbook of Combinatorial Optimization, Volume 1, Kluwer Academic Publishers, 1998, pp. 189–297

29. Neebe, A.W., Rao, M.R.: An algorithm for the fixed-charge assigning users to sources problem. J. Oper.
Res. Soc. 34(11), 1107–1113 (1983)

30. Nemirovskii, A.S., Yudin, D.B.: Problem complexity and method efficiency in optimization. John Wiley,
Chichester, 1983

31. Nesterov, Y.: Cutting plane methods from analytic centers: efficiency estimates. Math. program., Ser. B
69, 149–176 (1996)

32. Pirkul, H.: Efficient algorithms for the capacitated concentrator location problem. Comput. Oper. Res.
14(3), 197–208 (1987)

33. Ryan, D.M., Foster, B.A.: An integer programming approach to scheduling. In: Wren, A. (ed.), com-
puter scheduling of Public Transport Urban Passenger Vehicle and Crew Scheduling, North Holland,
Amsterdam, 1981, pp. 169–280

34. Scholl, A., Klein, R., Jurgens, C.: Bison: a fast hybrid procedure for exactly solving the one-dimensional
bin-packing problem. Comput. Oper. Res. 24, 667–645 (1997)

35. Sonnevend, G.: An analytical center for polyhedrons and new classes of global algorithms for linear
(smooth, convex) programming. In: Lecture Notes in Control and Information Sciences 84, Springer,
New York, 1985, pp. 866–876

36. Valerio de Carvalho, J.M.: Exact solution of bin-packing problems using column generation and branch-
and-bound. Ann. Oper. Res 86, 626–659 (1999)

37. Vance, P.H., Johnson, E.L., Nemhauser, G.L.: Solving binary cutting stock problems using column gen-
eration and branch-and-bound. Comput. Optim. Appl. 3, 111–130 (1994)

294 S. Elhedhli, J.-L. Goffin: The integration of ACCPM within a branch-and-price algorithm

38. Vanderbeck, F., Wolsey, L.A.: An exact algorithm for IP column generation. Oper. Res. Lett. 19, 151–159
(1996)

39. Vanderbeck, F.: Computational study of a column generation algorithm for bin-packing and cutting stock
problems. Math. Program. Ser. A 86, 565–594 (1999)

40. Vanderbeck, F.: On Dantzig-Wolfe decomposition in integer programming and ways to perform branching
in a branch-and-price algorithm. Oper. Res. 48(1), 111–128 (2000)

41. Ye, Y.: Interior point algorithms: Theory and analysis. John Wiley & sons, 1997
42. Zhang, Y.: Solving Large Scale Linear Programs by Interior-Point Methods Under the Matlab Environ-

ment. Technical report TR96-01, university of Maryland Baltimore county, 1996

