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Abstract. A proximity theorem is a statement that, given an optimization problem and its relaxation, an
optimal solution to the original problem exists in a certain neighborhood of a solution to the relaxation.
Proximity theorems have been used successfully, for example, in designing efficient algorithms for discrete
resource allocation problems. After reviewing the recent results for L-convex and M-convex functions, this
paper establishes proximity theorems for larger classes of discrete convex functions, L2-convex functions
and M2-convex functions, that are relevant to the polymatroid intersection problem and the submodular flow
problem.
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1. Introduction

In the area of discrete optimization, nonlinear optimization problems have been investi-
gated as well as linear optimization problems. Submodular (set) functions and separable
convex functions are well-known examples of tractable nonlinear functions, in that the
submodular function minimization problem can be solved in polynomial time (see [14,
15, 28]), and separable convex functions have been treated successfully in many different
discrete optimization problems (see [12]).

Recently, certain classes of “discrete convex functions” were proposed: integrally-
convex functions of Favati and Tardella [4] and {L,M,L2,M2}-convex functions of
Murota [19, 20]. L-convex functions contain the class of submodular set functions. M-
convex functions possess structures of matroids and polymatroids. Separable discrete
convex functions can be characterized as functions with both L-convexity and M-convex-
ity (in their variants). L2-convex functions and M2-convex functions constitute larger
classes of discrete convex functions that are relevant to the polymatroid intersection
problem, where an L2-convex function is, by definition, the infimal convolution of two
L-convex functions and an M2-convex function is the sum of two M-convex functions.
The M2-convex function minimization problem is equivalent to the M-convex submod-
ular flow problem [21] which is an extension of the submodular flow problem [3]. The
class of integrally-convex functions contains all of the above classes.
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Those classes C of discrete convex functions f possess the following features in
common:

Discreteness: f is defined on an integral lattice Zn, i.e., f : Zn → R ∪ {+∞}, where
Z and R denote the sets of integers and reals, respectively.

Convex Extensibility: There exists a continuous convex function f such that f (x) =
f (x) for all x ∈ Zn.

Optimality Criterion: There exists a neighborhood NC(x∗) ⊂ Zn with center x∗ such
that

f (x∗) ≤ f (x) (∀x ∈ Zn)⇔ f (x∗) ≤ f (x) (∀x ∈ NC(x∗)).

Optimality criterion says that global minimality is implied by local minimality defined
in terms of the neighborhood NC(x∗). For example, if C is the class of M-convex func-
tions, NC(x∗) is the set of points obtained from x∗ by decreasing one component and
by increasing another by 1 each. This is a significant feature inherited from continuous
convex functions.

Moreover, L-/M-convex functions have a “proximity property” described as

Proximity Property: Given a positive integer α and a point xα ∈ Zn, there exists a
function dC(n, α) such that

f (xα) ≤ f (x) (∀x ∈ Nα
C(xα))⇒ ∃x∗ ∈ arg min f : ||x∗ − xα||∞ ≤ dC(n, α),

where Nα
C(xα) = {xα + α(x − xα) | x ∈ NC(xα)} and arg min f denotes the set of

all minimizers of f , i.e.,

arg min f = {x ∈ Zn | f (x) ≤ f (y) (∀y ∈ Zn)}.

The proximity property says that a locally minimal solution xα of a “scaled” function

f α(x) = f (xα + α(x − xα)) (x ∈ Zn)

is close to a minimizer x∗ of f in terms of dC(n, α). For L-/M-convex functions,
dC(n, α) = (n−1)(α−1) is a valid choice ([16] and [17], respectively). The proximity
property can be exploited in developing an efficient scaling algorithm for minimizing
f . In fact, the L-convex function minimization problem can be solved in polynomial-
time by combining submodular set function minimization algorithms and the proximity
property [13] (see also [23]). For the M-convex function minimization, polynomial-time
scaling algorithms based on the proximity property and its generalization are known [29,
30]. Proximity theorems for separable discrete convex functions are found in [9, 10, 18]
in developing efficient algorithms for resource allocation problems. Different types of
theorems on proximity have also been investigated: proximity between integral and real
optimal solutions in [1, 2, 8, 10, 11] and proximity for a number of resource allocation
problems with min-max type objective functions in [6].

This paper addresses proximity properties of L2-/M2-convex functions. Our main
results say:
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– for an essentially bounded L2-convex function f and a positive integer α, if xα ∈
dom f satisfies

f (xα) ≤ f (xα + αχS)

for all S ⊆ {v1, v2, . . . , vn}, then there exists x∗ ∈ arg min f such that

||x∗ − xα||∞ ≤ 2(n−1)(α−1),

– for an M2-convex function f represented as the sum of two M-convex functions f1
and f2, and a positive integer α, if xα ∈ dom f satisfies

k∑

i=1

(f1(x
α−αχui

+αχwi
)− f1(x

α))+
k∑

i=1

(f2(x
α−αχui+1+αχwi

)− f2(x
α)) ≥ 0

for any ordered sets U={u1, . . . , uk}, W={w1, . . . , wk} ⊂ {v1, v2, . . . , vn} with
U ∩W = ∅ where uk+1 = u1, then there exists x∗ ∈ arg min f such that

||x∗ − xα||∞ ≤ n2

2
(α−1).

We also briefly survey proximity properties of discrete convex functions. Section 2 states
definitions, optimality criteria and proximity properties for several classes of discrete
convex functions, including our new results which are proven in Section 3.

2. Definitions, optimality criteria and proximity theorems

In this section, we introduce four classes of discrete convex functions, namely, {L, M,
L2, M2}-convex functions with respect to definitions, optimality criteria and proximity
theorems. While other variants of these classes, e.g., L�-/L�

2-convex functions due to [7]

and M�-/M�
2-convex functions due to [24], are known, we concentrate on the above four

classes because the results can be easily extended to the variants.
Subsections 2.3 and 2.4 present new results, an optimality criterion (Theorem 6)

and a proximity property (Theorem 7) for L2-convex functions, and proximity proper-
ties (Theorems 10 and 11) for M2-convex functions. Subsection 2.2 also gives a new
proximity property (Theorem 5) for M-convex functions in terms of �1-norm. Subsec-
tions 2.1 and 2.2 explain known results, optimality criteria and proximity theorems for
L-convexity and M-convexity, respectively. Subsection 2.4 introduces optimality criteria
for M2-convexity, which are direct consequences of results for the M-convex submodular
flow problem.

We first introduce notations. Let V be a nonempty finite set and put n = |V |. We
denote by ZV the set of all integral vectors x = (x(v) : v ∈ V ) indexed by V , and by
Z++ the set of all positive integers. Given a function f : ZV → R∪{±∞}, the effective
domain of f is defined by

dom f = {x ∈ ZV | f (x) �= ±∞}.
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For each S ⊆ V , we denote by χS the characteristic vector of S defined by

χS(v) =
{

1 (v ∈ S)

0 (v �∈ S)
(v ∈ V )

and write simply χu instead of χ{u} for each u ∈ V . We also denote by 0 and 1 the
vectors of all zeros and ones, respectively. For two vectors x, y ∈ ZV with x ≤ y,
[x, y]Z denotes the set {z ∈ ZV | x ≤ z ≤ y}.

2.1. L-convex functions

For any x, y ∈ ZV , the vectors x ∧ y and x ∨ y in ZV are such that

(x ∧ y)(v) = min{x(v), y(v)}, (x ∨ y)(v) = max{x(v), y(v)} (v ∈ V ).

A function f : ZV → R ∪ {+∞} is said to be L-convex if dom f �= ∅ and it satisfies
the following two conditions:

(SBF) f is submodular, i.e.,

f (x)+ f (y) ≥ f (x ∧ y)+ f (x ∨ y) (∀x, y ∈ ZV ),

(TRF) ∃r ∈ R such that f (x + 1) = f (x)+ r (∀x ∈ ZV ).

Global optimality of an L-convex function is characterized by local optimality.

Theorem 1 (L-optimality criterion, [23]). For an L-convex function f : ZV → R ∪
{+∞} and x∗ ∈ dom f , we have

f (x∗) ≤ f (x) (∀x ∈ ZV )⇐⇒
{

f (x∗) ≤ f (x∗ + χS) (∀S ⊆ V ),

f (x∗ + 1) = f (x∗).

The above local optimality criterion can be checked in polynomial time because the
first condition can be verified by using submodular function minimization algorithms
and the second condition is easy.

We next introduce a proximity theorem of L-convex functions.

Theorem 2 (L-proximity theorem, [16]). Let f : ZV → R ∪ {+∞} be an L-convex
function with f (x + 1) = f (x) (∀x ∈ ZV ) and let α ∈ Z++. If xα ∈ dom f satisfies

f (xα) ≤ f (xα + αχS) (∀S ⊆ V ),

then arg min f �= ∅ and there exists x∗ ∈ arg min f with

xα ≤ x∗ ≤ xα + (n− 1)(α − 1)1.

The bound (n−1)(α−1) in Theorem 2 is tight; see Remark 2.3 in [27]. Theorems 1
and 2 are extended to a more general class of “quasi” L-convex functions [26].
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2.2. M-convex functions

We define the positive support and negative support of a vector x = (x(v) : v ∈ V ) ∈
ZV by

supp+(x) = {v ∈ V | x(v) > 0} and supp−(x) = {v ∈ V | x(v) < 0}.
A function f : ZV → R ∪ {+∞} is called M-convex if dom f �= ∅ and it satisfies
(M-EXC) for x, y ∈ dom f and u ∈ supp+(x − y), there exists v ∈ supp−(x − y) such
that

f (x)+ f (y) ≥ f (x − χu + χv)+ f (y + χu − χv).

We note that (M-EXC) is also represented as: for x, y ∈ dom f ,

f (x)+ f (y) ≥ max
u∈supp+(x−y)

min
v∈supp−(x−y)

[ f (x − χu + χv)+ f (y + χu − χv) ],

where the maximum and the minimum over an empty set are−∞ and+∞, respectively.
From (M-EXC), the effective domain dom f lies on a hyperplane {x ∈ RV | x(V ) =
constant}, where x(V ) = ∑

v∈V x(v). It is also known that dom f is the set of integer
points of the base polyhedron of an integral submodular system (see [5] for submodular
systems).

The minimizers of an M-convex function have a nice characterization which can be
checked efficiently.

Theorem 3 (M-optimality criterion, [19, 20]). For an M-convex function f : ZV →
R ∪ {+∞} and x∗ ∈ dom f , we have

f (x∗) ≤ f (x)(∀x ∈ ZV )⇐⇒ f (x∗) ≤ f (x∗ − χu + χv) (∀u, v ∈ V ).

We next introduce a proximity theorem of M-convex functions.

Theorem 4 (M-proximity theorem, [17]). Let f : ZV → R ∪ {+∞} be an M-convex
function and let α ∈ Z++. If xα ∈ dom f satisfies

f (xα) ≤ f (xα − αχu + αχv) (∀u, v ⊆ V ),

then arg min f �= ∅ and there exists x∗ ∈ arg min f with

|xα(v)− x∗(v)| ≤ (n− 1)(α − 1) (∀v ∈ V ).

By slightly modifying the proof of [17], we also obtain the following proximity
theorem in terms of �1-norm.

Theorem 5. Let f : ZV → R ∪ {+∞} be an M-convex function and let α ∈ Z++. If
xα ∈ dom f satisfies

f (xα) ≤ f (xα − αχu + αχv) (∀u, v ⊆ V ), (1)

then arg min f �= ∅ and there exists x∗ ∈ arg min f with

||x∗ − xα||1 ≤ n2

2
(α − 1). (2)

The bound (n− 1)(α− 1) in Theorem 4 and the bound n2

2 (α− 1) in Theorem 5 are
tight; see Remarks 2.8 and 2.9 in [27]. Theorems 3 and 4 are extended to a more general
class of “quasi” M-convex functions [26].
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2.3. L2-convex functions

For any functions f1, f2 : ZV → R ∪ {+∞}, the infimal convolution of f1 and f2,
denoted by f1�f2 : ZV → R ∪ {±∞}, is defined by

(f1�f2)(x) = inf{f1(x1)+ f2(x2) | x1 + x2 = x, x1, x2 ∈ ZV } (x ∈ ZV ).

It is easy to show that if f1�f2 > −∞ then the effective domain of f1�f2 coincides
with the Minkowski sum of the effective domains of f1 and f2, that is,

dom (f1�f2) = (dom f1)+ (dom f2) ≡ {x1 + x2 | x1 ∈ dom f1, x2 ∈ dom f2}.

It is known that the infimal convolution of two M-convex functions is also M-convex,
but the infimal convolution of two L-convex functions may not be L-convex [19]. A
function f : ZV → R ∪ {+∞} is said to be L2-convex if dom f �= ∅ and f = f1�f2
for some L-convex functions f1, f2 : ZV → R ∪ {+∞}. We say that an L-/L2-convex
function f is essentially bounded if dom f ∩ {x ∈ ZV | x(v) = 0} is bounded for some
v ∈ V . If an L2-convex function f = f1�f2 is essentially bounded, then f1 and f2 are
also essentially bounded, because dom f = (dom f1)+ (dom f2) holds for L2-convex
function f .

The following optimality criterion and the proximity theorem for L2-convex func-
tions are new results. We emphasize that the optimality criterion is the same as that for
L-convex functions stated in Theorem 1 and that the proximity theorem is almost the
same as that stated in Theorem 2.

Theorem 6 (L2-optimality criterion). For an L2-convex function f : ZV → R∪{+∞}
and x∗ ∈ dom f , we have

f (x∗) ≤ f (x) (∀x ∈ ZV )⇐⇒
{

f (x∗) ≤ f (x∗ + χS) (∀S ⊆ V ),

f (x∗ + 1) = f (x∗).

Theorem 7 (L2-proximity theorem). Let f : ZV → R ∪ {+∞} be an essentially
bounded L2-convex function with f (x + 1) = f (x) (∀x ∈ ZV ) and let α ∈ Z++. If
xα ∈ dom f satisfies

f (xα) ≤ f (xα + αχS) (∀S ⊆ V ),

then arg min f �= ∅ and there exists x∗ ∈ arg min f with

xα ≤ x∗ ≤ xα + 2(n− 1)(α − 1)1.

The bound 2(n−1)(α−1) in Theorem 7 is almost tight. We can construct an example
such that x∗ ≥ xα and ||x∗ − xα||∞ = (2n− 3)(α − 1); see Remark 2.13 in [27].
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2.4. M2-convex functions

It is known that the sum of two M-convex functions is not necessarily M-convex. A
function f : ZV → R ∪ {+∞} is said to be M2-convex if dom f �= ∅ and f = f1 + f2
for some M-convex functions f1, f2 : ZV → R ∪ {+∞}. It is easy to show that
dom f = (dom f1) ∩ (dom f2). Obviously, if dom f1 = dom f2 and f2 is identically
zero, then f = f1 is M-convex, and hence, the class of M2-convex functions includes
that of M-convex functions. The M2-convex function minimization problem contains
the polymatroid intersection problem as a special case. Thus, optimality criteria for M2-
convexity below are extensions of known results for the matroid intersection problem
and the polymatroid intersection problem.

For a vector p ∈ RV , let us define functions 〈p, x〉 and f [p](x) by

〈p, x〉 =
∑

v∈V
p(v)x(v) and f [p](x) = f (x)+ 〈p, x〉 (x ∈ ZV ).

If f is M-convex, then f [p] is also M-convex.
Several results on optimality of M2-convexity are known.

Theorem 8 (M-convex intersection theorem, [19]). For M-convex functions f1, f2 :
ZV → R ∪ {+∞} and a point x∗ ∈ dom f1 ∩ dom f2, we have

f1(x
∗)+ f2(x

∗) ≤ f1(x)+ f2(x) (∀x ∈ ZV )

if and only if there exists p∗ ∈ RV such that

f1[−p∗](x∗) ≤ f1[−p∗](x) (∀x ∈ ZV ),

f2[+p∗](x∗) ≤ f1[+p∗](x) (∀x ∈ ZV ),

and furthermore, we have

arg min(f1 + f2) = arg min(f1[−p∗]) ∩ arg min(f2[+p∗])

for such p∗.

Optimality criteria of M2-convex functions can be transformed from those of the
M-convex submodular flow problem in [20], because the M2-convex function minimi-
zation and the M-convex submodular flow problem are equivalent to each other. The
following theorem is a direct consequence of the results in [20].

Theorem 9 (M2-optimality criteria, see [20]). For M-convex functions f1, f2 : ZV →
R ∪ {+∞} and a point x∗ ∈ dom f1 ∩ dom f2, three conditions below are equivalent:

(a) x∗ ∈ arg min(f1 + f2).
(b) For any ordered sets U={u1, . . . , uk}, W={w1, . . . , wk} ⊂ V with U ∩W = ∅,

k∑

i=1

(f1(x
∗−χui

+χwi
)− f1(x

∗))+
k∑

i=1

(f2(x
∗−χui+1+χwi

)− f2(x
∗)) ≥ 0,

where uk+1 = u1.
(c) (f1 + f2)(x

∗) ≤ (f1 + f2)(x
∗ − χU + χW) (∀U, W ⊂ V, |U | = |W |).
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The optimality for M2-convexity can be checked in polynomial time by transforming
(b) of Theorem 9 to a network problem (see Remark 1), although checking condition (c)
of Theorem 9 seems to be a hard problem. In view of polynomial time verifiability, we
relax (b) of Theorem 9 to formulate a proximity theorem of M2-convex functions. This
is the main result of this paper.

Theorem 10 (M2-proximity theorem). Let f1, f2 : ZV → R ∪ {+∞} be M-convex
functions and let α ∈ Z++. If xα ∈ dom f1 ∩ dom f2 satisfies

k∑

i=1

(f1(x
α−αχui

+αχwi
)− f1(x

α))+
k∑

i=1

(f2(x
α−αχui+1+αχwi

)− f2(x
α)) ≥ 0

for any ordered sets U={u1, . . . , uk}, W={w1, . . . , wk} ⊂ V with U ∩W = ∅ where
uk+1 = u1, then arg min(f1 + f2) �= ∅ and there exists x∗ ∈ arg min(f1 + f2) with

||x∗ − xα||∞ ≤ n2

2
(α − 1). (3)

The proof of Theorem 10 relies heavily on the following result.

Theorem 11. Let f1, f2 : ZV → R ∪ {+∞} be M-convex functions with arg min(f1 +
f2) �= ∅. For a given point x ∈ ZV with x(V ) = y(V ) for any y ∈ dom f1 ∩ dom f2,
and for d ∈ Z, if there exist x1 ∈ arg min f1 and x2 ∈ arg min f2 such that

||x1 − x||1 ≤ d, ||x2 − x||1 ≤ d, (4)

then there exists x∗ ∈ arg min(f1 + f2) with

||x∗ − x||∞ ≤ d.

The bound n2

2 (α−1) of Theorem 10 is tight in the sense that the statement with
n2

2 (α− 1) replaced by (n−2)2

4 (α− 1)− 1 is false, and the bound of Theorem 11 is tight;
see Remarks 2.19 and 2.20 in [27].

Remark 1. Condition (b) of Theorem 9 can be checked in polynomial time. Given two
M-convex functions f1, f2 : ZV → R ∪ {+∞}, a point x ∈ dom f1 ∩ dom f2 and a
positive integer α ∈ Z++, we construct a directed graph Gα

x = (V1 ∪ V2, A) and an arc
length �α

x ∈ RA as follows. Let V1 and V2 be copies of V , i.e.,

V1 = {v1 | v ∈ V }, V2 = {v2 | v ∈ V },
where v1 and v2 are the copies of v ∈ V . Arc set A consists of three disjoint parts:

Ab = {(v1, v2) | v ∈ V } ∪ {(v2, v1) | v ∈ V },
A1 = {(u1, v1) | u, v ∈ V, u �= v, x − αχu + αχv ∈ dom f1}, (5)

A2 = {(v2, u2) | u, v ∈ V, u �= v, x − αχu + αχv ∈ dom f2}.
We define �α

x ∈ RA by

�α
x (a) =






0 (a ∈ Ab)

f1(x − αχu + αχv)− f1(x) (a = (u1, v1) ∈ A1)

f2(x − αχu + αχv)− f2(x) (a = (v2, u2) ∈ A2).

(6)
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Lemma 1 below guarantees that (b) of Theorem 9 can be checked in polynomial time
by applying shortest path algorithms.

Lemma 1. For two M-convex functions f1, f2 : ZV → R ∪ {+∞}, a point x ∈
dom f1 ∩ dom f2 and α ∈ Z++, two conditions below are equivalent:

(a) There exists no negative cycle in Gα
x with length �α

x .
(b) For any ordered sets U={u1, . . . , uk}, W={w1, . . . , wk} ⊂ V with U ∩W = ∅,

k∑

i=1

(f1(x−αχui
+αχwi

)− f1(x))+
k∑

i=1

(f2(x−αχui+1+αχwi
)− f2(x)) ≥ 0,

(7)

where uk+1 = u1.

2.5. Future work

It is known that the class of integrally-convex functions contains all classes of
{L,M,L2,M2}-convex functions [25]. The following theorem gives an optimality cri-
terion of integrally-convex functions.

Theorem 12 ([4]). For an integrally-convex function f : ZV → R ∪ {+∞} and x∗ ∈
dom f , we have

f (x∗) ≤ f (x) (∀x ∈ ZV )⇐⇒ f (x∗) ≤ f (x∗ − χA + χB) (∀A, B ⊆ V ).

From the optimality criterion, we may suppose that a proximity property for integral-
convexity employs the following form:

For an integrally-convex function f : ZV → R ∪ {+∞}, α ∈ Z++ and xα with
f (xα) ≤ f (xα − αχA + αχB) for all A, B ⊆ V , there exists x∗ ∈ arg min f

such that ||x∗ − xα||∞ ≤ dC(n, α) for some dC : Z2++ → Z++.

We can verify that dC(n, α) is bounded by n!(α−1), although its proof is not so simple
and the bound is not likely to be tight. A tighter bound for the above proximity property
for integral-convexity remains an open question and is a future work.

3. Proofs

In this section, we will give proofs of our new results.

3.1. Proof of Theorem 5

It is sufficient to show that for any γ ∈ R with γ > inf f , there exists x∗ ∈ dom f

satisfying f (x∗) ≤ γ and (2). Assume that x∗ ∈ dom f minimizes ||x∗ − xα||1 among
all vectors satisfying f (x∗) ≤ γ . We fix v ∈ supp+(xα−x∗) and put k = xα(v)−x∗(v).
The following claims are shown in [17].
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Claim 1. There exist w1, . . . , wk ∈ supp−(xα−x∗) and y0(=xα), y1, . . . , yk ∈ dom f

such that yi = yi−1 − χv + χwi
and f (yi) < f (yi−1) (i = 1, . . . , k).

Claim 2. For any w ∈ supp−(xα − x∗) with yk(w) > xα(w) and µ ∈ [0, yk(w) −
xα(w)− 1]Z, we have f (xα − (µ+ 1)(χv − χw)) < f (xα − µ(χv − χw)).

Claim 2 and (1) imply

f (xα−µw(χv−χw)) < · · · < f (xα−(χv−χw)) < f (xα) ≤ f (xα−α(χv−χw))

for any w with µw = yk(w) − xα(w) > 0. Therefore, yk(w) − xα(w) ≤ α − 1 holds
for all w ∈ supp−(xα − x∗). Then we obtain

xα(v)− x∗(v) = xα(v)− yk(v) =
∑

w∈supp−(xα−x∗)
(yk(w)− xα(w))

≤ |supp−(xα − x∗)| · (α − 1),

where the second equality is by xα(V ) = yk(V ). Similarly, we can show

|xα(v)− x∗(v)| ≤ |supp+(xα − x∗)| · (α − 1)

for v ∈ supp−(xα − x∗). Hence, we have

||x∗ − xα||1 ≤ 2|supp+(xα − x∗)| · |supp−(xα − x∗)| · (α − 1) ≤ n2

2
(α − 1).

3.2. Proofs of Theorems 6 and 7

This subsection gives proofs of Theorems 6 and 7.

Proposition 1. Assume that f = f1�f2 for some functions f1 and f2 such that f1(y +
1) = f1(y) + r1 and f2(y + 1) = f2(y) + r2 for all y ∈ ZV . If f (x + 1) = f (x) for
some x ∈ dom f , then r1 = r2 = 0 holds, and furthermore, f (y + 1) = f (y) for any
y ∈ dom f .

Proof. By the definition of the infimal convolution, we have

f (x + 1) ≤ inf{f1(x1 + α11)+ f2(x2 + α21) | x1 + x2 = x, α1 + α2 = 1}
= inf{f1(x1)+ r1α1 + f2(x2)+ r2α2 | x1 + x2 = x, α1 + α2 = 1}
= f (x)+ inf{r1α1 + r2α2 | α1 + α2 = 1}
= f (x)+ r2 + inf{(r1 − r2)α1 | α1 ∈ Z}.

This says that if f (x + 1) = f (x) ∈ R then r1 = r2 ≥ 0 must hold. Analogously, we
have

f (x) ≤ inf{f1(x1 + α11)+ f2(x2 + α21) | x1 + x2 = x + 1, α1 + α2 = −1}
= f (x + 1)− r2.

Since f (x+1) = f (x) ∈ R is satisfied, we obtain r2 ≤ 0. Therefore, r1 = r2 = 0 holds.
In the same way as above, we can show that f (y + 1) ≤ f (y) and f (y) ≤ f (y + 1)

for any y ∈ dom f . ��
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If there exist x1 ∈ dom f1 and x2 ∈ dom f2 such that

f (x∗) = f1(x1)+ f2(x2), x1 + x2 = x∗,

then Theorem 6 can be easily proven (see the proof of Theorem 7 below), whereas the
following proof works in the general case.

Proof of Theorem 6. Let f = f1�f2 for some L-convex functions f1 and f2 with f1(x+
1) = f1(x)+ r1 and f2(x + 1) = f2(x)+ r2 for x ∈ ZV .

(⇒) For any S ⊆ V , f (x∗) ≤ f (x∗ + χS) trivially holds. In the same way as the
proof of Proposition 1, we can show that r1 = r2, f (x∗ + 1) ≤ f (x∗) + r2 and
f (x∗ − 1) ≤ f (x∗) − r2. Since f (x∗) ≤ f (x∗ + 1), f (x∗ − 1) holds, we have
r2 = 0 and f (x∗ + 1) = f (x∗).

(⇐) Since f (x∗ + 1) = f (x∗) holds, Proposition 1 yields that

f (y + 1) = f (y) (∀y ∈ dom f ). (8)

Suppose to the contrary that there exists y∗ ∈ dom f with f (y∗) < f (x∗). By (8), we
can assume that y∗ ≥ x∗, and assume, in addition, that y∗ minimizes ||y∗−x∗||1 among
all points y ∈ dom f with y ≥ x∗ and f (y) < f (x∗).

Let γ be an arbitrary positive number. By the definition of the infimal convolution,
there exist x1, y1 ∈ dom f1 and x2, y2 ∈ dom f2 such that

f (x∗)+ γ ≥ f1(x1)+ f2(x2), x1 + x2 = x∗, (9)

f (y∗)+ γ ≥ f1(y1)+ f2(y2), y1 + y2 = y∗, (10)

x1 ≤ y1, x2 ≥ y2, (11)

where (11) follows from (8).
Let β = max{y1(v) − x1(v) | v ∈ supp+(y∗ − x∗)} − 1. It follows from the

assumptions that ||y∗ − x∗||∞ ≥ 2. By (11), there exists u ∈ supp+(y∗ − x∗) with
y1(u)− x1(u) ≥ 2, and hence, β must be positive. We now consider points defined by

x′1 = (x1 + β1) ∨ y1, x′2 = (x2 − β1) ∧ y2, x′ = x′1 + x′2,
y′1 = (x1 + β1) ∧ y1, y′2 = (x2 − β1) ∨ y2, y′ = y′1 + y′2.

We will show that

x∗ ≤ x′ ≤ x∗ + 1, x′ �= x∗, y′ ≥ x∗, x′ + y′ = x∗ + y∗. (12)

Obviously, x′ + y′ = x∗ + y∗ holds. By the definitions of x′1 and x′2, we have

x1(v)+ β ≥ y1(v)⇒ x′1(v) = x1(v)+ β,

x1(v)+ β < y1(v)⇒ x′1(v) = y1(v),
(13)

x2(v)− β ≤ y2(v)⇒ x′2(v) = x2(v)− β,

x2(v)− β > y2(v)⇒ x′2(v) = y2(v)

for each v ∈ V . Let v be any element of V . If x∗(v) = y∗(v) holds, we have

x1(v)+ β ≥ y1(v)⇒ x2(v)− β ≤ y2(v),

x1(v)+ β < y1(v)⇒ x2(v)− β > y2(v)
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by (10), and therefore, x′(v) = x∗(v) is satisfied by (9) and (13). Suppose that x∗(v) <

y∗(v). If x1(v)+β ≥ y1(v), then x2(v)−β ≤ y2(v) must hold, and hence, x′(v) = x∗(v)

is obtained. Assume that x1(v)+ β < y1(v). In this case, the definition of β states that
x1(v) + β = y1(v) − 1. Moreover, we have x2(v) − β ≤ y2(v); since otherwise, we
would obtain x1(v) + x2(v) > y1(v) + y2(v) − 1 which contradicts the assumption
x∗(v) < y∗(v). Thus, x′(v) = y1(v) + x2(v) − β = x1(v) + x2(v) + 1 = x∗(v) + 1
holds. From the above discussion, we obtain x∗ ≤ x′ ≤ x∗ + 1 and y′ ≥ x∗. The
definition of β guarantees that there exists u ∈ supp+(y∗−x∗) with x1(u)+β < y1(u).
Hence, x′ �= x∗.

By (8), x1 + β1 and x2 − β1 also satisfy (9). Because f1 and f2 are L-convex, we
have

f1(x1)+ f1(y1)+ f2(x2)+ f2(y2) ≥ f1(x
′
1)+ f1(y

′
1)+ f2(x

′
2)+ f2(y

′
2). (14)

From (9), (10), (12) and (14), for any γ > 0, there exists a nonempty subset Sγ ⊆ V

such that

f (x∗)+ f (y∗)+ 2γ ≥ f (x∗ + χSγ )+ f (y∗ − χSγ ), y∗ − χSγ ≥ x∗. (15)

Since γ is an arbitrary positive number, (15) implies that there exists a nonempty subset
S ⊆ V such that

f (x∗)+ f (y∗) ≥ f (x∗ + χS)+ f (y∗ − χS), y∗ − χS ≥ x∗. (16)

The hypothesis and (16) yield f (y∗) ≥ f (y∗ − χS) which contradicts the definition of
y∗. Therefore, x∗ must be a minimizer of f . ��

Proof of Theorem 7. Let f be defined by two L-convex functions f1 and f2. By Propo-
sition 1, we have f1(x + 1) = f1(x) and f2(x + 1) = f2(x) for all x ∈ ZV . Since f is
essentially bounded, there exist xα

1 , xα
2 ∈ ZV such that f (xα) = f1(x

α
1 ) + f2(x

α
2 ) and

xα = xα
1 + xα

2 . By the definition of the infimal convolution, we have

f (xα + αχS) ≤ min
{
f1(x

α
1 + αχS)+ f2(x

α
2 ), f1(x

α
1 )+ f2(x

α
2 + αχS)

}
.

This inequality and the assumption that f (xα) = f1(x
α
1 ) + f2(x

α
2 ) ≤ f (xα + αχS)

yield

f1(x
α
1 ) ≤ f1(x

α
1 + αχS), f2(x

α
2 ) ≤ f2(x

α
2 + αχS)

for any S ⊆ V . By Theorem 2, there exist x∗1 ∈ arg min f1 and x∗2 ∈ arg min f2 such
that

xα
1 ≤ x∗1 ≤ xα

1 + (n−1)(α−1)1, xα
2 ≤ x∗2 ≤ xα

2 + (n−1)(α−1)1.

The above inequalities guarantee that x∗ = x∗1 + x∗2 satisfies xα ≤ x∗ ≤ xα +
2(n−1)(α−1)1. Moreover, x∗ must be a minimizer of f because x∗1 ∈ arg min f1 and
x∗2 ∈ arg min f2. ��
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3.3. Proofs of Theorem 10

In this subsection, we prove Theorem 10 by using Theorem 11 and Lemma 1 which will
be proven in the following subsections.

Since xα ∈ dom f1 ∩ dom f2 satisfies (b) of Lemma 1, graph Gα
xα has no negative

cycle with length �α
xα . Thus, there exists a potential p̂ ∈ RV1∪V2 satisfying

p̂(u)+ �α
xα (u, v) ≥ p̂(v) (∀(u, v) ∈ A). (17)

Definitions (5) and (6) say that (17) is equivalent to

p̂(v1) = p̂(v2) (∀v ∈ V ),

f1[−p](xα) ≤ f1[−p](xα − αχu + αχv) (∀u, v ∈ V ),

f2[+p](xα) ≤ f2[+p](xα − αχu + αχv) (∀u, v ∈ V ),

where p is a vector in RV defined by p(v) = 1
α
p̂(v1) for v ∈ V .

Since f1[−p] and f2[+p] are also M-convex, Theorem 5 guarantees that

∃x1 ∈ arg min f1[−p] : ||x1 − xα||1 ≤ n2

2
(α − 1),

∃x2 ∈ arg min f2[+p] : ||x2 − xα||1 ≤ n2

2
(α − 1).

For a sufficiently large γ > 0, let f̂ be the function obtained from f1+ f2 = f1[−p]+
f2[+p] by restricting the effective domain to [xα − γ 1, xα + γ 1]Z. It is easy to show
that f̂ is also M2-convex. Since dom f̂ is bounded, it has a minimizer. Therefore, The-
orem 11 implies that f̂ has a minimizer x∗ with ||x∗ − xα||∞ ≤ n2

2 (α − 1), which is
also a minimizer of f1 + f2.

3.4. Proof of Theorem 11

We first introduce useful properties of M-convex functions. Let f : ZV → R ∪ {+∞}
be an M-convex function. For a pair (x, y) of integer points satisfying x ∈ dom f and
||x − y||∞ = 1, we consider a bipartite graph G(x, y) = (V +, V −;A) with vertex sets
V + = supp+(x − y), V − = supp−(x − y) and edge set

A = {(u, v) | u ∈ V +, v ∈ V −, x − χu + χv ∈ dom f },
and associate c(u, v) = f (x − χu + χv)− f (x) with arc (u, v) ∈ A as its weight. Let
f̌ (x, y) denote the minimum weight of a perfect matching in G(x, y), where f̌ (x, y) =
+∞ if no perfect matching exists. The following lemma is a reformulation of “unique-
max lemma” for valuated matroids (see [22]).

Lemma 2 (Unique-min lemma, see [22]). Let f : ZV → R ∪ {+∞} be an M-con-
vex function, assume x ∈ dom f , y ∈ ZV and ||x − y||∞ = 1. If graph G(x, y) has
exactly one minimum weight perfect matching with respect to c, then y ∈ dom f and
f (y) = f (x)+ f̌ (x, y).
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For a function f : ZV → R ∪ {+∞} and two points a, b ∈ ZV with a ≤ b, we
define a function f [a,b] by

f [a,b](x) =
{

f (x) (x ∈ [a, b]Z)

+∞ (x �∈ [a, b]Z)
(x ∈ ZV ).

It is easy to show that if f is M-convex then f [a,b] is also M-convex.

Proposition 2. Let f : ZV → R ∪ {+∞} be an M-convex function, assume x ∈
arg min f and y ∈ dom f .

(a) For any u ∈ supp+(x − y), there exists v ∈ supp−(x − y) such that

x̂ = x − χu + χv ∈ arg min f [x̂∧y,x̂∨y].

(b) For any u ∈ supp−(x − y), there exists v ∈ supp+(x − y) such that

x̂ = x + χu − χv ∈ arg min f [x̂∧y,x̂∨y].

Proof. We will prove (a) only; we can prove (b) similarly. Let v ∈ V be such that

x̂ = x − χu + χv ∈ arg min{f (x − χu + χj ) | j ∈ supp−(x − y)}.
We note that x̂ is well-defined since supp−(x− y) �= ∅ by (M-EXC). Let z be any point
in [x̂ ∧ y, x̂ ∨ y]Z ∩ dom f . We have u ∈ supp+(x − z) because y(u) < x(u), x̂(u) =
x(u) − 1 and z(u) ≤ max{x̂(u), y(u)}. By (M-EXC) for x, z and u ∈ supp+(x − z),
there exists j ∈ supp−(x − z) ⊆ supp−(x − y) such that

f (x)+ f (z) ≥ f (x − χu + χj )+ f (z+ χu − χj ).

We have f (x) ≤ f (z + χu − χj ) because x ∈ arg min f . The above two inequalities
yield

f (z) ≥ f (x − χu + χj ) ≥ f (x̂).

Therefore we obtain x̂ ∈ arg min f [x̂∧y,x̂∨y]. ��
We start a discussion about Theorem 11. For the specified point x ∈ ZV , we fix

x∗ ∈ arg min(f1 + f2) such that ||x∗ − x||1 is minimized among all minimizers of
(f1 + f2), in the rest of the subsection. We will show that x∗ satisfies the assertion
of Theorem 11, i.e., ||x∗ − x||∞ ≤ d . Given two minimizers x1 ∈ arg min f1 and
x2 ∈ arg min f2, we consider the following partition of V (since x1 and x2 will be
modified in the sequel, we attach arguments x1, x2 to each part):

V0(x
1, x2) =

{
v ∈ V | x∗(v) = x1(v) = x2(v)

}
,

Vε(x
1, x2) =

{
v ∈ V

max{x1(v), x2(v)} < x∗(v) ≤ x(v) or
x(v) ≤ x∗(v) < min{x1(v), x2(v)}

}
,

Vb(x
1, x2) =

{
v ∈ V

min{x1(v), x2(v)} ≤ x∗(v) ≤ max{x1(v), x2(v)},
x1(v) �= x2(v)

}
,

V+(x1, x2) =
{
v ∈ V | x∗(v) < min{x1(v), x2(v), x(v)}

}
,

V−(x1, x2) =
{
v ∈ V | max{x1(v), x2(v), x(v)} < x∗(v)

}
.
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Proposition 3. Suppose that x1 ∈ arg min f1 and x2 ∈ arg min f2 for two M-convex
functions f1 and f2. If Vε(x

1, x2) ∪ Vb(x
1, x2) = ∅ then x1 = x2 = x∗ holds.

Proof. It is sufficient to show that V+(x1, x2) = V−(x1, x2) = ∅. Suppose to the con-
trary that V+(x1, x2) ∪ V−(x1, x2) �= ∅. It follows from x1(V ) = x2(V ) = x∗(V ) that
both V+(x1, x2) and V−(x1, x2) are nonempty. By the hypothesis, we also have

V+(x1, x2) = supp+(x1 − x∗) = supp+(x2 − x∗),
V−(x1, x2) = supp−(x1 − x∗) = supp−(x2 − x∗).

Since x∗ ∈ arg min(f1 + f2) holds, there exists p ∈ RV such that

x∗ ∈ (arg min f1[−p]) ∩ (arg min f2[+p]), (18)

(see, Theorem 8). We consider a bipartite digraph G = (V+, V−;A) with vertex set
V+ = V+(x1, x2), V− = V−(x1, x2) and arc set

A = {
(u, v) | u ∈ V+, v ∈ V−, x∗+χu−χv ∈ dom f1

}

∪ {
(v, u) | u ∈ V+, v ∈ V−, x∗+χu−χv ∈ dom f2

}
,

and arc weight c ∈ RA defined by

c(a) =
{

f1[−p](x∗+χu−χv)− f1[−p](x∗) (a = (u, v), u ∈ V+, v ∈ V−)

f2[+p](x∗+χu−χv)− f2[+p](x∗) (a = (v, u), u ∈ V+, v ∈ V−).

By (M-EXC), for any u ∈ V+ = supp+(x1−x∗), there exists j ∈ V− = supp−(x1−
x∗) such that

f1(x
1)+ f1(x

∗) ≥ f1(x
1−χu+χj )+ f1(x

∗+χu−χj ).

It follows from x1 ∈ arg min f1 that

f1(x
1) ≤ f1(x

1−χu+χj ).

By the above two inequalities,

f1(x
∗) ≥ f1(x

∗+χu−χj )

holds, and hence, arc (u, j) ∈ A satisfies

c(u, j) = f1(x
∗+χu−χj )− f1(x

∗)− p(u)+ p(j) ≤ −p(u)+ p(j). (19)

Analogously, for any v ∈ V−, there exists i ∈ V+ such that (v, i) ∈ A and

c(v, i) = f2(x
∗+χi−χv)− f2(x

∗)+ p(i)− p(v) ≤ p(i)− p(v). (20)

By the above discussion, every vertex of V+ ∪ V− has an arc satisfying either (19) or
(20). Thus, G has a directed cycle C consisting of these arcs. By (19) and (20), the
amount of weights of all arcs in C must be less than or equal to zero. On the other hand,
(18) guarantees that each arc of G has nonnegative weight. Hence, C consists of arcs of
weight zero.
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Let Q be a shortest cycle, with respect to the number of arcs, consisting of arcs
of weight zero, and let Q+ = V+ ∩ V (Q) and Q− = V− ∩ V (Q), where V (Q)

denotes the set of vertices of Q. Because Q is a shortest cycle, the subgraph G[Q] of
G induced by Q+ ∪ Q− has no arc of weight zero other than those of Q. This says
that the subgraph of G[Q] induced by the arcs from Q+ to Q− has exactly one mini-
mum weight perfect matching of weight zero. By Lemma 2, we have x∗−χQ−+χQ+ ∈
dom f1[−p] and f [−p](x∗−χQ−+χQ+) = f [−p](x∗). This says that x∗ − χQ− +
χQ+ ∈ arg min f1[−p]. Similarly, it can be shown that x∗−χQ−+χQ+ is also a min-
imizer of f2[+p]. By Theorem 8, we obtain x∗−χQ−+χQ+ ∈ arg min(f1 + f2), and
furthermore, ||(x∗−χQ−+χQ+)−x||1 < ||x∗−x||1. This, however, contradicts the def-
inition of x∗. Hence, V+(x1, x2) and V−(x1, x2) must be empty, that is, x1 = x2 = x∗.

��
We can easily show |x∗(v)− x(v)| ≤ d

2 for any v ∈ Vε(x
1, x2) ∪ Vb(x

1, x2).

Proposition 4. For v ∈ Vε(x
1, x2) ∪ Vb(x

1, x2), |x∗(v)− x(v)| ≤ d
2 holds.

Proof. For any v ∈ Vε(x
1, x2) ∪ Vb(x

1, x2), we have

|x∗(v)− x(v)| ≤ max{|x1(v)− x(v)|, |x2(v)− x(v)|}.
It follows from x1(V ) = x2(V ) = x(V ) that |x1(v)−x(v)| ≤ d

2 and |x2(v)−x(v)| ≤ d
2 .

Therefore, |x∗(v)− x(v)| ≤ d
2 is obtained. ��

In the rest of the subsection, we will show |x∗(v)− x(v)| ≤ d for any v ∈ V+(x1, x2)∪
V−(x1, x2). For each v ∈ V and � ∈ {1, 2}, we have

|x∗(v)− x(v)| ≤ |x∗(v)− x�(v)| + |x�(v)− x(v)| ≤ |x∗(v)− x�(v)| + d

2
,

where the second inequality follows from x�(V ) = x(V ). We estimate the distance
between x∗ and x� with aid of the following algorithm that transforms x1 and x2 to
x∗ by generating a pair of sequences starting from the given x1 and x2 and reaching
x∗. We note that Transformation below modifies M-convex functions f1, f2 as well
as x1, x2 maintaining x1 ∈ arg min f1, x2 ∈ arg min f2 and x∗ ∈ arg min(f1 + f2) at
each iteration.

algorithm Transformation

while Vε(x
1, x2) ∪ Vb(x

1, x2) �= ∅ do {
take u from Vε(x

1, x2) ∪ Vb(x
1, x2) ;

for � ∈ {1, 2} do {
while x�(u) �= x∗(u) do {

if x�(u) > x∗(u) then
take v∈supp−(x� − x∗) with x̂ = x�−χu+χv ∈ arg min f

[x̂∧x∗,x̂∨x∗]
� ;

if x�(u) < x∗(u) then
take v∈supp+(x� − x∗) with x̂ = x�+χu−χv ∈ arg min f

[x̂∧x∗,x̂∨x∗]
� ;

x�← x̂ ;
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level of x∗•• • • ••
•• •• •

•

•

• ••
� � � �� � � �Vε Vb V+ V−

(v1, 1)

(v1, 2)

(v2, 1)

(v2, 2)

(v3, 1)

(v3, 2)

(v4, 1)

(v4, 2)

(v5, 1)

(v5, 2)

(v6, 1)

(v6, 2)

(v7, 1)

(v7, 2)

(v8, 1)

(v8, 2)

Fig. 1. An initial state: x1 − x∗ = (2,−1, 2,−1, 4, 2,−4,−4) and x2 − x∗ = (1,−2,−2, 1, 5, 2,−3,−2).

f�← f
[x̂∧x∗,x̂∨x∗]
� ;

(�) (to be added later for the analysis of the algorithm)

} (end of while)
} (end of for)

}. (end of while)

We first verify the correctness of algorithm Transformation.

Proposition 5. Transformation transforms both x1 and x2 to x∗.

Proof. Proposition 2 guarantees that x̂ exists, and that the current x1 and x2 are mini-
mizers of the current f1 and f2, respectively. Since either ||x1 − x∗||1 or ||x2 − x∗||1
is strictly decreased at each iteration, the algorithm must terminate in finite steps. Since
x∗ minimizes ‖x∗ − x ‖1 among all minimizers of f1+f2 for the current f1 and f2, the
assertion follows from Proposition 3. ��

We note that for each v ∈ V the following transitions are possible during Trans-
formation:

V+(x1, x2)−→Vb(x
1, x2)−→V0(x

1, x2)

↗ ↗
V−(x1, x2) Vε(x

1, x2)

To analyze Transformation, we utilize a diagram as in Figure 1. The horizontal
axis labeled “level of x∗” is indexed by a pair (v, �) ∈ V ×{1, 2}, and each pair (v, �) is
called a column. For each column, we consider “positions” which are vertically assigned
at regular intervals, and call the distance from the level of x∗ to a position P the height
of P (the height may be negative). Each position has one of four states: null, with a
box (without a stone), with a stone (without a box), or with both a box and a stone; in
Figure 1 a stone is depicted by a solid circle. For each v ∈ V and � ∈ {1, 2}, we initially
stack |x�(v) − x∗(v)| boxes at column (v, �) upward if x�(v) > x∗(v); downward if
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x�(v) < x∗(v), from the level of x∗. That is, the number of boxes at column (v, �)

denotes the difference between x�(v) and x∗(v). For each � ∈ {1, 2}, let � be defined by

� =
{

1 (� = 2)

2 (� = 1).

We say that two positions of the same height at columns (v, �) and (v, �) are adjacent
to each other. For two boxes (or positions) b1 and b2 at the same column, we simply say
that b1 is farther/nearer than b2, if b1 is farther/nearer than b2 from/to the level of x∗.
The farthest/nearest box is defined accordingly.

Before starting Transformation, we put stones into boxes according to the follow-
ing rules (see Figure 1):

– For v ∈ Vε(x
1, x2) ∪ Vb(x

1, x2) and � ∈ {1, 2}, we put one stone into every box at
column (v, �).

– For v ∈ V+(x1, x2) ∪ V−(x1, x2) and � ∈ {1, 2} with x�(v) > x�(v), we put one
stone into each of (x�(v)−x�(v)) boxes from the farthest one at column (v, �).

At the place (�) in Transformation, we modify the arrangement of boxes and stones
as follows. We emphasize that u, v and � are fixed at (�), and that bu always contains
a stone and the position adjacent to bv has an empty box if bv is empty, which will be
shown later in Proposition 7, where bu and bv are the farthest boxes at (u, �) and (v, �),
respectively.

at (�) in Transformation

let bu be the farthest box at column (u, �) ;
let bv be the farthest box at column (v, �) ;
if bv contains a stone then

eliminate the boxes bu and bv leaving the stones in the same positions ;
else (bv is empty) {

move the stone in bu into the box adjacent to bv ;
eliminate the boxes bu and bv ;
shift each stone at column (v, �) to its adjacent position ;

} ;

For example, after three iterations for (u, �, v) = (v1, 1, v7), (v1, 1, v7), (v1, 2, v2),

x1−x∗ = (2,−1, 2,−1, 4, 2,−4,−4), x2−x∗ = (1,−2,−2, 1, 5, 2,−3,−2)

are transformed to

x1−x∗ = (0,−1, 2,−1, 4, 2,−2,−4), x2−x∗ = (0,−1,−2, 1, 5, 2,−3,−2)

which are represented by boxes in diagrams, v1 is moved into V0(x
1, x2) and the arrange-

ment of boxes and stones in Figure 1 is modified as Figure 2.
Let x1

0 and x2
0 denote the initial x1 and x2, respectively. We can estimate the distance

between x∗ and x�
0 in terms of the number of stones.
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level of x∗

• • • ••
•• •• •

•

•

•• ••
� � �� � �� �� �V0 Vε Vb V+ V−

(v1, 1)

(v1, 2)

(v2, 1)

(v2, 2)

(v3, 1)

(v3, 2)

(v4, 1)

(v4, 2)

(v5, 1)

(v5, 2)

(v6, 1)

(v6, 2)

(v7, 1)

(v7, 2)

(v8, 1)

(v8, 2)

Fig. 2. After modifications for (v1, 1, v7), (v1, 1, v7), (v1, 2, v2).

Proposition 6. For u ∈ V+(x1
0 , x2

0 )∪V−(x1
0 , x2

0 ) and � ∈ {1, 2}, let s� denote the num-
ber of stones at column (u, �) at the time when u is taken at an outer while iteration.
Then we have:

max{s1, s2} = max{|x1
0(u)−x∗(u)|, |x2

0 (u)−x∗(u)|}. (21)

Proof. Suppose that |x1
0(u)− x∗(u)| ≥ |x2

0 (u)− x∗(u)| without loss of generality.
If |x1

0(u) − x∗(u)| > |x2
0 (u) − x∗(u)| then at the initial state, the farthest box at

column (u, 1) contains a stone. Till the algorithm reaches this point, the stone is located
at either (u, 1) or (u, 2) and does not change its height. Therefore, (b), (e) and (f) of
Proposition 7 below shows that max{s1, s2} = |x1

0(u)− x∗(u)|.
Suppose that |x1

0(u) − x∗(u)| = |x2
0 (u) − x∗(u)|. At the initial state, none of the

boxes at (u, 1) or at (u, 2) have a stone. At the first time when a box at (u, �) (with � = 1
or 2) is eliminated, a stone is put into the farthest box at (u, �). The argument thereafter
is similar to the above case. ��

The following proposition analyzes the movement of stones and show properties of
the modification at (�).

Proposition 7. At the beginning of each inner while iteration of Transformation, the
following statements hold, where �′ ∈ {1, 2}:
(a) The total number of stones remains the same as that at the initial state. For any

column (v′, �′), boxes are located in consecutive positions from the level of x∗.
(b) Each position has at most one stone.
(c) Any empty box is adjacent to an empty box.
(d) For column (v′, �′) with v′ ∈ V+(x1, x2) ∪ V−(x1, x2), any stone is adjacent to a

null position.
(e) For column (v′, �′) with v′ ∈ V \ (V0(x

1, x2)∪ {u}), (e1) stones are put in consec-
utive positions, (e2) no farther position than a position P with a stone has an empty
box, and (e3) all nearer positions than P are nonnull.
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Moreover, at the beginning of each outer while iteration, the following statement holds:

(f) For column (v′, �′) with v′ ∈ Vε(x
1, x2) ∪ Vb(x

1, x2), any box contains a stone.

Proof. (a) is obviously satisfied by the above modification at (�). Statements from (b)
to (f) are initially satisfied.

We first show (b) to (e) according to the two cases in the modification at (�). Suppose
that conditions (b) to (f) hold at the beginning of an iteration.

Assume that bv contains a stone. By the hypotheses, both bu and bv contain exactly
one stone. In this case, statements (b) to (e) trivially hold because no stone is moved and
no empty box is eliminated.

Assume that bv is empty. We first consider the time just after the elimination of bu

and bv . By (f) and (c), bu contained exactly one stone s and the position adjacent to bv

had an empty box b. Since the stone s was moved into b, (b) is preserved. Although
empty box bv was eliminated, (c) is satisfied because the stone s is located in b, and
furthermore, the position adjacent to b is null, i.e., (d) is not violated. We now verify (e).
This is obviously true for (v, �′) with v′ �= v. We will focus on (e) for (v, �), where we
note that (e) for (v, �) may not true at this moment. By (a) and (d), any nearer position
than b has an empty box, and hence (e3). Since bv was the farthest box at (v, �), no far-
ther position than b has an empty box by (c), which shows (e2). By (e), if there existed
stones at (v, �) before the modification then these were consecutively located from the
position farther than b by one. Hence, (e1) is satisfied.

We next consider the time just after shifting stones in the case of empty bv . By (e),
the stones at column (v, �), if any, were consecutively located from the position which
is farther than bv by one. By (d), these stones were adjacent to a null position. Hence,
shifting these stones preserves (b), (c) and (d). Since these stones and the stone s are
located consecutively, (e) remains to be true for (v′, �′) �= (v, �). Moreover, (e) for (v, �)

is also satisfied because column (v, �) has no stone.
We finally consider (f). Since (f) holds initially, we deal with the case where v′ ∈

V+(x1, x2) was moved into Vb(x
1, x2), without loss of generality. This means that either

x1(v′) = x∗(v′) or x2(v′) = x∗(v′). Here we assume x2(v′) = x∗(v′). Suppose to the
contrary that there is an empty box at column (v′, 1). By (e), the nearest box b(v′,1)

at (v′, 1) is empty. Let us consider the time when the box b(v′,2) adjacent to b(v′,1)

was eliminated. By (c), b(v′,2) had to be empty. However, a stone was put in b(v′,1), a
contradiction. Hence, any box at column (v′, 1) has a stone. ��

By Proposition 6, ‖x∗−x�
0 ‖∞ is bounded by the number of stones. We next estimate

the left-hand side of (21) more precisely. Let us call a stone in a box to be black and a
stone not in a box white, and classify stones into six categories (where � ∈ {1, 2}):
Ba� : the set of black stones located above the level of x∗ at column (v, �) for some v,
Bb� : the set of black stones located below the level of x∗ at column (v, �) for some v,
Wa : the set of white stones located above the level of x∗,
Wb : the set of white stones located below the level of x∗.

The partition dynamically changes during Transformation under the following
restrictions.
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Proposition 8. If a stone changes its category, then this is one of the following transi-
tions:

Ba1→ Bb2 ∪Wa, Bb2→ Ba1 ∪Wb,

Ba2→ Bb1 ∪Wa, Bb1→ Ba2 ∪Wb.

Therefore, no stone in Wa ∪Wb changes its category.

Proof. The modification at (�) contains three alterations of states of stones: color change
of black stones in boxes bu and bv , movement of the black stone in bu and shift of
white stones at (v, �). Let � denote 1 or 2. The first alteration is either Ba� → Wa or
Bb� → Wb. The second one is either Ba� → Bb� or Bb� → Ba�. The third one
means that white stones do not change the category. ��
Proposition 9. At the beginning of each inner while iteration, we have

|Ba1| + |Bb2| = |Ba2| + |Bb1|, (22)

|Wa| = |Wb|, (23)

and therefore, for any u ∈ V+(x1
0 , x2

0 ) ∪ V−(x1
0 , x2

0 ),

max{|x1
0(u)−x∗(u)|, |x2

0 (u)−x∗(u)|} ≤ s

2
, (24)

where s denotes the total number of stones.

Proof. We first consider the initial state. Since x1
0(V ) = x2

0 (V ) = x∗(V ), we have

∑

v∈supp+(x1
0−x∗)

(x1
0(v)− x∗(v)) +

∑

v∈supp−(x2
0−x∗)

(x∗(v)− x2
0 (v))

=
∑

v∈supp+(x2
0−x∗)

(x2
0 (v)− x∗(v)) +

∑

v∈supp−(x1
0−x∗)

(x∗(v)− x1
0(v)). (25)

The left-hand side of (25) minus the number of relevant empty boxes is equal to |Ba1|+
|Bb2|, and a similar relation between the right-hand side of (25) and |Ba2| + |Bb1|
also holds. On the other hand, for v ∈ V+(x1

0 , x2
0 ) ∪ V−(x1

0 , x2
0 ), the number of empty

boxes at (v, 1) is equal to that at (v, 2). Therefore, |Ba1| + |Bb2| = |Ba2| + |Bb1| and
|Wa| = |Wb| = 0 are satisfied at the initial state.

Color change of black stones in the modification at (�) decreases the cardinalities
of Ba1 ∪ Bb2 and Ba2 ∪ Bb1 exactly by one, and increases those of Wa and Wb

exactly by one. Thus, Proposition 8 guarantees that |Ba1| + |Bb2| = |Ba2| + |Bb1|
and |Wa| = |Wb| are preserved during Transformation.

Let s1 and s2 be the numbers defined in Proposition 6. By (22) and (23), s1 and s2
are bounded by s

2 . Hence, (24) is obtained from (21). ��
Proof of Theorem 11. We already proved that

|x∗(v)− x(v)| ≤ d

2
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holds for any v ∈ Vε(x
1
0 , x2

0 ) ∪ Vb(x
1
0 , x2

0 ) in Proposition 4. Here we prove that

|x∗(v)− x(v)| ≤ d

holds for any v ∈ V+(x1
0 , x2

0 ) ∪ V−(x1
0 , x2

0 ). Without loss of generality, we assume that
v ∈ V+(x1

0 , x2
0 ) and x1

0(v) ≥ x2
0 (v). Obviously, we have

x(v) ≤ x1
0(v)⇒ x(v)− x∗(v) ≤ x1

0(v)− x∗(v),
(26)

x(v) > x1
0(v)⇒ x(v)− x∗(v) = (x1

0(v)− x∗(v))+ (x(v)− x1
0(v)).

Let s denote the total number of stones. (24) says

x1
0(v)− x∗(v) ≤ s

2
. (27)

We finally estimate s. Here we abbreviate Vε(x
1
0 , x2

0 ) to Vε , Vb(x
1
0 , x2

0 ) to Vb, and so on.
The number s is bounded as

s =
∑

�∈{1,2}

∑

i∈Vε

|x�
0(i)−x∗(i)| +

∑

i∈Vb∪V+∪V−
|x1

0(i)−x2
0 (i)|

≤
∑

�∈{1,2}

∑

i∈V \{v}
|x�

0(i)−x(i)| + (x1
0(v)−x2

0 (v))

= ||x1
0−x||1 + ||x2

0−x||1 − |x1
0(v)−x(v)| − |x2

0 (v)−x(v)| + (x1
0(v)−x2

0 (v))

≤ 2d − |x1
0(v)−x(v)| − |x2

0 (v)−x(v)| + (x1
0(v)−x2

0 (v))

=





2(d − (x(v)−x1
0(v))) (x(v) > x1

0(v))

2d (x2
0 (v) ≤ x(v) ≤ x1

0(v))

2(d − (x2
0 (v)−x(v))) (x(v) < x2

0 (v)).

(28)

By (26), (27) and (28), we obtain x(v)− x∗(v) ≤ d . ��

3.5. Proof of Lemma 1

We use notations defined in Remark 1.
[(a) ⇒ (b)] Given ordered sets U, W ⊂ V , if the left-hand side of (7) is finite,

then it is equal to the length of some cycle in Gα
x with respect to �α

x . Assumption (a) says
that it must be nonnegative, that is, (b) holds.

[(b)⇒ (a)] We prove that if there exists a negative cycle C in Gα
x then (7) does

not hold for some U, W ⊂ V . Without loss of generality, we assume that C is sim-
ple, and that C is denoted by a sequence of arcs. Assume that consecutive two arcs
(u, v), (v, w) (u �= w) of C belong to A1 (the case where these belong to A2 can be
dealt with, similarly). We first show that

�α
x (u, v)+ �α

x (v, w) ≥ �α
x (u, w). (29)
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It follows from (v, w) ∈ A1 that x − βχv + βχw is contained in dom f1 for any
β ∈ [0, α]Z. By applying (M-EXC), we have the following inequalities:

f1(x − χv + χw)+ f1(x − αχu + αχv)

≥ f1(x)+ f1(x − αχu + (α−1)χv + χw)

f1(x − 2χv + 2χw)+ f1(x − αχu + (α−1)χv + χw)

≥ f1(x − χv + χw)+ f1(x − αχu + (α−2)χv + 2χw)

f1(x − 3χv + 3χw)+ f1(x − αχu + (α−2)χv + 2χw)

≥ f1(x − 2χv + 2χw)+ f1(x − αχu + (α−3)χv + 3χw)

...

f1(x − αχv + αχw)+ f1(x − αχu + χv + (α−1)χw)

≥ f1(x − (α−1)χv + (α−1)χw)+ f1(x − αχu + αχw).

By summing up both sides of the above inequalities, we obtain

f1(x − αχu + αχv)+ f1(x − αχv + αχw) ≥ f1(x)+ f1(x − αχu + αχw),

which is equivalent to (29).
Inequality (29) guarantees that C \{(u, v), (v, w)}∪{(u, w)} is also a negative cycle.

While there are consecutive two arcs of C as above, we replace these by the shortcut
arc. After the process, we obtain either a negative cycle C in which arcs of A1 ∪A2 and
Ab appear alternately, or a negative cycle of length two contained in one of A1, A2 and
Ab, because of the structure of Gα

x . The second case, however, cannot occur because the
length of the cycle is not negative. Since �α

x (a) = 0 holds for any a ∈ Ab, the length of C

is expressed as the left-hand side of (7) for some ordered sets U and W with U ∩W = ∅,
and furthermore, it must be negative.
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