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Abstract. Including integer variables into traditional stochastic linear programs has considerable implications
for structural analysis and algorithm design. Starting from mean-risk approaches with different risk measures
we identify corresponding two- and multi-stage stochastic integer programs that are large-scale block-struc-
tured mixed-integer linear programs if the underlying probability distributions are discrete. We highlight the
role of mixed-integer value functions for structure and stability of stochastic integer programs. When applied
to the block structures in stochastic integer programming, well known algorithmic principles such as branch-
and-bound, Lagrangian relaxation, or cutting plane methods open up new directions of research. We review
existing results in the field and indicate departure points for their extension.

1. Introduction

During the last decade, integer variables have gained increased attention in stochastic
programming. Regarding theoretical analysis and algorithmic treatment of stochastic
programs this leads to a considerable change of paradigms. While classical stochastic
linear programs in continuous variables benefit from inherent convexity properties, this
is no longer the case if integrality enters the model. The present paper aims at discussing
achievements and challenges in stochastic integer programming. We will consider well-
established topics of integer programming and study their impacts in stochastic integer
programming.

2. Models

In stochastic programming, like in mathematical programming in general, integer vari-
ables, first of all, serve to extend the modeling abilities by representing issues such
as indivisibility, Boolean decisions, disjunctions, or piecewise linearity. These features
may already be part of the random optimization problem which stands at the begin-
ning of each stochastic programming model. The way a random optimization problem
is turned into a stochastic program, on the one hand, depends on the interplay of mak-
ing decisions and gaining information. On the other hand, it depends on the statistical
parameters that are employed for building the objective function and the constraints of
the stochastic program. These parameters may be simply the expected value or, as in
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approaches expressing risk aversion, probabilities, dispersions, or conditional expecta-
tions. Depending on the risk measure selected, statistical parameters entering the model
may be another source of integrality in stochastic programming.

2.1. Two-stage model

The two-stage model reflects the simplest mode of the mentioned interplay of decision
and information. It is based on the random mixed-integer linear program

min
x,y,y′

{
c�x + q�y + q ′�y′ : T x + Wy + W ′y′ = h(ω),

x ∈ X, y ∈ Z
m̄
+, y′ ∈ R

m′
+

}
. (1)

All ingredients are supposed to have conformable dimensions. The matrices W, W ′ are
rational, and X ⊆ R

m is a nonempty polyhedron, possibly involving integer require-
ments to components of x. The right-hand side h(ω) ∈ R

s is a random vector on some
probability space (�, A, P). For ease of exposition we confine ourselves in the present
paper to randomness in the right-hand sides of the respective optimization problems.
Decisions on the variables x and (y, y′) have to be made stage-wise. Before observing
the realization of h(ω) the variable x has to be selected in the first stage. After having
decided on x and having observed h(ω), the second-stage (or recourse) decision (y, y′)
has to be made. Such a scheme frequently arises in decision making under uncertainty.
The first stage corresponds to decisions that have to be made without anticipation of (parts
of) the problem data. The second stage allows for corrective actions after uncertainty
has been unveiled. The decision problem under uncertainty is to select the first-stage
decision in an optimal way. Optimality, of course, has to be made precise in this context.
Different statistical parameters then come into play.
Given x and h(ω), the second-stage decision (y, y′) has to be selected to be the best
possible. The corresponding optimal value can be expressed as �(h(ω) − T x) where

�(t) := min
{
q�y + q ′�y′ : Wy + W ′y′ = t, y ∈ Z

m̄
+, y′ ∈ R

m′
+

}
. (2)

In parametric optimization the above object is well-known as the value function of a
mixed-integer program. Studies such as [7, 12] will be very useful when analyzing struc-
ture and stability of the stochastic integer programs we are heading for. By integer pro-
gramming theory ([40]), the function � is real-valued on R

s if W(Zm̄+)+W ′(Rm′
+ ) = R

s

and {u ∈ R
s : W�u ≤ q, W ′�u ≤ q ′} �= ∅ (complete and sufficiently expensive

recourse) which, therefore, is assumed throughout. Without integer requirements in (2),
linear programming duality provides that � is a piecewise linear convex function. The
breakdown of convexity in (2) in the presence of integer variables is the main source of
the challenges that arise when passing from stochastic linear programming to stochastic
integer programming.

A first-stage decision x now induces the total (random) costs c�x + �(h(ω) − T x).
The decision problem of finding an optimal x without anticipating future realization of
h(ω) may be formulated as finding a “best” random variable in the indexed familiy(

c�x + �(h(ω) − T x)
)

x∈X
. (3)
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Stochastic orders (see e.g. [39]) provide a rich selection of scalar criteria for choosing an
optimal member from the function family in (3). In the stochastic programming context
at hand it is reasonable to base this choice on the following guidelines:

– The scalar criterion shall be in tune with basic asymptotic results in stochastics such
as the law of large numbers and, if possible, be consistent with ordering principles
such as stochastic dominance, see e.g. [42] for a recent exposition.

– The resulting stochastic program shall be well-posed from formal viewpoint. For
instance, it makes sense to strive for an objective function that is at least lower semi-
continuous inx, such that its infimum over a non-empty compact set is always attained.
The latter is less esoteric than it might seem, since the value function � has poor ana-
lytical properties and is discontinuous in general.

– Finally, and not least importantly, the resulting stochastic program shall be com-
putationally accessible. We will see that, with discretely distributed h(ω), stochastic
integer programs may be equivalently restated as large-scale, block-structured mixed-
integer optimization problems. The scalar criterion then determines the block struc-
ture, and one is especially interested in criteria inducing decomposable structures.

Not surprisingly, the most popular scalar criterion is taking the expectation. This leads
to the objective function

QE(x) :=
∫

�

(
c�x + �(h(ω) − T x)

)
P(dω) (4)

and the traditional expectation-based (two-stage) stochastic program with recourse

min {QE(x) : x ∈ X} . (5)

Without integer requirements, this model is the well-studied stochastic linear program
with recourse, for details see the textbooks [11, 26, 43] and [51]. Among the existing
models in stochastic integer programming, (5) is best understood so far. Therefore, it
will have a central role subsequently in the present paper.

2.2. Risk measures

From a stochastics viewpoint, optimizing an expectation tacitly supposes repeatability
of the decision process a great number of times under identical conditions. Asymptotic
results such as the law of large numbers then provide convergence in stochastic terms
of the random quantities to their expected values. On the other hand, safety issues are
addressed only inadequately by the expectation framework. This has lead to mean-risk
models. In the present context, a mean-risk model reads

min{QE(x) + ρ · Qrisk(x) : x ∈ X} (6)

where QE is as in (4), ρ > 0 is some preselected weight factor, and Qrisk is a func-
tional measuring risk. The model (6) typically arises from using a weighting method to
generate the efficient frontier associated with decisions involving mean as one criterion,
and risk as the other. Thus, a bi-criteria problem is in the background, and a family of
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mean-risk models (6) with ρ varying in R+ usually has to be solved. In stochastic integer
programming the image set {(QE(x), Qrisk(x)) ∈ R

2 : x ∈ X} is nonconvex in gen-
eral. Therefore, in general only a subset of the efficient frontier, the so-called supported
part, is reached when solving (6) for the ρ in R+, see [8, 29] for some basic facts of
multi-criteria optimization, and [54] for an example of tracing supported efficient points
by using a specification of (6).

The identification of proper risk measures is a field of active research in stochastics,
see for instance the recent papers [3, 42, 45] and the references therein. Here, we will not
pursue risk modeling in general but rather introduce some specifications of Qrisk and
discuss whether they lead to reasonable models in the sense of the guidelines formulated
in Subsection 2.1.
Following Markowitz’ seminal work, mean-variance models have gained attraction in
decision making under uncertainty. In terms of (6) this suggests

Qrisk(x) :=∫

�

[
c�x + �(h(ω) − T x) −

∫

�

(
c�x + �(h(ω) − T x)

)
P(dω)

]2

P(dω).

Conceptually the variance has several drawbacks. In the minimization framework at
hand, deviations below target, if at all, are far less critical than deviations above. So the
symmetric penalty imposed by the variance should be abandoned in favour of one-sided
measures. Moreover, the square involved drives us away from mixed-integer linear pro-
gramming that will arise as a powerful tool for solving (5) and, if possible, should be
used for mean-risk extensions as well. Finally, the square and the discontinuous nature
of � may lead to a rather ill-posed functional Qrisk(.). In [54] an example is given where
Qrisk(.) fails to be lower semicontinuous and (6), with compact X, has a finite infimum
which is not attained. Some other difficulties that arise when including the variance of
second-stage objective function values into the objective of a two-stage stochastic linear
program are reported in [60].
The outlined deficiencies of variance suggest one-sided risk measures that are defined
in terms of piecewise linear expressions, if necessary involving mixed-integer variables.
Instances fitting into these requirements are excess probability, conditional value-at-risk,
or absolute semideviation.
With a preselected threshold ϕo ∈ R the excess probability functional

QP(x) := P

({
ω ∈ � : c�x + �(h(ω) − T x) > ϕo

})
(7)

measures the probability of facing total random objective values exceeding ϕo. Excess
probabilities, sometimes also called aspiration level objectives, arise in quite different
modeling situations. For instance as ruin probability if ϕo is a critical cost level, or as
probability of interrupting a random network if ϕo is a properly chosen path length [71].
The study of probability objectives in stochastic programming seemingly dates back to
[9, 16]. In stochastic programs with recourse (then without integer variables) an early
contribution to risk aversion by a probability term like (7) is [10].

Excess probabilities do not quantify the extent to which objective values exceed
the threshold. The latter may be achieved by another interesting risk measure, the



Stochastic programming with integer variables 289

conditional value-at-risk [42, 45]. Some prerequisites are needed for its introduction.
Let us denote by

F(x, η) := P
({ω ∈ � : c�x + �(h(ω) − T x) ≤ η})

the distribution function of the random variable c�x+�(h(ω)−T x). With a preselected
probability 0 < α < 1, the α-Value-at-Risk is given by

ηα(x) := min{η : F(x, η) ≥ α}.
The α-Conditional-Value-at-Risk (α-CVaR) QCV aR(x) is the expected value of what is
called the α-tail distribution of c�x + �(h(ω) − T x). This distribution is given by the
distribution function

Fα(x, η) :=
{

0 , for η < ηα(x)
F(x,η)−α

1−α
, for η ≥ ηα(x)

If the underlying random variable, in our case c�x +�(h(ω)− T x), has no probability
atom at ηα(x) then QCV aR(x) equals a conditional expectation, namely

QCV aR(x) = E
(
c�x + �(h(ω) − T x)

∣∣ c�x + �(h(ω) − T x) ≥ ηα(x)
)
.

We have preferred the general definition since, due to the discontinuous nature of �

and the numerical importance of discretely distributed h(ω), later on, probability atoms
rather will be the rule than the exception. The general definition is rather difficult to
handle analytically. The following minimization formula from [42, 45] serves well in
overcoming this difficulty.

Proposition 1. It holds
QCV aR(x) = min

η∈R

fα(x, η)

where

fα(x, η) := η + 1

1 − α

∫

�

max
{
c�x + �(h(ω) − T x) − η , 0

}
P(dω).

As a first consequence, Proposition 1 yields that QCV aR(.) is convex for models
with linear recourse, i.e., models where integrality is missing in (2). Indeed, � is con-
vex without integrality in (2), and thus fα jointly convex in (x, η). The argument is
completed by observing that minimizing a jointly convex function with respect to one
variable produces a function that is convex in the other variable.
The α-Value-at-Risk (α-VaR) arising in the above construction is a popular risk mea-
sure itself that is written into many financial regulations. Here, we will not pursue its
discusssion, but remark that α-CVaR, clearly, provides an upper bound for α-VaR such
that first-stage decisions x leading to a small α-CVaR lead to a small α-VaR as well, see
[45] for a thorough discussion of relation between α-CVaR and α-VaR.
For the definitions of QP and QCV aR a static threshold and a static probability must be
preselected. Such preselections can be avoided when working with a dynamic threshold,
for instance. The absolute semideviation is a one-sided risk measure which is determined
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by a piecewise linear expression and uses the expectation as a dynamic threshold. For
the random variables from (3) it reads

QASD(x) :=
∫

�

max
{
c�x + �(h(ω) − T x) −

∫

�

(c�x + �(h(ω) − T x)) P(dω), 0
}

P(dω).

Introducing risk terms into traditional stochastic programming models has regained
attention among researchers only recently. Our selection of excess probability, con-
ditional value-at-risk, and absolute semideviation is rather subjective than exhaustive.
From an integer programming viewpoint adding risk terms to stochastic integer programs
is interesting since it induces further types of computationally challenging large-scale
mixed-integer programs.

2.3. Block structures

In many practical situations the dimension of the random vector h(ω) that underlies the
mean-risk model (6) is too big to enable direct computation of the multi-dimensional inte-
grals in the objective of (6) for continuous probability distributions. Therefore, discrete
probability measures have a prominent role in stochastic programming computations.
This is backed by stability properties we will mention later in this paper. Beside turn-
ing integrals into sums, discrete distributions allow for equivalent representations of
mean-risk models as block-structured mixed-integer linear programs. Assume that h(ω)

follows a discrete finite distribution with realizations (or scenarios) hj and probabilities
pj , j = 1, . . . , J .

Proposition 2. With the above discrete distribution of h(ω) the following is valid.

1. The expectation-based model min{QE(x) : x ∈ X} is equivalent to

min
x,yj ,y′

j

{
c�x +

J∑
j=1

pj (q
�yj + q ′�y′

j ) :

T x + Wyj + W ′y′
j = hj , (8)

x ∈ X, yj ∈ Z
m̄
+, y′

j ∈ R
m′
+ , j = 1, . . . , J

}
.

2. If X is bounded then there exists a constant M > 0 such that the mean-risk model
min{QE(x) + ρ · QP(x) : x ∈ X} is equivalent to

min
x,yj ,y′

j ,θj

{
c�x +

J∑
j=1

pj (q
�yj + q ′�y′

j ) + ρ ·
J∑

j=1

pjθj :

T x + Wyj + W ′y′
j = hj , (9)

c�x + q�yj + q ′�y′
j − (M − ϕo)θj ≤ ϕo,

x ∈ X, yj ∈ Z
m̄
+, y′

j ∈ R
m′
+ , θj ∈ {0, 1}, j = 1, . . . , J

}
.
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3. The mean-risk model min{QE(x) + ρ · QCV aR(x) : x ∈ X} is equivalent to

min
x,η,yj ,y′

j ,vj

{
c�x +

J∑
j=1

pj (q
�yj + q ′�y′

j ) + ρ · (η + 1

1 − α

J∑
j=1

pjvj ) :

T x + Wyj + W ′y′
j = hj , (10)

c�x + q�yj + q ′�y′
j − η ≤ vj ,

x ∈ X, η ∈ R, yj ∈ Z
m̄
+, y′

j ∈ R
m′
+ , vj ∈ R+, j = 1, . . . , J

}
.

4. For 0 < ρ < 1, the mean-risk model min{QE(x) + ρ · QASD(x) : x ∈ X} is
equivalent to

min
x,yj ,y′

j ,w,vj

{
c�x + (1 − ρ) · w + ρ ·

J∑
j=1

pjvj :

T x + Wyj + W ′y′
j = hj ,

J∑
i=1

pi(q
�yi + q ′�y′

i ) = w, (11)

q�yj + q ′�y′
j ≤ vj , w ≤ vj ,

x ∈ X, yj ∈ Z
m̄
+, y′

j ∈ R
m′
+ , w, vj ∈ R, j = 1, . . . , J

}
.

Proof. The equivalence in part 1 is already well-known from linear two-stage models
without integer requirements, see [11, 26, 43]. The same proof applies here.
The crucial point in part 2 is introducing the Boolean variables θj to “count” whether
c�x + �(hj − T x) > ϕo for a given x and j ∈ {1, . . . , J }. In case θj = 1, the
“big M” guarantees that the “counting constraint” becomes vacuous. A feasible choice
is M ≥ sup{c�x + �(hj − T x) : x ∈ X, j = 1, . . . , J }. Since X is bounded, the
supremum on the right is less than +∞, see Theorem 8.1 in [7] or [54], for instance.
Part 3 is a direct consequence of Proposition 1. For part 4 the following reformulation
is useful. To compress notation we use the symbols E for taking the expectation and
g(x, ω) := c�x + �(h(ω) − T x). Applying max{s − t, 0} = max{s, t} − t for s, t ∈ R

we obtain:

min{QE(x) + ρ · QASD(x) : x ∈ X}
= min

x∈X

{
E[g(x, ω)] + ρE

[
max

{
g(x, ω) − E[g(x, ω)], 0

}]}

= min
x∈X

{
(1 − ρ)E[g(x, ω)] + ρE

[
max

{
g(x, ω), E[g(x, ω)]

}]}

= min
x∈X

{
c�x + (1 − ρ)

J∑
j=1

pj�(hj − T x)

+ ρ

J∑
j=1

pj max{�(hj − T x),

J∑
i=1

pi�(hi − T x)}}. 
�
The mixed-integer linear program in the above part 1 obeys a dual-block angu-

lar structure that is omnipresent in two-stage stochastic linear programming. Through



292 R. Schultz

T x + Wyj + W ′y′
j = hj each second-stage variable (yj , y

′
j ), j = 1, . . . , J is linked

explicitly with the first-stage variable x. There are no explicit links among second-stage
variables belonging to different scenarios. Algorithmically, this structure has been the
departure point of very successful decomposition algorithms in stochastic linear pro-
gramming without integer requirements. Also in the presence of integer variables the
structure leads to promising approaches, as will be seen later in this paper.
Parts 2 and 3 of Propositon 2 confirm that the mean-risk models there again induce the
principal block structure from part 1. Indeed, no explicit links among second-stage vari-
ables for different scenarios occur.All these variables are explicitly linked with first-stage
variables. Of course, modeling requirements may produce auxiliary first- and second-
stage variables such asη in part 3 or θj in part 2. One concludes that excess probability and
conditional value-at-risk are algorithmically amenable since they lead to mean-risk mod-
els allowing for direct extension of methods applying to the expectation-based model (5).

In contrast with parts 2 and 3, part 4 displays a mixed-integer linear program with
explicit coupling among second-stage variables for different scenarios. The resulting
block structure does not fit into existing schemes of stochastic programming and, there-
fore, may be an interesting object of future research.

Part 2 of Propositon 2 is an example how integrality in stochastic programming may
be induced by the probabilistic context a model is developed in. The articles [44, 54]
contain some first results for this class of problems.

2.4. Multi-stage extension

In the two-stage models introduced so far uncertainty is unveiled at once and decisions
subdivide into those before and those after unveiling uncertainty. Multi-stage stochastic
programs address the more complex case where uncertainty is unveiled stepwise, with
intermediate decisions. This makes the essential difference with deterministic multi-
period optimization problems where, as well, decisions are assigned to time stages but
the whole data information is available in the beginning. The decision xt ∈ R

mt at stage
t ∈ {1, . . . , T } must be based on information available up to time t only (nonanticip-
ativity). The information is modeled as a discrete time stochastic process {bt }�t=1 on
some probability space (�, A, P) with bt taking values in R

st . The underlying random
optimization problem reads

min{ c�
1 x1 + c�

2 x2 + . . . + c�
T xT :

A11x1 = b1
A21x1 + A22x2 = b2(ω)

...
. . .

...

AT 1x1 + . . . + AT T xT = bT (ω)

x1 ∈ X1 x2 ∈ X2 . . . xT ∈ XT }.
We assume that b1 is deterministic, that all matrices arising have rational entries, and
that Xt, t = 1, . . . , T are nonempty polyhedra, possibly involving integer requirements.
Although we have adapted the notation to the more usual one for multi-stage models it
is evident that the random optimization problem (1) from Subsection 2.1 fits into the
above model for T = 2.
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The fact that decisions always must be based on the available information leads
to the following sequence of actions and observations. First, the decision x1 is made.
Then b2(ω) is observed, and the decision x2 = x2(x1, b2(ω)) is made. In general,
the decision xt depends on the vector (x1, . . . , xt−1, b2(ω), . . . , bt (ω)). Finally, xT =
xT (x1, . . . , xT −1, b2(ω), . . . , bT (ω)) is made. As in the two-stage case, the aim is to
optimize the first-stage decision. Again, this can be understood as selecting a “best”
member from a family of random variables. This family can be expressed by(

c�
1 x1 + �mult (x1, b(ω))

)
x1∈X1,A11x1=b1

(12)

with the mixed-integer value function

�mult (x1, b(ω)) :=

min
A21x1+A22x2=b2(ω)

x2∈X2

{
c�

2 x2 + min
A31x1+A32x2+A33x3=b3(ω)

x3∈X3

{
c�

3 x3 + . . . (13)

+ min
AT −1,1x1+...+AT −1,T −1xT −1=bT −1(ω)

xT −1∈XT −1

{c�
T −1xT −1

+ min
AT 1x1+...+AT T xT =bT (ω)

xT ∈XT

c�
T xT } . . .

}}
.

It is the nested nature that makes the value function �mult a far more complicated mathe-
matical object than its two-stage counterpart � from (2). Relatively little is known about
�mult in the mixed-integer situation adopted here.

Multi-stage stochastic integer programs arise by imposing scalar criteria for making
the “best” selection in (12). The principal ideas developed in Subsections 2.2 and 2.3 for
the two-stage case readily extend and provide flexibility for including risk aversion into
multi-stage models. Conceptually, this is quite close to the two-stage case. Technically,
however, multi-stage models are much more demanding. Beside the mentioned nesting,
the nonanticipativity of decisions is more subtle, and the model size is considerably
bigger.

As with two-stage models, taking the expectation is the most popular scalar criterion
in the multi-stage case. For separability reasons, the expectation then unfolds into a
nested sequence of conditional expectations:

min
A11x1=b1
x1∈X1

{
c�

1 x1 + Eb(ω)[�mult (x1, b(ω))]
}

= min
A11x1=b1
x1∈X1

{
c�

1 x1 +

Eb2(ω)

[
min

A21x1+A22x2=b2(ω)

x2∈X2

{
c�

2 x2 + Eb3(ω)|b[1,2]

[
min

A31x1+A32x2+A33x3=b3(ω)

x3∈X3

{
c�

3 x3 + . . .

+EbT −1(ω)|b[1,T −2]

[
min

AT −1,1x1+...+AT −1,T −1xT −1=bT −1(ω)

xT −1∈XT −1

{
c�
T −1xT −1

+EbT (ω)|b[1,T −1]

[
min

AT 1x1+...+AT T xT =bT (ω)

xT ∈XT

c�
T xT

]}]
. . .

}]}]}
.
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Here we have used the notation b[1,t] := (b1, . . . , bt ), and Ebt (ω)|b[1,t−1] denotes the
conditional expectation of bt (ω) given b1, . . . , bt−1, t = 2, . . . , T . Although quite
technical, the above formula at least provides some handle for analyzing the interplay
of mixed-integer value functions and integration in multi-stage stochastic integer pro-
grams. For two-stage models, this analysis has come to some first results as will be seen
in the next section. The article [47] is a more detailed introduction into expectation-based
multi-stage stochastic integer programs. Still, these models and, all the more, multi-stage
mean-risk models generalizing (6) are a widely open field of research.

In the numerical treatment of multi-stage stochastic programs discrete probability
measures and resulting block structures again have a prominent role. Compared with
two-stage models the more complex nonanticipativity deserves special attention. In the
above model formulation nonanticipativity is guaranteed by the nesting in an implicit
fashion. An alternative to be presented next is the inclusion of explicit nonanticipativity
constraints.

Assume that b(ω) follows a discrete distribution with scenarios b1, . . . , bJ and proba-
bilities p1, . . . , pJ .According to the number of scenarios we introduce copies x1, . . . , xJ

of the variable x = (x1, . . . , xT ). Nonanticipativity then means that, for each stage
t = 1, . . . , T , scenarios with the same history up to t must induce identity of the corre-
sponding x-copies up to t , more precisely

for t = 1, . . . , T : xtj1 = xtj2 for all j1, j2 for which bτj1 = bτj2 , τ = 1, . . . , t.

Nonanticipativity thus is a linear equality constraint for which, of course, different rep-
resentations are possible. In the present paper we assume that, with suitable matrices
Hj , j = 1, . . . , J , it is expressed by

J∑
j=1

Hjxj = 0. (14)

The expectation-based multi-stage stochastic integer program then reads

min

{
J∑

j=1

pj

(
c�

1 x1j + c�
2 x2j + . . . + c�

T xTj

)
:

A11x1j = b1j

A21x1j + A22x2j = b2j (ω)
...

. . .
...

AT 1x1j + . . . + AT T xTj = bTj (ω)

x1j ∈ X1 x2j ∈ X2 . . . xTj ∈ XT




, j = 1, . . . , J,

H1x1 + H2x2 + . . . , HJ xJ = 0

}
.

(15)

The constraints of the above mixed-integer linear program consist of J independent
blocks corresponding to the scenarios j = 1, . . . , J together with the linking nonanti-
cipativity constraint. The model is a well-established point of departure for designing
decomposition algorithms.Accordingly, block structures for multi-stage mean-risk mod-
els generalizing those in parts 2-4 of Proposition 2 may be an interesting research topic.
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3. Mixed-integer value functions for structure and stability

In Section 2 we had set aside the question whether the models presented are mathe-
matically sound. The expectation and risk functionals there involve different modes of
integration, and for the latter to be well-posed certain requirements have to be met. Fur-
ther important issues are the analytical properties of the mentioned functionals that have
crucial impact on well-posednes and difficulty of the resulting mean-risk optimization
problems. In (2) and (13) we had already seen that value functions of mixed-integer
programs have a central role in the mathematical structures behind our models. This
explains the role of parametric (integer) optimization in stochastic (integer) program-
ming. The structure of stochastic programs is essentially determined by an interplay of
value functions and facts from probability theory. In what follows we will illustrate this
on the functionals QE(.) from (4) and QP(.) from (7).
We begin with collecting prerequisites about the mixed-integer value function

�(t) := min
{
q�y + q ′�y′ : Wy + W ′y′ = t, y ∈ Z

m̄
+, y′ ∈ R

m′
+

}

already introduced in (2). The material has been adapted from parametric optimization
sources such as [7, 12].

Proposition 3. Let W, W ′ be rational matrices and assume that W(Zm̄+) + W ′(Rm′
+ ) =

R
s and {u ∈ R

s : W�u ≤ q, W ′�u ≤ q ′} �= ∅. Then it holds:

1. � is real-valued and lower semicontinuous on R
s .

2. There exists a countable partition R
s = ∪∞

i=1Ti such that the restrictions of � to Ti

are piecewise linear and Lipschitz continuous with a uniform constant not depending
on i.

3. Each of the sets Ti has a representation Ti = {ti + K} \ ∪N
j=1{tij + K} where

K denotes the polyhedral cone W ′(Rm′
+ ) and ti , tij are suitable points from R

s;
moreover, N does not depend on i.

4. There exist positive constants β, γ such that |�(t1) − �(t2)| ≤ β‖t1 − t2‖ + γ

whenever t1, t2 ∈ R
s .

For convenience we denote by µ the image measure P◦h−1 on R
s . With this notation,

the functions QE and QP become

QE(x) =
∫

Rs

(c�x + �(h − T x)) µ(dh) and

QP(x) = µ
({h ∈ R

s : c�x + �(h − T x) > ϕo}
)
.

Proposition 4. Let W, W ′ be rational matrices and assume that W(Zm̄+) + W ′(Rm′
+ ) =

R
s and {u ∈ R

s : W�u ≤ q, W ′�u ≤ q ′} �= ∅. Then it holds:

1. The function QP : R
m −→ R is real-valued lower semicontinuous. If µ has a

density, then QP is continuous.
2. If

∫
Rs ‖h‖ µ(dh) < ∞ then QE : R

m −→ R is real-valued lower semicontinuous,
and continuous if µ has a density.
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Proof. The lower semicontinuity from part 1 of Proposition 3 ensures measurability
of the relevant integrands and level sets in the definitions of QE and QP. The integral
defining QE then is always finite thanks to the finitenes assumption in part 2 above and
the estimate in part 4 of Proposition 3. Therefore, both QP and QE are real-valued on
R

m. For all x ∈ R
m, we introduce the notations M(x) := {h ∈ R

s : c�x + �(h −
T x) > ϕo}, Me(x) := {h ∈ R

s : c�x + �(h − T x) = ϕo}, and Md(x) := {h ∈
R

s : � is discontinuous at h − T x}. Moreover, we denote by lim infxn→x M(xn) and
lim supxn→x M(xn) the (set theoretic) limes inferior and limes superior, i.e., the sets of
all points belonging to all but a finite number of the sets M(xn), n ∈ N, and to infi-
nitely many of the sets M(xn), respectively. Then it is possible to verify the following
inclusions for all x ∈ R

m, for details see [54],

M(x) ⊆ lim inf
xn→x

M(xn) ⊆ lim sup
xn→x

M(xn) ⊆ M(x) ∪ Me(x) ∪ Md(x).

By the semicontinuity of the probability measure on sequences of sets it follows

QP(x) = µ
(
M(x)

) ≤ µ
(

lim inf
xn→x

M(xn)
)

≤ lim inf
xn→x

µ
(
M(xn)

) = lim inf
xn→x

QP(xn),

establishing the asserted lower semicontinuity of QP. Parts 2 and 3 of Proposition 3
provide that the sets Me(x) and Md(x) are contained in countably many hyperplanes in
R

s , i.e., in a set of Lebesgue measure zero. For the case that µ has a density this yields
µ

(
Me(x) ∪ Md(x)

) = 0 for all x ∈ R
m. The last estimate then continues:

QP(x) = µ
(
M(x)

) = µ
(
M(x) ∪ Me(x) ∪ Md(x)

) ≥ µ
(

lim sup
xn→x

M(xn)
)

≥ lim sup
xn→x

µ
(
M(xn)

) = lim sup
xn→x

QP(xn),

implying continuity of QP.
For the detailed proofs regarding QE we refer to [52]. The lower semicontinuity

results through Fatou’s Lemma from the lower semicontinuity of � in part 1 of Proposi-
tion 3. The continuity of QE follows from Lebesgue’s Theorem on Dominated Conver-
gence. The almost sure convergence of integrands needed there is another implication of
the above argument that µ(Md(x)) = 0 if µ has a density. For both Fatou’s Lemma and
Lebesgue’s Theorem integrable bounds of integrands are needed. These are constructed
using part 4 of Proposition 3. 
�

The above proof is an example for the typical interplay of value function properties
and probability facts in the structural analysis of stochastic programs. Beyond Prop-
osition 4 there are many open research problems. These concern structural properties
of mean-risk models along those introduced in Subsection 2.2. Much more challeng-
ing in this respect are multi-stage models where, before addressing stochastic integer
programs, research must be invested into a deeper understanding of the nested value
function (13).

In Subsection 2.3 we had already pointed to the issue of stability. Roughly speaking,
one is interested in the parametric dependence of the optimal value and the set of optimal
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solutions to a stochastic program, say (6), where the underlying probability measure has
the role of the parameter. This abstract setting covers important topics related with the
measure in (6), the most prominent being numerical approximation, incomplete infor-
mation, and statistical estimation. Technically, the analysis of the involved functions
QE and Qrisk jointly in the decision variable x and the probability measure µ becomes
crucial then. In particular, this requires a suitable convergence framework on the space
of probability measures. Such details being beyond the scope of the present paper we
refer to the surveys [46, 53].Although more elaborate probability instruments are used in
the stability analysis of stochastic integer programs, thorough understanding of mixed-
integer value functions is indispensable still, and their interplay with probability again
poses numerous interesting research problems.

4. Branch-and-bound for decomposition

Branch-and-bound is a basic principle for solving optimization problems that consists
of three phases. In the branching phase the feasible region is partitioned, usually step-
wise with increasing granularity. Bounding aims at finding upper and lower bounds of
the optimal objective values on the elements of the current partition. It often relies on
relaxations. In addition there is a coordination phase to guide the solution process. Coor-
dination usually involves rules for increasing the granularity (branching rules) and rules
for eliminating parts of the feasible region from further consideration (pruning due to
infeasibility, optimality, or inferiority).

The stochastic integer programs we had seen in (8), (9), (10), (11), and (15) all are
mixed-integer linear programs. Their constraints fall into three categories: integrality,
nonanticipativity, and stage constraints. The latter includes all constraints that explicitly
link variables within and across the stages and that do not belong to the integrality and
nonanticipativity constraints. With the exception of model (11) the stage constraints are
separable with respect to the scenarios. The nonanticipativity arises explicitly in the
multi-stage model (15). It can be made explicit in the two-stage models (8), (9), (10),
(11), too.According to the number J of scenarios one introduces copies xj , j = 1, . . . , J

of x and adds the constraint x1 = . . . = xJ .
In what follows we will consider algorithms for stochastic integer programs that arise

through different branching and bounding strategies in the frame sketched above. We
will be less specific about the accompanying coordination that may follow established
rules or their analogues.

4.1. Relaxing nonanticipativity while maintaining integrality

To minimize notational effort we will confine ourselves to the purely expectation based
model min{QE(x) : x ∈ X} arising in (5) and (8). Branching is accomplished by
partitioning X with the help of linear constraints (possibly involving tolerances to have
disjoint subregions). Let Xk be a current element of the partition. The corresponding
subproblem reads
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min {QE(x) : x ∈ Xk}

= min
xj ,yj ,y′

j





J∑
j=1

pj (c
�xj + q�yj + q ′�y′

j ) : T xj + Wyj + W ′y′
j = hj , (16)

xj ∈ Xk, yj ∈ Z
m̄
+, y′

j ∈ R
m′
+ , j = 1, . . . , J,

J∑
j=1

Hjxj = 0



 .

Here, nonanticipativity is represented by the two-stage analogue to the expression in
(14). Any relaxation that removes nonanticipativity from the constraints and maintains
separability of the objective now decouples the above model into scenario-wise mixed-
integer subproblems, and provides a lower bound for QE(x) on Xk . Note that this holds
in full analogy for the stochastic integer programs (9), (10), (15), but not for (11). In [13]
Lagrangian relaxation has been employed for the decoupling. It leads to the Lagrangian

L(x, y, y′, λ) :=
J∑

j=1

Lj (xj , yj , y
′
j , λ)

where

Lj (xj , yj , y
′
j , λ) := pj (c

�xj + q�yj + q ′�y′
j ) + λ�Hjxj , j = 1, . . . , J.

The Lagrangian dual whose optimal value provides the desired lower bound then reads

max{D(λ) : λ ∈ R
l} (17)

where

D(λ) = min
{ J∑

j=1

Lj (xj , yj , y
′
j , λ) : T xj + Wyj + W ′y′

j = hj ,

xj ∈ Xk, yj ∈ Z
m̄
+, y′

j ∈ R
m′
+ , j = 1, . . . , J

}
.

The above mixed-integer program fully decouples, namely,

D(λ) =
J∑

j=1

Dj(λ) (18)

where

Dj(λ) = min{Lj (xj , yj , y
′
j , λ) : T xj + Wyj + W ′y′

j = hj ,

xj ∈ Xk, yj ∈ Z
m̄
+, y′

j ∈ R
m′
+ }.

The Lagrangian dual (17) is equivalent to a non-smooth convex minimization problem
for which bundle methods from convex optimization can be employed, [21, 24, 28]. At
each iteration these methods require the objective value and one subgradient of D. Both
these entities can be read off an optimal solution to the optimization problem in (18).
Computationally, the lower bounding thus reduces to repeated solution of the mixed-
integer linear programs behind Dj(λ), j = 1, . . . , J , for iterated values of λ. Integer
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programming theory says that the lower bound obtained by the optimal value of (17) is
never worse the bound obtained by LP relaxation of the initial subproblem (16).

Regarding an upper bound, the xj -parts of optimal solutions to the problems behind
Dj(λ), j = 1, . . . , J , for optimal or nearly optimal λ are useful. To regain the relaxed
nonanticipativity one may decide for the most frequent value arising or may average and
round. If the resulting x-value is feasible for the initial subproblem it, of course, yields
an upper bound for the optimal value.

As long as nonanticipativity is the only constraint across different scenarios, sub-
problems in the above procedure are single-scenario mixed-integer linear programs.
Among the models introduced in Section 2 the same is true for (9), (10), (15), but not for
(11). Although formally valid for the multi-stage model (15) the procedure faces specific
difficulties there. The nonanticipativity constraints are more complex so that generat-
ing feasible points becomes more involved. For the same reason, the dimension the
Lagrangian dual lives in is often too excessive for the application of existing subgradient
methods.

In the next subsection we will address a decomposition method that does not require
the Lagrangian dual. Another idea to circumvent dual optimization is presented in [34]
where branch-and-price methodology is employed for solving special structured multi-
stage stochastic integer programs.

4.2. Relaxing nonanticipativity and integrality

The approach to be described next has been proposed in [1, 2]. Again our exposition will
resort to the expectation-based model from (5) and (8). We assume that the first-stage
vector x has components in {0, 1} only. When relaxing in (8) both nonanticipativity and
integrality the problem reduces to solving the following single-scenario linear program-
ming problems for j = 1, . . . , J

min
{
c�xj + q�yj + q ′�y′

j : T xj + Wyj + W ′y′
j = hj ,

xj ∈ Xrel, yj ∈ R
m̄
+, y′

j ∈ R
m′
+

}
.

The notation Xrel indicates that integer requirements on x are replaced by membership in
[0, 1]m. The weighted sum of the optimal values of the above problems, clearly, provides
a lower bound for the optimal value of (8).

Branching is accomplished by an interplay of two modes of partition. On the one
hand, each of the single-scenario problems undergoes the well-known LP-based branch-
and-bound of integer programming. For each problem a branching tree is developed
where the root node corresponds to the j -th problem above and further nodes arise by
fixing components of x to either 0 or 1. The second mode of partition leads to step-wise
regaining of nonanticipativity. It rests on fixing variables in the different single-scenario
problems to identical values if this is claimed by a nonanticipativity constraint. In our
situation this concerns the first-stage variables only, and branching leads to fixing these
variables across all scenarios to either 0 or 1, but never partially to 0 and partially to 1.
From the viewpoint of the full model this corresponds to what is known as logical or
constraint branching.
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Using suitable coordination routines the method works through the individual branch-
ing trees. When processing an active node corresponding to a first-stage variable, the
logical branching is employed, leading to a respective fixing of variables in the other
trees. Via the weighted sum of optimal values lower bounds are obtained for the elements
of the partition. Upper bounds arise as soon as there are solutions fulfilling all integrality
and nonanticipativity constraints.

The characteristic feature of the above method is that nonanticipativity is handled
implicitly. This increases the logical coordination effort but avoids the dimensionality
problem mentioned at the end of Subsection 4.1. In addition, subproblems are merely
linear instead of integer programs. Altogether, the method seems an interesting option
for multi-stage problems.

Special care has to be taken in the mixed-integer case where fixing continuous vari-
ables is problematic. A remedy could be to relax (beside integrality) nonanticipativity
for the integer variables only. In the relaxed problem the remaining nonanticicpativi-
ty of the continuous variables then maintains coupling among scenarios. However, the
relaxed problem now can be understood as a stochastic linear program without integer
requirements for which powerful decomposition methods exist, see e.g. [11, 23, 26, 43,
49, 68].

Conceptually, the present method again applies to stochastic programs where non-
anticipativity is the only explicit constraint interlinking scenarios. As in Subsection 4.1
these are the models (8), (9), (10), (15), but not (11).

4.3. Relaxing stage constraints

The stage constraints in the stochastic integer programs of Section 2 fall into two cat-
egories: constraints interlinking different time stages and reflecting the dynamics of
the problem, and constraints acting within the individual stages. Although relaxation of
stage constraints has gained some interest in the existing literature, so far it has never
been imbedded into the branch-and-bound framework adopted here. In other words, it
has been carried out in the root node only with emphasis on the bounding and without
considering the possibility of partitioning the decision space. Nevertheless, some of the
most successful practical applications of stochastic integer programming are based on
relaxing stage constraints.

After relaxing stage constraints the problem remains a stochastic program since
nonanticipativity is present still. The approach thus only makes sense if the resulting
stochastic program is much simpler than the initial one. This can be achieved by relaxing
the dynamics constraints interlinking the time stages. In [48], a paper dealing with multi-
stage stochastic programs in continuous variables, this is called nodal decomposition.
For stochastic integer programs nodal decomposition is a widely open field. For initial
results see [19, 47].

In many practical applications one meets complex systems consisting of indepen-
dent components that are loosely coupled through constraints reflecting interaction.
Quite often the interaction follows identical principles throughout the stages such that
all coupling constraints act within individual stages. Relaxing these constraints then
usually leads to substantial decoupling. Nonanticipativity again being untouched the
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partial models are stochastic integer programs still. A prominent field of application of
this approach is power generation where the partial models are multi-stage stochastic
integer programs assigned to the individual generation units of the system. For these
single-unit subproblems highly efficient special purpose solvers have been developed
making the initial problems the largest stochastic integer programs solved so far, see
[20, 41, 61–63].

The mode of relaxation in the contributions reported in the present subsection is
Lagrangian relaxation. This has initiated research into efficient subgradient methods for
solving the Lagrangian dual and into adapted heuristics for generating upper bounds
through feasible points. In [19] the duality gaps occurring with the relaxations in Sub-
sections 4.1 and 4.3 are compared.

5. Disjunctive cuts for convexification and decomposition

With a discrete probability distribution of h(ω) and with � as in (2) the expectation-
based model (5) may be represented as

min


c�x +

J∑
j=1

pj�(hj − T x) : x ∈ X


 . (19)

An algorithmic alternative to the full-size model (8) is working with the above model
which is explicit in x only, but includes the implicit function �.As a spurring example let
us consider the counterpart model to (19) in continuous variables where X is a nonempty
polyhedron and � is replaced by

�cont (t) := min
{
q�y + q ′�y′ : Wy + W ′y′ = t, (y, y′) ∈ R

m̄+m′
+

}
.

Linear programming duality provides

�cont (t) = max
{
t�u : W�u ≤ q, W ′�u ≤ q ′

}
.

Under the general assumptions from Subsection 2.1 the above linear program has a
nonempty and bounded feasible region, with vertices dk, k = 1, . . . , K , say. Therefore,
�cont (t) = maxk d�

k t and the counterpart to (19) in continuous variables can be written
as

min


c�x +

J∑
j=1

pj max
k=1,...,K

d�
k (hj − T x) : x ∈ X


 . (20)

Solving (20) amounts to minimizing a sum of convex polyhedral functions, which is
well-studied in convex optimization. However, (20) is implicit still, since the vertices dk

are not available initially and typically unveiled in the course of the iteration only. The
method of choice is to iterate x in a Benders-type scheme by successively updating and
minimizing lower approximations

min


c�x +

J∑
j=1

pj max
k∈Kj

d�
k (hj − T x) : x ∈ X


 (21)
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where Kj , j = 1, . . . , J, are subsets of {1, . . . , K}. The update is accomplished by
generating vertices dk through dual solutions of the single-scenario linear programs

min
{
q�y + q ′�y′ : Wy + W ′y′ = hj − T xν, (y, y′) ∈ R

m̄+m′
+

}
(22)

where xν is the current iterate of x. The minimization in (21) is essentially carried out by
linear programming, usually involving enhancements such as (quadratic) regularization,
cut deletion, or cut aggregation.

The above account is a quick lesson on a powerful solution method in (continuous)
stochastic linear programming, see [23, 49, 68] for further details. In the core of the
method there is a piecewise linear convex function, cf. (20), whose approximations are
updated by cuts of the type d�

k (hj −T x) and minimized successively, cf. (21). The cuts
are made available through linear programming duality from single-scenario second-
stage linear programs with stochasticity h(ω) and first-stage decision x in the right-hand
side, cf. (22). Beside the cuts themselves their functional dependence on (x, ω) is explic-
itly available. Indeed, the cut coefficients, although obtained locally at x = xν , enter the
global expressions maxk∈Kj

d�
k (hj − T x) that successively shape the convex objective

in (20).
Returning to (19) the first observation is that single-scenario programs like (22) now

are mixed-integer, and LP duality is no longer available for cut generation. If explicit
convex hull descriptions for the feasible regions of all single-scenario mixed-integer pro-
grams for all h(ω) and all x were available, then, in theory, one could proceed according
to the above method. Complete descriptions in general being out of reach, one convex-
ifies feasible regions of subproblems and the epigraph of � only where necessary, and
exploits structure wherever possible. This is the principal approach in [56] from where
we have taken the material to be presented next. The topic is research in progress, with
many open questions. So far, disjunctive cutting planes, see [4–6, 25], provide the major
integer programming input into this recent line of stochastic programming research.

Let us assume that X is a nonempty polyhedron, for simplicity without integer
requirements, and that the mixed-integer program defining �(t) is a mixed-{0, 1} linear
program of the form

min
{
q�y + q ′�y′ : Wy + W ′y′ ≥ t, y ∈ {0, 1}m̄, y′ ∈ R

m′
+

}
. (23)

For ω ∈ � := {1, . . . , J } and x ∈ X consider the feasible sets

Y (x, ω) :=
{
(y, y′) ∈ {0, 1}m̄ × R

m′
+ : Wy + W ′y′ ≥ h(ω) − T x

}

and assume for simplicity that
{
y′ ∈ R

m′
+ : W ′y′ ≥ h(ω) − T x − Wy

}
�= ∅

for all ω ∈ �, x ∈ X, y ∈ {0, 1}m̄.
Suppose that Y (x, ω) is contained in a disjunctive set S(x, ω), i.e., with suitable

matrices Cl and vectors γl, l = 1, . . . , L, we have

Y (x, ω) ⊆ S(x, ω) := ∪L
l=1Sl(x, ω)
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with nonempty sets

Sl(x, ω) :=
{
(y, y′) ∈ [0, 1]m̄ × R

m′
+ : Wy + W ′y′ ≥ h(ω) − T x, Cl(y, y′) ≥ γl

}
.

For convenience we rewrite

Sl(x, ω) =
{
ỹ ∈ R

m̃
+ : W̃l ỹ ≥ rl(x, ω)

}
.

An inequality π�ỹ ≥ πo then is valid for S(x, ω) if and only if for all l = 1, . . . , L

πo ≤ min
{
π�ỹ : W̃l ỹ ≥ rl(x, ω), ỹ ≥ 0

}

= max
{
λ�rl(x, ω) : λ�W̃l ≤ π, λ ≥ 0

}

if and only if for all l = 1, . . . , L there exist λl ≥ 0 such that

λ�
l W̃l ≤ π and λ�

l rl(x, ω) ≥ πo. (24)

Now fix (x̄, ω̄), and consider π, λl, πo fulfilling (24). Then, for arbitrary (x, ω) ∈ X×�

the inequality π�ỹ ≥ πo(x, ω) with

πo(x, ω) := min
l=1,...,L

λ�
l rl(x, ω) (25)

is valid for S(x, ω).
Hence, valid inequalities can be formulated with common cut coefficients and with

individual right-hand sides that are adjusted according to (25) for each (x, ω). Following
the theory of disjunctive cutting planes the cut coefficient vector π and the right-hand
side πo(x, ω) can be computed by solving a suitable linear program.

One observes that πo(., ω) is a concave function on X. Facets of the convex hull of
its epigraph

epi πo(., ω) := {(α, x) : α ≥ πo(x, ω), x ∈ X}
can be computed by starting from suitable disjunctions and solving linear programs, for
details see [56]. This leads to an explicit convex hull approximation πc(., ω) of πo(., ω)

that can be represented as

πc(x, ω) = max
i=1,...,I

{
εi(ω) + δi(ω)�x

}
, (x, ω) ∈ X × �.

For all (x, ω) ∈ X × � we obtain

π�ỹ ≥ πo(x, ω) iff π�ỹ ≥ εi(ω) + δi(ω)�x for all i = 1, . . . , I.

This relation is essential for convexifying the feasible sets Y (x, ω) and thus for updat-
ing LP relaxations that come closer and closer to the single-scenario problems in the
stochastic integer program. The dual solutions to these LP relaxations provide cuts that,
analogously to those in (21), successively shape the (convex hull) of the objective of the
stochastic integer program. Again it is crucial that the functional dependence of these
cuts on (x, ω) is available explicitly.
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The above considerations lead to a decomposition algorithm for solving (19) that is
derived in detail in [56]. Here we will only sketch key ingredients and basic steps. The
problem to be solved can be represented as

min


c�x +

∑
ω∈{1,...,J }

p(ω)�(h(ω) − T x) : x ∈ X


 (26)

where � is as in (23). Consider the LP relaxation to the single-scenario problem

min
{
q�y + q ′�y′ : Wy + W ′y′ ≥ h(ω) − T x, y ∈ [0, 1]m̄, y′ ∈ R

m′
+

}
, ω ∈ �,

and rewrite it as
min

{
q̃�ỹ : W̃ ỹ ≥ h̃(ω) − T̃ x, ỹ ∈ R

m̃
+
}

.

Step 0 – Initialization.
Let ν := 1, xν ∈ X, Wν := W̃ , hν(ω) := h̃(ω), T ν(ω) := T̃ , Kν(ω) := ∅,

V ν := +∞, vν := −∞.

Step 1 – Solution of LP subproblems.
Find an optimal solution yν(ω) of min{q̃�ỹ : Wνỹ ≥ hν(ω) − T ν(ω)xν, ỹ ∈ R

m̃+}
for each ω ∈ �. If yν(ω) meets all integer requirements for all ω ∈ � then update
V ν := min{c�xν + ∑

ω p(ω)�(h(ω) − T xν), V ν}.
Step 2 – Cut generation and updates.
If for some ω ∈ � a relevant component yν

ι (ω) fails to be integer then formulate the
disjunction Sν(x

ν, ω) := Soι(x
ν, ω) ∪ S1ι(x

ν, ω) where

Soι(x
ν, ω) :=

{
ỹ ∈ R

m̃
+ : Wνỹ ≥ hν(ω) − T ν(ω)xν, ỹι = 0

}
,

S1ι(x
ν, ω) :=

{
ỹ ∈ R

m̃
+ : Wνỹ ≥ hν(ω) − T ν(ω)xν, ỹι = 1

}
.

According to the procedure outlined above, this disjunction leads to a coefficients vector
πν and to quantities εν

i (ω), δν
i (ω) such that the inequality πν�ỹ ≥ εν

i (ω) + δν
i (ω)�x

is valid for the single-scenario subproblem belonging to ω, for all x ∈ X. Both πν and
εν
i (ω), δν

i (ω) are computed by solving suitable linear programs. The procedure is carried
out for all ω ∈ � for which a relevant component of yν(ω) fails an integer requirement.
As a benefit that is specific to our two-stage stochastic programming setting we have
that the coefficients vector πν does not depend on ω and has to be computed only once,
whereas individual LPs have to be solved for the (εν

i (ω), δν
i (ω)), ω ∈ �.

Subsequently, the cut πν�ỹ ≥ εν
i (ω) + δν

i (ω)�x is appended to the system Wνỹ ≥
hν(ω)−T ν(ω)x such that the updated quantities Wν+1, hν+1(ω), and T ν+1(ω) arise. If
ω ∈ � is such that yν(ω) fulfils all integer requirements then Wν+1 := Wν, hν+1(ω) :=
hν(ω), and T ν+1(ω) := T ν(ω).

Step 3 – Solution of updated LP subproblems.
For each ω ∈ �, solve min{q̃�ỹ : Wν+1ỹ ≥ hν+1(ω) − T ν+1(ω)xν, ỹ ∈ R

m̃+}, and
let dν(ω) be an optimal dual multiplier. Update Kν+1(ω) := Kν(ω) ∪ {dν(ω)}.
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Step 4 – Solution of the master problem.
Solve

min

{
c�x +

∑
ω

p(ω) max
d(ω)∈Kν+1(ω)

d(ω)�
(
hν+1(ω) − T ν+1(ω)x

)
: x ∈ X

}
, (27)

and let xν+1 be its optimal solution and vν its optimal value. If V ν − vν drops below
some preselected optimality tolerance, then stop. Otherwise, update ν := ν + 1 and
repeat from Step 1.

The above method is a purely cutting plane based approach to solving two-stage
stochastic integer programs by decomposition. Its essential feature is that common cut
coefficients are shared among different subproblems given by different scenarios and
first-stage feasible solutions. The number of these subproblems being quite big in gen-
eral, sharing cut coefficients is a substantial shortcut.

To guarantee convergence of the method one has to ensure that the approxima-
tions given by the objective functions in the master (27) achieve accuracy at least locally
around an optimal solution to (26).This requires some theoretical backbone that complete
descriptions of the convex hulls involved can be computed if necessary. For disjunctive
cuts this is provided by the fact, see e.g. [5], that the convex hull of a mixed-{0, 1} feasible
region can be obtained by successively taking the convex hull with respect to one disjunc-
tive variable at a time. In the above method this would correspond to computing in Step 2
all instead of just one of the disjunctive cuts induced by the variable yν

ι (ω). But even
then, issues such as efficient cut management or moving towards branch-and-cut remain
open. Some first results to make the approach more implementable can be found in [56].

The principles behind the above method remain valid for the two-stage mean-risk
models from Proposition 2 as long as there is no explicit coupling of second-stage vari-
ables from different scenarios, i.e., for the problems (9) and (10).

6. Further issues

We conclude with a brief discussion of further integer programming issues relevant for
stochastic programming, but, due to space constraints, not covered in more detail in the
main body of the text.

Specific models and algorithms. In the present paper the focus has been on some
general integer programming principles and their impact in stochastic integer program-
ming. Similar to integer programming, specific models and algorithms have their role
in stochastic integer programming, too. Beside the work in power optimization already
mentioned in Subsection 4.3 applications were developed in areas such as routing [31,
69] and supply chains [1]. For two-stage models with binary first-stage variables the
integer L-shaped method is a finite cutting plane method that can be made efficient for
hard problems if lower bounding functionals are available, see [30, 31], and [14, 15] for
a mixed-integer extension. Stochastic programs with simple integer recourse [33, 65]
can be analyzed in dimension one and are particularly well-understood, both structurally
and algorithmically.
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Disjunctions – chance constraints. In chance constrained (or probabilistic) program-
ming, constraints involve probabilistic statements about first-stage solutions, see [11,
26, 43]. It is well-known that, for discrete random variables, chance constraints can be
expressed as disjunctions. This has given rise to some initial studies, see [17, 55]. First
results about chance constrained stochastic programs with integer variables can be found
in [18, 50].

Test sets. In recent years, test set methods have regained interest in integer program-
ming. These methods proceed by augmenting feasible points to optimality with the help
of a finite test set. In each iteration the test set is screened for an improving vector. If
the outcome is positive an improved iterate is created by adding the direction to the
current iterate. In the opposite case, the current iterate is optimal. Test sets have strong
conceptual relations to lattice bases, monomial bases, and completion procedures from
computational algebra. In [22] it is shown that test set vectors belonging to the pure-
integer version of the model (8) decompose into building blocks that are determined by
the constraint matrix of a single-scenario problem only and that do not depend on the
number of scenarios. Building blocks can be computed directly by an algebraic comple-
tion procedure, without advance knowledge of the test set. Augmentation to optimality
can be accomplished at the building block level already.

Total unimodularity – approximations. Aiming at the interaction between recourse
structure and distribution properties, in [67] a lower bound to the expected-value func-
tion QE from (4) is constructed under the assumption that the optimization problem
behind � is a pure-integer linear program. The bound can be determined analytically
by resorting to principles known from simple integer recourse models. It is motivated
by stochastic programs with totally unimodular recourse matrix, for which it is exact.
The bound is never worse than the bound obtained by relaxing integrality which makes
it attractive for enhancing algorithms working with LP bounds.

Stochastic scheduling. A crucial assumption, tacitly made in all the models we have
introduced, is that the probability distribution that underlies the stochastic program does
not depend on the decisions. This makes the essential distinction with stochastic sched-
uling, which addresses a class of integer programs under uncertainty where, typically,
scheduling decisions influence the probability distributions of subsequent random events,
see [35–38, 64, 70].

Although the present paper is an attempt to give a broad view into stochastic integer
programming it is not intended to be comprehensive. For additional reading the surveys
[27, 32, 59] and the annotated bibliography [58] are recommended. Resources on the
Internet are the COSP website [57] and the bibliography [66].
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