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Abstract. Traveling Salesman, Steiner Tree, and many other famous geometric optimization problems are NP-
hard. Since we do not expect to design efficient algorithms that solve these problems optimally, researchers have
tried to design approximation algorithms, which can compute a provably near-optimal solution in polynomial
time.

We survey such algorithms, in particular a new technique developed over the past few years that allows
us to design approximation schemes for many of these problems. For any fixed constant c > 0, the algorithm
can compute a solution whose cost is at most (1 + c) times the optimum. (The running time is polynomial for
every fixed c > 0, and in many cases is even nearly linear.) We describe how these schemes are designed, and
survey the status of a large number of problems.

NP-hard geometric optimization problems arise in many disciplines. Perhaps the
most famous one is the traveling salesman problem (TSP): given n nodes in �2 (more
generally, in �d ), find the minimum length path that visits each node exactly once. If
distance is computed using the Euclidean norm (distance between nodes (x1, y1) and
(x2, y2) is ((x1 − x2)

2 + (y1 − y2)
2)1/2) then the problem is called Euclidean TSP.

More generally the distance could be defined using other norms, such as �p norms for
any p > 1. All these are subcases of the more general notion of a geometric norm or
Minkowski norm. We will refer to the version of the problem with a general geometric
norm as geometric TSP.

Some other NP-hard geometric optimization problems are Minimum Steiner Tree
(“Given n points, find the lowest cost network connecting them”), k-TSP(“Given n points
and a number k, find the shortest salesman tour that visits k points”), k-MST (“Given
n points and a number k, find the shortest tree that contains k points”), vehicle routing,
degree restricted minimum spanning tree, etc. If P �= NP, as is widely conjectured, we
cannot design polynomial time algorithms to solve these problems optimally. However,
we might be able to design approximation algorithms: algorithms that compute near-
optimal solutions in polynomial time for every problem instance. For α ≥ 1 we say
that an algorithm approximates the problem within a factor α if it computes, for every
instance I , a solution of cost at most α ·OPT(I ), where OPT(I ) is the cost of the optimum
solution for I . The preceding definition is for minimization problems; for maximization
problems α ≤ 1. Sometimes we use the shortened name “α-approximation algorithm.”
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Bern and Eppstein [17] give an excellent survey circa 1995 of approximation algo-
rithms for geometric problems. For many problems they describe an α-approximation,
where α is some constant that depends upon the problem. The current survey will con-
centrate on developments subsequent to 1995, many of which followed the author’s
discovery, in 1996, of a polynomial time approximation scheme or “PTAS” for many geo-
metric problems – including the TSP – in constant number of dimensions. (By “constant
number of dimensions” we mean that we fix the dimension d and consider asymptotic
complexity as we increase n, the number of nodes.) A PTAS is an “ultimate” approxima-
tion algorithm, or rather, a sequence of algorithms: for each ε > 0, the sequence contains
a polynomial-time algorithm that approximates the problem within a factor 1 + ε.

Context. Designing approximation algorithms for NP-hard problems is a well-devel-
oped science; see the books by Hochbaum (ed.) [45] and Vazirani [83]. The most popu-
lar method involves solving a mathematical programming relaxation (either a linear or
semidefinite program) and rounding the fractional solution thus obtained to an integer
solution. The bound on the approximation ratio is obtained by comparing to the fractional
optimum. However, such methods have not led to PTASs.

In fact, work from the last decade on probabilistically checkable proofs (see [9] and
references therein) suggests a deeper reason why PTASs have been difficult to design:
many problems do not have PTAS’s if P �= NP. (In other words, there is some fixed
γ > 0 such that computing (1+γ )-approximations for the problem is NP-hard.) This is
true for metric TSP and metric Steiner tree, the versions of TSP and Steiner tree respec-
tively in which points lie in a metric space (i.e., distances satisfy the triangle inequality).
Trevisan [79] has even shown that Euclidean TSP in O(log n) dimensions has no PTAS
if P �= NP. Thus the existence of a PTAS for Euclidean TSP in constant dimensions –
one of the topics of the current survey – is quite surprising1.

These new PTAS’s for geometric problems follow a design methodology reminiscent
of those used in some classic PTASs for other (non-geometric) problems. One proves
a “Structure Theorem” about the problem in question, demonstrating the existence of
a (1 + ε)-approximate solution that has an “almost local” quality (see Section 2 for an
example). Such a Structure Theorem appears implicitly in descriptions of most earlier
PTASs, including the ones for Knapsack [46], planar graph problems [60, 61, 12, 43,
53], and most recently, for scheduling to minimize average completion time [2, 52].
These PTASs involve a simple divide-and-conquer approach or dynamic programming
to optimize over the set of “almost local” solutions. We note that even in the context
of geometric algorithms, divide-and-conquer ideas are quite old, though they had not
resulted in PTASs until recently. Specifically, geometric divide and conquer appears
in Karp’s dissection heuristic [51]; Smith’s 2O(

√
n) time exact algorithm for TSP [77];

Blum, Chalasani and Vempala’s approximation algorithm for k-MST [21]; and Mata and
Mitchell’s constant-factor approximations for many geometric problems [62].

Surprisingly, the proofs of the structure theorems for geometric problems are ele-
mentary and this survey will describe them essentially completely. We also survey a
more recent result of Rao and Smith [71] that improves the running time for some

1 In fact, the discovery of this algorithm stemmed from the author’s inability to extend the results of [9] to
Euclidean TSP in constant dimensions.
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problems. We will be concerned only with asymptotics and hence not with practical
implementations. The TSP algorithm of this survey, though its asymptotic running time
is nearly linear, is not competitive with existing implementations of other TSP heuristics
(e.g., [49, 4]). But maybe our algorithms for other geometric problems will be more
competitive.

One of the goals of the current survey is to serve as a tutorial for the reader who
wishes to design approximation schemes for other geometric problems. We break the
presentation of the PTAS for the TSP into three sections, Sections 2, 3 and 4 with increas-
ingly sophisticated analyses and corresponding improvements in running time: nO(1/ε),
n(log n)O(1/ε), and O(n log n+n · ε−c/ε). One reason for this three-step presentation is
pedagogical: the simpler analyses are easier to teach, and the simplest analysis – giving
an nO(1/ε) time algorithm – may even be suitable for an undergraduate course. Another
reason for this three-step presentation becomes clearer in Section 5, when we general-
ize to other geometric problems. The simplest analysis – since it uses very little that is
specific to the TSP – is the easiest to generalize.

Section 5 is meant as a tutorial on how to apply our techniques to other geometric
problems. We give three illustrative examples – Minimum Steiner Tree, k-median, and
the Minimum Latency Problem, and also include a discussion of some geometric prob-
lems that seem to resist our techniques. Finally, Section 6 summarizes known results
about many geometric optimization problem together with bibliographic references.

Background on geometric approximation. As mentioned, for many problems described
in the current survey, Bern and Eppstein describe approximation algorithms that approx-
imate the problem within some constant factor. (An exception is k-median, for which no
constant factor approximation was known at the time a PTAS was found [10].) For the
TSP, the best previous algorithm was the Christofides heuristic [25], which approximates
the problem within a factor 1.5 in polynomial time. The decision version of Euclidean
TSP (“Does a tour of cost ≤ C exist?”) is NP-hard [67, 37], but is not known to be in NP
because of the use of square roots in computing the edge costs2. Specifically, there is no
known polynomial-time algorithm that, given integers a1, a2, . . . , an, C, can decide if∑

i

√
ai ≤ C.

Arora’s paper gave the first PTASs for many of these problems in 1996. A few
months later Mitchell independently discovered a similar nO(1/ε) time approximation
scheme [65]; this algorithm used ideas from the earlier paper of Mata and Mitchell [62].
The running time of Arora’s and Mitchell’s algorithms was nO(1/ε), but Arora later
improved the running time of his algorithm to n(log n)O(1/ε). Mitchell’s algorithm seems
to work only in the plane whereas Arora’s PTAS works for any constant number of
dimensions. If dimension d is not constant but allowed to depend on n, the number of
nodes, then the algorithm takes superpolynomial time that grows to exponential around
d = O(log n). This dependence on dimension seems broadly consistent with complex-
ity results proved since then. Trevisan [79] has shown that the Euclidean TSP problem
becomes MAX-SNP-hard in O(log n) dimensions, which means – by the results of [69,
9] – that there is a γ > 0 such that approximation within a factor 1 + γ is NP-hard.

2 For similar reasons, there is no known polynomial time Turing machine algorithm even for Euclidean
minimum spanning tree. Most papers in computational geometry skirt this issue by using the Real RAM
model.
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Thus if the running time of our algorithm were only singly exponential in the dimension
d (say) then one would have a subexponential algorithm for all NP problems.

We note that Trevisan’s result extends to TSP with �p norm for any finite p ≥ 1 [79]
and Indyk has extended it for p = ∞ [48]. Similar hardness results are also proveable
for Minimum Steiner Tree and k-median in �1 norm.

1. Introduction to the TSP algorithm

In this section we describe a PTAS for TSP in �2 with �2 norm; the generalization to
other norms is straightforward. The algorithm uses divide-and-conquer, and the “divide”
part is just a randomized version of the classical quadtree, which partitions the instance
using squares that progressively get smaller. Thus the algorithm is reminiscent of Karp’s
dissection heuristic [51]. However, the algorithm differs from Karp’s dissection heu-
ristic in two ways. First, it uses randomness while constructing the partition. Second,
unlike the dissection heuristic, which treats the smaller squares as independent problem
instances (to be solved separately and then linked together in a trivial way) this algorithm
allows limited back-and-forth trips between the squares. Thus the subproblems inside
adjacent squares are interdependent, though only slightly: the algorithm allows the tour
to make O(1/ε) entries/exits to each square of the dissection. To show that even such
simple tours can cost less than 1 + ε times the cost of the optimum (i.e., unrestricted)
tour, we will describe how to transform an optimum tour so that it satisfies the “limited
back-and-forth trips” property: this is our “Structure Theorem” for the problem. We will
also describe a simple dynamic programming to find the best tour with this structure.

Although our algorithm is described as randomized, it can be derandomized with
some loss in efficiency – specifically, by trying all choices for the shifts used in the
randomized dissection. Better derandomizations appear in Czumaj and Lingas [27] and
Rao and Smith’s paper (see Section 3).

1.1. The perturbation

First we perform a simple perturbation of the instance that, without greatly affecting
the cost of the optimum tour, ensures that each node lies on the unit grid (i.e., has inte-
ger coordinates) and every internode distance is at least 2. Call the smallest axis-parallel
square containing the nodes the bounding box. Our perturbation will ensure its sidelength
is at most n2/2.

We assume ε > 1/n1/3; a reasonable assumption since ε is a fixed constant inde-
pendent of the input size. Let w be the maximum distance between any two nodes in the
input. Then 2w ≤ OPT ≤ nd . We lay down a grid in which the grid lines are separated
by distance εw/n1.5. Then we move each node to its nearest gridpoint. This may merge
some nodes; we treat this merged node as a single node in the algorithm. (At the end
we will extend the tour to these nodes in a trivial way by making excursions from the
single representative.) Note that the perturbation moves each node by at most εw/n1.5,
so it affects the optimum tour cost by at most εw/n0.5, which is negligible compared
to εOPT when n is large. Finally, we rescale distances so that the minimum internode
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distance is at least 2. Then the maximum internode distance is at most n1.5/ε, which is
asymptotically less than n2/2, as desired.

1.2. Randomized dissection

A dissection of a square is a recursive partitioning into squares; see Figure 1. We view
this partitioning as a tree of squares whose root is the square we started with. Each square
in the tree is partitioned into four equal squares, which are its children. The leaves are
squares of sidelength 1.

Now we define a randomized dissection of the instance. Let P ∈ �2 be the lower left
endpoint of the bounding box and let each side have length l. We enclose the bounding
box inside a larger square – called the enclosing box – of sidelength L = 2l and position
the enclosing box such that P has distance a from the left edge and b from the lower
edge, where integers a, b ≤ l are chosen randomly. We refer to a, b as the horizontal
and vertical shift respectively; see Figure 2. The randomized dissection is the dissection
of this enclosing box. Note that we are thinking of the input nodes and the unit grid as

Fig. 1. The dissection

Horizontal shift  a

Vertical shift b

Enclosing 
Box

Bounding 
Box

(contains 
input nodes)

Fig. 2. The enclosing box contains the bounding box and is twice as large, but is shifted by random amounts
in the x and y directions
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being fixed; the randomness is used only to determine the placement of the enclosing
box.

Assume without loss of generality that L is a power of 2 so the squares in the dissec-
tion have integer endpoints and leaf squares have sides of length 1 (and hence at most
one node in them). Thus the dissection has depth at most �log L	 = O(log n).

Some observations. Now we make a few observations about the dissection that will
be useful in the proof of our Structure theorems; these observations are not needed to
understand the theorem statement or the algorithm. Let the level of a square in the dis-
section be its depth from the root; the root square has level 0. We also assign a level from
0 to log L− 1 to each horizontal and vertical grid line that participated in the dissection.
The horizontal (resp., vertical) line that divides the enclosing box into two has level 0.
Similarly, the 2i horizontal and 2i vertical lines that divide the level i squares into level
i + 1 squares each have level i.

The following property of a random dissection will be crucial in the proof (see for
example the proof of Lemma 1). Consider any fixed vertical grid line that intersects the
bounding box of the instance. What is the chance that it becomes a level i line in the
randomized dissection? There are 2i values of the horizontal shift a (see Figure 2 again)
that cause this to happen, so

Pr
a

[this line is at level i] = 2i

l
= 2i+1

L
(1)

Thus the randomized dissection treats – in an expected sense – all such grid lines
symmetrically.

1.3. Portal-respecting tours

Each grid line will have special points on it called portals. A level i line has 2i+1m

equally spaced portals inside the enclosing box, where m is the portal parameter (to be
specified later). We require m to be a power of 2. In addition, we also refer to the corners
of each square as a portal. Since the level i line has 2i+1 level i + 1 squares touching it,
we conclude that each side of the square has at most m+ 2 portals (m usual portals, and
the 2 corners), and a total of at most 4m + 4 portals on its boundary. (Careful readers
will be able to prove a better upper bound than 4m + 4.) A portal-respecting tour is one
that, whenever it crosses a grid line, does so at a portal. Of course, such a tour will not be
optimal in general, since it may have to deviate from the straight-line path between nodes.

A portal-respecting tour is k-light if it crosses each side of each dissection square
at most k times. The optimum portal-respecting tour does not need to visit any portal
more than twice; this follows by the standard observation that removing repeated visits
can, thanks to triangle inequality, never increase the cost. Thus the optimum portal-
respecting tour is (m + 2)-light. A simple dynamic programming can find the optimum
portal-respecting tour in time 2O(m)L log L. We will show that m = O(log n/ε) suffices
(see Section 2), hence the running time is nO(1/ε).

A more careful analysis in Section 3 shows that actually we only need to consider
portal-respecting tours that are k-light where k = O(1/ε). Our dynamic programming
can find the best such tour in poly(

(
m
k

)
)2O(k)L log L time, which is O(n(log n)O(1/ε)).
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Dynamic programming. We sketch the simple dynamic programming referred to
above. To allow a cleaner proof of correctness, the randomized dissection was described
above as a regular 4-ary tree in which each leaf has the same depth. In an actual imple-
mentation, however, one can truncate this tree so that the partitioning stops as soon as a
square has at most 1 input node in it. Then the dissection has at most 2n leaves and hence
O(n log n) squares. Furthermore, the cost of the optimum k-light portal respecting tour
with respect to this truncated dissection cannot be higher than that the optimum cost
of the full (untruncated) dissection. The reason is that a truncated dissection has fewer
portals, and so the tour is less constrained.

The truncated dissection (which is just the quadtree of the enclosing box) can be
efficiently computed, for instance by sorting the nodes by x- and y-coordinates (for
better algorithms, especially in higher dimensions, see Bern et al. [18]). The dynamic
programming now is the obvious one. Suppose we are interested in portal-respecting
tours that enter/exit each dissection square at most 4k times. The subproblem inside the
square can be solved independently of the subproblem outside the square so long as
we know the portals used by the tour to enter/exit the square, and the order in which
the tour uses these portals. Note that given this interface information, the subproblems
inside and outside the square involve finding not salesman tours but a set of up to 4k

vertex-disjoint paths that visit all the nodes and visit portals in a way consistent with
the interface. (See Figure 3.) We maintain a lookeup table that, for each square and for
each choice of the interface, stores the optimum way to solve the subproblem inside the
square. The lookup table is filled up in a bottom-up fashion in the obvious way. Clearly,
its size is (# of dissection squares) × mO(k)k!.

One can actually reduce the mO(k)k! term to 2O(m) = nO(1/ε) by noticing that the
dynamic programming need not consider all possible interfaces for a square since the
optimum portal respecting tour in the plane does not cross itself. Interfaces correspond-
ing to tours that do not cross themselves are related to well-matched parenthesis pairs,
and the number of possibilities for these are given by the well-known Catalan numbers.
We omit details since the better analysis given in Section 3 reduces k to O(1/ε), which
makes mk much smaller than 2O(m).

Portals

Portal-
respecting
tour

Fig. 3. This portal-respecting tour enters and leaves the square 10 times, and the portion inside the square is a
union of 5 disjoint paths
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2. Structure theorem: first cut

First we give a very simple analysis (essentially from [10]) showing that if the portal
parameter m is O(log n/ε), then the best portal-respecting tour is likely to be near
optimal. This tour may enter/leave each square up to 8m + 8 times.

Let OPT denote the cost of the optimum salesman tour and OPTa,b,m denote the cost
of the best portal-respecting tour when the portal parameter is m and the random shifts
are a, b. Our notation stresses the dependence of this number upon shifts a and b and
the portal parameter m. Clearly, OPTa,b,m ≥ OPT.

Theorem 1. Ea,b[OPTa,b,m−OPT] is at most 2 log L/mOPT, where L is the sidelength
of the enclosing box and the expectation Ea,b[·] is over the random choice of shifts a, b.

Consequently, the probability is at least 1/2 (over the choice of shifts a, b) that the
difference OPTa,b,m − OPT is at most twice its expectation, namely 4 log L/m · OPT.
When the root square has sides of length L ≤ n2 (as ensured by our perturbation) and
m is at least 8 log n/ε, this difference is at most 8 log n/m · OPT = ε · OPT. Thus
OPTa,b,m ≤ (1 + ε)OPT with probability at least 1/2.

The following simple lemma lies at the heart of Theorem 1. It analyses the expected
length increase when a single edge is made portal-respecting. Theorem 1 immediately
follows by linearity of expectations, since the tour length is a sum of edge lengths.

For any two nodes u, v ∈ �2 let d(u, v) be the Euclidean distance between u, v and
let the portal-respecting distance between u and v, denoted da,b,m(u, v) be the shortest
distance between them when all intermediate grid lines have to be crossed at portals.

Lemma 1. When shifts a, b are random, the expectation of da,b,m(u, v) − d(u, v) is at
most 2 log L

m
d(u, v), where L is the sidelength of the enclosing box.

Proof. The expectation, though difficult to calculate exactly, is easy to upper bound.
The straight line from u to v crosses the unit grid at most 2d(u, v) times. To get a
portal-respecting path, we move each crossing to the nearest portal on that grid line
(see Figure 4), which involves a detour whose length is at most the interportal distance.
(Note that we are just describing a tour, and thus prove the upper bound; the best portal-
respecting path may look quite different.) If the line in question has level i, the interportal
distance is L/m2i+1. By (1), the probability that the line is at level i is 2i+1/L. Hence
the expected length of the detour is at most

log L−1∑

i=0

2i+1

L
· L

m2i+1 = log L

m
.

The same upper bound applies to each of the 2d(u, v) crossings, so linearity of
expectations implies that the expected increase in moving all crossings to portals is at
most 2d(u, v) log L/m. This proves the lemma.

3. Structure theorem: second cut

Recall that a portal-respecting tour is k-light if it crosses each side of each dissection
square at most k times. Let OPTa,b,k,m denote the cost of the best such salesman tour
when the portal paramter is m.
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Portal

Fig. 4. Every crossing is moved to the nearest portal by adding a “detour”

Theorem 2. E[OPTa,b,k,m − OPT] ≤ (
2 log L

m
+ 6

k−5 )OPT, where the expectation is
over the choice of shifts a, b.

Thus if m = �(log n/ε) and k > 24/ε + 5, the probability is at least 1/2 that the
best k-light tour has cost at most (1 + ε)OPT.

The analysis in this proof has a global nature, by which we mean that it takes all
the edges of the tour into account simultaneously (see our charging argument below).
By contrast, many past analyses of approximation algorithms for geometric problems –
see for instance algorithms surveyed in [17] and also our simpler analysis in Section 2
– reason in an edge-by-edge fashion.

We will use the following well-known fact about Euclidean TSP that is implicit in
the analysis of Karp’s dissection heuristic (or even [14]), and is made explicit in [5].

Lemma 2. (Patching Lemma) Let S be any line segment of length s and π be a closed
path that crosses S at least thrice. Then we can break the path in all but two of these
places, and add to it line segments lying on S of total length at most 3s such that π

changes into a closed path π ′ that crosses S at most twice.

Proof. For simplicity we give a proof using segments of length 6s instead of 3s; the
proof of 3s uses the Christofides heuristic and the reader may wish to work it out.

Suppose π crosses S a total of t times. Let M1, . . . , Mt be the points on which π

crosses S. Break π at those points, thus causing it to fall apart into t paths P1, P2, . . . , Pt .
In what follows, we will need two copies of each Mi , one for each side of S. Let M ′

i and
M ′′

i denote these copies.
Let 2j be the largest even number less than t . Let J be the multiset of line segments

consisting of the following: (i) A minimum cost salesman tour through M1, . . . , Mt . (ii)
A minimum cost perfect matching among M1, . . . , M2j . Note that the line segments of
J lie on S and their total length is at most 3s. We take two copies J ′ and J ′′ of J and
add them to π . We think of J ′ as lying to the left of S and J ′′ as lying to the right of S.

Now if t = 2j + 1 (i.e., t is odd) then we add an edge between M ′
2j+1 and M ′′

2j+1.
If t = 2j + 2 then we add an edge between M ′

2j+1 and M ′′
2j+1 and an edge between

M ′
2j+2 and M ′′

2j+2. (Note that these edges have length 0.)
Together with the paths P1, . . . , P2j , these added segments and edges define a con-

nected 4-regular graph on
{
M ′

1, . . . , M ′
t

} ∪ {
M ′′

1 , . . . , M ′′
t

}
. An Eulerian traversal of
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Fig. 5. The tour crossed this line segment 6 times, but breaking it and reconnecting on each side (also called
“patching”) reduced the number of crossings to 2

this graph is a closed path that contains P1, . . . , Pt and crosses S at most twice. (See
Figure 5.) Hence we have proved the theorem.

Another needed fact – implicit also in Lemma 1 – relates the cost of a tour to the
total number of times it crosses the lines in the unit grid. If l is one of these lines and π

is a salesman tour then let t (π, l) denote the number of times π crosses l. Then

∑

l:vertical

t (π, l) +
∑

l:horizontal

t (π, l) ≤ 2 cost(π) (2)

Now we are ready to prove the main result of the section.

Proof. (Theorem 2) The main idea is to transform an optimum tour π into a k-light tour.
Whenever the tour enters/exits a square “too many” times, we use the Patching Lemma
to reduce the number of crossings. This increases cost, which we upper bound in the
expectation by using the relationship in (2).

Let us describe this tour transformation process for a single vertical grid line, say l.
(A similar transformation happens at every grid line.) Suppose l has level i. It is touched
by 2i+1 level i + 1 squares, which partition it into 2i+1 segments of length L/2i+1. For
each j > i, line l is also touched by 2j level j squares. In general, we will refer to the
portion of l that lies in a level j square as a level j segment. The final goal is to reduce
the number of crossings in each level i segment to k or less; we do this as follows.

Let s = k−4. An overloaded segment of l is one which the tour crosses at least s +1
times. The tour transformation proceeds as follows. For every segment at level log L−1
that is overloaded, we apply the patching lemma and reduce the number of crossings
to 2. In the transformed tour, we now look at segments of level log L − 2 and for each
overloaded segment, apply the patching lemma to reduce the number of crossings to 2.
Continuing this way for progressively higher levels, we stop when no segment at level i

is overloaded. At the end, we move all crossings to portals; we do this by adding vertical
detours (i.e., vertical segments), as in Figure 4.

To analyse the cost increase in this transformation, we consider an imaginary pro-
cedure in which the tour transformation on this vertical grid line l proceeds to level 0,
i.e., until the entire line is not overloaded. Let Xl,j (b) be a random variable denoting the
number of overloaded level j segments encountered in this imaginary procedure. Note
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that Xl,j (b) is determined by the vertical shift b alone, which determines the location
of the tour crossings with respect to the segments on l. We claim that for every b,

∑

j≥0

Xl,j (b) ≤ t (π, l)

s − 1
. (3)

The reason is that the optimum tour π crossed grid line l only t (π, l) times, and each
application of the Patching Lemma counted on the left hand side of (3) replaces at least
s + 1 crossings by at most 2, thus eliminating s − 1 crossings each time.

Since a level j segment has length L/2j , the cost of the imaginary transformation
procedure is, by the Patching Lemma, at most

∑

j≥1

Xl,j (b) · 3L

2j
. (4)

(Note that in (4) we omit the case j = 0 because the level 0 square is just the bounding
box, and the tour lies entirely inside it.)

The actual cost increase in the tour transformation at l depends on the level of l,
which is determined by the horizontal shift a. When the level is i, the cost increase is
upper bounded by the terms of (4) corresponding to j ≥ i + 1:

Increase in tour cost when l has level i ≤
∑

j≥i+1

Xl,j (b) · 3L

2j
, (5)

We “charge” this cost to l. Of course, whether or not this charge occurs depends on
whether or not i is the level of line l, which by (1) happens with probability at most
2i+1/L (over the choice of the horizontal shift a). Let Yl,b be the following random
variable (it is a function of a):

Yl,b = charge to l when the shifts are a, b.

Thus for every vertical shift b

Ea[Yl,b] =
∑

i≥1

2i+1

L
· (charge to l when its level is i)

≤
∑

i≥1

2i+1

L
·

∑

j≥i+1

Xl,j (b) · 3L

2j

= 3 ·
∑

j≥1

Xl,j (b)

2j
·

∑

i≤j−1

2i

= 3 ·
∑

j≥1

Xl,j (b)

2j
· (2j − 1)

≤ 3 ·
∑

j≥1

·Xl,j (b)

≤ 3 t (π, l)

s − 1
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We may now appear to be done, since linearity of expectations seems to imply that
the total expected cost charged to all lines is

Ea[
∑

l

Yl,a] =
∑

l

3t (π, l)

s − 1
, (6)

which from (2) is at most

≤ 6
cost(π)

s − 1
. (7)

However, we are not done. We have to worry about the issue of how the modifications
at various grid lines affect each other. Fixing overloaded segments on vertical grid lines
involves adding vertical segments to the tour, thus increasing the number of times the
tour crosses horizontal grid lines; see Figure 5. Then we fix the overloaded segments on
horizontal grid lines. This adds horizontal segments to the tour, which may potentially
lead to some vertical lines becoming overloaded again. We need to argue that the process
stops. To this end we make a simple observation: fixing the overloaded segments of the
vertical grid line l adds at most 2 additional crossings on any horizontal line l′. The
reason is that if the increase were more than 2, we could just use the Patching Lemma
to reduce it to 2 and this would not increase cost since the Patching Lemma is being
invoked for segments lying on l which have zero horizontal separation (that is, they lie
on top of each other). Also, to make sure that we do not introduce new crossings on l

itself we apply the patching separately on vertical segments of both sides of l. Arguing
similarly about all intersecting pairs of grid lines, we can ensure that at the end of all our
modifications, the tour crosses each side of each dissection square up to s + 4 times; up
to s times through the side and up to 4 times through the two corners. Since s + 4 = k,
we have shown that the tour is k-light.

The analysis of the cost incurred in moving all crossings to the nearest portal is sim-
ilar to the one in Section 2 and gives the 2 log L

m
OPT term in the statement of Theorem 2.

This completes our proof.

4. The Rao-Smith algorithm

Rao and Smith [71] describe an improvement of the above algorithm that runs in time
O(n log n + n2poly(1/ε)). First they point out why the running time of the above algo-
rithm is n(log n)O(1/ε). It is actually nmO(k) where m is the portal parameter and k is
the number of times the tour can cross each side of each dissection square. The n comes
from the number of squares in the dissection, and mO(k) from the fact that the dynamic
programming has to enumerate all possible “interfaces,” which involves enumerating all
ways of choosing k crossing points from among the O(m) portals. The analysis given
above seems to require m to be �(log n) and k to be �(1/ε), which makes the running
time �(n(log n)O(1/ε)). Their main new idea is to reduce the mO(k) enumeration time
by giving the dynamic programming more hints about which portals are used by the tour
to enter/exit each dissection square.
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The “hints” mentioned above are generated using a (1+ε)-spanner of the input nodes.
This is a connected graph with O(n/poly(ε)) edges in which the distance between any
pair of nodes is within a factor (1 + ε) of the Euclidean distance. Such a spanner can
be computed in O(n log n/poly(ε)) time (see Althoefer et al. [3]). Note that distances
in the spanner define a metric space in which the optimum TSP cost is within a factor
(1 + ε) of the optimum in the Euclidean space.

Rao and Smith notice that the tour transformation procedure of Section 3 can be
applied to any connected graph, and in particular, to the spanner. The transformed graph
is portal-respecting, as well as k-light for k = O(1/ε). The expected distance between
any pair of points in the transformed graph is at most factor (1 + ε) more than what it
was in the spanner. Note that some choices of the random shifts may stretch the distance
by a much larger factor; the claim is only about the expectation. (In particular, it is quite
possible that the transformed graph is not a spanner.) By linearity of expectation, the
expected increase in the cost of the optimum tour in the spanner is also at most a factor
(1 + ε).

Now the algorithm tries to find the optimum salesman tour with respect to distances
in this transformed graph. Since the transformed graph is k-light, we know for each dis-
section square a set of at most 4k portals that are used by the tour to enter/exit the square.
As usual, we can argue that no portal is crossed more than twice. Thus the dynamic pro-
gramming only needs to consider kO(k) “interfaces” for each dissection square. For more
details see Rao and Smith’s paper.

4.1. Higher-dimensional versions

Although we concentrated on the version of the Euclidean TSP in �2, the algorithms
also generalize to higher-dimensional versions of all these problems. The analysis is
similar, with obvious changes such as replacing squares by higher dimensional cubes.
For more details see Arora [5].

Note that the running time – even after using the ideas of Rao and Smith – has
a doubly exponential dependence upon the dimension d. So the dimension should be
o(log log n) in order for the running time to be polynomial. As mentioned in the intro-
duction, there are complexity theoretic reasons to believe that this doubly exponential
dependence is (roughly speaking) inherent.

5. Generalizing to other problems: a methodology

The design of the above PTASs for the TSP uses very few properties specific to the TSP.
Below, we abstract out these properties, and identify other problems that share these
properties. The first property of the TSP that we needed was that the objective is a sum
of edge lengths.

Next, we crucially needed the fact that the notion of portal-respecting solutions –
whereby edges have to cross the boundaries of quadtree squares only at portals – makes
sense. (As we will see later, when the problem requires solutions with a fairly rigid
topology, such as triangulations, then portal-respecting solutions, since they may have
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bent edges, may not make sense.) We used this in Section 2 by showing that every set
of edges in the plane can be made portal-respecting without greatly affecting their total
length. We abstract out this statement in the following Theorem, which follows from
Lemma 1 by linearity of expectations.

Theorem 3. Let E be any set of edges in the plane in which each edge has length at
least 4 and all edges lie inside a square with a side of length L. When we pick shifts
a, b ∈ {0, 1, , . . . , L − 1} randomly then the edges can be made portal-respecting to
the shifted quadtree with expected cost increase 2 log L

m
cost(E). Here m is the portal

parameter and L is the sidelength of the enclosing box.

The more sophicated analysis of Section 3 relied on another property of the TSP,
embodied in the Patching Lemma (Lemma 2). This property was needed in the proof to
transform the optimum tour (over many steps and without greatly affecting the cost) into
a k-light tour where k is O(1/ε). Thus our dynamic programming can restrict attention
to k-light tours, and thus be more efficient. The Patching Lemma also holds for trees
and Steiner trees. It may also hold (possibly in a weaker form) for many other geometric
problems involving routing or connecting.

General methodology. The discussion above suggests the following general method-
ology for finding out if a geometric problem may have an approximation scheme.

1. Check if the objective function involves a sum of edge lengths.
2. Check if the notion of portal-respecting solutions makes sense. (That is, can one turn

a portal-respecting solution into a valid solution?)
3. Check if one can describe a small “interface” between adjacent squares that allows

the subproblems inside them to be solved independently. If so, one can probably use
dynamic programming to get an approximation scheme that runs in nO(log n/ε) time
or better.

4. If the above properties hold, check if the Patching Lemma (or something akin to it)
holds. If so, the proof of Section 3 can probably be made to work for the problem
and also the proof of Section 4.

Now we illustrate how to apply this methodology using three geometric problems.
Our examples were carefully chosen. Minimum Steiner Tree (Section 5.1) satisfies all
the properties mentioned above so the TSP algorithm generalizes to it in a straightfor-
ward way. In the k-median problem (Section 5.2) the objective function is a sum of edge
lengths but the Patching Lemma does not hold for this problem. However, the notion of
portal-respecting solution makes sense for it, and we obtain a PTAS. Finally, the Mini-
mum Latency problem (Section 5.3) is interesting because it neither obeys the Patching
Lemma, nor is its objective function a sum of edge lengths. Nevertheless, by a deeper
analysis of the objective function, we can write it as a weighted sum of salesmen paths,
and then restrict attention to portal-respecting solutions.

Of course, the above methodology is by no means a “complete” description of how
to design PTAS’s for geometric problems. For instance, a recent approximation scheme
for Minimum cost degree-restricted spanning tree, briefly described in Section 6, uses



Approximation scheme for geometric problems 57

some of these ideas and additional ideas. In Section 6.4 we describe two interesting open
problems whose solution may also advance this methodology.

5.1. Minimum Steiner tree

In the Minimum Steiner Tree problem, we are given n nodes in �d and desire the mini-
mum-cost tree connecting them3. In general, the minimum spanning tree is not an optimal
solution and one needs to introduce new points (called “Steiner” points) as nodes in the
solution. In case of three nodes at the corners of an equilateral triangle in �2 (with
distances measured in �2 norm), the optimum Steiner tree contains the centroid of the
triangle, and has cost

√
3/2 factor lower than the MST. Furthermore, the famous Gil-

bert-Pollak [38] conjecture said that for every set of input nodes, a Steiner tree has cost
at least

√
3/2 times the cost of the MST. Du and Hwang [30] proved this conjecture and

thus showed that the MST is a 2/
√

3-approximation to the optimum Steiner tree. A spate
of research activity in recent years starting with the work of Zelikovsky[85] has provided
better approximation algorithms, with an approximation ratio around 1.143 [86]. The
metric case does not have an approximation scheme if P �= NP [20] and Trevisan [79]
has shown the same result for the Euclidean version in O(log n) dimensions.

Steiner Tree problem involves an objective function that is a sum of edge lengths
and it obeys the Patching Lemma (as is easily checked). Now we briefly describe the
algorithm.

First we perturb the instance to ensure that all coordinates are integers and the ratio
of the maximum internode distance to the smallest internode distance is O(n2). We pro-
ceed exactly as for the TSP. If d denotes the maximum internode distance, lay a grid of
granularity εd/n1.5 and move every node to its nearest grid point. We also restrict Steiner
nodes to lie on grid points. As is well-known, the optimum Steiner tree has at most n−1
Steiner nodes (and hence a total of at most 2n − 1 edges), so the cost of the optimum
solution changes by at most (2n − 1)εd/n1.5, which is less than ε · OPT/2 as n grows.

We define a randomized dissection as well as portals in the same way as we did for
the TSP. A k-light portal-respecting Steiner tree is one that crosses grid lines only at
portals and which enters and leaves each side of each square in the dissection at most
k times. (Note that portals have a natural meaning for the Steiner tree problem: they
are Steiner nodes!) We can find the best such tree by dynamic programming similar
to the one for the TSP. There are only two modifications. First, the base case of the
dynamic programming, involving the smallest squares in the dissection, has to consider
the possibility of using Steiner nodes in the optimum solution. For this it needs to run
an exponential-time algorithm for the Steiner forest problem. Luckily, the Steiner forest
problem inside this square has constant size, specifically, at most 4k + 1 (at most 4k

portals and at most 1 input node). The other modification to the dynamic program is in
the way of specifying the “interface” between adjacent squares of the dissection, since
the final object being computed is a tree and not a tour. The details are straightforward
and left to the reader.

The proof of correctness is essentially unchanged from the TSP case since the Patch-
ing Lemma holds for the Steiner Tree problem.

3 It appears that this problem was first posed by Gauss in a letter to Schumacher [42].
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5.2. k-median

In the k-median problem we are given n nodes {x1, x2, . . . , xn} and a positive integer
k, and we have to find a set of k medians {m1, m2, . . . , mk} that minimizes

n∑

i=1

min
1≤j≤k

{
d(xi, mj )

}
(8)

where d(·, ·) denotes distance. By grouping together terms in (8) corresponding to xi’s
which have the same nearest median (breaking ties arbitrarily) we see that the problem
involves putting k “stars” (i.e., graphs in which nodes are attached to a single center) in
�2 which cover all n input nodes; the medians are at the centers of these stars. Thus we
may think of the k-median problem as covering by k stars. There are two variations of
the problem depending upon whether or not the medians are required to be input nodes.
The PTAS we are going to describe works for both variations. (After the discovery of
this PTAS, a constant factor approximation was discovered for the metric version in
[24].)

The Patching Lemma does not hold for the k-median problem: given the optimum
solution – a union of k stars – and a straight line segment in the plane, there is no general
way to reduce the number of star edges crossing the straight line without raising the cost
by a lot.

However, the notion of a portal-respecting solution (see Figure 6) – one in which the
edges of the stars, whenever they cross the edges of the quadtree, do so at a portal – makes
sense, as we see below. Using Theorem 3 We can show that there is a portal-respecting
solution of cost at most (1 + ε)OPT .

First, we do a simple perturbation that allows us to assume that the bounding box
has length O(n4) (see [10]) and all nodes and medians have integer coordinates. Then
by making the portal parameter m = �(log n/ε), the expected cost of the optimum
portal-respecting cover by k stars is at most (1 + ε)OPT. Now we describe the dynamic
programming to find the optimum portal-respecting cover by k stars. As usual, for each
square, we have to decide upon an “interface” between the solutions inside and outside
the square, so that the DP can solve the subproblem inside the square independently
of the one outside. Since all star edges have to enter or leave the square via a portal,
the algorithm can solve the subproblem inside the square so long as it has been told

Median

Portals

Input nodes

Fig. 6. A portal-respecting solution for k-median
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(a) the number of medians that lie inside the square, and (b) the distance from each
portal to the nearest median outside the square. This is enough information to solve the
subproblem inside the square optimally.

Specifying (a) requires �log k	 bits and specifying (b) requires O(log2 n/ε) bits
because each median has integer coordinates. So there are 2O(log2 n/ε) possible inter-
faces. Since the number of squares in the dissection is O(n log n), the running time is
essentially the same as the number of possible interfaces. Thus we get an approximation
scheme that runs in nO(log n/ε) time, which is slightly superpolynomial. By a more careful
choice for the interface and other tricks, the running time can be made polynomial [10]
and even near linear [55].

5.3. Minimum latency

The minimum latency problem, also known as traveling repairman problem [1], is a
variant of the TSP in which the starting node of the tour is given and the goal is to
minimize the sum of the arrival times at the other nodes. (The arrival time is the dis-
tance covered before reaching that node.) Like the TSP, the problem is NP-hard in the
plane. But it has a reputation for being much more difficult than the TSP: the class of
tractable instances consists only of path graphs [1] and recently Sitters [76] showed
that it is NP-hard on weighted trees. By contrast, the TSP can be optimally solved on
a tree. The metric case of the latency problem is MAX-SNP-hard (this follows from
the reduction that proves the MAX-SNP-hardness of TSP(1, 2) [69]), and therefore the
results of Arora et al. [9] imply that unless P = NP, a PTAS does not exist for met-
ric instances. Blum, Chalasani, Coppersmith, Pulleyblank, Raghavan and Sudan gave a
144-approximation algorithm for the metric case and a 8-approximation for weighted
trees. Goemans and Kleinberg [40] then gave a 21.55-approximation in the metric case
and a 3.59-approximation in the geometric case (the latter uses the PTAS for k-TSP).
Arora and Karakostas [8] designed a quasipolynomial-time approximation scheme for
the problem. We do not know whether the running time can be reduced to polynomial.

Consider the objective function for the problem: we have to find a permutation π of
the n nodes such that π(1) = 1 and we minimize

n∑

i=2

i−1∑

j=1

d(π(j), π(j + 1)).

Note the non local nature of the objective function: an extra edge inserted at the beginning
of the tour affects the latency of all the remaining nodes. For this reason, the shortest
salesman tour may be very suboptimal in terms of its latency, as the reader may wish
to verify. This strange objective function also poses problems in applying our general
methodology, since it is not a simple sum of edge lengths! However, we show below that
the objective may be approximated as a weighted sum of O(log n/ε) salesman paths,
and then we can use all our usual techniques by applying linearity of expectations.

Now we describe this argument of Arora and Karakostas [8]. Let ε > 0 be any
parameter such that we desire a (1 + ε)-approximation. First, do a simple perturbation:
merge pairs of nodes separated by distance at most O(εL/n2), where L is the largest
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internode distance. This allows us to assume that the minimum nonzero internode dis-
tance is 4 and maximum internode distance is O(n2/ε). Since ε is constant, we will
often think of the maximum internode distance as O(n2).

We will show that to find a (1 + ε)-approximate minimum latency tour, it suffices
to find the tour as a union of O(log n/ε) disjoint paths, where the ith path contains
ni nodes, and the numbers n1, n2, . . . decrease geometrically (see below). Within each
path, the order of visits to the nodes does not matter, as long as the total length is close
to minimum.

Let T be an optimal tour with total latency OPT. Imagine breaking this tour into r

segments, so that in segment i we visit ni nodes, where

ni =
⌈
(1 + ε)r−1−i

⌉
for i = 1 . . . r − 1

nr = �1/ε	 .

Let the length of the ith segment be Ti . If we let n>i denote the total number of nodes
visited in segments numbered i + 1 and later, then a simple calculation shows that (and
this was the reason for our choice of ni’s)

n>i =
∑

j>i

nj ≤ ni

ε
, for every i = 1 . . . k − 1 (9)

The latency of any node in the p’th segment is at least
∑p−1

j=1 Tj and at most
∑p

j=1 Tj .
Adding over all segments, we can sandwich OPT between two quantities:

r−1∑

i=1

n>i · Ti ≤ OPT ≤
r−1∑

i=1

n>i · Ti +
r∑

i

niTi . (10)

Now imagine doing the following in each segment except the last one: replace that seg-
ment by the shortest path that visits the same subset of nodes, while maintaining the
starting and ending points (in other words, a traveling salesman path for the subset).
We claim that the new latency is at most (1 + ε)OPT. Focus on the ith segment. The
length of the segment cannot increase, and so neither can its contribution to the latency
of nodes in later segments. The latency of nodes within the ith segment can only rise by
niTi . Thus the increase in total latency is at most

r−1∑

i=1

ni · Ti. (11)

Condition (9) implies that

r−1∑

i=1

ni · Ti ≤ ε

r−1∑

i=1

n>i · Ti,

which is at most εOPT by condition (10). Hence the new latency is at most (1+ε)OPT, as
claimed. (Aside: Note that we have thus shown that the lower bound and upper bound in
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Condition (10) are within a (1 + ε) factor of each other, once we ignore the contribution
of the last segment.)

Of course, if we use a (1 + γ )-approximate salesman path in each segment instead
of the optimum salesman path in each segment, then the latency of the final tour is at
most (1 + γ · ε + γ )OPT.

5.3.1. The Algorithm. Combining the above ideas with those of Section 3, we obtain
the following theorem.

Theorem 4. (Structure theorem) There exist constants c, f such that the following
is true for every integer n > 0 and every ε > 0. For every well-rounded Euclidean
instance with n nodes, a randomly-shifted dissection has with probability at least 1/2 an
associated tour that is c log n/ε2-light, and whose latency is at most (1 + ε)OPT, where
OPT denotes the latency of the minimum latency tour. The tour crosses each portal at
most f log n/ε times.

Proof. Let T be the tour with minimum latency. As described above, we break it into
r = O(log n/ε) segments, where the ith segment has ni nodes. We replace each seg-
ment except the last one by the optimum salesman path for that segment. This raises total
latency by at most ε · OPT/4, say. Now we lay down the randomly shifted dissection.
Apply the technique of Section 3 in each segment, namely, to modify the segment so
that it becomes portal-respecting and k-light where k = O(1/ε). (The last segment only
has �1/ε	 nodes, so it is already k-light.)

A crucial observation is that the analysis of the tour modification in Section 3 relies
on an expectation calculation, and so we can use linearity of expectations to analyse the
cost of our O(log n/ε) tour modifications.

The expected increase in the length of each segment is a multiplicative factor (1 +
ε/4).Also, each salesman path never needs to cross a portal more than twice. We thus end
up with a collection of paths which together are O(k ·log n/ε)-light (that is, O(log n/ε2)-
light) and do not cross any portal more than O(log n/ε) times altogether.

As for the effect on the latency, note from (10) that the latency is sandwiched between
two weighted sum of path lengths. Thus linearity of expectations implies that the expected
increase in each weighted sum is at most a multiplicative factor (1 + ε/4). We conclude
that with probability at least 1/2, the increase in latency is a factor at most (1 + ε/2).
Thus the overall latency of the final tour is at most (1 + ε)OPT.

A simple dynamic programming running in nO(log n/ε2) can compute the best tour
satisfying the conclusion of Theorem 4; details are left to the reader. Note that the final
segment with nr = � 1

ε
	 nodes can be guessed by exhaustive enumeration by trying all

n1/ε+1 choices and then running the rest of the algorithm for each.

6. Survey of known results

All problems listed below are known to be NP-hard unless stated otherwise.A discussion
of the problems appears in Bern and Eppstein [17].
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6.1. Problems that have approximation schemes

Minimum Steiner Tree: Discussed above.
k-median: Discussed above.
Minimum Latency Tour: Discussed above.
Facility Location: We are given n nodes {x1, x2, . . . , xn} who represent clients and

m other nodes that represent potential facilities; each of the facility node has an
associated cost cj for opening a facility at that node. Each client gets “service” from
the facility closest to it. The goal is to open a set of facilities S so as to minimize

∑

j∈S

cj +
n∑

i=1

min
j∈S

{
d(xi, cj )

}
. (12)

A variant of the problem involves specifying a capacity for each facility and a demand
from each client. In the solution, the total demand from the clients assigned to a facil-
ity must not exceed the capacity at that facility. Many other variants exist. Aardal,
Shmoys and Tardos [74] give the first constant factor approximation; it works in
any metric space; this has since been been improved in many papers. The metric
space version is MAX-SNP-hard. Arora, Raghavan and Rao [10] give a PTAS for
the geometric case. They extend the algorithm to the capacitated case but the final
solution may violate capacity constraints by small amounts.

Generalized Steiner Problem: Generalization of the minimum Steiner tree problem in
which p subsets S1, S2, . . . , Sp of the input nodes are specified and we have to find
a Steiner forest such that nodes within each Si are connected. (In the usual Steiner
problem, p = 1.) Our techniques give an approximation scheme whose running time
is exponential in p (unpublished), and which is a PTAS when p is sublogarithmic.
We do not know of a better algorithm, nor of any complexity results.

k-TSP: Given n nodes and an integer k, find the shortest tour that visits at least k nodes.
The TSP algorithm easily generalizes to k-TSP, although the running time is higher
by a factor k [5].

k-MST: Given n nodes and an integer k, find the shortest tree that visits at least k nodes.
This problem was proved NP-hard not too long ago [34]. The approximation ratio
for this problem has been improved within a few years from

√
k to constant [21] to

1 + ε [5].
Euclidean min-cost k-connected subgraph: Given n nodes and an integer k, find the

smallest subgraph that is k-connected. The subcase k = 1 is just the MST problem.
Czumaj and Lingas [27, 28] give a PTAS using techiques similar to those in our
survey.

Prize collecting problems: In prize collecting TSP, the input consists of a set of nodes
and nonegative penalties on the nodes {πi}. The goal is to find a tour on a subset of
vertices that minimizes the sum of the cost of the edges in the tour and the penalties
on the vertices not in the tour. One can design a quasipolynomial time approxima-
tion scheme using the methods in Section 2. The same is true for the prize-collecting
Steiner tree problem.

Min-cost perfect matching: Given 2n nodes in the plane, we have to find the lowest
cost set of edges that are vertex disjoint. This problem can be solved optimally in
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polynomial time. The techniques of Section 3 lead to a near-linear time approxi-
mation scheme [5]; this improves an older O(n1.5poly(log n)) time approximation
scheme of Vaidya [81]. Recently Varadarajan [82] has found an O(n1.5) time exact
algorithm. His techniques are reminiscent of the techniques covered here, but more
sophisticated.

Euclidean Max-Cut: Given n nodes, find a partition into two subsets S1, S2 that max-
imises the sum of the lengths of the edges that have an endpoint in each of S1 and
S2. Fernandez de la Vega and Kenyon [29] give a PTAS for this problem. The tech-
niques are unrelated to those covered in our survey and also extend to any metric
space.

Min sum 2-clustering: Given n nodes, find a partition into two subsets S1, S2 that
minimises the sum of the lengths of the edges that either has both endpoints in S1 or
both endpoints in S2. (This objective function is the complement of the Max-Cut.)
Indyk [47] describes a PTAS when the nodes are in a general metric space.

Maximum traveling salesman: The maximization version of the usual TSP – find
the longest salesman tour visiting all n nodes – has been described in a lighter vein
as the frequent flier mileage maximisation problem. (Though it does appear to have
other uses.) Barvinok et al. [13] show that this problem has a PTAS. The idea is to
approximate the unit ball by a polyhedron and then apply matching techniques and
some partial enumeration.

Degree-restricted spanning tree: Given n nodes and a degree d, find the shortest
spanning tree that has degree at most d; see Raghavachari [70] and Bern and Epp-
stein [17] for a discussion. The salesman path problem is a subcase when d = 2.
Every minimum spanning tree has degree at most 5, so the problem is trivial in the
plane for d ≥ 5 (in higher dimensions this trivial degree bound grows exponentially
with the dimension). The case d = 4 is NP-hard and the status when d = 3 is open.
Khuller et al. [54] give 1.5- and 1.25-approximations for the two problems, which
Chan has improved to 1.402 and 1.143 respectively [23]. Arora’s early manuscript
claimed an approximation scheme for this problem as well but this claim was with-
drawn in the published version. The status of this problem was then open for several
years, and recently Arora and Chang [6] gave an approximation scheme that runs
in nO(log5 n) time. The idea is once again to prove the existence of an (m, k)-light
solution that has cost (1 + ε)OPT, where m, k are small. The need for new ideas
arises from the fact that the Patching Lemma does not hold. A portal-respecting
solution makes sense, but there is no obvious way to restrict the number of cross-
ings at a portal (in the case of TSP, we can restrict the number to 2). So the design
methodology of Section 5 does not apply. Arora and Chang develop something akin
to a Patching Lemma (and some other ideas) to reduce the number of crossings
at each portal to poly(log n). We note that their approximation scheme also gen-
eralizes to dimensions 3 and higher, for which no constant-factor algorithms were
known.

6.2. Problems with no known approximation schemes

We suspect that many of the problems listed below may be MAX-SNP-hard.
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Vehicle Routing: This is really a large body of problems in operations research with
several books devoted to them (see [78] for example). The basic scenario involves a
fleet of vehicles that have to make deliveries to customers. The vehicles have limited
capacities, so they can only carry a limited number of parcels each. The vehicles
may need to start from and end at a depot and the number of depots and their loca-
tions may be part of the input. The vehicles may be allowed to pick up packages
in addition to dropping off packages. Clearly, many other variants can be defined.
Constant factor approximations are known for many variants. PTAS’s are considered
in Asano et al. [11], who start with the most basic scenario: each package weighs the
same, and each vehicle can carry at most k of them. Each customer receives a single
package. The vehicles start from and finish at a central depot. Thus the problem can
be rephrased as minimum length covering by k-tours (i.e., tours containing at most k

nodes). This is somewhat reminiscent of capacitated k-median, which involves as a
subcase covering by k stars each of capacity n/k. However, the difference in topol-
ogy between the star and the tour seems to make the problem much harder. Asano
et al. present a PTAS for the case k = �(n/ log n) (this uses techniques presented
in this survey) and k = O(log n).

Minimum Weight Triangulation: Given a set of n nodes in the plane, the goal is
to compute a triangulation that minimizes the Euclidean edge length. We do not
know if this problem is NP-hard; it is one of the few problems on a famous list of 12
problems in Garey and Johnson [36] whose status is still open. Many candidate algo-
rithms (such as Delaunay triangulation) give terrible approximations. Levcopoulos
and Krznaric [59] describe a constant factor approximation.

Minimum Weight Steiner Triangulation. This is a variant of the previous problem in
which the triangulation may include any additional (“Steiner”) points in the plane.
We do not know if this problem is NP-hard. Eppstein has described a constant factor
approximation algorithm for the problem, though this constant is fairly big (316,
although this may be improvable).

Polygon Separation: Given a collection of k polygons, separate them by a minimum-
complexity planar straight-line graph. Edelsbrunner et al. [31] give a constant factor
approximation for the case of convex polygons, and Mitchell and Suri [66] extend
this to arbitrary polygons.

Polyhedral Separation: Given closed polytopes P, R in �3 with P ⊆ R we seek a
polytope Q with the minimum number of faces such that P ⊆ Q ⊆ R. Brönni-
man and Goodrich [22] give a constant-factor approximation. A related problem is
polyhedron approximation: given a polytope R and a distance ε, find a minimum
complexity polygon Q ⊆ R whose boundary is within distance ε of the boundary
of R. We do not know if this problem is NP-hard nor do we have a constant factor
approximation.

Covering orthogonal polygons by rectangles: An orthogonal polygon is on whose
all sides are horizontal or vertical. The polygon is simple if its boundary has a single
connected component. A rectangle covering of a polygon is the minimum number of
(possibly overlapping) rectangles whose union is the polygon. Franzblau [35] gives
a 2-approximation for the case where the polygon is simple and orthogonal. (NP-
hardness for this subcase was shown in [26].) If the polygon is simple but otherwise
arbitrary, an O(α(n)) approximation is known [44]. If the polygon is not simple
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(i.e. has holes) then the problem is known to be MAX-SNP-hard, so we discuss it in
Section 6.3.

Graph Embedding: Given an n vertex graph G and a set of n nodes S in the plane, we
wish to find a bijection from the vertices of G to S that minimizes the total embed-
ded edge length. This problem generalizes the TSP (in which G is a cycle). Bern
et al. [19] give a O(log n)-approximation when G is a tree. Similar approximations
also exist for some other special cases.

6.3. Problems for which approximation schemes do not exist

k-center: Given n nodes {x1, . . . , xn} and an integer k, place k centers c1, c2, . . . , ck

in the plane so as to minimize max1≤i≤n min1≤j≤k

{
d(xi, cj )

}
. This is also called

minmax radius clustering. Many heuristics give a factor 2-approximation; the first
is due to Gonzalez [41]. Feder and Greene [32] show that 1.82-approximation is
NP-hard.

Covering nonsimple polygons with rectangles: This is a variant of a problem defined
above; here the polygon may be nonsimple (i.e., have holes). Berman and Das-
gupta [16] show this problem is MAX-SNP-hard even if the nonsimple polygon is
orthogonal. An O(

√
n)-approximation is known [57] for the orthogonal case, but no

nontrivial approximation for the general case.
Polygon Bisection: Given a simple polygon, partition it into two equal-area subsets

using curved “fences” of minimum total length. No constant approximation ratio is
achievable if P �= NP [56].

TSP with neighborhoods: Given a collection of k simple polygons (not necessarily
disjoint) with n nodes, we seek the shortest tour that passes through each poly-
gon. The usual TSP is a special case in which each polygon is a point. Mata and
Mitchell [62] describe a O(log n)-approximation and Berg et al. [15] have proved
MAX-SNP-hardness.

6.4. Geometric problems that resist our techniques

Obviously, this section is somewhat redundant because it should include every problem
in Section 6.2. However, we discuss in some detail why our techniques have not made
any headway yet. The problems just happen to be two that the author has thought about.

Covering with k-tours. We mentioned this simple version of vehicle routing before.
In order to solve it by geometric divide and conquer, we seem to need a result stating
that there is a near-optimum solution which enters or leaves each area a small number
of times. This does not appear to be true. (More concretely, the Patching Lemma does
not hold for this problem.)

We encountered a similar difficulty for the k-median problem (Section 5.2) but there
we are able to restrict attention to portal-respecting solutions. Even though such a solu-
tion may enter dissection squares too many times, the “interface” between adjacent
squares (i.e., amount of information that we have to decide upon so as to allow the algo-
rithm to proceed independently in each square) is small. The interface can be specified
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by a logarithmic number of bits and so the dynamic programming can try all possible
interfaces.

In the covering with k-tours problem, the difficulty lies in deciding upon a small
interface between adjacent squares, since a large number of tours may cross the edge
between them. It seems that the interface has to specify something about each of them,
which uses up too many bits.

Minimum weight Steiner triangulation. At first blush this problem seems somewhat
amenable to our techniques. One could try to define a portal-respecting solution (portals
have a natural interpretation as Steiner points) and show that the best such solution has
cost at most (1 + ε)OPT. Indeed, such a result was claimed in an early draft of [10] and
then withdrawn.

The trouble with the approach arises from the topology of a triangulation. To con-
vert an optimum solution into a portal-respecting solution, we deflect edges to make
them pass through portals and use some kind of charging argument to show that the cost
increase is small. There seems to be no obvious way to do this while keep the resulting
structure a triangulation.

In fact, here is an open problem that tries to capture the difficulties we are referring
to. Let S(n) be the maximum number of Steiner points needed for the optimum trian-
gulation on n nodes. (The maximum is over all – uncountably many – configurations of
the n input nodes.) Is S(n) finite? Bounded by a polynomial in n? Now let Sε(n) be the
analogous quantity for (1 + ε)-approximate triangulations. Is Sε(n) finite? Polynomial
in n for every fixed ε? Note that if the problem has a PTAS, then the answer to the last
question has to be “Yes.” Maybe showing a polynomial bound on Sε(n) would be a first
step towards the design of a PTAS. Note that a corollary of Eppstein’s 316-approximation
is a poly(n) (actually, O(n log n)) upper bound on S315(n).
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