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Abstract. We propose local search algorithms for the rectangle packing problem to minimize a general spatial
cost associated with the locations of rectangles. The problem is to pack given rectangles without overlap in the
plane so that the maximum cost of the rectangles is minimized. Each rectangle has a set of modes, where each
mode specifies the width and height of the rectangle and its spatial cost function. The spatial costs are general
piecewise linear functions which can be non-convex and discontinuous. Various types of packing problems
and scheduling problems can be formulated in this form. To represent a solution of this problem, a pair of
permutations of n rectangles is used to determine their horizontal and vertical partial orders, respectively. We
show that, under the constraint specified by such a pair of permutations, optimal locations of the rectangles can
be efficiently determined by using dynamic programming. The search for finding good pairs of permutations
is conducted by local search and metaheuristic algorithms. We report computational results on various imple-
mentations using different neighborhoods, and compare their performance. We also compare our algorithms
with other existing heuristic algorithms for the rectangle packing problem and scheduling problem. These
computational results exhibit good prospects of the proposed algorithms.
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1. Introduction

The two dimensional rectangle packing problem (2RP) is to place a set of rectangles in
the plane without overlap so that a given cost function is minimized. In this paper, the
edges of rectangles are required to be vertical or horizontal. There are various options
on the packing rules and objective functions; e.g., rotations are allowed or not, a bin of
fixed size to which rectangles are packed is given or not. The problem is known to be
NP-hard in general, and hence a number of heuristic algorithms have been proposed in
the literature [9–12].

Liu and Teng [9] proposed an algorithm for 2RP, based on the genetic algorithm
in which rotations of 90◦ are allowed and the width W of the rectangle bin is given.
The objective is to minimize the height of the bin containing all given rectangles. Lodi,
Martello and Vigo [10] proposed simple heuristic algorithms and incorporated them into
a metaheuristic algorithm based on the tabu search. They solved 2RP in which the size of
the rectangle bins to which given rectangles should be packed is given. The objective is
to minimize the number of bins. Murata, Fujiyoshi, Nakatake and Kajitani [11] proposed
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a simulated annealing algorithm for 2RP in which rotations of 90◦ are allowed and the
objective is to minimize the area of the bin containing all given rectangles.

In this paper, we consider the rectangle packing problem with general spatial costs
(RPGSC), and propose metaheuristic algorithms based on local search. Each rectangle
is associated with a set of modes, where each mode specifies the width and height of
the rectangle and its spatial cost function. The spatial costs are general piecewise lin-
ear functions which can be non-convex and discontinuous. The problem is to pack
a given set of n rectangles without overlap so that the maximum cost of the rect-
angles is minimized. A solution, called a packing, is determined by specifying the
mode and the location of each rectangle, which is feasible if no two rectangles over-
lap.

This problem is very general, and various types of packing problems and scheduling
problems can be formulated in this form. For example, we can treat 2RP in which rota-
tions of 90◦ are allowed as a special case of RPGSC by considering two modes for each
rectangle corresponding to: (1) the original orientation and (2) the orientation rotated
by 90◦. A quite different problem taken from the scheduling problem of constructing
large building blocks can also be handled by using appropriate spatial costs, as will be
described in Section 5.

If we search directly the x and y coordinates and the mode of each rectangle, then
an effective search will be difficult, since the number of solutions is uncountably many
and eliminating overlap of rectangles is not easy. Therefore various coding schemes to
represent solutions have been proposed [9, 11, 12]. Nakatake, Fujiyoshi, Murata and
Kajitani proposed a coding scheme called the bounded-sliceline grid (BSG) [12], and
obtained good results for 2RP in which rotations are allowed and the objective is to mini-
mize the area of the bin containing all given rectangles. Murata, Fujiyoshi, Nakatake and
Kajitani proposed a coding scheme called the sequence pair [11]. In the sequence pair
representation, a solution is represented by a pair of permutations of rectangles. They
proposed an O(n2) time decoding algorithm to obtain a feasible packing (i.e., x and y

coordinates of rectangles) from a pair of permutations of rectangles. Takahashi [15] and
Tang, Tian and Wong [16] improved the time complexity of the decoding algorithm to
O(n log n); Tang and Wong [17] further improved it to O(n log log n).

We adopt the sequence pair [11] as the coding scheme in our algorithm. A solution is
coded as a pair of permutations of n rectangles and a vector specifying the modes of all
rectangles. Given a coded solution, we propose a decoding algorithm based on dynamic
programming to obtain an optimal packing (i.e., locations of the rectangles that mini-
mize the associated cost function) under the constraint specified by the coded solution.
This algorithm is a generalization of the algorithms proposed in [15, 16] in that it can
deal with general spatial costs. We propose another decoding algorithm which slightly
relaxes the constraints of a sequence pair and finds a packing better than or equivalent to
that obtained by our first algorithm. The running time of these algorithms is O(n log n)

if applied to the case of area minimization. The details of these algorithms are described
in Section 3.

We also propose an encoding algorithm to obtain a coded solution from a given
packing, which runs in O(n log n) time. This encoding algorithm is incorporated in our
local search and metaheuristic algorithms whenever our second decoding algorithm is
used. The details of this algorithm are described in Appendix A.
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We then consider various neighborhoods in Section 4, which are used in the local
search algorithms for finding good coded solutions. We define the critical path (its def-
inition is not trivial as we consider general spatial cost functions), which represents
the bottleneck of the current solution, and propose a neighborhood based on critical
paths. We also use critical paths to reduce the sizes of other neighborhoods. The local
search algorithms based on these neighborhoods are then incorporated in metaheuristic
algorithms such as the multi-start local search (MLS) and the iterated local search (ILS).

The computational results are reported in Section 5. We compare the performance
of various implementations using different neighborhoods and metaheuristics. We also
compare our algorithms with other existing heuristic algorithms for the rectangle packing
problem and a real-world scheduling problem.

2. Rectangle packing problem with general spatial costs

In this section, we formulate the rectangle packing problem with general spatial costs.
Let I = {1, 2, . . . , n} be a set of n rectangles. Each rectangle i ∈ I has mi modes, and
each mode k (k = 1, 2, . . . , mi) of rectangle i specifies:

– a width w
(k)
i , a height h

(k)
i (w(k)

i , h
(k)
i ≥ 0) and a cost c

(k)
i of the mode,

– spatial cost functions p
(k)
i (x) and q

(k)
i (y) on the location (x, y) of the rectangle,

where the location of a rectangle means the (x, y)-coordinate of its lower left corner.

We assume that p
(k)
i (x) and q

(k)
i (y) are piecewise linear and nonnegative (i.e., p

(k)
i (x),

q
(k)
i (y) ≥ 0 hold for all x, y ∈ [−∞, ∞]). It is also assumed that if x, y → ±∞,

then p
(k)
i (x), q

(k)
i (y) → +∞. Moreover, we assume that any discontinuous point x (if

exists) must satisfy

p
(k)
i (x) ≤ min{ lim

s→+∞ p
(k)
i (x + 1/s), lim

s→+∞ p
(k)
i (x − 1/s)}

(see Fig. 1 as an example). The assumption on the discontinuous points of q
(k)
i (y) is

similar. The latter two conditions are necessary to ensure the existence of an optimal
solution, and most of natural spatial cost functions satisfy them. Note that the spatial
cost functions can be non-convex and discontinuous as long as they satisfy the above

x

p
(k)
i (x)

0

Fig. 1. An example of the spatial cost function
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conditions. It is also assumed throughout the paper (unless otherwise stated) that the
information of each linear piece of functions p

(k)
i (x) and q

(k)
i (y) are given explicitly.

In many applications, the number of linear pieces of each spatial cost function is small,
and hence this assumption is natural. Given the modes of n rectangles

µ(π) = (µ1(π), µ2(π), . . . , µn(π)),

a packing π is determined by locations (xi(π), yi(π)) of all rectangles i. We define
pmax(π) and qmax(π) as follows:

pmax(π) = max
i∈I

p
(µi(π))
i (xi(π)), (1)

qmax(π) = max
i∈I

q
(µi(π))
i (yi(π)). (2)

Now we are given two cost functions g(pmax(π), qmax(π)) and c(µ(π)), where
function g is nondecreasing in pmax(π) and qmax(π). Moreover, we assume that
g(pmax(π), qmax(π)) (respectively, c(µ(π))) can be computed in O(1) (respectively,
O(n)) time for given pmax(π) and qmax(π) (respectively, µ(π)). Then the problem
considered in this paper is defined as follows:

RPGSC: minimize g(pmax(π), qmax(π)) + c(µ(π))

subject to At least one of the next four inequalities

holds for every pair (i, j) of rectangles:

xi(π) + w
(µi(π))
i ≤ xj (π), (3)

xj (π) + w
(µj (π))

j ≤ xi(π), (4)

yi(π) + h
(µi(π))
i ≤ yj (π), (5)

yj (π) + h
(µj (π))

j ≤ yi(π). (6)

The constraints from (3) to (6) mean that no two rectangles overlap in packing π , and
we call a packing satisfying all constraints feasible. For example, condition (3) means
that the right side of rectangle i is placed to the left of the left side of rectangle j .

Typical examples of g(pmax(π), qmax(π)) are

g(pmax(π), qmax(π)) = pmax(π) + qmax(π),

g(pmax(π), qmax(π)) = pmax(π) · qmax(π),

g(pmax(π), qmax(π)) = max{pmax(π), qmax(π)},
and typical examples of c(µ(π)) are

c(µ(π)) =
∑

i∈I

c
(µi(π))
i ,

c(µ(π)) = max
i∈I

c
(µi(π))
i .

Defining p
(k)
i (x), q

(k)
i (y) and c

(k)
i for each i and k appropriately, various types of

packing problems and scheduling problems can be formulated in our form. For example,



Local search algorithms for the rectangle packing problem with general spatial costs 547

we can treat 2RP in which rotations of 90◦ are allowed as a special case of RPGSC by
considering two modes of (1) the original orientation and (2) the orientation rotated
by 90◦. We can also treat both types of rectangle packing problems, where a bin of
fixed size to which rectangles should be packed is given or not, by defining p

(k)
i (x) and

q
(k)
i (y) appropriately. We will explain in Section 5.1 that some other problems taken

from scheduling applications can be formulated as RPGSC. Some computational results
of our algorithms and other existing algorithms are reported in Section 5.

The problem RPGSC is NP-hard, since the one dimensional bin packing problem,
which is known to be strongly NP-hard [5], can be polynomially reducible to this prob-
lem. Note that problem RPGSC is not purely combinatorial, since the coordinates xi(π)

and yi(π) of each rectangle i can be any real values and hence there are continuously
infinite number of solutions.

3. Packing and sequence pair

As noted before, various coding schemes to represent solutions have been proposed [9,
11, 12]. Desirable properties of a coding scheme may be summarized as follows.

1. The size of the search space (i.e., the number of all possible coded solutions) is finite.
2. Every coded solution corresponds to a feasible packing.
3. Decoding (i.e., computing the corresponding packing from a coded solution) is pos-

sible in polynomial time.
4. There exists a coded solution that corresponds to an optimal packing.

Some of the coding schemes in the literature satisfy all of the above four properties, and
others do not. We adopt the sequence pair [11] as the coding scheme in our algorithm,
which satisfies the above four properties. In this scheme, a coded solution is a pair of
permutations of n rectangles and a vector that specifies the modes of all rectangles. In
this section, we briefly explain the sequence pair representation and propose decoding
algorithms to find a feasible packing from a coded solution.

3.1. Sequence pair

A sequence pair is a pair of permutations σ = (σ+, σ−) of I = {1, 2, . . . , n}, where
σ+(l) = i (equivalently σ−1

+ (i) = l) means that rectangle i is the lth rectangle in σ+.
σ− is similarly defined. In a feasible packing π , every pair i and j of rectangles sat-
isfies at least one of the four conditions from (3) to (6). A sequence pair determines
which of the four conditions is satisfied in the packing, as follows. Given a sequence
pair σ = (σ+, σ−), we define the partial orders �x

σ and �y
σ by

σ−1
+ (i) ≤ σ−1

+ (j) and σ−1
− (i) ≤ σ−1

− (j) ⇐⇒ i �x
σ j,

σ−1
+ (i) ≥ σ−1

+ (j) and σ−1
− (i) ≤ σ−1

− (j) ⇐⇒ i �y
σ j,

for any pair i and j of rectangles. Note that i �x
σ i and i �y

σ i hold for all i.
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Property 1 [11]. Exactly one of the four relations i �x
σ j , j �x

σ i, i �y
σ j and j �y

σ i

holds for any pair i and j of rectangles with i 
= j .

Then, given a sequence pair σ = (σ+, σ−) and a vector of modes µ = (µ1, µ2, . . . , µn),
we define �σ,µ as the set of packings π that satisfy the following three conditions for
all i and j ∈ I :

µi(π) = µi,

i �x
σ j and i 
= j �⇒ xi(π) + w

(µi)
i ≤ xj (π), (7)

i �y
σ j and i 
= j �⇒ yi(π) + h

(µi)
i ≤ yj (π). (8)

This means that any packing π ∈ �σ,µ is feasible and satisfies the mode constraint.
Conversely, it can be shown that, for any feasible packing π , there exists a pair of σ and
µ that satisfies π ∈ �σ,µ. It is shown in [11] that such a sequence pair σ = (σ+, σ−)

exists for any packing π , without considering the time complexity for obtaining it. The
encoding algorithms in Appendix A (one of which runs in O(n log n) time) also give a
proof of this fact.

3.2. Computing an optimal packing in �σ,µ

In this section, we consider the following problem for a given (σ, µ):

RPGSC (σ, µ): minimize g(pmax(π), qmax(π))

subject to π ∈ �σ,µ,

and propose a dynamic programming algorithm to compute an optimal packing π of
RPGSC(σ, µ) in polynomial time. For simplicity, we omit the superscript representing
the mode in Sections 3.2 to 3.4 (e.g., we use wi instead of w

(µi(π))
i ), since the mode

µi(π) of each rectangle i is fixed when we consider decoding algorithms. By Property
1, we can obtain a feasible packing even if we determine the horizontal and vertical
coordinates separately. Moreover, since the objective function g(pmax(π), qmax(π)) is
assumed to be nondecreasing in pmax(π) and qmax(π), respectively, it can be minimized
by minimizing pmax(π) and qmax(π) independently. We will give below an algorithm
to minimize pmax(π). An algorithm to minimize qmax(π) can be similarly defined.

Let us define J f
i and fi(x) for each i as follows:

J f
i = {j ∈ I | j �x

σ i},

fi(x): the minimum value of maxj∈J f
i
pj (xj (π)) subject to xj (π) + wj ≤ xj ′(π)

for all j, j ′ ∈ J f
i such that j 
= j ′ and j �x

σ j ′, and xi(π) + wi ≤ x.

We call fi(x) the minimum penalty function. This function is nonincreasing in x by the
definition, and the minimum penalty value pmax(π) of (1) can be obtained by

max
i∈I

min
x

fi(x).
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Then, by the idea of dynamic programming, fi(x) can be computed by

fi(x) =
{

minxi≤x−wi
pi(xi), if J f

i = {i},
minxi≤x−wi

max{pi(xi), maxj∈J f
i \{i} fj (xi)}, otherwise. (9)

The horizontal coordinates xi(π) of each rectangle i can be computed by

xi(π) =





max{xi | pi(xi) = minx′
i
{pi(x

′
i ) | fi(x

′
i + wi) = minx fi(x)}},

if J b
i = {i},

max{xi | pi(xi) = minx′
i
{pi(x

′
i ) | fi(x

′
i + wi) = minx{fi(x) | x ≤ ri}}},

otherwise,

(10)

where J b
i = {j ∈ I | i �x

σ j} and ri = minj∈J b
i \{i} xj (π). We can minimize pmax(π)

with these horizontal coordinates, and moreover, we can minimize pi(xi(π)) for all i

locally.
In order to consider how to compute the above fi(x), let us define procedure Take-

Min-Max (g1, g2) and Take-Max (g1, g2) for two functions g1 and g2 as follows.

Procedure Take-Min-Max (g1, g2)

Output function gtmm(x) = mint≤x max{g1(t), g2(t)} and stop.

Procedure Take-Max (g1, g2)

Output function gtm(x) = max{g1(x), g2(x)} and stop.

These are basic operations to compute fi(x), and can be done in O(τ1 + τ2) time in
either case, where τ1 and τ2 are the space complexity (i.e., the number of linear pieces) of
functions g1 and g2, respectively. In case g1 and g2 are nonincreasing, output functions
by these two procedures become the same (i.e., gtmm(x) = gtm(x)), and this condition
is always satisfied when we call procedure Take-Max in our decoding algorithms. Then,
we use procedure Take-Min-Max instead of Take-Max.

If we compute fi(x) by using (9) naively, we call procedure Take-Min-Max O(n2)

times since
∑

i | J f
i | = O(n2). However, we propose here a decoding algorithm in

which we call procedure Take-Min-Max O(n log n) times in total.
In order to compute fi(x) for each i = 1, 2, . . . , n, we should compute

maxj∈J f
i \{i} fj (xi) in (9). We introduce a complete binary tree of height 
log2 n� with n

leaves. The leaves are labeled 1, 2, . . . , n from left to right, where leaf l ∈ {1, 2, . . . , n}
corresponds to rectangle σ−(l). We define a function f k

l (x) for each l ∈ {1, 2, . . . , n}
and k ∈ {0, 1, . . . , n} as follows:

f k
l (x) =

{
fσ−(l)(x), if σ−1

+ (σ−(l)) ≤ k,
−∞, if σ−1

+ (σ−(l)) ≥ k + 1.
(11)

Then, we can compute fi(x) of (9) from pi(x) and f k
l (x) since

max
j∈J f

i \{i}
fj (x) = max{f k

l (x) | l < σ−(i) and k = σ+(i) − 1}. (12)
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To compute this efficiently, internal nodes of the binary tree are labeled by distinct num-
bers l ≥ n + 1 such as n + 2d , n + 2d + 1, . . . , n + 2d+1 − 1 from left to right for all
nodes whose depths from the root node are d (i.e., the root node is labeled n + 1 and
the maximum number of node labels becomes n+ 2(
log2 n�−1)). Let Tl be the set of leaf
labels in the subtree whose root node is l. We define a function gk

l (x) for each internal
node l and k ∈ {0, 1, . . . , n} as follows:

gk
l (x) = max

j∈Tl

f k
j (x).

We compute f k
l (x) and gk

l (x) from k = 1 to n step by step. Initially, f 0
l (x) =

−∞ and g0
l (x) = −∞ hold for all leaves and internal nodes. Now consider a k ∈

{1, 2, . . . , n}. First, we will compute f k
l (x) for all leaves l. In this step, f k

l (x) = f k−1
l (x)

holds for each l such that σ−1
+ (σ−(l)) 
= k, and hence we should compute only f k

lk
(x)

such that σ−1
+ (σ−(lk)) = k (equivalently lk = σ−1

− (σ+(k))). To compute this, we define
gk(x). Let us initialize gk(x) := −∞ and then repeat the following step along the path in
the tree from the root to leaf σ−1

− (σ+(k)) (we call this path RL-path, where RL stands for
root to leaf): If the path goes from node l to its right child, then let gk(x) := Take-Min-
Max (gk−1

l′ , gk) (if l′ is an internal node) or gk(x) := Take-Min-Max (f k−1
l′ , gk) (if l′ is

a leaf) for the left child l′ of l. Finally, gk(x) becomes max{f k−1
l (x) | l < σ−1

− (σ+(k))}
(see Fig. 2 as an example). This is equal to the right hand side of (12), and then we can
compute fi(x) (= f k

lk
(x)) by (9). Next, we will compute gk

l (x) for all internal nodes l.

In this step, gk
l (x) = gk−1

l (x) holds for each l such that lk 
∈ Tl , and hence we should
compute only gk

l (x) such that lk ∈ Tl , and this condition means that node l is in RL-
path. Then, we compute gk

l (x) := Take-Min-Max (gk−1
l , f k

lk
) for all internal nodes l in

RL-path.
We call the above procedure to compute fi(x) for all i algorithm Compute-Mini-

mum-Penalty-Function (CMPF), which is formally described as follows.

Algorithm Compute-Minimum-Penalty-Function (CMPF)

Step 1 Make a complete binary tree of height 
log2 n� with n leaves. The leaves
are labeled 1, 2, . . . , n from left to right and internal nodes are labeled by
distinct numbers more than n.

Step 2 Let f 0
l (x) := −∞ for all leaves, g0

l (x) := −∞ for all internal nodes and
k := 1.

Tl′

lk = σ−1
− (σ+(k))

root

l′ RL-path

Fig. 2. An example to compute gk(x)
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Step 3 (Compute gk(x) along RL-path.)
3.1 Let gk(x) := −∞ and l be the root node.
3.2 If l ∈ {1, 2, . . . , n} (i.e., leaf), then go to Step 4;

otherwise let l∗ be the child node of l in RL-path.
3.3 If l∗ is the left child of l, then let l := l∗ and return to 3.2;

otherwise let gk(x) := Take-Min-Max (gk−1
l′ , gk) (l′: internal node) or

Take-Min-Max (f k−1
l′ , gk) (l′: leaf) for the left child l′ of l. Let l := l∗

and return to 3.2.
Step 4 Let fσ+(k)(x) (= f k

lk
(x)) := Take-Min-Max (pσ+(k), g

k).

Step 5 Let gk
l (x) := Take-Min-Max (gk−1

l , f k
lk
) for all internal nodes l in RL-path.

Step 6 If k = n, then output fi(x) for all i and stop; otherwise let k := k + 1
and return to Step 3.

Since procedure Take-Min-Max is called O(log n) times for each k (where O(log n) is
the height of the tree), the total number of calls to Take-Min-Max is O(n log n).

Now, we evaluate the time complexity of algorithm CMPF. Let δi be the number of
linear pieces of pi(x), and let δ = ∑

i δi . Since we are given the information of each
linear piece of functions pi(x) explicitly (see the assumption in Section 2), δ becomes
a lower bound of the input size. We define τ as an upper bound on the space complexity
of functions fi(x), and τ also becomes an upper bound of f k

l (x) and gk
l (x) since fi(x)

can be computed from f k
l (x) and gk

l (x). (More details of τ will be discussed in Section
3.3.) Thus the time complexity of algorithm CMPF is O(τn log n + δ).

3.3. Time complexity of the decoding algorithm

In order to derive the time complexity of the decoding algorithm in the previous sec-
tion, we first consider the space complexity of fi(x), f k

l (x) and gk
l (x). We consider the

following three cases.
(1) Cost function pi(x) satisfies the following property: There exists a di that satisfies

pi(x) = +∞ for x < di , and pi(x) is nondecreasing for x ≥ di . Then τ becomes O(1).
In this case, we can find an optimal packing from a given sequence pair in O(n log n+δ)

time by algorithm CMPF. Many rectangle packing problems, such as those considered in
[11, 12, 15, 16], can be reduced to this case and furthermore satisfy δ = O(n), indicating
that our algorithm CMPF runs in O(n log n) time. This time complexity is the same as
those discussed in [15, 16].

(2) Cost functions pi(x) are convex for all i. Then functions f k
l (x) and gk

l (x) are
convex and nonincreasing, and have negative gradients that also appear in cost functions
pi(x). Let ξ be the number of different values among the negative gradients in all cost
functions pi(x). In this case, the maximum space complexity of f k

l (x) and gk
l (x) is

ξ + 1, and hence the time complexity of algorithm CMPF becomes O(ξn log n + δ). In
many applications, δ = O(n) and ξ can be regarded as a constant, and CMPF is quite
efficient in such cases.

(3) Each pi(x) is general piecewise linear. That is, pi(x) can be non-convex and
discontinuous. In this case, the space complexity of each f k

l (x) and gk
l (x) becomes
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O(δ α(δ, δ)), where α(m, n) is the inverse of Ackermann function. (It is known that
α(m, n) ≤ 4 holds for most realistic values of m and n.) The reason is explained as
follows. f k

l (x) and gk
l (x) can be represented as the maximum of some linear pieces of

pi(x) and some pieces which are parallel to x-axis. The pieces of the latter type can
be generated in the process of computing f k

l (x) and gk
l (x) from some pieces of pi(x)

which have positive gradients or by some discontinuous points of pi(x) which have
positive gaps. The total number of linear pieces of pi(x) is O(δ) and the number of
pieces parallel to x-axis is also O(δ). Hence the space complexity of f k

l (x) and gk
l (x)

is given by the space complexity of the upper envelope of O(δ) line segments, which
is known to be O(δ α(δ, δ)) [1]. Therefore the time complexity of algorithm CMPF is
O(δα(δ, δ)n log n). In many realistic cases, δi = O(1) (i.e., δ = O(n)) holds (and
α(δ, δ) can be regarded as O(1) as mentioned above), and hence the time complexity of
CMPF becomes O(n2 log n).

Remark. The time complexity of algorithm CMPF depends on δ for all three cases.
Algorithm CMPF is a polynomial time algorithm under the assumption that the infor-
mation of each linear piece of function p

(k)
i (x) is given explicitly. However, in general,

δ can be exponentially large if functions p
(k)
i (x) are given implicitly, and in such cases,

the algorithm proposed by Ahuja, Hochbaum and Orlin [2, 3] is more efficient for case
2. Note that they consider a slightly different problem and a careful transformation is
necessary.

3.4. An improved decoding algorithm

In this section, we describe an algorithm Compute-Better-Packing (CBP), which com-
putes a packing π from a given (σ, µ). Although the packing π computed by CBP may
not satisfy π ∈ �σ,µ, it is not worse than any packing in �σ,µ in terms of the objective
value. While algorithm CMPF in Section 3.2 computes the x and y coordinates of all
rectangles independently, CBP computes the coordinates of one direction first, and then
computes the coordinates of the other direction on the basis of the first coordinates. We
assume here that CBP computes the y-coordinates first, since the other case is similar.

First we define a packing π0. The y-coordinates of rectangles in π0 are determined
by applying algorithm CMPF, while the x-coordinates are given by

xσ−(1)(π
0) = 0,

xσ−(l)(π
0) = xσ−(l−1)(π

0) + wσ−(l−1), l = 2, 3, . . . , n.

The obtained packing π0 is in �σ,µ and qmax(π
0) ≤ qmax(π) holds for all π ∈ �σ,µ.

Next, we define the set IL
i ⊆ I (L stands for left) for each i ∈ I as follows:

j ∈ IL
i ⇐⇒ xj (π) + wj ≤ xi(π), yj (π) − hi < yi(π) < yj (π) + hj and the line

segment ((xj (π) + wj , y), (xi(π), y)) does not cross any rectangle
in I , for some y satisfying max{yi(π), yj (π)} < y < min{yi(π) + hi,

yj (π) + hj }.
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i

j2

j4

j1

j3

Fig. 3. An example of rectangles (j2, j4 ∈ IL
i and j1, j3 
∈ IL

i )

Note that we permit that the line segment ((xj (π) + wj , y), (xi(π), y)) has length 0.
Fig. 3 illustrates set IL

i and locations of rectangles. The set IL
i can be computed for all

i ∈ I in O(n log n) time by using the well-known plane sweep technique [4]. (We explain
the algorithm to compute the set IL

i s in Appendix A.) Then, we compute a packing π

that minimizes pmax(π) among those satisfying

j ∈ IL
i �⇒ xj (π) + wj ≤ xi(π) for all i ∈ I, (13)

where IL
i is defined on π0 and yi(π) = yi(π

0) holds for all i ∈ I . Since j ∈ IL
i �⇒

j �x
σ i holds for all i and j (i 
= j ), constraints (13) are not stronger than (7). That

is, the feasible region of the problem considered here contains that of RPGSC(σ, µ).
Hence, the pmax(π) obtained by CBP is not worse than that obtained by CMPF. Let us
define f̃i (x) as the minimum value of maxj∈IL

i ∪{i} pj (xj (π)) under the constraints of

xi(π) + wi ≤ x and xj (π) + wj ≤ xi(π) for all j ∈ IL
i . Then, f̃i (x) can be computed

by

f̃i (x) =
{

minxi≤x−wi
pi(xi), if IL

i = ∅,

minxi≤x−wi
max{pi(xi), maxj∈IL

i
f̃j (xi)}, otherwise. (14)

The minimum penalty value pmax(π) and the horizontal coordinate xi of each rectangle
i can be computed by the similar computation as explained in Section 3.2. It is easy
to show that

∑
i |IL

i | = O(n) holds (see Appendix A for details), and hence procedure
Take-Min-Max is called O(n) times in the recursion of (14).

The packing π computed by algorithm CBP may not satisfy π ∈ �σ,µ(π), where
(σ, µ) is the coded solution to which CBP is applied. In this case, we can find a sequence
pair σ ′ which satisfies π ∈ �σ ′,µ(π) in O(n log n) time by applying the encoding algo-
rithm called P2SP-2 proposed in Appendix A to π . In our computational experiments,
we will apply algorithm P2SP-2 to a packing π , whenever it is computed by CBP and is
better than the current packing, so that the local search can resume from a coded solution
(σ ′, µ) satisfying π ∈ �σ ′,µ(π).

The time complexity of algorithm CBP (even if including encoding algorithm) is
bounded by the time to call Take-Min-Max O(n log n) times to compute the y-coordi-
nates first, which is the same as that of CMPF.
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4. Local search of coded solutions (σ, µ)

In this section, we propose metaheuristic algorithms to find good coded solutions (σ, µ).
As metaheuristic algorithms are based on local search, we explain the general framework
of local search in Section 4.1. After giving a definition of critical paths in Section 4.2,
we explain four types neighborhoods based on critical paths in Section 4.3. In Section
4.4, we explain frameworks of the proposed metaheuristic algorithms.

4.1. Local search

The local search (LS) starts from an initial solution (σ, µ) and repeats replacing (σ, µ)

with a better solution in its neighborhood N(σ, µ) until no better solution is found in
N(σ, µ), where N(σ, µ) is a set of solutions obtainable from (σ, µ) by slight pertur-
bations (which will be defined later). A solution (σ, µ) is called locally optimal, if no
better solution exists in N(σ, µ). The LS from an initial solution (σ (0), µ(0)), in which
neighborhood N is used and solutions are evaluated by a function eval, is described as
follows.

Algorithm LS(N, (σ (0), µ(0)))

Step 1 Let σ := σ (0) and µ := µ(0).
Step 2 If there is a feasible solution (σ ′, µ′) ∈ N(σ, µ) such that eval(σ ′, µ′) <

eval(σ, µ), let σ := σ ′, µ := µ′ and return to Step 2. Otherwise output
(σ, µ) and stop.

The following ingredients must be specified in designing LS: Search space, neighbor-
hood, move strategy, an initial solution and a function to evaluate solutions. In our
algorithm, we use the search space which is the set of all coded solutions (σ, µ). We
adopt first admissible move strategy (i.e., when we find a better solution in its neigh-
borhood, we move to the solution immediately). A solution (σ, µ) is basically evaluated
by the objective value of the packing π obtained by algorithm CMPF in Section 3.2 or
algorithm CBP in Section 3.4. However, to break ties, we compute the following three
values:

1. Objective value g(pmax(π), qmax(π)) + c(µ(π)),
2. the number of rectangles i for which p

(µi(π))
i (xi(π)) = pmax(π) or q

(µi(π))
i (yi(π))

= qmax(π) holds,
3.

∑
i (p

(µi(π))
i (xi(π)) + q

(µi(π))
i (yi(π))).

In each criterion, a packing which has smaller value is better. We define eval(σ, µ) as the
vector of these three values in this order, and use the lexicographic order of eval(σ, µ) to
compare two solutions (i.e., criterion 2 is used when solutions are equivalent in criterion
1, and criterion 3 is used when solutions are equivalent in criteria 1 and 2).

4.2. Critical paths

Critical paths are defined for both of the x and y directions. We explain the definition
only for the x direction, as that for the y direction is similar.
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Given a packing π ∈ �σ,µ, define a directed graph G = (V , E) and subsets
S, T , S̃, T̃ ⊆ I as follows:

V = I,

(i, j) ∈ E ⇐⇒ xi(π) + w
(µi(π))
i = xj (π) and i �x

σ j ,

S = {i ∈ I | pi(xi(π) − ε) ≥ pmax(π) for an arbitrarily small ε > 0},

S̃ = {i ∈ S | pi(xi(π)) = pmax(π)},

T = {i ∈ I | pi(xi(π) + ε) ≥ pmax(π) for an arbitrarily small ε > 0},

T̃ = {i ∈ T | pi(xi(π)) = pmax(π)}.

Note that i ∈ S and i 
∈ S̃ may occur if spatial cost function pi(x) is discontinuous at
xi(π). We then define a critical path as a directed path in G, whose initial vertex s is in
S, final vertex t is in T and either s ∈ S̃ or t ∈ T̃ holds. For any packing π obtained by
our decoding algorithms, both S and T are nonempty and there is at least one critical
path for each direction. It is easy to find all pairs of rectangles which are adjacent in
critical paths in O(n2) time. An algorithm to compute critical paths with the worst case
time complexity O(n2) (but runs in O(n) time in practice) was proposed in [7]. Critical
paths have an important property: pmax(π) cannot be decreased without breaking all
critical paths. Therefore we introduce neighborhoods, which are based on critical paths,
in the next section.

4.3. Neighborhoods

The neighborhood is a very important factor that determines the effectiveness of local
search. We use the following four types of neighborhoods, called swap, shift, swap∗ and
change mode.

4.3.1. Swap neighborhood. A swap is the operation of exchanging the positions of two
rectangles i and j in σ+ and/or σ−. If a swap is applied to one (resp., both) of σ+ and σ−,
then the operation is called a single swap (resp., double swap). The single swap (resp.,
double swap) neighborhood is defined to be the set of all solutions obtainable from the
current solution by single swap (resp., double swap) operations. The swap neighbor-
hood is the union of the single swap and double swap neighborhoods. The size of the
single swap neighborhood is n(n − 1) (there are n(n − 1)/2 pairs of rectangles and two
permutations), while that of double swap neighborhood is n(n− 1)/2. The double swap
neighborhood has the following property: If two rectangles i and j are exchanged in
both of σ+ and σ−, then the constraints related to the partial orders �x

σ and �y
σ of these

two rectangles are entirely exchanged. We propose three methods to reduce the size of
swap neighborhood, which will be computationally compared in Section 5.3. (We call
the swap neighborhood without any reductions SwapAll.)

(1) We impose the condition that one of the two rectangles i in the swap operation
satisfies p

(µi(π))
i (xi(π)) = pmax(π) or q

(µi(π))
i (yi(π)) = qmax(π). We call this neigh-

borhood SwapMax. The size of SwapMax is extremely small, and the possibility of
missing some improved solutions in the original swap neighborhood appears to be high.
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(2) Critical paths are used to reduce the neighborhood size. In a swap of i and j ,
the critical paths containing neither i nor j will not be broken (and the objective value
does not decrease). Therefore, we choose at least one rectangle in a swap from those
rectangles in critical paths of either direction. Then, the size of the neighborhood is
reduced from O(n2) to O(cn), where c is the number of rectangles in critical paths.

(3) This method can only be applied to the double swap neighborhood. We restrict the
pairs of rectangles i and j to those satisfying at least one of the following two conditions:

– i is in the critical path of x direction and j is not. w
(µi(π))
i > w

(µj (π))

j .

– i is in the critical path of y direction and j is not. h
(µi(π))
i > h

(µj (π))

j .

The second and third methods have the following property: The current solution is
locally optimal (with respect to the objective value) in the original swap neighborhood
if no improved solution is found in the reduced neighborhood. In this sense, we can
reduce the size of swap neighborhood without sacrificing the solution quality. In our
computational experiments, we use the union of two neighborhoods, the single swap
neighborhood reduced by method (2) and the double swap neighborhood reduced by
method (3), and we call this SwapCri.

4.3.2. Shift neighborhood. A shift is the operation of shifting the position of one rectan-
gle i into another position in σ+ and/or σ−. If the position is changed in one permutation
(resp., both permutations), we call it a single shift (resp., double shift). The single shift
(resp., double shift) neighborhood is defined to be the set of all solutions obtainable
from the current solution by single shift (resp., double shift) operations. In the case of
the double shift neighborhood, we limit the positions, where the shifted rectangle is
inserted, to those determined by the following rule. Let i be the rectangle to be shifted.
Then we choose one rectangle j (
= i) arbitrary and insert i before or after j in both σ+
and σ−. Intuitively, in the packing space, we move rectangle i to the position just to the
left of, right of, above or below the chosen j by these restricted operations. The shift
neighborhood is the union of these two neighborhoods, and the size of this neighborhood
is O(n2). We call this neighborhood ShiftAll.

We restrict further the rectangles to be shifted by the following rules, which will be
computationally compared in Section 5.3.

(1) We restrict the rectangles to those satisfying p
(µi(π))
i (xi(π)) = pmax(π) or

q
(µi(π))
i (yi(π)) = qmax(π). We call this neighborhood ShiftMax.

(2) We shift only those rectangles located in critical paths. We call this neighborhood
ShiftCri.

4.3.3. Swap∗ neighborhood. A swap∗ operation breaks a critical path while preserving
the relations �x

σ and �y
σ between other rectangles as much as possible. We explain a

swap∗ operation only for the x direction. It removes two rectangles i and j , which are
adjacent in the horizontal critical path, from σ+ and/or σ−, and inserts them into adjacent
positions (but in the reverse order) of σ+ and/or σ− between the original positions of i

and j (see Fig. 4 for illustration). This operation is formally defined as follows. Here,
only the case of changing σ+ to σ ′+ is explained. The operation on σ− is similar. Let
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α γ β

σ+ �⇒

α γ

σ ′+

β

iji j

Fig. 4. An example of changing σ+ to σ ′+

us assume that rectangles i and j are adjacent in a critical path, and σ+(α) = i and
σ+(β) = j hold in the current solution. Let γ be an integer that satisfies α ≤ γ < β.
Then, the resulting permutation σ ′+ is given by (see Fig. 4) :

σ ′
+(l) = σ+(l + 1), l = α, . . . , γ − 1,

σ ′
+(γ ) = j,

σ ′
+(γ + 1) = i,

σ ′
+(l) = σ+(l − 1), l = γ + 2, . . . , β,

σ ′
+(l) = σ+(l), l = 1, 2, . . . , α − 1, β + 1, . . . , n.

Then, we can change from a packing in Fig. 5 (a) to a packing in Fig. 5 (b) with a swap∗
operation on i and j . We consider all possible i and j , and all γ satisfying α ≤ γ < β;
hence the neighborhood size is O(n3) in the worst case. In practice, however, the average
size appears to be much smaller. We call this neighborhood Swap∗.

4.3.4. Change mode neighborhood. The change mode neighborhood is the set of solu-
tions obtainable from the current coded solution (σ, µ) by changing the mode µi(π)

of one rectangle i. This is the only operation applied to the vector µ. The size of this
neighborhood is

∑
i (mi − 1) where mi is the number of modes of rectangle i.

4.3.5. Combination of some neighborhoods. It is often effective to combine more than
one neighborhood. In the computational experiment of Section 5, we use a combination

i

j

i

j

(a) i �x
σ j (b) i �y

σ j

Fig. 5. An example showing the effect of a swap∗ operation
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of SwapCri, ShiftMax and Swap∗, which is called Union. Moreover, we use the change
mode neighborhood in combination with other neighborhoods whenever we treat a prob-
lem in which each rectangle has more than one mode, since this is the only operation
applied to the mode vector µ. When we use more than one neighborhood, we use them
in random order in our computational experiments.

4.4. Metaheuristics

We explain three metaheuristic algorithms, which are all based on local search. These will
be used in our computational experiments in Section 5. Computation of these algorithms
continues until the prespecified computational time is reached.

(1) The random multi-start local search (MLS). This is one of the simplest meta-
heuristic algorithms. In MLS, we randomly generate many initial solutions and apply
LS to each initial solution independently. Then, the best of the obtained locally optimal
solutions is output.

(2) The iterated local search (ILS) [8]. ILS is a variant of MLS, in which initial
solutions are generated by slightly perturbing a good solution (σseed, µseed) found dur-
ing the previous search. In our ILS, (σseed, µseed) is defined to be the best solution
obtained so far with respect to function eval. The next initial solution is then gener-
ated from (σseed, µseed) by applying swap, shift or change mode operations a few times
randomly.

(3) The algorithm WALK is similar to algorithm WALK-SAT [14] proposed for the
satisfiability problem. We define neighborhood N(σ, µ, i) for a coded solution (σ, µ)

and a rectangle i as follows: N(σ, µ, i) is the set of solutions obtainable from (σ, µ) by
applying swap, shift, swap∗ or change mode operation to rectangle i. In WALK, we first
choose a rectangle i randomly from those in the critical paths, and then choose the best
solution (σ ′, µ′) in N(σ, µ, i)\{(σ, µ)} and move to (σ ′, µ′) (i.e., let (σ, µ) := (σ ′, µ′))
even if the eval of (σ ′, µ′) is worse than that of (σ, µ).

5. Computational experiment

In this section, our algorithms are evaluated on some instances of the rectangle pack-
ing and scheduling problems. The algorithms were coded in C language and run on a
handmade PC (Intel Pentium III 1 GHz, 1 GB memory).

We describe test instances in Section 5.1. In Section 5.2, we examine the performance
of our decoding algorithms proposed in Sections 3.2 and 3.4. We then report compu-
tational results of local search with various implementations using different neighbor-
hoods in Section 5.3. Computational results of various metaheuristic algorithms are
reported in Section 5.4. In Section 5.5, we compare our algorithms with other exist-
ing heuristic algorithms for both the rectangle packing problem and the scheduling
problem.
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5.1. Test problems and their instances

We explain two problems and their instances, which are used in our computational exper-
iments. All instances can be obtained electronically from

http://www-or.amp.i.kyoto-u.ac.jp/~imahori/packing/.

5.1.1. The area minimization problem. We are given a set of n rectangles I =
{1, 2, . . . , n}, where each rectangle i ∈ I has a width wi and a height hi . The rota-
tions of 90◦ are allowed and the objective is to minimize the area of the rectangle bin
that contains all given rectangles. This problem was considered in many papers including
[11, 12, 15, 16]. In our formulation as RPGSC instances, each rectangle has two modes
corresponding to its orientations: (1) the original orientation and (2) the orientation after
90◦ rotation. For each i = 1, 2, . . . , n, we set

w
(1)
i = wi, h

(1)
i = hi,

w
(2)
i = hi, h

(2)
i = wi.

For i = 1, 2, . . . , n and k = 1, 2, we use

p
(k)
i (x) =

{ +∞ (x < 0)

x + w
(k)
i (x ≥ 0),

q
(k)
i (y) =

{ +∞ (y < 0)

y + h
(k)
i (y ≥ 0).

The objective of the resulting RPGSC instance is to minimize pmax(π) · qmax(π) (i.e.,
the area of the rectangle that covers all given rectangles).

We use five instances of this problem: ami49, rp100, pcb146, rp200 and pcb500.
The first instance ami49 has 49 rectangles, whose data are obtainable electronically
from http://www.cbl.ncsu.edu/CBL Docs/lys90.html. Instances rp100
and rp200 were randomly generated, and have 100 and 200 rectangles, respectively.
The generation was done by randomly choosing integers from [1,100] for widths and
heights of rectangles. Instances pcb146 and pcb500 were given by Kajitani [11, 12].
These instances have 146 and 500 rectangles, respectively. Since the optimal solutions
of these instances are unknown, we use the sum of the areas of n rectangles as a lower
bound of the objective function.

5.1.2. The scheduling problem of large building blocks. This is a problem encountered
in a factory producing large building blocks. The blocks produced are very large, and
each block stays in the same position until all the processes on it are finished. Each build-
ing block i has a length li , a processing time ti , a ready time si and a due date di . As the
shape of the work space is long and narrow, the building blocks can be regarded as one
dimensional objects, which must be placed without overlap. A block i must arrive at the
scheduled position after time si , and requires processing time ti , before being removed
prior to time di . A schedule is determined by the position, arrival time and removal time
of each block. Let xi be the start time of block i (hence its finish time is xi + ti). Then
the objective is to minimize the max{0, si − xi, xi + ti − di}.
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This problem can also be formulated as RPGSC, in which each rectangle has only
one mode. For i = 1, 2, . . . , n, let

w
(1)
i = ti , h

(1)
i = li ,

p
(1)
i (x) =






−x + si (x < si)

0 (si ≤ x ≤ di − ti )

x + ti − di (x > di − ti ),

q
(1)
i (y) =






+∞ (y < 0)

0 (0 ≤ y ≤ H − li )

+∞ (y > H − li ),

where H is the length of the factory. The objective is to minimize pmax(π) + qmax(π).
In this RPGSC formulation, the x-coordinate corresponds to time and the y-coordinate
represents the positions of blocks. Given a packing π , xi(π) represents the start time
and yi(π) represents the bottom edge of the position of block i.

We use five test instances sp78, sp50-a, sp50-b, sp100-a and sp100-b, where sp78
is a test instance from a real world application with 78 building blocks, and sp50-a,
sp50-b, sp100-a, sp100-b are random instances that have 50 and 100 building blocks,
respectively. It is known that there is a schedule with objective value 0 for every instance
(i.e., no violation of constraints with respect to start time, due date and work space for
all building blocks).

5.2. Decoding algorithms

In this section, we examine the performance of our decoding algorithms proposed in
Sections 3.2 and 3.4. We compare three algorithms: (1) an O(τn2 + δ) naive algorithm
in Section 3.2 (denoted NAIVE), (2) algorithm CMPF in Section 3.2 whose time com-
plexity is O(τn log n+ δ) and (3) algorithm CBP in Section 3.4 whose time complexity
is the same as CMPF. Each algorithm is applied to the x-coordinate only. Note that we
compute the y-coordinates of rectangles before applying CBP, since CBP can compute
the x-coordinates in O(n log n + τn + δ) time by making use of the y-coordinates of
rectangles. We tested instances of several sizes and several cost functions. Results are
shown in Table 1. The figures in the table show the computational time to obtain a pack-
ing from a given coded solution. Column “n” shows the size of instances and column
“cost type” shows the type of cost functions. The type “special” means that all rectangles

Table 1. Computational time of the decoding algorithms in seconds

n cost type NAIVE CMPF CBP

49 special 5.04 ×10−5 1.90 ×10−5 6.41 ×10−5

100 special 2.21 ×10−4 4.56 ×10−5 1.55 ×10−4

146 special 4.56 ×10−4 6.92 ×10−5 2.34 ×10−4

200 special 9.67 ×10−4 9.61 ×10−5 3.27 ×10−4

500 special 5.63 ×10−3 3.65 ×10−4 1.21 ×10−3

49 general 4.53 ×10−4 1.85 ×10−4 1.42 ×10−4

100 general 2.11 ×10−3 4.33 ×10−4 3.46 ×10−4

146 general 4.24 ×10−3 9.51 ×10−4 5.87 ×10−4

200 general 1.03 ×10−2 1.27 ×10−3 8.85 ×10−4

500 general 5.97 ×10−2 6.13 ×10−3 4.69 ×10−3
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have cost functions described in Section 3.3-(1) (i.e., τ is O(1)), and “general” means
that rectangles have general cost functions, each with a few segments.

From the table, we can observe that algorithms CMPF and CBP are more efficient
than NAIVE. Moreover, CBP is faster than other algorithms for the instances with gen-
eral cost functions, while it is about three times as slow as algorithm CMPF for the
instances with special cost functions. This is because CBP can have a larger coefficient
on n log n term than CMPF, if τ is a small constant. This is because CBP uses the plane
sweep algorithm, whose computational time is O(n log n), while CMPF does not. Here
we emphasize that CBP is faster than CMPF even if the above general cost function
on each rectangle has only a few segments. We also examined the performance of our
decoding algorithms with respect to the quality of solutions. We use five test instances:
ami49, rp100, pcb146, rp200 and pcb500. Algorithms CMPF and CBP are incorporated
in the local search algorithms, and results are shown in Table 2. Column “value” shows
the average of the following ratio, 100· (the objective value of the local optimum) / (the
lower bound of the objective function), for ten trials (i.e., the larger the better). Column
“time” shows the average computational time (in seconds) of local search algorithm
LS. These notations are also used in Tables 3, 4 and 5. Note that we use neighborhood
Union (defined in Section 4.3.5) in each LS. From the table, we can observe that CBP
is superior to CMPF in quality for many instances. Based on these results, we will use
CBP as our decoding algorithm in the experiments of Sections 5.3, 5.4 and 5.5.

5.3. Neighborhoods

The following eight types of neighborhoods discussed in Section 4.3 were computa-
tionally compared from the view point of the performance of the resulting local search
algorithms LS, on test instances of the area minimizing problem in Section 5.1.1.

– SwapAll (the swap neighborhood in Section 4.3.1).
– SwapMax (the reduced swap neighborhood in Section 4.3.1).
– SwapCri (the reduced swap neighborhood in Section 4.3.1).
– ShiftAll (the shift neighborhood in Section 4.3.2).
– ShiftMax (the reduced shift neighborhood in Section 4.3.2).
– ShiftCri (the reduced shift neighborhood in Section 4.3.2).
– Swap∗ (the swap∗ neighborhood in Section 4.3.3).
– Union (the union of the SwapCri, ShiftMax and Swap∗ in Section 4.3.5).

Note that the change mode neighborhood is incorporated in all of the above eight cases.

Table 2. Quality of solutions of the decoding algorithms

CMPF CBP
instance value time value time

ami49 93.37 1.44 93.30 2.20
rp100 94.06 15.47 94.85 27.04
pcb146 91.38 22.29 94.10 38.18
rp200 94.98 174.6 95.76 410.1
pcb500 93.49 3600.0 94.40 3600.0
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Table 3. Comparison of eight neighborhoods

SwapAll SwapMax SwapCri
instance value time value time value time

ami49 94.97 7.61 86.84 0.20 94.27 3.05
rp100 95.67 123.2 89.71 2.14 94.85 43.18
pcb146 95.57 457.3 87.67 8.32 93.64 39.39
rp200 95.73 1000.0† 90.87 19.51 95.57 808.2
pcb500 95.59 3600.0† 89.15 1190.0 95.55 3600.0†

ShiftAll ShiftMax ShiftCri
instance value time value time value time

ami49 93.25 11.03 84.89 0.22 91.81 1.65
rp100 93.65 178.5 86.60 2.17 92.57 25.65
pcb146 95.21 739.8 85.69 13.26 94.04 64.30
rp200 94.01 1000.0† 87.01 30.16 92.79 212.0
pcb500 93.70 3600.0† 86.92 1795.6 93.57 3600.0†

Swap∗ Union
instance value time value time

ami49 83.43 0.12 93.30 2.20
rp100 86.56 1.29 94.85 27.04
pcb146 88.03 5.24 94.10 38.18
rp200 87.88 11.72 95.76 410.0
pcb500 89.96 625.8 94.40 3600.0†

Table 4. Comparison of three metaheuristic algorithms

MLS ILS WALK
instance value time value time value time

ami49 96.39 1000.0 96.96 1000.0 92.96 1000.0
rp100 95.95 1000.0 96.46 1000.0 94.13 1000.0
pcb146 95.47 1000.0 96.33 1000.0 91.82 1000.0
rp200 95.87 1000.0 96.10 1000.0 95.16 1000.0
pcb500 94.16 3600.0 94.16 3600.0 91.43 3600.0

Table 5. Comparison with other methods for the rectangle pacing problem

SA-BSG SA-SP ILS
instance value time value time value time

ami49 97.10 69.0 96.29 176.0 96.30 100.0
rp100 97.08 68.2 88.54 248.7 95.76 200.0
pcb146 94.87 100.2 94.42 678.7 95.63 300.0
rp200 N.A. N.A. N.A. N.A. 95.67 400.0
pcb500 94.10 334.6 90.82 7802.9 92.27 1000.0
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Local search algorithms LS halt only when locally optimal solutions are obtained.
To save computation time, however, we stop the search and output the current solution
either when a locally optimal solution is obtained or when a prespecified computational
time is reached. The time limit is 1000 seconds for instances with up to 200 rectangles,
and is 3600 seconds for pcb500. Results are shown in Table 3 for five test instances. The
mark “†” indicates that LS is forced to stop by the time limit. We can observe from Table
3 that SwapAll is the best neighborhood with respect to the quality of solutions, but takes
much computational time. The solution quality of ShiftAll is also good, but is slightly
worse than SwapAll, and its computational time is longer than SwapAll. Swap∗ and two
restricted neighborhoods without using critical paths, SwapMax and ShiftMax, are very
fast, but their solution quality is all poor. On the other hand, these using critical paths,
SwapCri, ShiftCri and Union, show good performance with respect to both the quality
of solutions and computational time, indicating that the use of critical paths is essential
in reducing the neighborhood size effectively. Moreover, we can observe that Union is
more effective than ShiftCri and SwapCri, and we will use Union in the experiments of
Sections 5.4 and 5.5.

5.4. Metaheuristics

Next, we compared the three metaheuristic algorithms MLS, ILS and WALK described
in Section 4.4, on five test instances, ami49, rp100, pcb146, rp200 and pcb500. We ran
each algorithm until a prespecified computational time is reached. The time limit is 1000
seconds for instances with up to 200 rectangles, and is 3600 seconds for pcb500. Results
are shown in Table 4. We can observe that ILS found better solutions than other two
algorithms for many instances.

5.5. Comparison with other algorithms

Finally, we compared the performance of ILS with other existing heuristic algorithms, on
various instances of the rectangle packing problem and the scheduling problem explained
in Section 5.1. First, we compared our algorithm ILS with two heuristic algorithms for the
area minimizing problem: (1) A simulated annealing algorithm with the BSG (bounded
sliceline grid) coding scheme by Nakatake, Fujiyoshi, Murata and Kajitani (denoted
SA-BSG) [12] and (2) a simulated annealing algorithm with the sequence pair coding
scheme by Murata, Fujiyoshi, Nakatake and Kajitani (denoted SA-SP) [11]. We use five
test instances of the area minimizing problem, ami49, rp100, pcb146, rp200 and pcb500.
Note that algorithms (1) and (2) are specially tailored to the rectangle packing problem
of minimizing the area, and the results of them for rp200 are not available (denoted
N.A.). Results are shown in Table 5. From the table, we can observe that out algorithm
is superior to SA-SP, but SA-BSG seems to be the best among three algorithms with
respect to both the solution quality and the computational time. However, the difference
in the quality is not large. It is emphasized that our algorithm is designed to solve more
general problem, and can solve various types of packing and scheduling problems which
can not be handled by SA-SP and SA-BSG. Taking this generality into consideration,
the above results appear to be quite satisfactory.
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Table 6. Comparison with algorithm TS on the scheduling problem

TS ILS
instance ratio time ratio time

sp50-a 10/10 394.8 10/10 44.98
sp50-b 1/10 2730.6 10/10 125.0
sp78 10/10 427.2 10/10 405.6
sp100-a 10/10 1851.9 10/10 362.6
sp100-b 9/10 1230.1 10/10 47.03

Next, we compared the performance of our algorithm on instances of the scheduling
problem of large building blocks explained in Section 5.1, with a tabu search algorithm
developed for the resource constrained project scheduling problem by Nonobe and Iba-
raki (denoted TS) [13]. To solve the problem by TS, we reformulated the problem as a
project scheduling problem in the way as described in [6]. Note that TS is not designed
for solving the packing problem, but can handle more complicated scheduling problems
with precedence constraints and other resources (e.g., manpower, machines and equip-
ments) as well as work space. We stop the search either when an optimal solution (i.e.,
the objective value is 0) is obtained or when a prespecified computational time (we set
the time limit to 3600 seconds) is reached. If a search stops after finding an optimum
solution, it is called successful. We use the five instances described in Section 5.1, and
results are shown in Table 6. Column “ratio” shows the (# of successful trials)/(# of
trials). Column “time” shows the average computational time (in seconds) to find an
optimal solution in successful trials. From the table, we can observe that ILS is superior
to TS in both of the solution quality and the computational time for all instances. These
results also exhibit good prospects of our algorithm.

6. Conclusion

In this paper, we introduced the rectangle packing problem with spatial costs, which is
general in that it contains various types of packing problems and scheduling problems
as special cases. We adopted the sequence pair as the coding scheme, which is a pair of
permutations of the given n rectangles, and proposed decoding and encoding algorithms
between coded solutions and packings. The decoding algorithm is based on dynamic
programming and runs in O(τn log n + δ) time, where τ and δ are the space complex-
ity of the minimum penalty function and the spatial cost functions, respectively. This
algorithm generalizes the results of [15, 16] in that it can deal with more general spatial
costs, and runs in O(n log n) time, the same time complexity as those in [15, 16], if
applied to the case of area minimization (considered in [11, 12, 15, 16]).

These algorithms were then incorporated in the local search and metaheuristic algo-
rithms. We defined critical paths in a packing and proposed neighborhoods by making
use of such critical paths. We conducted computational experiments and the results
exhibited good prospects of the proposed algorithms.
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A. Transformation from packing to sequence pair

We propose an O(n log n) time algorithm to find a sequence pair σ = (σ+, σ−) that
satisfies π ∈ �σ,µ(π) for a given packing π and a mode vector µ(π). This problem is
independent of the spatial cost functions. For simplicity, we omit the superscript repre-
senting the mode, since the mode µi(π) of each rectangle i is fixed when we consider
this problem.

Based on a packing π , we define binary relations ≺+ and ≺− on I as follows:

(xi(π) < xj (π) + wj and yi(π) + hi > yj (π)) ⇐⇒ i ≺+ j,

(xi(π) < xj (π) + wj and yi(π) < yj (π) + hj ) ⇐⇒ i ≺− j.

Fig. 6 illustrates relationships ≺+ and ≺− between nonoverlapping rectangles i and j .
Relation i ≺+ j (resp., i ≺− j ) holds if and only if the upper left (resp., lower left)
corner of rectangle i lies in the shaded area. Then let σ = (σ+, σ−) be a sequence pair
that satisfies the following two conditions:

i ≺+ j �⇒ σ−1
+ (i) < σ−1

+ (j), (15)

i ≺− j �⇒ σ−1
− (i) < σ−1

− (j). (16)

Then we have the following lemma.

Lemma 1. A packing π satisfies π ∈ �σ,µ(π) for any sequence pair σ = (σ+, σ−)

satisfying conditions (15) and (16).

Proof. If nonoverlapping rectangles i and j ∈ π are comparable in both relations ≺+ and
≺−, we note that exactly one of the four conditions (3)–(6) holds for i and j . For example,
if i ≺+ j and i ≺− j hold, then the locations of i and j satisfy xi(π)+wi ≤ xj (π) (see

(a) i ≺+ j (b) i ≺− j

j

j

i

i

Fig. 6. Relationships between ≺+, ≺− and coordinates of rectangles
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j jj

i

i

i

(a) i ≺+ j and i ≺− j (b) i ≺+ j and j ≺− i (c) i ≺+ j

Fig. 7. Relationships between packing π and relations ≺+, ≺−

Fig. 7 (a)). In this case, σ = (σ+, σ−) satisfies σ−1
+ (i) < σ−1

+ (j) and σ−1
− (i) < σ−1

− (j)

by (15) and (16), and π satisfies the implied condition (7) (i.e., xi(π) + wi ≤ xj (π)).
The case with j ≺+ i and i ≺− j is similar (see Fig. 7 (b)), and π satisfies the implied
condition (8) (i.e., yi(π) + hi ≤ yj (π)). If rectangles i and j are comparable in exactly
one of relations ≺+ and ≺−, two of the four conditions (3)–(6) hold for i and j . For
example, if i and j satisfies i ≺+ j but are not comparable in ≺− (i.e., i 
≺− j and
j 
≺− j ), then both xi(π)+wi ≤ xj (π) and yj (π)+hj ≤ yi(π) hold (see Fig. 7 (c)). In
this case, σ = (σ+, σ−) satisfies σ−1

+ (i) < σ−1
+ (j) by (15) but no restriction is imposed

between σ−1
− (i) and σ−1

− (j). However, since π satisfies both the implied conditions (7)
and (8) (corresponding to σ−1

− (i) < σ−1
− (j) and σ−1

− (i) > σ−1
− (j), respectively), π does

not contradict with conditions (7) and (8). These arguments prove that of π ∈ �σ,µ(π)

holds. ��

We first explain a simple O(n2) time algorithm to compute a sequence pair σ =
(σ+, σ−) satisfying (15) and (16) for a given packing π , since the O(n log n) time algo-
rithm is based on it. We describe only the case of σ+ as the algorithm for σ− is similar.
We define sets ILA

i = {j | j ≺+ i} and IRB
i = {j | i ≺+ j} (LA (resp., RB) stands for

left above (resp., right bottom)). Then, it is obvious that j ∈ ILA
i ⇐⇒ i ∈ IRB

j and

ILA
i ∩ IRB

i = ∅. For any subset S ⊆ I , at least one rectangle i satisfies ILA
i ∩ S = ∅

(implying that no j ∈ S satisfies j ≺+ i). The O(n2) time algorithm to compute a
sequence σ+ is formally described as follows.

Algorithm Packing-to-Sequence-Pair-1 (P2SP-1)

Step 1 Compute ILA
i for all rectangles i ∈ I . Let S := I and l := 1.

Step 2 Choose a rectangle i such that S ∩ ILA
i = ∅. Let σ+(l) := i and S :=

S \ {i}.
Step 3 If S = ∅, then output σ+ and stop; otherwise let l := l + 1 and return to

Step 2.

The time required in Step 1 is O(n2). To find an i satisfying S ∩ ILA
i = ∅ in O(n) time

in Step 2, we keep the values of |S ∩ ILA
j | in memory for all j ∈ S. Such data can be

maintained if we decrease |S ∩ ILA
j | by one for each j ∈ S ∩ IRB

i after i is removed
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from S. The loop of Steps 2 and 3 is repeated n times; hence the total time complexity
is O(n2).

Now, we improve the above algorithm into an O(n log n) time algorithm. We use the
set IL

i ⊆ I for each i ∈ I defined in Section 3.4. We also define IR
i , IB

i and IA
i similarly,

where labels R, B and A stand for right, below and above, respectively. The sets IL
i , IR

i ,
IB
i and IA

i can be computed for all i ∈ I in O(n log n) time by using the well-known
plane sweep technique [4].

Though plane sweep is a standard technique, we explain its outline to show∑
i∈I (|IL

i | + |IR
i | + |IB

i | + |IA
i |) = O(n). To compute IL

i for all i, we consider a
sweep line parallel to the x-axis and move it from bottom to top. Let Q maintain the
set of rectangles located on the sweep line during the sweep process. A rectangle i is
inserted into (resp., deleted from) Q when the y-coordinate of the sweep line becomes
yi(π) (resp., yi(π)+hi), hence set Q changes 2n times. Note that, if yi(π) = yj (π)+hj

holds, we understand that j is deleted from Q before i is inserted into Q. IL
i is initially

set empty for all i ∈ I . When i is inserted into Q, we find the rectangle iL (resp., iR) in
Q immediately to the left (resp., right) of i on the sweep line, and let IL

i := IL
i ∪ {iL}

and IL
iR := IL

iR ∪{i}. When i is deleted from Q, we find the rectangle iL′
(resp., iR′

) in Q

immediately to the left (resp., right) of i just before i is deleted, and let IL
iR′ := IL

iR′ ∪{iL′ }.
(Some of iL, iR, iL′

and iR′
may not exist. In such cases, the corresponding operations

are omitted.) For each i, j such that j ∈ IL
i , rectangle j becomes immediately to the

left of rectangle i on the sweep line at least once. We set IL
i := IL

i ∪ j when j becomes
immediately to the left of i for the first time; hence we can find all rectangles j ∈ IL

i for
each i with this operation.

In the above process, note that
∑

i |IL
i | increases at most 2 whenever Q is changed,

and hence
∑

i |IL
i | = O(n). Thus the complexity to compute IL

i for all i is O(n log n),
since Q can be updated in O(log n) time when i is inserted and deleted, respectively,
if an appropriate data structure such as the balanced search tree is used to keep Q [4].
Similarly, each of

∑
i |IR

i |, ∑
i |IB

i | and
∑

i |IA
i | is O(n), and the time complexity of

computing IR
i , IB

i and IA
i for all i is O(n log n).

Let us consider relationship between ILA
i and IL

i , IA
i . Given a set S ⊆ I , our objec-

tive is to find a rectangle i satisfying ILA
i ∩ S = ∅. Let S0

L,A be the set of rectangles

i ∈ S such that (IL
i ∪IA

i )∩S = ∅ (for any subset S ⊆ I , at least one rectangle i satisfies
(IL

i ∪ IA
i ) ∩ S = ∅), and let z(i) = α · yi(π) − β · xi(π) for all i ∈ I (α and β are

nonnegative constants such that at least one of them is positive). Then, ILA
i ∩ S = ∅

holds if i ∈ S0
L,A and z(i) ≥ z(j) holds for all j ∈ S0

L,A. The algorithm to compute a
sequence σ+ in O(n log n) time is now described as follows.

Algorithm Packing-to-Sequence-Pair-2 (P2SP-2)

Step 1 Compute IL
i , IR

i , IB
i , IA

i and z(i) for all rectangles i ∈ I .
Step 2 Let S := I and l := 1. Compute S0

L,A.

Step 3 Choose a rectangle i ∈ S0
L,A with the largest z(i). Let σ+(l) := i and

S := S \ {i}. Update S0
L,A.
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Step 4 If S = ∅ holds, then output σ+ and stop; otherwise let l := l + 1 and
return to Step 3.

As mentioned above, Step 1 is possible in O(n log n) time by using the plane sweep
technique. In Step 3, we choose a rectangle i with the maximum z(i) among S0

L,A and

delete it from S and S0
L,A. This is possible in O(log n) time if we use the data structure

of heap to keep S0
L,A. We keep the values of |(IL

j ∪ IA
j )∩S| in memory for all rectangles

j and decrease |(IL
j ∪ IA

j ) ∩ S| by one for each j ∈ (IR
i ∪ IB

i ) ∩ S after i is removed

from S in Step 3. Since
∑

i∈I (|IR
i |+ |IB

i |) is O(n), this task of updating |(IL
j ∪ IA

j )∩S|
can be done in O(n) time in total. Each rectangle i is inserted into S0

L,A only once when

|(IL
i ∪IA

i )∩S| becomes 0; hence the number of insertions (and deletions) is O(n) and an
insertion to S0

L,A is also possible in O(log n) time. In summary, the total computational
time of this algorithm is O(n log n).

Finally, we compared two algorithms (1) P2SP-1 (an O(n2) time encoding algo-
rithm) and (2) P2SP-2 (an O(n log n) time encoding algorithm) by applying them to
various instances in Section 5.1. The detailed results are omitted, but we could observe
a significant speed up of P2SP-2 even for small instances such as ami49. Therefore we
exclusively used P2SP-2 in the experiments in Sections 5.3, 5.4 and 5.5.
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