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Abstract. In this paper we study robust convex quadratically constrained programs, a subset of the class
of robust convex programs introduced by Ben-Tal and Nemirovski [4]. In contrast to [4], where it is shown
that such robust problems can be formulated as semidefinite programs, our focus in this paper is to identify
uncertainty sets that allow this class of problems to be formulated as second-order cone programs (SOCP).
We propose three classes of uncertainty sets for which the robust problem can be reformulated as an explicit
SOCP and present examples where these classes of uncertainty sets are natural.

1. Problem formulation

A generic convex quadratically constrained program (QCP) is defined as follows.

minimize cT x
subject to xT Qix + 2qT

i x + γi ≤ 0, i = 1, . . . , p,
(1)

where the vector of decision variables x ∈ Rn, and the parameters c ∈ Rn, γi ∈ R,
qi ∈ Rn and Qi ∈ Rn×n, Qi � 0 (i.e. Qi is positive semidefinite), for all i = 1, . . . , p.
Note that there is no loss of generality in assuming that the objective is linear. Since
each Qi � 0, i = 1, . . . , p, it is easily verified that the convex QCP (1) is equivalent to
the following second-order cone program (SOCP):

minimize cT x

subject to

∥
∥
∥
∥

[

2Vix
(1 + γi + 2qT

i x)

]∥
∥
∥
∥

≤ 1 − γi − 2qT
i x, i = 1, . . . , p,

(2)

where Qi = VT
i Vi , for some Vi ∈ Rmi×n, i = 1, . . . , p, and ‖v‖ denotes the Ln norm

of a vector v. For a discussion of SOCPs and their applications see [2, 17, 21].
Formulations (1) and (2) implicitly assume that the parameters defining the problem

– {(Qi , qi , γi), i = 1, . . . , p} – are known exactly. However, in practice these parame-
ters are estimated from data, and are, therefore, subject to measurement and statistical
errors [13]. Since the solutions to optimization problems are typically sensitive to param-
eter perturbations, errors in the input parameters tend to get amplified in the decision
vector, often resulting in far from optimal solutions [3, 10].
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The problem of choosing an optimal decision vector in the presence of parameter
perturbations was formalized by Ben-Tal and Nemirovski [4, 5] as the following robust
optimization problem:

minimize cT x
subject to F(x, ξ) ∈ K ⊂ Rm, ∀ξ ∈ U,

(3)

where ξ are the uncertain parameters, U is the uncertainty set, x ∈ Rn is the decision
vector, K is a convex cone and, for fixed ξ ∈ U , the function F(x, ξ) is K-concave [4,
6]. Ben-Tal and Nemirovski established that, for certain classes of uncertainty sets U ,
robust counterparts of linear programs, quadratic programs, QCPs, and semidefinite pro-
grams (SDPs) are themselves tractable optimization problems. Robustness as applied
to least squares problems and SDPs was independently studied by El Ghaoui and his
collaborators [11, 12].

In keeping with the above formulation, a generic robust convex QCP is given by

minimize cT x
subject to xT Qix + 2qT

i x + γi ≤ 0, for all (Qi , qi , γi) ∈ Si , i = 1, . . . , p.
(4)

Ben-Tal and Nemirovski [4] showed that a version of (4) in which the uncertainty struc-
tures Si are generalized ellipsoids can be reduced to an SDP [1, 21, 25]. In this paper we
explore uncertainty structures for which (4) can be reformulated as an SOCP. We note
that both the worst case and practical computational effort required to solve an SOCP
is at least an order of magnitude less than that needed to solve an SDP of comparable
size [2].

In Section 2 we describe three classes of uncertainty sets for which (4) can be reduced
to an explicit SOCP. In Section 3 we present several applications where the natural uncer-
tainty structures are combinations of those presented in Section 2. Section 4 contains
some concluding remarks.

2. Uncertainty structures

In this section we introduce three classes of uncertainty sets for which the robust convex
QCP (4) can be reformulated as an SOCP.

2.1. Discrete and polytopic uncertainty sets

The simplest type of uncertainty sets is a discrete set defined as follows:

Sa = {

(Q, q, γ ) : (Q, q, γ ) = (Qj , qj , γj ), Qj � 0, j = 1, . . . , k
}

. (5)

The robust constraint xT Qx + 2qT x + γ ≤ 0 for all (Q, q, γ ) ∈ Sa is equivalent to the
k convex quadratic constraints

xT Qj x + 2qT
j x + γj ≤ 0, ∀j = 1, . . . , k, (6)

or equivalently, k second-order cone (SOC) constraints.
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The discrete uncertainty set (5) typically arises when one wants to be robust against
several scenarios – each (Qj , qj , γj ) corresponds to a particular scenario (e.g., see [16]).
The convex hull of the discrete uncertainty set Sa is the uncertainty set:

Sa′ =
{

(Q, q, γ ) : (Q, q, γ ) =
k

∑

j=1

λj (Qj , qj , γj ), Qj � 0, λj ≥ 0, ∀j,

k
∑

j=1

λj = 1
}

.

(7)

The robust constraint xT Qx + 2qT x + γ ≤ 0, for all (Q, q, γ ) ∈ Sa′ is equivalent to
∑k

j=1 λj (xT Qj x +2qT
j x +γj ) ≤ 0, for all λj ≥ 0,

∑k
j=1 λj = 1. Since this is, in turn,

equivalent to the set of constraints (6), it follows that a robust quadratic constraint with
respect Sa′ reduces to k SOC constraints.

The uncertainty sets (5) and (7) can be further extended to the following polytopic
uncertainty set:

Sb =
{

(Q, q, γ ) :
(Q, q, γ ) = ∑k

j=1 λj (Qj , qj , γj ), Qj � 0, j = 1, . . . , k,

Aλ = b, λ ≥ 0.

}

,

(8)

where {λ ∈ Rk : Aλ = b, λ ≥ 0} 	= ∅.

Lemma 1. The decision vector x ∈ Rn satisfies the robust constraint xT Qx + 2qT x +
γ ≤ 0 for all (Q, q, γ ) ∈ Sb, where Sb is defined in (8), if and only if there exist µ ∈ Rk

satisfying

bT µ ≤ 0,
∥
∥
∥
∥

[
2Vj x

1 + γj + 2qT
j x − AT

j µ

]∥
∥
∥
∥

≤ 1 − γj − 2qT
j x + AT

j µ, j = 1, . . . , k,
(9)

where Aj is the j -th column of A and Qj = VT
j Vj , j = 1, . . . , k.

Proof. Fix x and define cj = xT Qj x + 2qT
j x + γj , j = 1, . . . , k. Then the constraint

xT Qx + 2qT x + γ ≤ 0, for all (Q, q, γ ) ∈ Sb is equivalent to

cT λ ≤ 0, ∀λ ≥ 0 such that Aλ = b. (10)

By linear programming duality (10) is equivalent to

∃ µ such that AT µ ≥ c, bT µ ≤ 0. (11)

The result now follows by expressing (11) as a collection of SOC constraints, using the
fact (see Section 6.2.3) in [21]) that for z ∈ Rn, x ∈ R, and y ∈ R, x, y ≥ 0,

zT z ≤ xy ⇔
∥
∥
∥
∥

[

2z
x − y

]∥
∥
∥
∥

≤ x + y.

�
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2.2. Norm-constrained uncertainty sets

Next, we describe two closely related norm-constrained uncertainty sets that are re-
stricted versions of the generalized ellipsoidal uncertainty sets introduced in [4]. In the
first uncertainty set Sc, all of the parameters (Q, q, γ ) are determined by the same set
of perturbation parameters u, i.e.

Sc =
{

(Q, q, γ ) :
(Q, q, γ ) = (Q0, q0, γ0) + ∑k

j=1 uj (Qj , qj , γj ),

Qj � 0, j = 0, . . . , k, u ≥ 0, ‖u‖p ≤ 1

}

, (12)

where ‖u‖p is the Lp norm for some rational p ≥ 1. Note that for all rational p ≥ 1 the
constraint ‖u‖p ≤ t can be reformulated as a collection of SOC constraints [2, 6].

Remark 1. The robust problem (4) with respect to Sc is NP-hard if the sign constraint
on u is relaxed or if any of the Qj ’s are indefinite [4].

Lemma 2. The decision vector x ∈ Rn satisfies the robust constraint xT Qx + 2qT x +
γ ≤ 0 for all (Q, q, γ ) ∈ Sc, where Sc is defined in (12), if and only if there exist f ∈ Rk+
and ν ≥ 0 satisfying

∥
∥
∥
∥

[
2Vj x

1 − fj + γj + 2qT
j x

]∥
∥
∥
∥

≤ 1 + fj − γj − 2qT
j x, j = 1, . . . , k,

∥
∥
∥
∥

[

2V0x
1 − ν

]∥
∥
∥
∥

≤ 1 + ν,

‖f‖q ≤ −ν − 2qT
0 x − γ0,

(13)

where 1
p

+ 1
q

= 1, and Qj = VT
j Vj , j = 0, . . . , k.

Proof. The constraint xT Qx + 2qT x + γ ≤ 0 for all (Q, q, γ ) ∈ Sc is equivalent to

xT Q0x + 2qT
0 x + γ0 + max

{u:u≥0,‖u‖p≤1}

{ k
∑

j=1

uj (xT Qj x + 2qT
j x + γj )

}

≤ 0. (14)

Define yj = xT Qj x + 2qT
j x + γj and zj = max{yj , 0}, j = 1, . . . , k.

Suppose p > 1. Then the optimal solution u∗ of the convex program
max{u:u≥0,‖u‖p≤1}

{

uT y
}

is

u∗
j =







(zj )
1

p−1

(‖z‖q )
1

p−1
, z 	= 0,

0, otherwise,

for j = 1, . . . , k. Thus, (14) is equivalent to

xT Q0x + 2qT
0 x + γ0 + ‖z‖q ≤ 0. (15)

For p = 1, the optimal value of the convex program max{u:u≥0,‖u‖1≤1}
{

uT y
}

is
max1≤j≤k{zj }. Thus, (14) is once again equivalent to

xT Q0x + 2qT
0 x + γ0 + ‖z‖q ≤ 0. (16)
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Moreover, since z ≥ 0 implies ‖f‖q ≥ ‖z‖q for all fj ≥ zj (i.e. fj ≥ 0 and
fj ≥ yj ), j = 1, . . . , k, (14) holds if and only if there exists f ≥ 0 and f ≥ y such that

xT Q0x + 2qT
0 x + γ0 + ‖f‖q ≤ 0. (17)

The result follows by expressing (17) and fj ≥ yj , j = 1, . . . , k, as SOC constraints.
�

In Sc the perturbations in the quadratic term Q and the affine term (q, γ ) are deter-
mined by the same parameter u. However, in many applications the uncertainty in the
quadratic and affine terms are independent [13]. We model this by the following uncer-
tainty structure,

Sd =
{

(Q, q, γ ) :
Q = Q0 + ∑k

j=1 uj Qj , Qj � 0, j = 0, . . . , k, ‖u‖p ≤ 1,

(q, γ ) = (q0, γ0) + ∑k
j=1 vj (qj , γj ), ‖v‖r ≤ 1

}

,

(18)

where p, r ≥ 1 and rational.

Remark 2. Although u is unrestricted in sign, the constraints Qj � 0 ensure that the
worst case perturbation u∗ ≥ 0. As in Remark 1, indefinite Qj result in an NP-hard
optimization problem [4].

Lemma 3. The decision vector x ∈ Rn satisfies the robust constraint xT Qx + 2qT x +
γ ≤ 0 for all (Q, q, γ ) ∈ Sd , where Sd is defined in (18), if and only if there exist
f, g ∈ Rk and ν ≥ 0 such that

gj = 2qT
j x + γj , j = 1, . . . , k,

∥
∥
∥
∥

[

2Vj x
1 − fj

]∥
∥
∥
∥

≤ 1 + fj , j = 1, . . . , k,

∥
∥
∥
∥

[

2V0x
1 − ν

]∥
∥
∥
∥

≤ 1 + ν,

‖f‖q + ‖g‖s ≤ −ν − 2qT
0 x − γ0,

(19)

where 1
p

+ 1
q

= 1, 1
r

+ 1
s

= 1, and Qj = VT
j Vj , j = 0, . . . , k. Qj = VT

j Vj ,
j = 0, . . . , k.

Proof. The constraint xT Qx + 2qT x + γ ≤ 0 for all (Q, q, γ ) ∈ Sd is equivalent to

xT Q0x + 2qT
0 x + γ0 + max

{u:‖u‖p≤1}

{ k
∑

j=1

uj (xT Qj x)
}

+ max
{v:‖v‖r≤1}

{ k
∑

j=1

vj (2qT
j x + γj )

}

≤ 0. (20)

The Cauchy-Schwartz inequality implies that

max
{u:‖u‖p≤1}

{ k
∑

j=1

uj (xT Qj x)
}

= ‖f‖q, (21)
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where

fj = xT Qj x, j = 1, . . . , k, (22)

and

max
{v:‖v‖r≤1}

{ k
∑

j=1

vj (2qT
j x + γj )

}

= ‖g‖s ,

where gj = 2qT
j x + γj , j = 1, . . . , k. Thus, (20) is equivalent to

xT Q0x + 2qT
0 x + γ0 + ‖f‖q + ‖g‖s ≤ 0. (23)

Since Qj � 0, j = 1, . . . , k, it is easy to verify that the constraints (22) can be relaxed
to

fj ≥ xT Qj x, j = 1, . . . , k, (24)

without affecting the conclusion (23). The result follows from rewriting (23) and (24)
as a collection of linear and SOC constraints. �

2.3. Factorized uncertainty sets

The next class of uncertainty sets is defined as follows.

Se =







(Q, q, γ0) :

Q=VT FV, F ∈ Rm×m, V ∈ Rm×n,

F=F0 + ∆ � 0,∆=∆T , ‖N− 1
2 ∆N− 1

2 ‖ ≤ η, F0 �0, N�0,

V=V0 + W, ‖Wi‖g =
√

WT
i GWi ≤ ρi, ∀i, G � 0,

q=q0 + ζ ∈ Rn, ‖ζ‖s =
√

ζ T Sζ ≤ δ, S � 0.







,

(25)

where Wi , i = 1, . . . , n, is the i-th column of the matrix W and the norm ‖A‖ of a sym-
metric matrix A ∈ Rm×m is either given by the L2-norm, i.e. ‖A‖=max1≤i≤m

{|λi(A)|},

or the Frobenius norm, i.e. ‖A‖ =
√

∑m
i=1 λ2

i (A), where
{

λi(A), i = 1, . . . , m
}

are
the eigenvalues of A. The uncertainty structure Se in (25) is quite general and includes
as special cases: (i) fixed F (e.g., F = I, i.e. Q = VT V) and (ii) fixed V, i.e. only F is
uncertain.

This class of uncertainty sets captures the structure of the confidence regions around
the maximum likelihood estimates of the parameters. See [13] for a detailed discussion
of the structure of this uncertainty set and its parametrization.
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Lemma 4. The decision vector x ∈ Rn satisfies the robust convex quadratic constraint
xT Qx + 2qT x + γ ≤ 0 for all (Q, q, γ ) ∈ Se, where Se is defined in (25), if and only
if there exist τ, ν, σ, r ∈ R, u ∈ Rn, w ∈ Rm and t ∈ Rm+ such that

τ ≥ 0,

ν ≥ τ + 1T t
σ ≤ 1

λmax(H)
,

r ≥ ∑n
i=1 ρiui,

uj ≥ xj , j = 1, . . . , n,

uj ≥ −xj , j = 1, . . . , n,
∥
∥
∥
∥

[

2r

σ − τ

]∥
∥
∥
∥

≤ σ + τ,
∥
∥
∥
∥

[

2wi

(λi − σ − ti )

]∥
∥
∥
∥

≤ (λi − σ + τi), i = 1, . . . , m,

2δ
∥
∥S− 1

2 x
∥
∥ ≤ −ν − 2qT

0 x − γ0,

where H = G− 1
2 (F0 + ηN)G− 1

2 , H = QT ΛQ is the spectral decomposition of H,

Λ = diag(λ), λmax(H) = max1≤i≤m{λi}, and w = QT H
1
2 G

1
2 V0x.

Proof. First fix W, or equivalently fix V. Thus, only ∆ and ζ are variable. Define

∆̃ = N− 1
2 ∆N− 1

2 , y = VT x and
S1 = {

F : F = F0 + ∆ � 0,∆ = ∆T , ‖N− 1
2 ∆N− 1

2 ‖ ≤ η
}

. Then

max
{

xT VT FVx : F ∈ S1
}

= max
{

yT (F0 + ∆)y : ∆ = ∆T , ‖N− 1
2 ∆N− 1

2 ‖ ≤ η, F0 + ∆ � 0
}

= max
{

yT F0y + (N
1
2 y)T ∆̃(N

1
2 y) : ‖∆̃‖ ≤ η, F0 + N

1
2 ∆̃N

1
2 � 0

}

,

≤ max
{

yT F0y + (N
1
2 y)T ∆̃(N

1
2 y) : ‖∆̃‖ ≤ η

}

, (26)

≤ yT F0y + η(N
1
2 y)T (N

1
2 y), (27)

where (26) follows from relaxing the constraint F0 + N
1
2 ∆̃N

1
2 � 0 and (27) follows

from the properties of the matrix norm.

Since ‖∆̃‖ = max1≤i≤m

{|λi(∆̃)|} or
√

∑m
i=1 λ2

i (∆̃) and N � 0, the bound (27) is
achieved by

∆̃
∗ = η

(N
1
2 y)(N

1
2 y)T

‖N
1
2 y‖2

,

unless y = 0. Thus, the right hand side of (26) is given by yT (F0 +ηN)y and is achieved

by ∆̃
∗ = η

NyyT N
yT Ny

, unless y = 0. Since F0 +N
1
2 ∆̃

∗
N

1
2 � 0, it follows that the inequality

(26) is, in fact, an equality, i.e.

max
F∈S1

{

yT Fy
} = yT (F0 + ηN)y.
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Therefore, using the fact that ζ T x ≤ ζ T S
1
2 S− 1

2 x ≤ ‖S
1
2 ζ‖‖S− 1

2 x‖ ≤ δ‖S− 1
2 x‖,

max
{(Q,q,γ )∈Se}

{

xT Qx + 2qT x + γ
}

= γ0 + 2qT
0 x + 2δ‖S− 1

2 x‖ + max
V∈Sv

{

xT VT (F0 + ηN)Vx
}

, (28)

where Sv = {V : V = V0 + W, ‖Wi‖g ≤ ρi, i = 1, . . . , n}. From the definition of Sv ,
it follows that

max
{V∈Sv}

{

xT VT (F0 + ηN)Vx
}

= max{

W:‖Wi‖g≤ρi ,i=1,... ,n
}

{

(V0x + Wx)T (F0 + ηN)(V0x + Wx)
}

. (29)

Since ‖Wi‖g ≤ ρi , i = 1, . . . , n, implies the bound,

‖Wx‖g =
∥
∥
∥

n
∑

i=1

xiWi

∥
∥
∥

g
≤

n
∑

i=1

|xi | ‖Wi‖g ≤
n

∑

i=1

ρi |xi | , (30)

the optimization problem,

maximize (V0x + v)T (F0 + ηN)(V0x + v)

subject to ‖v‖g ≤ ∑n
i=1 ρi |xi | , (31)

is a relaxation of (29). The objective function in (31) is convex in v; therefore, the opti-
mal solution v∗ lies on the boundary of the feasible set, i.e. ‖v∗‖g = ρT |x|, where
ρ = (ρ1, . . . , ρn)

T .
For i = 1, . . . , n, define

Wi =
{

ρi
|xi |
xi

v∗
‖v∗‖g

, xi 	= 0,

ρi
v∗

‖v∗‖g
, otherwise

(32)

Clearly, the collection {Wi : i = 1, . . . , n} is feasible for (29). Moreover,

Wx =
n

∑

i=1

xiWi = (

ρT |x| ) v∗

‖v∗‖g

= v∗,

i.e. the objective in (29) evaluated at W defined in (32) is equal to the objective in (31)
evaluated at v∗. Thus, (29) and (31) are, in fact, equivalent.

Thus, xT VT (F0 + ηN)Vx ≤ ν for all V ∈ Sv if and only if
(

V0x + (ρT |x|)v)T (

F0 + ηN
)(

V0x + (ρT |x|)v) ≤ ν (33)

for all ‖v‖g ≤ 1, i.e. 1 − vT Gv ≥ 0. Define y0 = V0x. Then it is easy to estab-
lish (see [13]) that (33) holds for all v with ‖v‖g ≤ 1 if, and only if, there exists
r ≥ ρT |x| such that

ν − yT
0 (F0 + ηN)y0 − 2ryT

0 (F0 + ηN)v − r2vT (F0 + ηN)v ≥ 0, (34)

for all v satisfying 1 − vT Gv ≥ 0. Before proceeding further, we need the following:
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Lemma 5 (S-procedure). Let Fi(x) = xT Aix + 2bT
i x + ci , i = 0, . . . , p be quadratic

functions of x ∈ Rn. Then F0(x) ≥ 0 for all x such that Fi(x) ≥ 0, i = 1, . . . , p, if
there exist τi ≥ 0 such that

[

c0 bT
0

b0 A0

]

−
p

∑

i=1

τi

[

ci bT
i

bi Ai

]

� 0.

Moreover, if p = 1 then the converse holds if there exists x0 such that F1(x0) > 0.

For a discussion of the S-procedure and its applications, see [7].
Since v = 0 is strictly feasible for 1 − vT Gv ≥ 0, the S-procedure implies that (34)

holds for all 1 − vT Gv ≥ 0 if and only if there exists a τ ≥ 0 such that

M =
[

ν − τ − yT
0 (F0 + ηN)y0 −ryT

0 (F0 + ηN)

−r(F0 + ηN)y0 τG − r2(F0 + ηN)

]

� 0. (35)

Let the spectral decomposition of H = G− 1
2 (F0 + ηN)G− 1

2 be QΛQT , where

Λ = diag(λ), and define w = QT H
1
2 G

1
2 y0 = Λ

1
2 QT G

1
2 y0. Observing that yT

0 (F0 +
ηN)y0 = wT w, we have that the matrix M � 0 if and only if

M̄ =
[

1 0T

0 QT G− 1
2

]

M

[

1 0T

0 G− 1
2 Q

]

=
[

ν − τ − wT w −rwT Λ
1
2

−rΛ
1
2 w τ I − r2Λ

]

� 0.

The matrix M̄ � 0 if and only if τ ≥ r2λi , for all i = 1, . . . , m (i.e. τ ≥ r2λmax(H)),
wi = 0 for all i such that τ = r2λi , and the Schur complement of the nonzero rows and
columns of τ I − r2Λ

ν − τ − wT w − r2




∑

i:τ 	=r2λi

λiw
2
i

τ − r2λi



 = ν − τ −
∑

i:σλi 	=1

w2
i

1 − σλi

≥ 0,

where σ = r2

τ
. It follows that (33) holds for all vT Gv ≤ 1 if and only if there exists

τ, σ ≥ 0 and t ∈ Rm+ satisfying,

ν ≥ τ + 1T t,
r2 = στ,

w2
i = (1 − σλi)ti , i = 1, . . . , m,

σ ≤ 1
λmax(H)

.

(36)

It is easy to establish that there exist τ, σ ≥ 0, and t ∈ Rm+ that satisfy (36) if and only
if there exist τ, σ ≥ 0, and t ∈ Rm+ that satisfy (36) with the equalities replaced by
inequalities.

Note that the constraint r2 ≤ στ and τ ≥ 0 imply that σ ≥ 0. Therefore, replacing
the equalities in (36) by inequalities and reformulating them as SOC constraints, we
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have xT VT (F0 +ηN)Vx ≤ ν for all V ∈ Sv if and only if the following system of linear
and second-order cone constraints holds,

τ ≥ 0,

ν ≥ τ + 1T t
σ ≤ 1

λmax(H)
,

r ≥ ∑n
i=1 ρi |xi | ,∥

∥
∥
∥

[

2r

σ − τ

]∥
∥
∥
∥

≤ σ + τ,

∥
∥
∥
∥

[

2wi

(1 − σλi − ti )

]∥
∥
∥
∥

≤ (1 − σλi + ti ), i = 1, . . . , m.

(37)

The constraint r ≥ ∑n
i=1 ρi |xi | is not linear but it can be linearized by introducing a

new variable u such that u ≥ |x|, i.e. uj ≥ xj and uj ≥ −xj , i = j, . . . , n. The result
now follows by replacing max{V∈Sv}

{

xT VT (F0 + ηN)Vx
}

in (28) by the bound ν. �
There are several closely related versions of the factorized uncertainty set Se that also

result in robust problems that can be reduced to SOCPs. These include the special case
where the matrix F is known, i.e. η = 0; and the variant of Se where F−1 = F−1

0 +∆ � 0,

with ‖F
1
2
0 ∆F

1
2
0 ‖ ≤ η, η < 1. For details of these alternative formulations and their rela-

tion to probabilistic guarantees on the performance of the optimal solution see [13].

3. Applications

In this section we present several applications of robust convex QCPs. We show that
the uncertainty in these applications can be adequately modeled by the uncertainty sets
introduced in Section 2.

3.1. Robust mean-variance portfolio selection

Suppose the returns on n assets in a discrete time market are given by the random return
vector

r = µ + VT f + ε,

where µ ∈ Rn is the mean return vector, f ∼ N (0, F) ∈ Rm is the vector of returns on
the factors that drive the market, V ∈ Rm×n is the factor loading matrix and ε ∼ N (0, D)

is the residual returns vector. Here x ∼ N (µ,Σ) denotes that x is a multivariate Normal
random variable with mean vector µ and covariance matrix Σ. In addition, we assume
that the vector of residual returns ε is independent of the vector of factor returns f , the
covariance matrix F � 0 and the covariance matrix D = diag(d) � 0, i.e. di ≥ 0,
i = 1, . . . , n. Thus, the vector of asset returns r ∼ N (µ, VT FV + D).

An investor’s position in this market is described by a portfolio vector φ ∈ Rn, where
φj denotes the fraction of the capital invested in asset j , j = 1, . . . , n. The random
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return rφ on a portfolio φ is given by rφ = rT φ. The objective is to choose a portfo-
lio that maximizes some measure of “return” on the investment subject to appropriate
constraints on the associated “risk”.

Markowitz [19, 20] proposed a model for portfolio selection in which the “return” is
the expected value E[rφ] of the portfolio return, the “risk” is the variance Var

[

rφ

]

of the
return, and the optimal portfolio φ∗ is one that has the minimum variance amongst those
that have a return of at least α, i.e. φ∗ is the optimal solution of the convex quadratic
optimization problem

minimize Var
[

rφ

]

subject to E[rφ] ≥ α,

1T φ = 1.

(38)

The optimization problem (38) is called the minimum variance portfolio selection prob-
lem. Note that the Markowitz model implicitly assumes that the mean return vector E[r]
and the covariance matrix Var

[

r
]

are known with certainty. Other variants include the
maximum return problem and the maximum Sharpe ratio problem.

This mean-variance model has had a profound impact on the economic modeling
of financial markets and the pricing of assets, earning Markowitz and Sharpe the 1990
Nobel Prize in Economics for their work. In spite of this, practitioners have shied away
from this model, the primary reason being that the optimal portfolio φ∗ is extremely
sensitive to the market parameters (E[r], Var

[

r
]

). Since these parameters are estimated
from noisy data, φ∗ often amplifies noise.

One approach to mitigate the sensitivity of φ∗ to the errors and uncertainty in the
problem data is to consider a robust version of (38). To this end, we define the uncer-
tainty structures as follows. The covariance matrix F of the factor returns f is assumed
to belong to

Sf =
{

F : F−1 = F−1
0 + ∆ � 0,∆ = ∆T , ‖F

1
2
0 ∆F

1
2
0 ‖ ≤ η

}

; (39)

the uncertainty set Sd for the matrix D is given by

Sd =
{

D : D = diag(d), di ∈ [di, d̄i], i = 1, . . . , n
}

; (40)

the factor loading matrix V belongs to the elliptical uncertainty set Sv given by

Sv = {

V : V = V0 + W, ‖Wi‖g ≤ ρi, i = 1, . . . , n
}

, (41)

where Wi is the i-th column of W and ‖w‖g =
√

wT Gw; and the mean returns vector
µ lies in

Sm = {

µ : µ = µ0 + ξ , |ξi | ≤ γi, i = 1, . . . , n
}

. (42)

The uncertainty sets (Sf , Sv, Sd, Sm) capture the structure of the confidence region
around the minimum mean square estimates of (µ, V, F). The justification for this choice
of uncertainty structures and suitable choices for G, ρi , γi , d̄i , di , i = 1, . . . , n, and η

are discussed in [13].
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The robust analog of (38) is given by

minimize max{V∈Sv,D∈Sd ,F∈Sf } Var
[

rφ

]

subject to min{µ∈Sm} E[rφ] ≥ α,

1T φ = 1.

(43)

We expect that the sensitivity of the optimal solution of this mathematical program to
parameter fluctuations will be significantly smaller than it would be for the non-robust
problem (38).

Since the return rφ ∼ N (µT φ, φT (VT FV + D)φ), we can write (43) as

minimize max{V∈Sv,F∈Sf }
{

φT VT FVφ
} + max{D∈Sd }

{

φT Dφ
}

subject to min{µ∈Sm} µT φ ≥ α,

1T φ = 1,

(44)

which in turn is equivalent to the following robust QCP,

minimize λ + δ,

subject to φT VT FVφ ≤ λ, ∀V ∈ Sv, F ∈ Sf

φT Dφ ≤ δ, ∀D ∈ Sd,

µT φ ≥ α, ∀µ ∈ Sm,

1T φ = 1.

(45)

Since the uncertainty sets Sm ×Sv ×Sf and Sd are special cases of the factorized uncer-
tainty structure proposed in (25), (45) can be reduced to an SOCP. For details on robust
portfolio selection problems and the performance on real market data see [13].

3.2. Robust hyperplane separation

Let L = {

(xi , yi), i = 1, . . . , l
}

, yi ∈ {+1, −1}, xi ∈ Rd , ∀i, be a labeled set of train-
ing data. The objective in the hyperplane separation problem is to choose a hyperplane
(w, b), b ∈ R, w ∈ Rd , that maximally separates the “negative” xi , i.e. xi with yi = −1,
from the “positive” xi , i.e. xi with yi = +1. Given such a separating hyperplane (w, b), a
new sample x is classified as “positive” provided wT x +b ≥ 0, otherwise it is classified
as “negative”.

In a typical application of linear discrimination, the hyperplane (w, b) is chosen by
solving the quadratic program [8, 18, 27]:

minimize 1
2 ‖w‖2 + C1T ξ ,

subject to yi(wT xi + b) ≥ 1 − ξi, i = 1, . . . , l,

ξ ≥ 0,

(46)

where C is the penalty for misclassification; or equivalently, the dual program,

maximize 1T α − 1
2

∥
∥
∑l

i=1 αiyixi

∥
∥2

,

subject to yT α = 0,

0 ≤ α ≤ C1.

(47)
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The optimal vector w∗ = ∑l
i=1 α∗

i xi , where α∗ is the optimal solution of (47). The
optimal intercept b∗ is set by the complementary slack conditions (for a detailed discus-
sion see [8]). The complexity of classifying a new point x is given by n |α∗|, where |α∗|
denotes the number of nonzero terms in the vector α∗. Thus, one would like the optimal
α∗ to be sparse.

In several applications of linear discrimination, the training data xi is corrupted by
measurement noise. A simple additive model for the measurement error is given by

x̄i = xi + ui , i = 1, . . . , l,

where x̄i is the true value of the training data and ui , with ‖ui‖ ≤ ρi , is the measurement
noise. If we assume that for the i-th data point all points in the ball Bi = {z : ‖z − xi‖ ≤
ρi} are equally likely, we can increase the “margin of the classifier” (see [8]) by replacing
the dual objective function f (α) in (47) by

f (α) = max‖ui‖≤ρi

{

1T α − 1
2αT (V0 + U)T (V0 + U)α

}

,

= 1T α − 1
2 min‖ui‖≤ρi

{

αT (V0 + U)T (V0 + U)α
}

,

where V0 = [y1x1, y2x2, . . . , ylxl] and U = [u1, u2, . . . , ul]. The optimal α∗ is now
given by the solution of the robust QCP,

maximize τ,

subject to 1T α − 1
2αT Qα ≥ τ, ∀Q ∈ S,

yT α = 0,

0 ≤ α ≤ C1,

(48)

where the uncertainty set

S =
{

Q : Q = VT V, V = V0 + U, ‖Ui‖ ≤ ρ, V0 = [x1, . . . , xl] diag(y)
}

(49)

belongs to class of factorized uncertainty structures defined in (25). Thus, (48) can be
reformulated as an SOCP. This technique can be extended to general support vector
machines [27] as well.

In the above discussion we assumed that there is a confidence ball around each sam-
ple and one is indifferent to shifts within this ball. Next, we exploited this property to
choose a hyperplane that maximally separates the points in the most optimistic scenario.

Suppose on the other hand one is interested in choosing a hyperplane that minimizes
the misclassification in the worst case, i.e. one that minimizes the maximum misclassi-
fication when the samples are allowed to move within their corresponding confidence
balls. In this case, the primal problem is given by the following robust optimization
problem

minimize 1
2 ‖w‖2 + C1T ξ ,

subject to yi(wT (xi + ρiui ) + b) ≥ 1 − ξi, ‖ui‖ ≤ 1, i = 1, . . . , l,

ξi ≥ 0, i = 1, . . . , l,

or equivalently
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minimize 1
2 t2 + C1T ξ ,

subject to yi(wT xi + b) − ρit ≥ 1 − ξi, i = 1, . . . , l,

ξ ≥ 0,

‖w‖ ≤ t.

(50)

Problem (50) can be reformulated as an SOCP by introducing new scalar variables u and
v, replacing t2 in the objective by u − v and requiring that u and v satisfy the linear and
SOC constraints u + v = 1 and

√
t2 + v2 ≤ u, since the latter imply that t2 ≤ u − v.

The dual of the reformulated problem is the SOCP:

maximize β + 1T α,

subject to γ ≤ ρT α − ‖∑l
i=1 αiyixi‖,

β + zu = 1
2 ,

β + zv = − 1
2 ,

yT α = 0,

0 ≤ α ≤ C1,
√

γ 2 + z2
v ≤ zu,

(51)

where ρ = (ρ1, . . . , ρl)
T . It is easy to see from the above that zu − zv = 1 and

β = − 1
2 (zu + zv) = 1

2 (z2
u − z2

v). Since at an optimal solution of the primal SOCP
t2 = u − v = u2 − v2, it follows from complementary slackness for SOCPs that
γ 2 = z2

u − z2
v . Hence, we can replace β in the objective of (51) by γ 2 to obtain the

equivalent problem:

maximize 1T α − 1
2γ 2,

subject to γ ≤ αT ρ − ‖∑l
i=1 αiyixi‖,

yT α = 0,

0 ≤ α ≤ C1,

(52)

The similarity of (52) and (47) is apparent – all that the uncertainty does is to reduce the
norm in the objective. This analysis can be extended to general support vector machines
by replacing ‖∑l

i=1 α0
i yixi‖ with

√
αT Kα, where K is the kernel matrix.

Note that in the worst case analysis discussed above we reformulated a robust qua-
dratic program as an SOCP without using any of the general results developed in Sec-
tion 2.

3.3. Linear least squares problem with deterministic and stochastic uncertainty

Consider the following linear least squares problem,

min
x∈Rn

‖Ax − b‖2 , (53)

where A = [aT
1 , . . . , aT

m]T ∈ Rm×n and b ∈ Rm. If m ≥ n and the matrix A has full col-
umn rank, the solution of this optimization problem is given by x∗ = (

AT A)−1AT b [14].
Even when additional linear and convex quadratic constraints are imposed on the solu-
tion x, such as ‖x‖2 ≤ M , the linear least squares problem (53) is still a convex QCP.

In many applications of least squares problems, the problem data (A, b) is either
estimated from empirical data or is the result of measurement, and therefore, subject to
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errors. In order to reduce the sensitivity of the decision x to perturbations in the data, El
Ghaoui and Lebret formulated the following robust version of (53)

min
x

max{

[A,b]:‖[A,b]−[A0,b0]‖≤ρ
} ‖Ax − b‖2 , (54)

where ‖·‖ is the Frobenius norm, and showed that (54) can be reformulated as an
SOCP [11]. However this uncertainty set does not appear natural, since it applies to [A b]
all at once.

We propose the following uncertainty structure for the rows ai ∈ Rn, i = 1, . . . , m,
of A:

S =
{

a : a = a0 +
k

∑

j=1

vj aj +
l

∑

j=1

uj ξ j
}

, (55)

where, without loss of generality, ‖v‖ ≤ 1, ‖u‖ ≤ 1, and ξ j ∼ N (0,Ωj ), j = 1, . . . , l.
Without the stochastic term, the uncertainty set (55) has the affine structure considered
in [4–6]. The term

∑l
j=1 uj ξ j models the imperfect knowledge of the stochastic per-

turbations in a – the total variance and modes Ωj are known but the variance of each of
the individual modes is unknown. In typical applications, the matrix Ωj = ωj (ωj )T , or
equivalently ξ j = (ωj )T Z for Z ∼ N (0, I), where the vector ωj is determined by the
estimation algorithm or the signal network.

The robust least squares problem corresponding to (55) is given by

min
x

{ m
∑

i=1

max
ai∈Si

{

E[(aT
i x − bi)

2]
}}

, (56)

where each Si is of the form (55) for appropriately chosen {aj
i : j = 0, . . . , ki} and

{Ωj
i : j = 1, . . . , li}, i = 1, . . . , m.
For a fixed a in S and b ∈ R, the expected error E[(aT x − b)2] is given by

E[(aT x − b)2] =
(

(a0)T x +
k

∑

j=1

vj (aj )T x − b
)2 +

l
∑

j=1

(uj )2xT Ωj x. (57)

Therefore, E[(aT x − b)2] ≤ δ, for all a ∈ S, if, and only if, there exists t ≥ 0 such that

| aT x − b |≤ t, ∀a ∈ S1 = {a : a0 + ∑k
j=1 vj aj , ‖v‖ ≤ 1},

t2 + xT Qx ≤ δ, ∀Q ∈ S2 = {Q : Q = ∑l
j=1 αjΩj ,

∑l
j=1 αj ≤ 1, αj ≥ 0, ∀j}.

(58)

From (57) and (58), it follows that (56) is equivalent to

minimize
∑m

i=1 δi,

subject to t2
i + xT Qix ≤ δi, Qi ∈ S i

2, i = 1, . . . , m,

aT
i x − bi ≤ ti , ai ∈ S i

1, i = 1, . . . , m,

aT
i x − bi ≥ −ti , ai ∈ S i

1, i = 1, . . . , m.

(59)
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The sets S i
1, i = 1, . . . , m, are a special case of the norm-constrained uncertainty set

defined in (18) and S i
2, i = 1, . . . , m, are polytopic uncertainty sets of the form in (8).

Thus, (59) is equivalent to an SOCP.

3.4. Equalizing uncertain channels

By sampling the input and output signals, a linear time-invariant communication channel
can be described as follows (see [24] for details):

yk =
m−1
∑

i=0

hixk−i + sk,

= h0xk +
m−1
∑

i=1

hixk−i + sk, (60)

where {xk : k ≥ 0} are the samples of the input signal, {yk : k ≥ 0} are the samples of
the output signal, h = {hi : i = 0, . . . , m − 1} is the impulse response of the channel,
and {sk : k ≥ 0} are the samples of the channel noise. The channel impulse response
is assumed to be finite, i.e. m < ∞. From (60), it is clear that in order to recover the
sample xk at time k the effects of the noise sk and the interference

∑m−1
i=1 hixk−i from

the past samples must be removed.
Since the input samples are decoded in a sequential manner, if the channel response

h is known, interference does not cause a problem – one simply subtracts the effect of the
past samples. Thus, one technique for removing interference is to “filter” the output, i.e.
convolve the output {yk : k ≥ 0} with a known vector g = {gi : i = 0, . . . , n − 1} such
that the effective channel response is equal to a known vector d = {dk : k = 0, . . . , l−1}.
This is called channel shaping.

Channel shaping using finite impulse response filters is possible only if the output
is sampled at a faster rate than the input [23]. Sampling the output at a rate p times
faster than the input results in p parallel channels that all see the same input samples.
Let hj = {hj

i : i = 0, . . . , m−1}, j = 1, . . . , p, denote the responses of the p parallel

channels. Then, the samples y
j
k , k ≥ 0, of the j -th channel are given by

y
j
k =

m−1
∑

i=0

h
j
i xk−i + s

j
k . (61)

Suppose the outputs from the j -th channel are convolved with gj = {gj
i , i = 0, . . . , n−

1}, n < ∞, and the resulting signals added together. Then, the effective input-output
relation is given by

yk =
m+n−2
∑

i=0

wixk−i + s̃k, (62)

where wi = ∑p
j=1

(∑n−1
r=0 h

j
i g

j
i−r

)

, i = 0, . . . , m + n − 2, and s̃k = ∑p
j=1

(∑n−1
r=0 g

j
l s

j
k−r

)

, k ≥ 0.
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Therefore, the effective channel is equal to d only if gj , j = 1, . . . , p satisfy

p
∑

j=1

Thj
gj = d, (63)

where Thj
is the following Toeplitz matrix formed from hj ,

Thj
=















hj0 0 . . . 0
...

. . .
. . .

...

hj,m−1
. . .

. . . 0

0
. . .

. . . hj0
...

. . .
. . .

...

0 . . . 0 hj,m−1















︸ ︷︷ ︸

(n+m−2)×n

.

For p ≥ 2 the system of equations (63) has a solution under fairly general conditions [23,
22].

In the development so far it has been implicitly assumed that the responses hj ,
j = 1, . . . , p, are known. In practice, the responses hj are estimated by transmitting a
known finite length training sequence. Consequently, the estimates are subject to statis-
tical errors. These errors in the estimates can be modeled as follows:

h̄j = hj + uj ξ j , j = 1, . . . , p (64)

where h̄j is the true value of the j -th channel response, hj is our estimate of the j -th
channel response, ξ j ∼ N (0,Ωj ), Tr(Ωj ) = 1, j = 1, . . . , p, E[ξ j ξ

T
k ] = 0, j 	= k,

and ‖u‖ ≤ σ 2. The uncertainty structure (64) reflects our limited knowledge of the noise
in each of the p parallel channels. The total noise variance is

∑p
j=1 u2

j Tr(j ) = σ 2,
but the noise variance of the individual channels is not known.

In a robust approach, {gj , j = 1, . . . , p} are chosen by solving the problem:

min
{gj :j=1,... ,p}

max
{u:‖u‖≤σ 2}

E
[∥
∥
∥

p
∑

j=1

Th̄j
gj − d

∥
∥
∥

2
]

(65)

After substituting for h̄j , j = 1, . . . , p, from (64), we have that

max
{u:‖u‖≤σ 2}

E
[∥
∥
∥

p
∑

j=1

Thj
gj − d +

p
∑

j=1

uj Tξ j
gj

∥
∥
∥

2
]

= max
{u:‖u‖≤σ 2}

E
[∥
∥
∥

p
∑

j=1

Thj
gj − d +

p
∑

j=1

uj Tgj
ξ j

∥
∥
∥

2
]

, (66)
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=
∥
∥
∥

p
∑

j=1

Thj
gj − d

∥
∥
∥

2 + max
{u:‖u‖≤σ 2}

{ p
∑

j=1

u2
j Tr

(

TT
gj

Tgj
j

)}

,

=
∥
∥
∥

p
∑

j=1

Thj
gj − d

∥
∥
∥

2 + max
{u:‖u‖≤σ 2}

{ p
∑

j=1

gj (u
2
jΛj )gj

}

(67)

where (66) follows from the fact that Tξ j
gj = Tgj

ξ j and Λj in (67) is set by the identity

gjΛj gj = Tr
(

TT
gj

Tgj
j

)

. Thus, (65) is equivalent to the robust convex QCP

minimize δ + ν,

subject to
∥
∥
∥Tg − d

∥
∥
∥

2 ≤ δ,

gT Qg ≤ ν, ∀Q ∈ S,

(68)

where g = [gT
1 , . . . , gT

p ]T ∈ Rnp, T = [Th1 , . . . , Thp ] ∈ R(n+m−1)×(np), and the
uncertainty set

S =
{

Q : Q = diag(Q1, . . . , Qp), Qj = αjΛj ,

p
∑

j=1

αj ≤ 1, αj ≥ 0, j = 1, . . . , p
}

,

(69)

belongs to the class of polytopic uncertainty sets described in (8). Consequently, (68)
can be reformulated as an SOCP.

3.5. Robust estimation in uncertain statistical models

Suppose x ∈ Rn is a Gaussian random variable with a priori distribution x ∼ N (µ,Σ)

with an unknown mean µ and covariance

Σ ∈ S1 =
{

Σ : Σ−1 = Σ−1
0 + ∆ � 0,∆ = ∆T ,

∥
∥Σ

1
2
0 ∆Σ

1
2
0

∥
∥ ≤ η

}

. (70)

We will assume that η < 1. The set (70) is precisely the confidence region associated
with the maximum likelihood estimate of the covariance Σ of x. See [13] for details.

Suppose a vector of measurements y ∈ Rm is given by the linear observation model

y = Cx + d, (71)

where C ∈ Rm×n is known, and the disturbance vector d ∼ N (0, D), independent of x,
with

D ∈ S2 =
{

D : D = VT FV, F = F0 + ∆ � 0, ‖N− 1
2 ∆N− 1

2 ‖ ≤ η,

V = V0 + W, ‖Wi‖ ≤ ρi, i = 1, . . . , m, ‖∆‖ ≤ η

}

. (72)

The uncertainty set (72) is quite general. For example, one can control the rank of
the covariance matrix D by appropriately setting the dimension of F0 and model any
norm-like perturbation by suitably choosing N.



Robust convex quadratically constrained programs 513

Given the observations y and an a priori unbiased estimate µ̄ of µ, we consider a
linear unbiased estimator of the form

µ̂ = (I − KC)µ̄ + Ky, (73)

where the gain matrix K ∈ Rn×m is to be determined. Since µ̄ is unbiased, the estimate
µ̂ is also unbiased. The covariance P of the a posteriori estimate µ̂ is given by

P ≡ E[(µ̂ − µ)(µ̂ − µ)T ] = (I − KC)T Σ(I − KC) + KT DK. (74)

The non-robust version of this measurement model (i.e. Σ = Σ0 and D = D0 for
fixed Σ0 and D0) is the well-known Gaussian linear stochastic model [15]. The robust
measurement model developed here is a variant of the model proposed by Calafiore and
El Ghaoui [9], in which the a priori covariance Σ is assumed to be known exactly and
the noise covariance

D ∈ {

D : D−1 = D−1
0 + L∆R + RT ∆T LT � 0, ‖∆‖ ≤ 1

}

.

In [9] it is shown that the problem of choosing the gain matrix K to minimize the
worst-case value of Tr(P) or det(P) can be reduced to an SDP.

In this paper, we are interested in minimizing the worst-case variance along a given
fixed set of vectors {vj : ‖vj‖ = 1, j = 1, . . . , k}, i.e. we want to solve the following
optimization problem

min
K

max
{Σ∈S1,D∈S2}

max
{1≤j≤k}

{

vT
j (I − KC)T Σ(I − KC)vj + vT

j KT DKvj

}

, (75)

or equivalently, the robust QCP,

minimize ν,

subject to vT
j (I − KC)T Σ(I − KC)vj ≤ δj , ∀ Σ ∈ S1, j = 1, . . . , k,

vT
j KT DKvj ≤ ν − δj , ∀ D ∈ S2, j = 1, . . . , k.

(76)

For fixed K, Lemma 3 in [13] implies that

max
Σ∈S1

{

vT
j (I − KC)T Σ(I − KC)vj

} =
{∞ η ≥ 1,

1
(1−η)

vT
j (I − KC)T Σ0(I − KC)vj , η < 1.

Thus, η < 1 implies that the first constraint in (76) can be reformulated as a collection
of SOC constraints. Fix an index j and let yj = Kvj . Since the uncertainty set S2
belongs to the class of factorized uncertainty sets defined in (25), Lemma 4 implies that
that the robust quadratic constraint vT

j KT DKvj = yT
j Dyj ≤ ν − δj , for all D ∈ S2,

can be reformulated as a collection of linear and SOC constraints. Hence, (76) can be
transformed into an SOCP.

4. Conclusion

Ben-Tal and Nemirovski initiated the study of robust convex QCPs and showed that for
generalized ellipsoidal uncertainty sets these problems can be reformulated as SDPs [4]
(see also [6]). In Section 2 we described three general classes of uncertainty sets that
enable robust QCPs to be reformulated as SOCPs.
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Adding robustness reduces the sensitivity of the optimal decision to perturbations
in a model’s parameters, often resulting in significant improvement in performance [3,
13, 26]. Typically, the complexity of the deterministic reformulation of the robust coun-
terpart of a problem is higher than it is for the original problem. However, since the
worst case complexity of SOCPs is comparable to that of convex QCPs, our results
show that one can add robustness to convex QCPs with a relatively modest increase in
computational effort. Moreover, the examples presented in Section 3 show that the nat-
ural uncertainty sets for optimization problems arising in a wide variety of application
areas belong to the classes introduced in Section 2.

An important issue in robust optimization is how to choose the parameters that
define the uncertainty structures. In some cases, such as the polytopic uncertainty (8),
the parametrization is clear – the uncertainty set is defined by scenario analysis. However,
in others, such as the factorized uncertainty set (25), the parametrization is not obvious;
in [13] it is shown that the factorized uncertainty set is parametrized by the confidence
regions corresponding to the statistical techniques used to estimate the parameters of the
original non-robust problem.
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