
Digital Object Identifier (DOI) 10.1007/s10107-003-0423-5

Math. Program., Ser. B 97: 451–469 (2003)

David Avis · Jun Umemoto

Stronger linear programming relaxations of max-cut

Received: April 30, 2002 / Accepted: November 26, 2002
Published online: May 7, 2003 – © Springer-Verlag 2003

Abstract. We consider linear programming relaxations for the max cut problem in graphs, based on k-gonal
inequalities. We show that the integrality ratio for random dense graphs is asymptotically 1 + 1/k and for
random sparse graphs is at least 1 + 3/k. There are O(nk) k-gonal inequalities. These results generalize work
by Poljak and Tuza, who gave similar results for k = 3.

1. Introduction

For a graph G(V, E) with |V | = n vertices, which we assume are labelled 1, 2, ..., n,
max-cut is the problem of partitioning V into two sets, such that the number of edges
connecting the two sets is maximized.Although this problem is NP-hard, the well-known
semidefinite programming (SDP) relaxation by Goemans and Williamson [10] gives a
worst case bound on the integrality ratio of sdp/opt ≤ 1.13823, where sdp is the value
of SDP and opt is the size of the maximum cut. In this paper, we consider linear pro-
gramming (LP) relaxations of max-cut and discuss the integrality ratio lp/opt , where
lp is the value of LP. A general reference for terminology not defined explicitly here is
Deza and Laurent [8].

First we give a well known integer programming formulation of max-cut. Let x =
(xij)1≤i<j≤n

and c = (cij)1≤i<j≤n
be vectors in R(n

2). Given a graph G, for 1 ≤ i <

j ≤ n we set cij = 1 if there is an edge joining vertices i and j , otherwise we set cij = 0.
The max-cut problem can be formulated as the integer programming problem:

max cT x

s.t. xij + xik + xjk ≤ 2,

xij − xik − xjk ≤ 0, for distinct i, j, k ∈ {1, . . . , n}
xij ∈ {0, 1} for 1 ≤ i < j ≤ n.

(1)

It is not hard to show that the extreme points of the feasible region are the incidence
vectors of cuts in the complete graph Kn. We can get a linear programming relaxation for
max-cut by relaxing the constraint xij ∈ {0, 1} to xij ≥ 0. The integrality ratio for this

D. Avis: Computer Science, Mcgill University and GERAD, 3480 University, Montreal, Quebec, Canada
H3A 2A7, e-mail: avis@cs.mcgill.ca

J. Umemoto: Graduate School of Informatics, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto, Japan
606-8501, e-mail: umemoto@kuis.kyoto-u.ac.jp

452 D. Avis, J. Umemoto

relaxation has been well studied. Seymour [14] and Barahona and Mahjoub [3] show
lp/opt=1 for graphs with no K5 minor.

In this paper we will mainly be concerned with random graphs. In what follows, Gn,p

denotes a graph on n vertices, whose edges are chosen randomly and independently with
probability p, 0 < p < 1. We denote by opt(Gn,p) the cardinality of the max-cut for
this graph. Poljak and Tuza [13] have obtained the following results for random graphs.

Theorem 1.1. (Dense Graphs) Let p = p(n) be a function such that 0 < p < 1 and
p(n) = �(

√
log n/n). Then the integrality ratio

lp(Gn,p)

opt (Gn,p)
→ 4

3

as n → ∞ with probability 1 − o(1). ��
Theorem 1.2. (Sparse Graphs) Let p = p(n) be a function such that 0 < p < 1,
p(n) · n → ∞, and p(n) · n1−a → 0 for every a > 0. Then the integrality ratio

lp(Gn,p)

opt (Gn,p)
→ 2

as n → ∞, with probability 1 − o(1). ��
This result shows that the linear programming relaxation behaves very badly for random
sparse graphs: a simple greedy heuristic will also deliver a ratio bound of greedy/opt ≤
2. A much tighter relaxation is obtained by adding additional constraints known as
k-gonal inequalities.

Definition 1.1. Let b1, . . . , bn be a sequence of integers and let k = ∑n
i=1 |bi |. The

integers define the following k-gonal inequality:

∑

1≤i<j≤n

bibj xij ≤ 	(
n∑

i=1

bi)
2/4
. (2)

Definition 1.2. The gap γ of an integer sequence b1, . . . , bn is defined by

γ = γ (b) = minS⊆{1,2,... ,n}|
∑

i∈S

bi −
∑

i �∈S

bi |. (3)

A k-gonal inequality with gap γ = 1 is called hypermetric, and with gap γ = 0 is called
negative type.

All k-gonal inequalities are valid for max-cut. Note in particular that the inequalities
in (1) are 3-gonal with the b-vector a permutation of (1,1,1,0,...,0) and (1,1,-1,0,...,0)
respectively. Since these b vectors have gap one, they are hypermetric. Laurent and Pol-
jak ([11], see also [8] Section 28.4) have studied inequalities called gap inequalities,
where the right hand side of (2) is strengthened to 1

4 ((
∑n

i=1 bi)
2 − γ (b)2), which are

also valid for max-cut. These inequalities are stronger than the k-gonal inequalities if
the gap is at least two. Since determining the gap is NP-hard, we do not consider these
inequalities here.

Stronger linear programming relaxations of max-cut 453

Many results are known for hypermetric inequalities. In particular, for fixed n, Deza,
Grishukhin and Laurent ([7], see also [8], Theorem 14.2.1) showed that there are only
finitely many non-redundant hypermetric inequalities, so they form a polyhedron. This
is not the case for negative type inequalities. It is unknown whether the k-gonal inequal-
ities (2) form a polyhedron for fixed n. Deza ([6], see also [8], Prop. 6.1.3) has shown
that for any integer k ≥ 1, the (2k + 2)-gonal negative type inequalities are implied by
the (2k + 1)-gonal hypermetric inequalities. In fact this is true without any assumptions
on the gap, as we show in the next section. Hence in what follows we will assume that
k is odd and so the right hand side of (2) can also be written ((

∑n
i=1 bi)

2 − 1)/4.

Definition 1.3. We denote by LPk the set of x ∈ R(n
2) that satisfy all t-gonal inequalities,

for 3 ≤ t ≤ k. For c ∈ Z(n
2), we denote by lpk the value of max cT x, x ∈ LPk . For a

graph G, lpk(G) denotes the value obtained when c is the 0-1 incidence vector of edges
of G.

The k-gonal inequalities have a close relation with SDP ([8], Section 28.4). Let X

be the symmetric n by n matrix with zero diagonal and ij th off diagonal element equal
to xij . Let J be the n by n matrix of all ones. Then J −2X is positive semidefinite if and
only if x satisfies all the inequalities (2) when the right hand side is relaxed by dropping
the floor function. (These are essentially the separation inequalities for SDP). The stron-
ger (2k+1)-gonal inequalities are not valid for SDP and are natural candidates for an LP
relaxation. This is especially true for the hypermetric inequalities, since many of them
are facets of the cut polytope. Unfortunately separation for these inequalities seems hard
in general. Avis and Grishukhin ([2], see also [8] Section 28.3) have shown that finding
the smallest k such that x violates a k-gonal hypermetric inequality is NP-hard.

The purpose of this paper is generalize the results in Theorem 1.1 and 1.2 to LP
relaxations using k-gonal inequalities:

Theorem 1.3. (Dense Graphs) Let p = p(n) be a function of n such that 0 < p < 1
and p(n)k−1 · n

log n
→ ∞

lpk(Gn,p)

opt (Gn,p)
→ k + 1

k

as n → ∞ with probability 1 − o(1).

As will be clear from the proof, the result holds even when the linear programming
relaxation is restricted to triangle inequalities and the k-gonal inequalities with b vec-
tor consisting only of zeroes and ones. We remark that Arora, Karger and Karpinski [1]
have given a polynomial time approximation scheme for graphs with �(n2) edges, using
completely different methods.

Theorem 1.4. (Sparse Graphs). Let p = p(n) be a function such that 0 < p < 1,
p(n) · n → ∞, and p(n) · n1−a → 0 for every a > 0. Then

lpk(Gn,p)

opt (Gn,p)
≥ k + 3

k

as n → ∞, with probability 1 − o(1).

454 D. Avis, J. Umemoto

For the sparse graphs described in this theorem, we are unable to improve the trivial
upper bound of two on the integrality ratio.

The final section of the paper gives some computational results. We wrote a program
that computes LP relaxations of max-cut using k-gonal inequalities. Our program gives
the maximum cut or an upper bound on its value by solving an LP relaxation. De Simone
and Rinaldi [5] have also used these inequalities in developping an algorithm and a pro-
gram to verify the optimality of a given cut. Their program checks the optimality of a
cut generated by a heuristic, by solving a related LP problem using k-gonal inequalities.

2. Preliminary results

First we study the dual of an LP relaxation using k-gonal inequalities. Suppose that we
use inequalities defined by vectors b(1), . . . , b(m) ∈ Z

n. Let dl = 	(∑n
i=1 b

(l)
i)2/4
.

Then, the primal problem is:

max
∑

1≤i<j≤n

cij xij

s.t.
∑

1≤i<j≤n

b
(l)
i b

(l)
j xij ≤ dl, 1 ≤ l ≤ m (4)

xij ≥ 0 1 ≤ i < j ≤ n

Let yl be the dual variable corresponding to the inequality defined by b(l), the dual
problem is:

min
m∑

l=1

dlyl

s.t.
m∑

l=1

b
(l)
i b

(l)
j yl ≥ ci,j 1 ≤ i < j ≤ n (5)

yl ≥ 0 1 ≤ l ≤ m

We can give a graph theoretic interpretation of the dual. Suppose that each vector
b(l) stands for a complete subgraph, or clique, where each edge ij has a weight b

(l)
i b

(l)
j .

For example, in a five vertex graph, the vector b = (1, 1, 1, 0, 0) stands for the trian-
gle (1, 2, 3) with every edge weight 1, and b = (0, −1, 1, 1, 0) stands for the triangle
(2, 3, 4) with edges (2, 3), (2, 4) and (3, 4) receiving weights −1, −1 and 1, respectively.
Each inequality of the dual problem can be read as a constraint such that every edge
weight cij must be covered by the sum of the weights b

(l)
i b

(l)
j multiplied by yl , where the

sum is taken over all cliques. The right hand side value of a k-gonal inequality, dl , can
be read as the cost of the clique b(l). Hence, the dual problem is the problem of finding
an edge covering of the given graph using weighted cliques b(l), while minimizing the
sum of the cost of cliques used. We call this covering a dual cover. By weak duality, the
cost of any dual cover is an upper bound on the cost of the primal problem.

Stronger linear programming relaxations of max-cut 455

For k ≥ 5 the k-gonal inequalities are tighter than the triangle inequalities. The next
two lemmas, which are interesting in their own right, quantify this. The first lemma
shows how much a k-inequality needs to be weakened so that it is valid for all x ∈ LP3.

Lemma 2.1. Let b ∈ Z
n, x ∈ R(n

2) and set t = ∑n
i=1 bi , k = ∑n

i=1 |bi |. Then the
inequality

∑

1≤i<j≤n

bibj xij ≤ t2 − 1

4
+ (k − 1)(k − 3)

12
(6)

is satisfied for all x ∈ LP3.

Proof. We consider 2 cases according to the b vector.

Case 1. Every element of b has a value 1 or −1. Hence k = n. Without losing generality,
we may assume

b1 = b2 = . . . = bs = 1

bs+1 = bs+2 = . . . = bn = −1

where t = s − (n − s) = 2s − n. Since x ∈ LP3, for 1 ≤ i < j ≤ n,

bibj xij + bibpxip + bjbpxjp ≤ (bi + bj + bp)2 − 1

4
.

By summing this inequality for all triples i, j, p, noting that each pair i, j appears in
n − 2 triples and the right hand side is 2 or 0, we have

(n − 2)
∑

1≤i<j≤n

bibj xij ≤ 2

{(
s

3

)

+
(

n − s

3

)}

.

Expanding and dividing by n − 2 gives

∑

1≤i<j≤n

bibj xij ≤ 2(n − 2)(n2 − n − 3ns + 3s2)

3 · 2 · (n − 2)

= n2 − n − 3ns + 3s2

3

= (2s − n)2 − 1

4
+ n2 − 4n + 3

12

and (6) follows since k = n and t = 2s − n.

Case 2. b is any integer vector. Without losing generality, we set

b1 ≥ b2 ≥ . . . ≥ bn.

456 D. Avis, J. Umemoto

Furthermore, we may assume that no integer bi is zero, for in this case the inequality
(6) reduces to an equivalent inequality with n reduced by one. We define k0 = 0 and for
v = 1, . . . , n set

kv =
v∑

i=1

|bi |

bp =
{

1 bv > 0

−1 bv < 0
for p = kv−1 + 1, kv−1 + 2, . . . , kv.

Let x ∈ R(k
2), and define

xpq =
{

xij ki−1 < p ≤ ki, kj−1 < q ≤ kj

0 otherwise.
for 1 ≤ i < j ≤ n

It is easy to check that x ∈ LP3 if and only if x ∈ LP3. Now for 1 ≤ i < j ≤ n,

bibj xij =
∑

ki−1<p≤ki

∑

kj−1<q≤kj

bpbqxpq.

Summing over all i, j , we have

∑

i≤i<j≤n

bibj xij =
∑

1≤p<q≤n

bpbqxpq −
n∑

v=1

∑

kv−1<p<q≤kv

bpbqxpq

=
∑

1≤p<q≤n

bpbqxpq

≤ t2 − 1

4
+ (k − 1)(k − 3)

12
,

where we note xpq is zero in the second term of the right hand side of the first equation
and use case 1 for the final inequality. ��

We now show that if x′ ∈ LP3 we can move it slightly towards the barycentrum
x0 = (1

2 , 1
2 , . . . , 1

2) of the cut polytope so that it is inside LPk , for any fixed k ≥ 3.

Lemma 2.2. For any k ≥ 3 and x′ ∈ LP3,

x = 3

k
x′ + k − 3

k
x0 ∈ LPk.

Proof. Let b1, b2, ..., bn be integers with t = ∑n
i=1 bi , and k = ∑n

i=1 |bi |. We first
observe that

2
∑

1≤i<j≤n

bibj =
(

n∑

i=1

bi

)2

−
n∑

i=1

b2
i ≤ t2 −

n∑

i=1

|bi |2 ≤ t2 −
n∑

i=1

|bi | = t2 − k.

Stronger linear programming relaxations of max-cut 457

where the last inequality is due to the integrality of bi . Therefore

∑

1≤i<j≤n

bibj xij = 3

k

∑

1≤i<j≤n

bibj x
′
ij + k − 3

k

∑

1≤i<j≤n

bibj

2

≤ 3

k

{
t2 − 1

4
+ (k − 1)(k − 3)

12

}

+ k − 3

k

(
t2 − k

4

)

=
(

3

k
+ k − 3

k

)
t2 − 1

4
+ 3

k

(k − 1)(k − 3)

12
+ k − 3

k

1 − k

4

= t2 − 1

4
. (7)

��
We can show integrality ratios for some classes of graphs using a dual cover and the

above lemmas. The following proposition considers the complete graph.

Proposition 2.1. For the complete graph Kn and any odd integer k ≥ 3, the integrality
ratio lpk(Kn)

opt (Kn)
→ k+1

k
as n → ∞.

Proof. If we apply Lemma 2.2 with x′ = (2
3 , 2

3 , . . . , 2
3) we see that x = (k+1

2k
, k+1

2k
, . . . ,

k+1
2k

) ∈ LPk and gives a primal objective value for lpk(Kn) of

∑

1≤i<j≤n

cij xij = n(n − 1)(k + 1)

4k
. (8)

This is an optimal solution because we can get a feasible dual cover whose cost is (8)
as follows. Subgraphs Kk of Kn are defined by vectors b such that b ∈ {0, 1}(n

2) and
∑n

i=1 bi = ∑n
i=1 |bi | = k. There are

(
n
k

)
Kk and each Kk has a dual cost k2−1

4 . Noting

that each edge is contained in
(
n−2
k−2

)
Kk , Kn has a dual cover where every subgraph Kk

is weighted by 1/
(
n−2
k−2

)
. The cost of this dual cover is

k2 − 1

4

(
n

k

)

/

(
n − 2

k − 2

)

= (k + 1)n(n − 1)

4k

which is the same as (8). If n is even the max-cut has size n2

4 and so

lpk(Kn)

opt (Kn)
= (n − 1)(k + 1)

nk
→ k + 1

k

as n → ∞. If n is odd the max-cut has size n2−1
4 and so

lpk(Kn)

opt (Kn)
= n(k + 1)

(n + 1)k
→ k + 1

k

as n → ∞. ��

458 D. Avis, J. Umemoto

Finally we show that Deza’s observation [6] that the hypermetric inequalities imply
the negative type inequalities, holds for k-gonal inequalities of arbitrary gap.

Proposition 2.2. Let k ≥ 1 be an integer. The (2k + 2)-gonal inequalities are implied
by the (2k + 1)-gonal inequalities.

Proof. Let b ∈ Z
n with

∑n
i=1 bi = 2t and

∑n
i=1 |bi | = 2k+2. Then, the (2k+2)-gonal

inequality defined by b is

∑

1≤i<j≤n

bibj xij ≤ t2. (9)

Without loss of generality we may assume that bi is non-zero, i = 1, 2, ..., n. We show
that the (2k + 2)-gonal inequality (9) can be expressed as a nonnegative linear com-
bination of (2k + 1)-gonal inequalities. For each p = 1, . . . , n, we define a vector
b(p) ∈ Z

n:

b
(p)
i =

bi i �= p

bi − 1 i = p, bp > 0

bi + 1 i = p, bp ≤ 0

.

Hence,

n∑

i=1

|b(p)
i | = 2k + 1

n∑

i=1

b
(p)
i =

{
2t − 1 bp > 0

2t + 1 bp ≤ 0

and b(p) defines a (2k + 1)-gonal inequality. The left hand side of this inequality is

∑

1≤i<j≤n

b
(p)
i b

(p)
j xij =

∑

1≤i<j≤n

bibj xij ∓

p−1∑

i=1

bixip +
n∑

i=p+1

bixpi

 ,

where ∓ is interpreted as a minus sign if bp > 0, and a plus sign otherwise. Multiplying
by |bp|, the (2k + 1)-gonal inequalities become

|bp|
∑

1≤i<j≤n

bibj xij −

p−1∑

i=1

bibpxip +
n∑

i=p+1

bpbixpi

 ≤ |bp|t (t ∓ 1).

Stronger linear programming relaxations of max-cut 459

Summing up these inequalities, the we obtain an inequality with

(LHS) =
n∑

p=1

|bp|
∑

1≤i<j≤n

bibj xij −
n∑

p=1

p−1∑

i=1

bibpxip +
n∑

i=p+1

bpbixpi

= (2k + 2)
∑

1≤i<j≤n

bibj xij − 2
∑

1≤i<j≤n

bibj xij

= 2k
∑

1≤i<j≤n

bibj xij (10)

(RHS) = t (t − 1)
∑

bp>0

|bp| + t (t + 1)
∑

bp≤0

|bp|.

For the right hand side,

∑

bp≤0

|bp| =
∑n

i=1 |bi | −∑n
i=1 bi

2
= 2k + 2 − 2t

2
= k + 1 − t

∑

bp>0

|bp| =
n∑

i=1

|bi | −
∑

bp≤0

|bp| = k + 1 + t.

Therefore,

(RHS) = t (t − 1)(k + 1 + t) + t (t + 1)(k + 1 − t)

= t (tk + t2 + t − k − t − 1 + tk − t2 + t + k − t + 1)

= 2kt2. (11)

Dividing (10) and (11) by 2k, we have (9). ��

3. Sparse graphs

In this section we prove Theorem 1.4 giving a lower bound on the integrality ration for
sparse graphs. We require the following strong bound on the value of the max-cut in a
random graph.

Lemma 3.1 (Nguyen Van Ngoc and Zs. Tuza, [15]). Let p(n) · n → ∞. Then

1

2
|E| ≤ opt(Gn,p) ≤ |E|

(
1

2
+ o(1)

)

with probability 1 − o(1) as n → ∞. ��

Proof of Theorem 1.4. Let c ∈ {0, 1}(n
2) be the incidence vector of the edges of the

randomly chosen graph Gn,p. By Theorem 1.2 and Lemma 3.1,

lp3(Gn,p) = (1 − o(1))|E|

460 D. Avis, J. Umemoto

with probability 1 − o(1) as n → ∞. For any fixed ε > 0, if n is large enough, with
probability 1 − o(1) there is a primal solution x′ for which the primal objective function
is at least (1 − ε)|E|. We construct x ∈ LPk using Lemma 2.2. Then

lpk(Gn,p) ≥ cT x = 3

k
cT x′ + k − 3

k
cT x0

≥ 3

k
|E|(1 − ε) + k − 3

k

|E|
2

≥ k + 3

2k
|E|(1 − ε).

Since ε is arbitrary, we can combine this with Lemma 3.1 to obtain

lpk(Gn,p)

opt (Gn,p)
≥ k + 3

k
(1 − o(1))

as n → ∞, with probability 1 − o(1). ��

4. Dense graphs

In this section we prove that random dense graphs have asymptotically the same inte-
grality ratio as complete graphs. Our proof is modelled along the lines of that of Poljak
and Tuza [13] for Theorem 1.1.

Lemma 4.1 (Chernoff Inequality [4]). Let X1, X2, . . . , Xn be independent Bernoulli
trials with Pr[Xi = 1] = p, 0 < p < 1. Then if X is the sum of the Xi and if µ is E[X],
for any ε > 0,

Pr[|µ − X| > nε] < e
− nε2

2p(1−p) . ��
Definition 4.1 (Uniform Cover). For any odd integer k ≥ 3, let Kk = Kk(G) denote
the set of all k-cliques, Kk , in a graph G. A function r : Kk ∪ E → R+ is called a
uniform cover of G by Kk and edges if

r(e) +
∑

Kk�e

r(Kk) = 1

for every edge e ∈ E, where the sum is taken over all Kk containing the edge e. The cost
of a uniform cover r is defined by

cost(r) :=
∑

e∈E

r(e) + k2 − 1

4

∑

Kk∈Kk

r(Kk).

Lemma 4.2. For any odd integer k ≥ 3 and graph G, a uniform cover r yields the
upper bound lpk(G) ≤ cost (r).

Proof. Consider the primal and dual problems given by (4) and (5), where the primal
constraints are all t-gonal inequalities, 1 ≤ t ≤ k. Given a uniform cover r , we show
how to construct a dual feasible solution y. Initially all components of y are set to zero.

Stronger linear programming relaxations of max-cut 461

Fix a complete subgraph Kk of G. It corresponds to a k-gonal inequality defined by a
vector b(Kk) such that

b
(Kk)
i =

{
1 i ∈ Kk

0 otherwise.

with right hand side k2−1
4 . We continue the construction of our dual solution by setting

yKk
= r(Kk), contributing a cost of r(Kk)

k2−1
4 to the dual objective function.

Now fix any edge e of G, and suppose it joins vertices u and v. We consider two
3-gonal inequalities b(s) and b(t) for u, v, and any w ∈ V \u, v:

b
(s)
i =

{
1 i = u, v, or w

0 otherwise
and b

(t)
i =

1 i = u or v

−1 i = w

0 otherwise.

We observe that by dividing each inequality by two and adding them together, we have
the inequality

xuv = 1

2

∑

1≤i<j≤n

(b
(s)
i b

(s)
j + b

(t)
i b

(t)
j)xij ≤ 1

2
(2 + 0) = 1.

We continue the construction of our dual solution by setting ys = yt = r(e)/2. This
contributes a cost of 2ys + 0yt = r(e) to the dual objective value. The first equation in
Definition 4.1 guarantees that the dual variables are feasible for the dual, and the second
equation guarantees that it has dual objective value cost (r). The result follows from the
weak duality theorem of linear programming. ��
Lemma 4.3. Let Xk denote the vertices {x1, . . . , xk} of a k-clique in Gn,p, and g(Xk)

denote the number of k + 1-cliques which contain Xk . Then, the next inequality holds
with probability 1 − o(1) as n → ∞:

pk(n − k) − C

√
pk(n − k) log n < g(Xk) < pk(n − k) + C

√
pk(n − k) log n

with a constant C > 2.

Proof. For every x ∈ V \Xk , let Ex denote the event

Ex := {the vertices {x, x1, · · · , xk} form a k + 1 − clique}.
Then Pr[Ex] = pk . Moreover, for fixed Xk , the events Ex are independent. Therefore,
we can apply the Chernoff inequality. The expected number µEx = E[g(Xk)] is equal
to pk(n − k). Using the Chernoff inequality,

Pr
[|µEx − g(Xk)| > (n − k)ε

]
< e

− (n−k)ε2

2pk(1−pk) (12)

for any ε > 0. Now let ε = α

√
pk(1−pk)

n−k
for any α > 0, the inequality (12) becomes

Pr

[

|µEx − g(Xk)| > α

√
µEx (1 − pk)

]

< e− α2
2 .

462 D. Avis, J. Umemoto

For α = C
√

log n with a constant C > 2, the right hand side is

e− α2
2 = n− C2

2 = o(n−2).

Therefore, |µEx − g(Xk)| ≤ C
√

µEx (1 − pk) log n holds with probability 1 − o(1).
Since

√
µEx (1 − pk) log n <

√
µEx log n,

pk(n − k) − C

√
pk(n − k) log n < g(Xk) < pk(n − k) + C

√
pk(n − k) log n

holds for all sets Xk with probability 1 − o(1). ��

In the next lemma we make use of the following function.

Definition 4.2. Let n > t ≥ 3 be integers, and let 0 < p < 1. We define g(n, p, t) by:

g(n, p, t) = p
(t−1)2

2 −1
(

n − 2

t − 3

)
√

n log n (13)

By straightforward calculation we have

g(n, p, t+1)=pt− 1
2
n − t + 1

t − 2
g(n, p, t) ≥ pt− 1

2
n − t

t − 1
g(n, p, t) ≥ pt n − t

t − 1
g(n, p, t)

(14)

Lemma 4.4. Let k ≥ 3 be an integer and p = p(n) be such that 0 < p < 1 and
p(n)k−1 · n

log n
→ ∞. For each edge uv of Gn,p, we let fk(uv) denote the number of

k-cliques which contain u and v. Then with probability 1 − o(1) as n → ∞ we have for
all edges uv

p(k
2)−1

(
n − 2

k − 2

)

− Ckg(n, p, k) < fk(uv) < p(k
2)−1

(
n − 2

k − 2

)

+ Ckg(n, p, k) (15)

for some constant Ck > 0.

Proof. For k = 3, we get (15) by setting k = 2 in Lemma 4.3. We proceed by induction
on k.

Suppose that (15) holds when k = t ≥ 3. Fix and edge uv of Gn,p. The number of
Kt+1 which contain a given Kt is bounded by Lemma 4.3. Each Kt+1 containing uv

contains (t − 1) Kt that contain uv. Therefore, the number of Kt+1 containing uv can
be bounded as follows with probability 1 − o(1).

Stronger linear programming relaxations of max-cut 463

ft+1(uv) <
1

t − 1
·
(
pt (n − t) + C

√
pt (n − t) log n

)

×
(

p(t
2)−1

(
n − 2

t − 2

)

+ Ctg(n, p, t)

)

= p(t+1
2)−1

(
n − 2

t − 1

)

+ Ct

n − t

t − 1
ptg(n, p, t)

+ C

t − 1
p

t2
2 −1

(
n − 2

t − 2

)
√

(n − t) log n

+ CCt

t − 1

√
pt (n − t) log ng(n, p, t)

≤ p(t+1
2)−1

(
n − 2

t − 1

)

+ g(n, p, t + 1)

×
(

Ct + C

t − 1
+ CCt

t − 1

t − 1

n − t

√
(n − t) log n

pt−1

)

The three coefficients of g(n, p, t + 1) in the last line are obtained as follows: the first
from the last inequality in (14), the second from the definition of g(n, p, t + 1), and
the third from first inequality in (14). To complete the proof of the upper bound on
ft+1(uv), we will set Ct+1 = Ct + C

t−1 and show that the third coefficient vanishes.
Indeed, simplifying we have

CCt

√
log n

(n − t)pt−1 → 0

as n → ∞ since t , C, Ct are constants, and p(n)t−1 · n
log n

→ ∞. Thus the upper bound
in (15) holds for k = t + 1, and the proof is complete.

Similarly, we can show

fk(uv) > p(k
2)−1

(
n − 2

k − 2

)

− Ckg(n, p, k) ��

Lemma 4.5. Let p = p(n) be such that 0 < p < 1 and p(n)k−1 · n
log n

→ ∞ hold,
where k is odd and k ≥ 3. Then, with probability 1 − o(1) as n → ∞, there exists a
uniform cover r of Gn,p such that

cost(r) ≤
(

k + 1

2k
+ o(1)

)

|E|. (16)

Proof. By Lemma 4.4, with probability 1 − o(1) as n → ∞, fk(uv) satisfies (15) for

each edge uv of Gn,p. Let P denote p(k
2)−1(n−2

k−2

)
, let Q denote p

(k−1)2
2 −1(n−2

k−3

)√
n log n,

and let Ck be the constant from Lemma 4.4. We define a uniform cover r by

r(Kk) = 1

P + CkQ
for every Kk ∈ Kk

464 D. Avis, J. Umemoto

and

r(e) = 1 −
∑

Kk�e

r(Kk) for every e ∈ E.

Clearly, r(e) ≥ 0 by (15), and hence r is a uniform cover. We estimate the cost of r .
Since every edge belongs to at most P +CkQ k-cliques by (15), the total number of Kk

is at most 1
(k

2)
|E|(P + CkQ). Hence,

k2 − 1

4

∑

Kk∈Kk

r(Kk) ≤ k2 − 1

4

1
(
k
2

) |E|(P + CkQ)
1

P + CkQ
= k + 1

2k
|E|

On the other hand, since every edge belongs to at least P − CkQ of Kk again by (15),
we have

r(e) ≤ 1 − P − CkQ

P + CkQ
= 2CkQ

P + CkQ
= 2Ckp

(k−1)2
2 −1(n−2

k−3

)√
n log n

p(k
2)−1(n−2

k−2

)+ Ckp
(k−1)2

2 −1(n−2
k−3

)√
n log n

= 2Ck

√
n log n

p
k−1

2 n−k+1
k−2 + Ck

√
n log n

= 2Ck

n−k+1
k−2

1
n
p

k−1
2

(
n

log n

) 1
2 + Ck

= o(1),

since p
k−1

2

(
n

log n

) 1
2 → ∞. Hence

cost(r)=
∑

e∈E

r(e)+ k2 − 1

4

∑

Kk∈Kk

r(Kk)=o(1)|E|+ k + 1

2k
|E|=

(
k + 1

2k
+ o(1)

)

|E|

��
Proof of Theorem 1.3. Let r be the uniform cover of Gn,p constructed in Lemma 4.5. By
Lemma 4.2, r can be used to define a dual feasible solution to the linear programming
relaxation. By the weak duality theorem, lpk(Gn,p) ≤ cost(r). In the proof of Prop-
osition 2.1 we saw that x = (k+1

2k
, k+1

2k
, . . . , k+1

2k
) ∈ LPk . Therefore with probability

1 − o(1) as n → ∞,

k + 1

2k
|E| ≤ lpk(Gn,p) ≤ cost (r) =

(
k + 1

2k
+ o(1)

)

|E|.

On the other hand by Lemma 3.1, we have under the same conditions,

1

2
|E| ≤ opt(Gn,p) ≤

(
1

2
+ o(1)

)

|E|.

Hence with probability 1 − o(1)

lpk(Gn,p)

opt (Gn,p)
→ k + 1

k
as n → ∞. ��

Stronger linear programming relaxations of max-cut 465

5. Experimental results

In this section we give some experimental results. A complete description of the program
is contained in [16]. We implemented a program in C that solves the dual problem by
the column generation technique. The columns are generated by all permutations of the
vectors b(1) = (1, 1, ±1), b(2) = (1, 1, 1, ±1, ±1), b(3) = (2, 1, ±1, ±1, ±1, ±1), and
b(4) = (1, 1, 1, 1, ±1, ±1, ±1). These vectors correspond to all 3, 5 and 7-gonal facets
of the cut polytope, see [8]. We know of no method to find a violated k-gonal inequality
in less than O(nk) time in the worst case. Heuristic ordering of the inequalities can speed
this up in practice, and we used a greedy heuristic for this.

Let b(k) be one of the input vectors corresponding to a k-gonal inequality, and y be
the current dual solution. A column b(k.l) which is lth permutation of b(k) can be the
entering column, if

∑

1≤i<j≤n

b
(k.l)
i b

(k.l)
j yij > 	 (

∑n
i=1 b

(j)
i)2

4

. (17)

Assume that we know a permutation of b(k) which maximizes the left hand side of (17).
Then, if (17) is satisfied, this column can be the entering column, otherwise, no column
corresponding to b(k) can be the entering column. The idea is find a cut in the graph
with maximum number of edges between vertices assigned opposite signs by the vector
b(k). Since this is a hard problem we use a greedy algorithm for max cut which gives an
approximate maximum for the left hand side of (17).

We carried out three types of computational experiments: for dense random graphs,
for sparse random graphs, and for all graphs for n = 5, . . . , 10. We also tested Fujisa-
wa’s SDP program SDPA (SemiDefinite Programming Algorithm) [9] for comparison.
The following is the meaning of each column of the tables:

G The type of input graph and method of solution. The description “graph-(k|sdp)” in
column G means that the row is the result of solving graph by LP relaxation using
3, . . . , k-gonal inequalities or SDPA.

time The average running time (in seconds).
a.ratio The average integrality ratio.
w.ratio The worst integrality ratio.
p The fraction of problems where the maximum cut was obtained.
iter The average number of iterations of the simplex method.
(3|5|7)gon The number of (3|5|7)-gonal inequalities actually used in the simplex method

respectively.
greedy The success ratio of the greedy heuristic We let the greedy heuristic run up to

10 times for each inequality type, and it is counted as a failure when the greedy
heuristic has failed for all inequality types.

Table 1 gives results for dense random graphs. The description “n-p-method” in
column G means that the instances are 2-connected graphs of n vertices and edge prob-
ability p. The number of the instances is 100 for each graph type except “30-0.9-7”.
Only 10 instances have been tested for “30-0.9-7” because the running time was quite
long. Table 2 gives results for random sparse graphs. The description “n-m-method” in

466 D. Avis, J. Umemoto

Table 1. Dense random graphs

G time a.ratio w.ratio p iter 3gon 5gon 7gon greedy

20-0.5-3 0.31 1.00694 1.05556 0.57 1124.3 301.9 – – 0.91

-5 0.83 1.00001 1.00051 0.99 2091.7 363.7 34.5 – 0.99

-7 0.78 1 1 1 2096.0 363.6 34.1 1.8 0.99

-sdp 0.03 1.01656 1.27491 – – – – – –

-0.7-3 0.57 1.07036 1.10833 0.01 1661.9 369.3 – – 0.74

-5 6.91 1.00069 1.0122 0.85 11117.0 726.0 189.0 – 0.98

-7 21.79 1 1.00023 0.99 11674.6 725.0 193.7 19.0 0.99

-sdp 0.03 1.02029 1.0366 – – – – – –

-0.9-3 0.62 1.16359 1.21333 0.00 2094.6 313.5 – – 0.89

-5 20.80 1.04732 1.092 0.00 22670.2 975.1 225.6 – 0.99

-7 1720.12 1.00858 1.04 0.13 102681.0 1209.1 2871.6 1297.2 0.96

-sdp 0.03 1.00666 1.01834 – – – – – –

25-0.5-3 0.77 1.00331 1.03271 0.69 2032.0 464.7 – – 0.93

-5 3.05 1 1 1 3803.5 540.0 60.1 – 0.99

-7 2.67 1 1 1 3855.0 537.0 56.1 3.2 1

-sdp 0.05 1.00932 1.2872 – – – – – –

-0.7-3 2.25 1.0926 1.125 0.00 3889.4 662.4 – – 0.67

-5 123.48 1.00238 1.01938 0.57 46059.1 1515.4 606.7 – 0.95

-7 367.19 1.00003 1.00307 0.99 51666.3 1521.1 665.1 103.1 0.99

-sdp 0.06 1.02087 1.08009 – – – – – –

-0.9-3 2.34 1.18181 1.25 0.00 4916.7 516.8 – – 0.84

-5 191.85 1.06363 1.125 0.00 65018.2 1884.4 352.0 – 0.99

-7 20499.7 1.01627 1.07143 0.03 392378.0 2350.9 9127.3 3319.2 0.97

-sdp 0.06 1.00817 1.03876 – – – – – –

30-0.5-3 6.41 1.03532 1.07383 0.01 6518.6 1257.9 – – 0.73

-5 112.73 1.00001 1.0014 0.99 41699.0 2312.9 343.7 – 0.99

-7 112.14 1 1 1 41226.4 2284.4 330.8 10.0 0.99

-sdp 0.08 1.04107 1.1732 – – – – – –

-0.7-3 7.28 1.1097 1.13726 0.00 7598.4 1037.6 – – 0.63

-5 870 1.00548 1.02384 0.20 135733.0 2746.0 1409.6 – 0.92

-7 9002.9 1.00007 1.00241 0.94 168668.0 2780.3 1800.3 428.2 0.98

-sdp 0.09 1.0035 1.04996 – – – – – –

-0.9-3 8.05 1.19588 1.21922 0.00 9729.8 769.0 – – 0.81

-5 1219.44 1.07629 1.0973 0.00 153730.0 3343.0 519.5 – 0.99

-7 102828 1.02311 1.04505 0.00 1017640.0 4075.6 21035 5925.8 0.98

-sdp 0.09 1.00816 1.01362 – – – – – –

Stronger linear programming relaxations of max-cut 467

Table 2. Sparse random graphs

G time a.ratio w.ratio p iter 3gon 5gon 7gon greedy

20-30-3 0.08 1 1 1 378.2 206.7 – – 0.98

-5 0.10 1 1 1 443.1 218.2 3.6 – 0.99

-7 0.10 1 1 1 449.3 219.5 3.5 0.2 1

-sdp 0.03 1.0392 1.07966 – – – – – –

-40-3 0.11 1.0001 1.01042 0.99 480.0 227.6 – – 0.98

-5 0.12 1 1 1 535.1 231.8 4.2 – 0.99

-7 0.12 1 1 1 531.5 231.8 4.2 0.2 1

-sdp 0.03 1.04086 1.07922 – – – – – –

30-45-3 0.70 1 1 1 1371.7 565.6 – – 0.98

-5 0.79 1 1 1 1625.6 579.2 10.1 – 0.99

-7 0.76 1 1 1 1580.7 575.6 9.8 0.9 1

-sdp 0.09 1.04094 1.07668 – – – – – –

-60-3 0.94 1.00021 1.01418 0.98 1850.2 614.5 – – 0.97

-5 1.35 1 1 1 2394.9 658.0 16.8 – 0.99

-7 1.31 1 1 1 2394.1 651.4 16.0 1.6 1

-sdp 0.09 1.04289 1.06869 – – – – – –

40-60-3 4.41 1 1 1 3627.7 1118.1 – – 0.98

-5 5.69 1 1 1 4418.4 1164.9 18.2 – 0.99

-7 6.32 1 1 1 4717.7 1175.8 18.5 3.4 0.99

-sdp 0.19 1.04107 1.0673 – – – – – –

-80-3 6.31 1.00005 1.00513 0.99 5132.8 1216.0 – – 0.97

-5 8.38 1 1 1 6556.2 1295.1 24.1 – 0.99

-7 8.75 1 1 1 7005.2 1295.0 24.5 5.1 0.99

-sdp 0.18 1.04357 1.06838 – – – – – –

50-75-3 21.92 1.0001 1.01026 0.99 8167.2 1923.5 – – 0.98

-5 36.95 1 1 1 11162.5 2079.3 33.1 – 0.99

-7 39.01 1 1 1 12169.0 2058.1 32.8 9.4 0.99

-sdp 0.37 1.04394 1.067 – – – – – –

-100-3 42.98 1.00011 1.00406 0.97 13822.6 2197.7 – – 0.98

-5 101.11 1 1 1 19615.7 2327.6 78.6 – 0.99

-7 125.96 1 1 1 22406.2 2370.4 112.3 11.1 0.99

-sdp 0.37 1.04671 1.07381 – – – – – –

468 D. Avis, J. Umemoto

Table 3. All graphs for n = 5, . . . , 10

G time a.ratio w.ratio p iter 3gon 5gon 7gon greedy

all5-3 0.0082 1.0101 1.11111 0.91 11.8 8.4 – – 0.99

-5 0.0073 1 1 1 11.9 8.4 0.1 – 1

-sdp 0.0043 1.04583 1.13064 – – – – – –

all6-3 0.0077 1.00243 1.11111 0.97 20.3 13.8 – – 0.99

-5 0.0069 1 1 1 20.6 13.9 0.1 – 1

-sdp 0.0026 1.02866 1.125 – – – – – –

all7-3 0.0087 1.00192 1.16667 0.96 30.7 20.2 – – 0.99

-5 0.0097 1.00026 1.05 0.99 31.0 20.2 0.1 – 0.99

-7 0.0092 1.00007 1.03333 0.99 31.1 20.2 0.1 0.0 0.99

-sdp 0.0038 1.02962 1.12876 – – – – – –

all8-3 0.0107 1.00102 1.16667 0.97 45.5 28.6 – – 0.99

-5 0.0103 1.00003 1.05 0.99 45.8 28.6 0.1 – 0.99

-7 0.0104 1.00000 1.02778 0.99 46.0 28.8 0.1 0.0 0.99

-sdp 0.0056 1.02769 1.13064 – – – – – –

all9-3 0.0117 1.00084 1.2 0.97 64.5 38.4 – – 0.99

-5 0.0117 1.00002 1.08 0.99 65.1 38.5 0.2 – 0.99

-7 0.0121 1.00001 1.03571 0.99 65.1 38.5 0.2 0.0 0.99

-sdp 0.0097 1.02791 1.13064 – – – – – –

all10-3 0.0113 1.00076 1.2 0.96 87.9 49.7 – – 0.99

-5 0.0114 1.00001 1.08 0.99 89.4 50.0 0.3 – 0.99

-7 0.0125 1.00000 1.03571 0.99 89.4 50.0 0.3 0.0 0.99

-sdp 0.0131 1.02787 1.13064 – – – – – –

Table 4. The number of all 2-connected graphs

n 5 6 7 8 9 10

#G 11 61 507 7442 197772 9808209

column G means that the instances are 2-connected graphs with n vertices and exactly
m edges. The number of the instances is 100 for each graph type. Table 3 gives results
for all 2-connected graphs for n = 5, . . . , 10. The number of the instances is shown in
Table 4. The instances are generated by a graph generator geng included in gtools by
McKay [12].

If we compare the integrality ratio for graphs of different density we can see the
difference between the LP relaxation and the SDP relaxation. The integrality ratio of the
LP relaxation gets bad on average as the density of the graph grows, and it is opposite
in case of the SDP relaxation. As we showed in this paper, the integrality ratio of the LP
relaxations can be bad for sparse graphs. However we got good average integrality ratios

Stronger linear programming relaxations of max-cut 469

for sparse graphs, since the LP relaxation finds the maximum cut for sparse graphs with
high probablity for the values of n considered here. On the other hand, the integrality
ratio of the SDP relaxation got better both on average and in the worst case as the density
grows.

As we can see from the running time in the tables, our program is not competi-
tive with SDPA. Especially, in case of solving G30,0.9 with 3,5,7-gonal inequalities (cf.
Table 1) our program took longer than enumerating all 230 cuts. There are many ways
the program could be improved. We did not handle sparse vectors in any special way.
The program could be made to terminate when the duality gap is smaller than a given
value. On the other hand for sparse graphs (cf. Table 2), our program often obtained a
maximum cut in reasonable time.

Acknowledgements. The authors greatfully acknowledge discussions with Luc Devroye and Bruce Reed. They
are also indebted to an anonymous referee for numerous suggestions for improving the original draft.

References

[1] Arora, S., Karger, D., Karpinski, M.: Polynomial time approximation schemes for dense instances of
NP-Hard problems. Proc. 27th ACM STOC 1995, 284–293

[2] Avis, D., Grishukhin, V.P.: A bound on the k-gonality of facets of the hypermetric cone and related
complexity problems. Computational Geometry: Theor. Appl. 2, 241–254 (1993)

[3] Barahona, F., Mahjoub, A.: On the cut polytope. Math. Prog. 36, 157–173 (1986)
[4] Chernoff, H.: A measure of the assymptotic efficiency for tests of a hypothesis based on the sum of

observations. Annal. Math. Statistics 23, 493–509 (1952)
[5] De Simone, C., Rinaldi, G.: A cutting plane algorithm for the Max-Cut problem. Optim. Method &

Softw. 3, 195–214 (1994)
[6] Deza, M.(M.E. Tylkin): Realizablility of distance matrices in unit cubes (in Russian). Problemy Ky-

bernetiki 7, 31–42 (1962)
[7] Deza, M., Grishukhin,V.P., Laurent, M.: The hypermetric cone is polyhedral. Combinatorica 13, 397–411

(1993)
[8] Deza, M., Laurent, M.: Geometry of Cuts and Metrics Springer, 1997
[9] Fujisawa, K., Kojima, M., Nakata, K.: SDPA(SemiDefinite Programming Algorithm) User’s Manual

– Version 5.00. Department of Mathematical and Computer Science, Tokyo Institute of Technology,
Research Reports, 1999

[10] Goemans, M., Williamson, D.: 0.878-Approximation Algorithms for MAX CUT and MAX 2SAT. Proc
26th STOC, 1994, pp. 422–431

[11] Laurent, M., Poljak, S.: Gap inequalities for the gap polytope. Europ. J. Combinatorics 17, 233–254
(1996)

[12] McKay, B.: Practical graph isomorphism. Congr. Numer. 30, 45–87 (1981)
[13] Poljak, S., Tuza, Zs.: The expected relative error of the polyhedral approximation of the Max-Cut prob-

lem. Oper. Res. Lett. 16, 191–198 (1994)
[14] Seymour, P.: Matroids and multicommodity flows. European J. Combinatorics 2, 257–290 (1981)
[15] Van Ngoc, N., Tuza, Zs.: Linear-time Approximations of the Max-Cut Problem. In: G. Halász, D. Miklós

and T. Szönyi (eds) Graphs and Numbers, Colloq. Math. Soc. János Bolyai 60, North-Holland, Amster-
dam 1992, pp. 569–581

[16] Umemoto, J.: Linear Programming Relaxations of Max-Cut. Master’s Thesis, Graduate School of Infor-
matics, Kyoto University, 2002

