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Abstract. We present mathematical models and solution algorithms for a family of staff scheduling problems
arising in real life applications. In these problems, the daily assignments to be performed are given and the
durations (in days) of the working and rest periods for each employee in the planning horizon are specified in
advance, whereas the sequence in which these working and rest periods occur, as well as the daily assignment
for each working period, have to be determined. The main objective is the minimization of the number of
employees needed to perform all daily assignments in the horizon.

We decompose the problem into two steps: the definition of the sequence of working and rest periods
(called pattern) for each employee, and the definition of the daily assignment to be performed in each working
period by each employee. The first step is formulated as a covering problem for which we present alternative
ILP models and exact enumerative algorithms based on these models. Practical experience shows that the best
approach is based on the model in which variables are associated with feasible patterns and generated either
by dynamic programming or by solving another ILP. The second step is stated as a feasibility problem solved
heuristically through a sequence of transportation problems. Although in general this procedure may not find
a solution (even if one exists), we present sufficient conditions under which our approach is guaranteed to
succeed. We also propose an iterative heuristic algorithm to handle the case in which no feasible solution is
found in the second step.

We present computational results on real life instances associated with an emergency call center. The
proposed approach is able to determine the optimal solution of instances involving up to several hundred
employees and a working period of up to 6 months.

Key words. staff scheduling – integer linear programming – column generation – branch-and-bound – max-
imum flow – heuristic algorithms – computational results

1. Introduction

Staff scheduling problems are frequently encountered in the Operations Research lit-
erature. These problems require the definition of the work to be performed in a given
planning horizon by employees working in companies (e.g., hospitals, fire departments,
production plants, call centers, transportation companies, etc.) which are typically active
from 16 to 24 hours every day. The problem is often approached by first defining the
short-term assignments for the employees (Phase 1), corresponding to the work to be
performed without interruption within a short period (typically one day), and then com-
posing these short-term assignments into long-term assignments (Phase 2), so as to take
care of the rests for the employees, corresponding to the overall work in the planning
horizon.
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For the relevant case of traveling personnel for transportation companies, there are
many possible ways of defining the short-term assignments (called pairings in that con-
text) and the rules that make such assignments feasible are quite complicated. This makes
Phase 1 often the most important within these applications, also considering that, once
the short-term assignments have been determined, Phase 2 is less critical, although still
NP-hard and challenging from a research viewpoint (see e.g., [13, 4, 17]).

In many other cases, there is a small list of possible short-term assignments, e.g.,
either from 6 AM to 2 PM, from 2 PM to 10 PM or from 10 PM to 6 AM. In these cases,
Phase 1 is essentially already solved and the relevant part is Phase 2. In our case, all
the short-term assignments we consider have a duration of less than one day (typically
8 hours) and are called duties. We call assignment the work to be performed by some
employee in the planning horizon and workload the overall work to be performed in
some day of the planning horizon by the employees, i.e., the set of duties required on
that day.

Surveys of the vast literature on Staff Scheduling can be found in [27, 3, 16]. In gen-
eral, the solution to the problem is subdivided into five stages: (i) determination of the
duties (corresponding to Phase 1 above), (ii) determination of the (minimum) number
of employees required to “cover” all the duties, (iii) definition of the rest periods, (iv)
definition of the sequence of working days and rest periods for each employee, and (v)
definition of the duties for each employee (in the days in which he/she works).

In many cases, once Stages (i) and (ii) have been solved, the number of employees
being m, the long-term assignment spans m weeks. The assignment of each employee
repeats cyclically every m weeks and, in each week, employee i + 1 has the same as-
signment as employee i in the previous week. In other cases, employees have different
characteristics and therefore must be assigned different assignments. In this paper, we
consider a real life problem in which all employees are considered equal but their assign-
ments may be different during the planning horizon, although the number of working
days and the durations of the rest periods are the same for each employee.

More specifically, in our case, Stage (i) has already been solved, and we must cope
with Stages (ii)–(v). For each employee, there is a predetermined number of work-
ing periods and rest periods, each with an associated duration (in days), and we have
to decide the sequence of working and rest periods along with the duty performed in
each working period (the duty must be the same for all days of the working period). A
formal definition of the problem along with a concrete real life example are given in
Section 2.

Our approach finds the solution of the problem in two steps. In Step 1, corresponding
to Stages (ii), (iii) and (iv) and addressed in Section 3, we determine the minimum num-
ber of employees and the associated pattern for each employee, i.e., the days in which
the employee works (without specifying the corresponding duty) and the days in which
he/she has a rest, so as to guarantee that at least the required number of employees are
working on each day. This step is approached by formulating the problem as an Integer
Linear Program (ILP) and finding an optimal solution by branch-and-bound, possibly
combined with column generation. In Step 2, corresponding to Stage (v) and discussed
in Section 4, we associate a duty with each working period so as to ensure feasibility
while balancing the total amount of work among the employees. We solve this step as
a sequence of Transportation Problems, one for each day of the planning horizon. If
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no feasible solution is found we iteratively apply Steps 1 and 2 (suitably changing the
workload) until an overall feasible solution is found.

Decomposition, that does not necessarily lead to an optimal solution, is motivated by
the fact that the difficult part is the first one, whereas assigning duties to the employees
once the corresponding patterns have been fixed is easy in our real life application. On
the other hand, an ILP formulation for the whole problem would be considerably larger
(and harder to handle) than the one we use in Step 1.

In Section 5 we present extensive computational experiments on a real life applica-
tion of our problem arising in an emergency call center. At present, the number and size
of call centers in Europe is rapidly increasing, and call centers have become an impor-
tant source of staff scheduling problems for Operations Research practitioners. The call
center we consider belongs to an Italian company providing SOS electronic devices,
and receives emergency calls from a pushbutton SOS telephone system, containing an
automatic dialer. The problem is to schedule the employees that answer emergency calls
24 hours a day.

To the best of our knowledge, our problem was not addressed in the literature before.
This is not surprising, since different contexts typically give rise to (sometimes substan-
tially) different staff scheduling problems. However, ILP approaches possibly combined
with column generation were used in many other staff scheduling applications [21, 12,
25, 1, 8, 20, 7, 26, 10, 22, 9, 2, 11, 24], to cite the most recent ones. Our main contribution
is the design of effective column generation procedures for our specific problem, that
lead to a fast solution of Step 1. Moreover, the determination of the duties correspond-
ing to the working periods, solved in Step 2, is a combinatorial problem with a simple
structure, but we could not find it mentioned in the literature. Our main contribution is
the derivation of sufficient conditions under which the problem has a solution, along
with a heuristic for the general case that is effective for our real life instances.

2. The staff scheduling problem

We consider a planning horizon of n days, that are denoted by N := {1, . . . , n}. The
duties to be performed each day, i.e., the output of Phase 1 (also called Stage (i)) men-
tioned in the introduction, are actually already fixed by the company and are an input
to our problem. In particular, there are nd different duties {1, . . . , nd} (generally having
the same duration). For q = 1, . . . , nd and j ∈ N , duty q requires eqj employees for
day j . We let fj denote the overall number of employees that must work on day j , i.e.,
fj := ∑nd

q=1 eqj . As already mentioned, all employees are considered equal, even if
initial conditions may be imposed for some of them (see below).

Our aim is to solve Phase 2 mentioned in the introduction, i.e., to arrange the duties
into assignments for the employees, with the following constraints.

– Each employee performs working periods of consecutive days, called blocks in the
sequel, and after each block has a rest of consecutive days, called simply rest in the
sequel. Within each block, the employee performs the same duty. If the duty of each
day of the block is q, we say that the block is of color q.

– There are nt block types, the t th having a duration (in days) equal to kt . Each em-
ployee must perform exactly bt blocks of type t for t = 1, . . . , nt .
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– There are nr rest types, the rth having a duration (in days) equal to dr . Each employee
must have exactly ar rests of type r for r = 1, . . . , nr .

– There is a list of infeasible sequences of the form {(t1, q1), r, (t2, q2)}, with t1, t2 ∈
{1, . . . , nt }, q1, q2 ∈ {1, . . . , nd} and r ∈ {1, . . . , nr}, meaning that it is not possible
to have a block of type t1 and color q1 followed by a block of type t2 and color q2,
with a rest of type r in between.

– Each employee works for at most s days among those in a given set S of special days,
generally the Sundays and the other holidays within the planning horizon. (The week
day corresponding to the first day of the planning horizon is specified on input.)

Sometimes we will consider the situation in which the constraint on the number of
working special days is not active. We will simply say that S = ∅ in this case.

Note that block and rest types are uniquely defined by their duration, and that the
above constraints are consistent only if the total number of blocks is equal to the total
number of rests and the total number of working and rest days is equal to the number of
days in the planning horizon, i.e.,

∑nt
t=1 bt = ∑nr

r=1 ar and
∑nt
t=1 ktbt+

∑nr
r=1 drar = n.

In addition, for each employee, a block or a rest can be split between the first and the
last days of the planning horizon (e.g., a block of duration 3 can span days 1, n− 1, n).
In this case, different colors may be assigned to the two parts of the block. Conversely,
if the first and last day of the planning horizon are both working days or both rest days,
they must belong to the same block or rest, respectively. As some of the employees can
be already working before the beginning of the planning horizon, for these employees
initial conditions specify a block of type t to be performed by the employee for up to
the first kt − 1 days, along with the associated color, or the presence of a rest of type r
that terminates within the first dr − 1 days – in this case, the initial conditions specify
also the type and color of the last block performed by the employee.

The natural objective for the problem is the minimization of the global number of
employees (Stage (ii)).

We now show that our problem is strongly NP-hard, even in a very special case.

Proposition 1. The problem of determining whether one employee can cover all the du-
ties is strongly NP-complete, even if nd = 1, nt = 1, there are no infeasible sequences,
and S = ∅.

Proof. We illustrate an easy polynomial reduction from the well-known strongly NP-
complete Three Partitioning Problem (3PP) [18], where one wants to check whether 3m
items, the j th of integer size sj ∈ (c/4, c/2) (j = 1, . . . , 3m), with

∑3m
j=1 sj = m · c,

can be packed (in triples) into m identical bins of positive integer capacity c.
We let the number of days be n := (c+ 3) ·m and fj := 1 for j = c+ 3, 2(c+ 3),

. . . , m(c + 3); fj := 0 for the other days, i.e., only every c + 3 days one employee is
requested. Here, each group of c + 3 consecutive days (starting from day 1) represents
a bin. All blocks have the same duration, equal to 1 day, i.e., nt := 1 and k1 := 1.
Moreover, there are 3m rest types, the j th of duration dj := sj days. This means that
each employee works for 3m days in the planning horizon. Since the duration of each
rest is in (c/4, c/2), it is easy to check that the only way for an employee to cover days
i(c + 3) and (i + 1)(c + 3) for some i = 1, . . . , m is to have three rests whose overall
duration is c (and two blocks without work) between two blocks on the two given days.
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This shows that all the workload can be covered by one employee if and only if there
exists a feasible solution to the original 3PP instance, yielding the proof.

In our application, employees have to be present 24 hours a day; every day 14
employees have to work from 6 AM to 2 PM, 14 from 2 PM to 10 PM and 14 from
10 PM to 6 AM. Moreover, from Monday to Saturday, 7 employees have to work from
9 AM to 5 PM, 7 from 10:30 AM to 6:30 PM, and 7 from 12:30 PM to 8:30 PM. The
set S of special days includes all Sundays. According to our notation, we have nd := 6,
eqj := (14, 14, 14, 0, 0, 0) for j ∈ S and eqj := (14, 14, 14, 7, 7, 7) for j ∈ N \ S.
This means that fj = 63 if j is not a Sunday and fj = 42 otherwise. Table 1 gives the
resulting number of employees required at each time window.

For each pair of consecutive blocks performed by an employee with a 1-day rest in
between, the duty of at least one of the blocks must be different from 10 PM–6 AM.
This is the only infeasible sequence of our case study.

The length of the planning horizon is n := 112 days (i.e., almost 4 months). All
blocks have the same duration k := 3, i.e., nt := 1 and k1 := 3. The number of blocks
b1 = b in each pattern is determined by the constraint that each employee must work for
up to 38 hours a week (on average). Considering that the duration of each duty is 8 hours,
this means that the number of working days must not exceed 38·n

7·8 , i.e., b := � 38·n
7·8·3�. (On

average, each employee works 6–7 days out of 10 within the planning horizon.) Hence,
for our application, b := 25. As for the rests, each pattern must have one rest of 5 days,
while the duration of the remaining b− 1 rests is either 1 or 2. In particular, we have 16
rests of 1 day, and 8 rests of 2 days, i.e., according to our notation, nr := 3, d := (1, 2, 5)
and a := (16, 8, 1). The maximum number s of working special days (Sundays) is 2/3
of the number of weeks (rounded down), i.e., s := 10.

3. Step 1: finding the patterns

For notational convenience, unless otherwise specified, in this section all indices for the
days are understood to be modulo n (letting h · n mod n := n for any integer h, so as
to have the days numbered from 1 to n). Moreover, we let M := {1, . . . , m} denote
the set of employees available (supposing m employees are sufficient to cover all the
workload), T := {1, . . . , nt } the set of block types, and R := {1, . . . , nr} the set of rest
types.

We present two mathematical formulations for this step. The first one, illustrated in
Section 3.1, is descriptive, having decision variables for each employee specifying when
he/she starts a block or a rest of a certain type, whereas the second one, illustrated in
Section 3.2, is of the covering type (frequently found in the literature, see, e.g., [6, 5])
and has one variable for each feasible pattern for an employee. In Section 3.3 we discuss

Table 1. Number of employees required in our application.

12AM–9 9–10:30 10:30–12:30PM 12:30–5 5–6:30 6:30–8:30 8:30–12AM
day ∈ S 14 14 14 14 14 14 14
day /∈ S 14 21 28 35 28 21 14
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how to handle the possibly huge number of variables of this latter formulation, and in
Section 3.4 we compare the lower bounds provided by the Linear Programming (LP)
relaxations of the different formulations.

Note that �L0� is an obvious lower bound on the minimum number of employees,
where

L0 := max

{

max
j∈N

fj ,

∑
j∈N fj

∑
t∈T ktbt

,

∑
j∈S fj
s

}

. (1)

This means that the number of employees must be at least equal to the maximum daily
request, to the ratio between the overall number of duties in the planning horizon and the
overall number of working days for each employee, and to the ratio between the overall
number of duties in the special days and the maximum number of working special days
for each employee.

We will show that the lower bounds associated with the LP relaxation of our formu-
lations dominate this bound, but also that, in case of constant workload, the optimal LP
values coincide with (1).

3.1. A descriptive formulation

In our first ILP formulation, we use the following natural binary variables:

zi =
{

1 if employee i is active
0 otherwise

(i ∈ M),

xtij =
{

1 if employee i starts a block of type t on day j
0 otherwise

(i ∈ M; j ∈ N; t ∈ T ),

and

wrij =
{

1 if employee i starts a rest of type r on day j
0 otherwise

(i ∈ M; j ∈ N; r ∈ R).

Note that an employee works on day j if and only if he/she starts a working block of
type t (for some t ∈ T ) in one of the days j − kt + 1, . . . , j . Analogously, an employee
is on rest on day j if and only if he/she starts a rest of type r (for some r ∈ R) in one of
the days j − dr + 1, . . . , j .

Note also that, if we used binary variables x̃tij taking value 1 if employee i performs
a block of type t on day j , it would be complicated to express the fact that the employee
actually works for kt consecutive days. Moreover, it is easy to express x̃tij as a linear

function of the xtij , namely x̃tij = ∑j
h=j−kt+1 x

t
ih, whereas the converse is false. Clearly,

the same holds for binary variables w̃rij , indicating whether employee i is on a rest of
type r on day j .

The problem can be formulated in the following way:

min
∑

i∈M
zi (2)
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∑

i∈M

∑

t∈T

j∑

h=j−kt+1

xtih ≥ fj (j ∈ N) (3)

∑

j∈N
xtij = btzi (i ∈ M; t ∈ T ) (4)

∑

j∈N
wrij = arzi (i ∈ M; r ∈ R) (5)

∑

t∈T

j∑

h=j−kt+1

xtih +
∑

r∈R

j∑

h=j−dr+1

wrih = zi (i ∈ M; j ∈ N) (6)

∑

t∈T
xtij −

∑

r∈R
wri(j−dr ) = 0 (i ∈ M; j ∈ N) (7)

∑

t∈T
xti(j−kt ) −

∑

r∈R
wrij = 0 (i ∈ M; j ∈ N) (8)

∑

j∈S

∑

t∈T

j∑

h=j−kt+1

xtih ≤ szi (i ∈ M) (9)

zi ∈ {0, 1} (i ∈ M) (10)

xtij ∈ {0, 1} (i ∈ M; j ∈ N; t ∈ T ) (11)

wrij ∈ {0, 1} (i ∈ M; j ∈ N; r ∈ R). (12)

Inequalities (3) guarantee that at least fj employees are working on day j . Equations
(4) and (5) guarantee that each active employee performs bt blocks of type t and has ar
rests of type r during the planning horizon, respectively. Equations (6) guarantee that,
on each day j of the planning horizon, each active employee is either performing a block
or a rest. Equations (7) guarantee that an employee starts a block of some type on day j
if and only if he/she starts a rest of type r on day j − dr for some r ∈ R (and therefore
ends the rest on day j−1). Similarly, equations (8) impose that an employee starts a rest
of some type on day j if and only if he/she starts a block of type t , for some t ∈ T , on
day j − kt (and therefore ends the block on day j − 1). Finally, inequalities (9) ensure
that each employee works for at most s special days within the planning horizon.

Possible initial conditions can be incorporated in the above model as follows. For
all t ∈ T and j ∈ {0, . . . , kt − 1}, let Ajt denote the set of employees that end a block
of type t on day j . Analogously, for all r ∈ R and j ∈ {0, . . . , dr − 1}, let Bjr denote
the set of employees that end a rest of type r on day j . Note that all the Ajt and Bjr
sets form a partition of the set of employees for which an initial condition is specified
(in particular these sets are pairwise disjoint). Initial conditions are imposed by forcing
xti(j−kt+1) = 1 for i ∈ Ajt and wri(j−dr+1) = 1 for i ∈ Bjr .

According to the above discussion, the solution of ILP (2)–(12) (with the possible
addition of the initial conditions) by a general-purpose ILP solver yields an optimal set
of patterns.

In Appendix A, we give an illustration of additional valid inequalities that can be
used to strengthen the LP relaxation of (2)–(12). In particular, we show that there are
polynomially many clique inequalities that can be added to this LP, namely
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∑

t∈T

j+�∑

h=j−kt+kmin

xtih +
∑

r∈R

j+kmin−1∑

h=j−dr+�+1

wrih ≤ zi

(i ∈ M; j ∈ N; � = −1, . . . , kmin + dmin − 1), (13)

where kmin := mint∈T kt and dmin := minr∈R dr and with the convention that, if for
some t ∈ T or r ∈ R, the up index of the inner summation is smaller than the down one,
no term has to be considered in the summation.

Generally, infeasible sequences involve only blocks of specified colors, and there-
fore they cannot be imposed in Step 1. However, if the sequence {(t1, q1), r, (t2, q2)} is
infeasible for all color pairs (q1, q2), the following simple constraints can be added to
formulation (2)–(12):

x
t1
ij + wri,j+kt1 + x

t2
i,j+kt1+dr ≤ 2 (i ∈ M; j ∈ N).

These constraints can be strengthened through a standard lifting procedure.

3.2. A covering formulation

In order to define the second model, we let P be the set of all feasible patterns for an
employee. In particular, each pattern can be represented by a 0–1 vector with n entries,
the j th equal to 1 if the employee is working on day j and 0 otherwise. By defining

yP = number of employees who are performing pattern P (P ∈ P),

we obtain the following ILP formulation:

min
∑

P∈P
yP (14)

∑

P∈Pj

yP ≥ fj (j ∈ N) (15)

yP ≥ 0, integer (P ∈ P), (16)

where Pj ⊂ P denotes the set of feasible patterns that require working on day j . Note
that, when S = ∅, given the 0–1 vector v = (v1, . . . , vn) representing a feasible pat-
tern P ∈ P , for every j ∈ N the vector of the form (vj+1, vj+2, . . . , vn, v1, . . . , vj )

(obtained by shifting v by j days) represents a feasible pattern as well.
For small instances, it is possible to explicitly generate all patterns in P and to include

all the corresponding variables into the model. In other cases, one must resort to column
generation techniques, which are discussed in Section 3.3. In the following, when we
refer to model (14)–(16), we will use the terms “pattern”, “variable” and “column” as
synonyms.
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The additional constraints to impose possible initial conditions are the following:

∑

P∈Cj t
yP ≥ |Ajt | (t ∈ T ; j ∈ {0, . . . , kt − 1}) (17)

∑

P∈Djr

yP ≥ |Bjr | (r ∈ R; j ∈ {0, . . . , dr − 1}). (18)

where Cj t ⊂ P and Djr ⊂ P denote the set of feasible patterns for which a block of
type t and a rest of type r ends on day j , respectively. Constraints (17) and (18) require
the selection of at least |Ajt | and |Bjr | patterns ending a block of type t and a rest of
type r on day j , respectively.

3.3. Column generation

The straightforward way to solve ILP (14)–(16) is by a general-purpose ILP solver.
In this section, we discuss three different methods to handle the LP relaxation of this
model when the number of variables is too large to have all of them explicitly in the
model. In Section 5 we briefly illustrate how we incorporated these methods into a
branch-and-bound algorithm.

The dual of the LP relaxation of (14)–(16) reads

max
∑

j∈N
fj πj (19)

∑

j∈JP
πj ≤ 1 (P ∈ P) (20)

πj ≥ 0, (j ∈ N). (21)

where JP denotes the set of working days for each pattern P ∈ P . Column generation
amounts to checking if a given dual solutionπ∗ violates some of the constraints (20), i.e.,
if the corresponding primal variable has negative reduced cost. If each day j is assigned
a profit π∗

j , the problem corresponds to finding (if any) a pattern whose working days
have an overall profit greater than 1.

The first method, referred to as Pricing -CG in the sequel, is the explicit generation
of all variables and the use of a pricing technique that computes the reduced costs for
all variables not in the current model and adds (a subset of) those with negative reduced
cost. Since there may be many such variables, it is often not necessary to compute all
reduced costs in each pricing iteration. More details about this technique will be given
in Section 5. In any case, this method can be applied in practice as long as the overall
number of feasible patterns does not exceed, say, a few millions.

The second method, referred to as ILP -CG in the sequel, generates columns with
negative reduced costs (if any) by using a simple variant of model (2)–(12). In particular,
we are looking for a single pattern and thereforeM := {1}, the objective function reads
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max
∑

j∈N

∑

t∈T




j+kt−1∑

h=j
π∗
h



 xt1j , (22)

variable z1 is fixed to 1 and constraints (3) are not present. We also consider the variant
of this approach, denoted by ILPC-CG, with the addition of the clique constraints (13).

The third method, referred to as DP -CG in the sequel, is based on dynamic pro-
gramming. To this aim, we define a table giving the maximum profit that can be achieved
in days from 1 to j by a pattern that, within these days, contains a certain number of
blocks and rests of each type and works for a certain number of special days. Formally,
the entries of the table are of the form

ρ(j, s, b1, . . . , bnt , a1, . . . , anr ),

defined for j = 1, . . . , n+θ; s = 0, . . . , s; bt = 0, . . . , bt (t ∈ T ); ar = 0, . . . , ar (r ∈
R), where θ := maxt∈T kt + maxr∈R dr . Here, the day indices are not modulo n. The
extended range for the values of j with respect to N is due to the fact that blocks and
rests can be split between the first and the last days of the planning horizon. The com-
putation of the entries in the table is carried out by initializing ρ(j, 0, . . . , 0) := 0, for
j = 1, . . . , θ . The remaining entries are initially set to −∞ and computed from the
initial ones by considering the insertion of a block starting on day j followed by a rest
in the pattern associated with an entry ρ(j, . . .) already computed. More precisely, for
each entry ρ(j, s, b1, . . . , bnt , a1, . . . , anr ) already computed and such that j ≤ n, we
consider all pairs t ∈ T and r ∈ R such that bt < bt , ar < ar , and the number s′ of
special days contained in {j, . . . , j + kt − 1} satisfies s + s′ ≤ s. We then set the value
of

ρ(j + kt + dr , s + s′, b1, . . . , bt + 1, . . . , bnt , a1, . . . , ar + 1, . . . , anr )
to the maximum between the current value and

ρ(j, s, b1, . . . , bt , . . . , bnt , a1, . . . , ar , . . . , anr )+
j+kt−1∑

h=j
π∗
h .

All the entries of the form ρ(j, s, b1, . . . , bnt , a1, . . . , anr ) with j ∈ {n + 1, . . . ,
n+θ} and s ∈ {0, . . . , s} correspond to profits of feasible patterns. Hence the maximum
profit of a pattern is given by the maximum of these entries, and all entries with profit
greater than 1 correspond to columns with negative reduced cost. The associated patterns
can be reconstructed by storing the predecessor of each entry of the table in a standard
way.

The overall space complexity of the dynamic programming procedure is

O(n · s ·
∏

t∈T
bt ·

∏

r∈R
ar),

whereas the time complexity is

O(n · s · nt · nr ·
∏

t∈T
bt ·

∏

r∈R
ar),

since each entry of the table is used to update up to O(nt · nr) other entries.
It is simple to adapt the column generation methods above in case infeasible

sequences and/or initial conditions are imposed.
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3.4. Comparison of the lower bounds

In this section, we show the dominance relations between the lower bounds on the mini-
mum number of employees given byL0, defined by (1), the valueL1 of the LP relaxation
of (2)–(12), the value L2 of the LP relaxation of (2)–(12) with the addition of the clique
constraints (13), and the value L3 of the LP relaxation of (14)–(16). We also show that,
in the (relevant) case in which the workload is constant and the set of special days is
empty, all these bounds coincide.

Proposition 2. L3 ≥ L2 ≥ L1 ≥ L0. Moreover, if fj = f for j ∈ N and S = ∅, all
the inequalities hold as equalities.

Proof. The relation L3 ≥ L2 follows from a general result of [19], which states that L3
is the optimal value of the LP obtained from (2)-(12) by adding all inequalities of the
form ∑

t∈T

∑

j∈N
γ tj x

t
ij +

∑

r∈R

∑

j∈N
δrjw

r
ij ≤ εzi (i ∈ M), (23)

where
∑
t∈T

∑
j∈N γ

t
j x
t
ij + ∑

r∈R
∑
j∈N δrjw

r
ij ≤ ε is a valid inequality for the con-

vex hull of the 0-1 vectors (xtij ), (w
r
ij ) associated with a feasible pattern for a generic

employee i (the convex hull is clearly independent of i). In particular, inequalities (23)
include all clique inequalities (13).

Relation L2 ≥ L1 is obvious. We next show that L1 ≥ L0. Note that equations (6)
imply that, for each i ∈ M, j ∈ N ,

∑
t∈T

∑j
h=j−kt+1 x

t
ih ≤ zi . Hence, for each day

j ∈ N
∑

i∈M
zi ≥

∑

i∈M

∑

t∈T

j∑

h=j−kt+1

xtih ≥ fj

where the second inequality follows from (3). This shows L1 ≥ maxj∈N fj . Moreover
(
∑

t∈T
ktbt

)(
∑

i∈M
zi

)

=
∑

i∈M

∑

t∈T
ktbt zi =

∑

i∈M

∑

t∈T
kt
∑

j∈N
xtij =

∑

i∈M

∑

t∈T

∑

j∈N
ktx

t
ij

=
∑

i∈M

∑

t∈T

∑

j∈N

j∑

h=j−kt+1

xtih=
∑

j∈N

∑

i∈M

∑

t∈T

j∑

h=j−kt+1

xtih≥
∑

j∈N
fj ,

where the second equality follows from (4), the fourth equality from the easily verified
relation

∑
j∈N ktx

t
ij = ∑

j∈N
∑j
h=j−kt+1 x

t
ih, and the last inequality from (3). This

shows L1 ≥
∑
j∈N fj∑
t∈T kt bt

. Finally,

s
∑

i∈M
zi =

∑

i∈M
szi ≥

∑

i∈M

∑

j∈S

∑

t∈T

j∑

h=j−kt+1

xtih =
∑

j∈S

∑

i∈M

∑

t∈T

j∑

h=j−kt+1

xtih ≥
∑

j∈S
fj ,

where the first inequality follows from (9) and the second from (3). This shows L1 ≥∑
j∈S fj
s

.
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We conclude the proof by showing that L3 = L0 if fj is equal to a constant f for
each j ∈ N and S = ∅. Note that in this case the third term in (1) is undefined (and
should be considered equal to 0) and

max
j∈N

fj = f ≤ n · f
∑
t∈T ktbt

=
∑
j∈N fj

∑
t∈T ktbt

,

i.e., the maximum in (1) is given by the second term. For each 0-1 vector v representing
a feasible pattern P ∈ P , the number of 1s is

∑
t∈T ktbt . Consider an arbitrarily chosen

such vector and all the vectors that can be obtained by shifting it by j days, j ∈ N ,
letting P1, . . . , Pn be the corresponding patterns (that are all feasible since S = ∅). It
is simple to verify that the solution of the LP relaxation of (14)–(16) in which the only
nonzero variables are yPj (j ∈ N ), each equal to f∑

t∈T kt bt
, is feasible and has value

equal to n·f∑
t∈T kt bt

, i.e., all inequalities in the statement of the proposition are tight in this
case.

For many problems, the LP relaxation of a covering formulation like (14)–(16) yields
on average significantly better bounds than the one of a descriptive ILP model like (2)–
(12).

However, this is not the case here since, as illustrated in Section 5, L3 and L1 (and
hence L2) coincide for almost all the instances in our test bed. The discussion in Appen-
dix B is aimed at showing why this is not surprising. In any case, Section 5 also shows
that model (14)–(16) (possibly handled by column generation) turns out to be much
more effective than (2)–(12) in practice, even when the LP lower bounds coincide. This
situation is analogous to that of multicommodity flow problems, in which a descriptive
formulation with one variable for each arc-commodity pair, and a packing formulation
with one variable for each path, have the same LP relaxation value, but the latter is much
better in practice even if it has an exponential number of variables (see, e.g., [14]).

4. Step 2: assigning block colors

Given the patterns found in the previous step, each associated with an employee, in the
second step we define the color of the blocks in each pattern. Here, the main objective
is to find a feasible solution, called feasible color assignment. Note that there may be
no feasible color assignment associated with a given feasible set of patterns, even if a
feasible solution of the overall problem with the same number of employees exists (see
the examples in Tables 2 and 3). Moreover, our approach to this second step is heuristic
in nature, in that it does not guarantee finding a feasible color assignment even if such an
assignment exists. Nevertheless, in some relevant special cases our method surely finds
a feasible assignment. We first discuss conditions for the existence of a feasible color
assignment in Section 4.1, and then present our approach in Section 4.2, illustrating in
Section 4.3 how we handle the case in which no feasible solution is found, so as to obtain
a heuristic solution for the overall problem.

As already mentioned in Section 2, for a block spanning days 1 and n, the two parts in
which it is split need not have the same color. Correspondingly, such a block is replaced
by two separate parts (each called block in the sequel) that may be assigned different
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colors. This yields sufficient conditions for the existence of a feasible color assignment,
discussed in Section 4.1. Note finally that there may be a feasible color assignment in
which some blocks need not have a color, since the presence of the corresponding em-
ployee is not required for any day of the block in order to reach the requested number
of employees on that day. In this case, the employee may be given kt days off instead of
performing a block of type t . We call these blocks dummy blocks.

Table 2 shows a feasible set of patterns found in Step 1 (with the parameters of
our specific application, see Section 2) for three employees for the first 15 days of the
planning horizon. Assume that no infeasible sequences exist and that there are two du-
ties: duty 1 to be performed every day of the planning horizon by one employee and
duty 2 to be performed all days except Sundays (i.e., days 1, 8, 15) by one employee.
Clearly, the color of the block performed by employee 1 on day 1 must be 1. This
forces the blocks starting on days 2, 3, 4, 6, 7, 9, 10, 12, 13, to be, respectively, of color
2, 1, 2, 1, 2, 1, 2, 1, 2, and in particular imposes that the block performed by employee
1 on day 15 is of color 2, which is infeasible since no employee then performs duty 1
on day 15.

A set of patterns leading to a feasible color assignment, at least for the first 15 days,
is given in Table 3, where only the pattern for employee 3 is changed with respect to
Table 2 (see line 3′). Indeed, there exists a feasible color assignment in which employees
1 and 2 perform the same duties as before, while employee 3′ performs blocks of color
2, 1, 2 and 1 starting on days 1, 6, 10 and 15, respectively.

We observe that the problem of checking whether there exists a feasible color as-
signment is strongly NP-complete.

Proposition 3. The problem of determining whether there exists a feasible color assign-
ment is strongly NP-complete, even if nt = 1 and the workload is constant.

Proof. We illustrate an easy polynomial reduction from the well-known strongly
NP-complete Edge Coloring Problem for 3-regular graphs (ECP) [18], where one wants
to check whether the edges of an undirected graph G = (V ,E), in which each vertex
has degree three, can be colored with three colors so that no two edges incident with a
same vertex receive the same color.

Table 2. A feasible set of patterns which has no feasible color assignment.

Day
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 x x – x x x – – x x x – x x x
Empl. 2 – – x x x – x x x – – x x x –

3 – x x x – x x x – x x x – – –

Table 3. A feasible set of patterns which is a simple variation of that of Table 2 and has a feasible color
assignment.

Day
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 x x – x x x – – x x x – x x x
Empl. 2 – – x x x – x x x – – x x x –

3’ x x x – – x x x – x x x – – x
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We let the number of days be n := |V | and the number of duties be nd := 3. More-
over, each duty requires one employee every day, i.e., eqj := 1, for q = 1, 2, 3 and
j = 1, . . . , n. We let the number of patterns (and employees) be |E|, namely for each
edge (i, j) ∈ E, there is a pattern composed of two blocks whose duration is one day,
one block in day i and the other in day j , and we define infeasible sequences forcing
these two blocks to receive the same color. Note that the number of working blocks in
each day is equal to three.

Observing the obvious correspondence between days and vertices, duties and edge
colors, and patterns and edges, it is easy to realize that there exists a feasible color assign-
ment if and only if one can assign the same color to the two blocks in each pattern (i.e.,
each edge in G receives only one color) and, for each day, a different duty is assigned
to each block (i.e., the edges incident to the same vertex receive three different colors).
In other words, there exists a feasible color assignment if and only if the original ECP
instance has a solution.

The complexity of the problem if no infeasible sequences are imposed is open.

4.1. The case of constant workload and no infeasible sequences

There is a relevant case in which, for every feasible set of patterns, a feasible color as-
signment exists (and can be found efficiently). This happens when there are no infeasible
sequences and the workload is constant during the planning horizon, i.e., according to
the notation in Section 2, eqj = eq for j ∈ N and q ∈ A, where A := {1, . . . , nd}
denotes the set of duties. For j ∈ N , let m(j) be the number of employees that are
working on day j according to the given set of patterns. For convenience, we re-define
the duties so that, for each duty q ∈ A, exactly one employee must perform q every
day. This amounts to replacing each duty q that originally required eq employees by
eq different duties with requirement one. It is easy to see that this does not change the
problem since eq does not depend on the specific day. After this re-definition we have
eq = 1 for q ∈ A, and nd is the number of employees required each day.

Let nb be the overall number of blocks. The problem of finding a feasible color as-
signment can be formulated as a max-flow problem, as follows. Given the set of patterns
and the associated blocks, let G = (V ,E) be the directed graph with one vertex for
each block plus a dummy source vertex s and a dummy sink vertex t . For each pair of
vertices v1 and v2, there is an arc (v1, v2) ∈ E if and only if the associated blocks, say
b1, b2, spanning days h1, . . . , j1 and h2, . . . , j2, respectively, satisfy h1 < h2 ≤ j1 + 1
and j2 ≥ j1 +1, i.e., b2 starts and ends later than b1 (but does not start later than the day
after the end of b1). Such an arc (v1, v2) represents the possibility of covering some duty
q with the two blocks for days h1, . . . , j2. Moreover, E contains one arc (s, v) and one
arc (v, t) for each vertex v associated with a block spanning days 1 and n, respectively.
Figure 1 shows the graphG associated with the patterns in Table 3, assuming the length
of the planning horizon is 15 days and also duty 2 has to be performed on Sunday:
vertices (1, . . . , 4), (5, . . . , 7) and (8, . . . , 11) are associated with the blocks performed
by employee 1, 2, and 3, respectively.

Accordingly, for each duty q ∈ A, in order to ensure that the assignment is performed
every day by an employee, the blocks that are assigned color q in a feasible color assign-
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Fig. 1. Graph G = (V ,E) associated with the patterns in Table 3.

ment must be the vertices in a directed path from s to t inG. This implies that there is a
feasible color assignment if and only ifG contains at least nd vertex-disjoint paths from
s to t . Hence, by assigning capacity +∞ to all arcs in E and capacity 1 to all vertices in
V \ {s, t}, we have

Proposition 4. A feasible color assignment exists if and only if the maximum flow from
s to t in G has value at least nd .

We next show that the value of the maximum flow is at leastnd if and only if minj∈N m(j)
≥ nd , i.e., the minimum cut of G has value minj∈N m(j), presenting a simple greedy
procedure to find a feasible color assignment.

The procedure, called Greedy Color, is presented in Figure 2.
Noting nd ≤ nb, procedure Greedy Color can be implemented to run in O(n +

nb log nd) time. This time is achieved by determining, in O(nb) time, for each day
j ∈ N , the blocks starting on day j (then considering the blocks according to increasing
days), and using a heap for the duties, in order to determine, at each iteration, the duty
which is uncovered starting from the smallest day. We next show that the algorithm is
correct.

procedure Greedy Color
begin

let B be the set of available blocks, initially containing all blocks in the given patterns;
repeat

find the block b ∈ B starting on the smallest day j (if B = ∅, let j := n+ 1);
find the duty q ∈ A which is uncovered starting from the smallest day h;
if h < j then

failure (no feasible solution exists)
else

assign color q to block b, remove b from B, and cover duty q until
the last day of b

end if
until all duties are covered

end.

Fig. 2. A pseudo-code description of procedure Greedy Color.
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Proposition 5. If m(j) ≥ nd for j ∈ N , then Greedy Color finds a feasible color
assignment.

Proof. Suppose m(j) ≥ nd for j ∈ N but Greedy Color reaches the failure state,
i.e., h < j within the repeat-until loop. Let q be the duty that cannot be covered. Since
m(h) ≥ nd , there is some other duty r covered by two (or more) blocks b1, b2 on day
h. Assume without loss of generality that b1 was assigned color r before b2. Then, after
assigning color r to block b1, the first day in which r is uncovered is greater than h.
Hence, the color assigned to b2 cannot be r since the first uncovered day of duty q is
smaller than that of r .

Corollary 1. The value of the minimum cut in G is minj∈N m(j).

Proposition 5 proves that every feasible set of patterns has a feasible color assignment.
If the condition of Proposition 5 is satisfied, another simple greedy algorithm, called

Greedy Color k, can be used to find a feasible color assignment when all blocks have
the same duration k (possibly excluding those starting on the first day or ending on the
last day). We present also this procedure as it is closer to the procedure presented in the
next section for the real life case. Greedy Color k considers one duty at a time and
assigns it to the available blocks so as to minimize the number of days in which the duty
is covered more than once. A pseudo-code implementation of the method is given in
Figure 3.

Procedure Greedy Color k can be implemented to run in O(nb + n · k) time. In-
deed, we first determine, in O(nb) time, the number of available blocks ψj starting on
day j , for each day j ∈ N . Then, we define, for each day j ∈ N , the index πj corre-
sponding to the last day ≤ j in which a block spanning day j starts (possibly πj = j ).
At each iteration of the repeat-until loop, the block b is found in constant time, using πj ,
and ψπj is decreased by one unit. The corresponding overall computing time is O(nb).
Whenever, for some day j , the corresponding ψj becomes 0, πj is set to πj−1 and πh,
for h = j+1, . . . , j+k−1, is possibly updated. Since, for each day j ∈ N ,πj becomes
0 at most once, the overall updating of the πs requires O(n · k) time. A more careful
implementation with union-find data structures as those used in Kruskal’s algorithm for
the minimum spanning tree (see, e.g., [15], p. 504) requiresO(nb +n log k) time, using

procedure Greedy Color k
begin

let B be the set of available blocks, initially containing all blocks in the given patterns;
for each q ∈ A do

j := 1;
repeat

find an available block b ∈ B that spans day j and starts as late as possible,
letting h be the last day of b;

assign color q to block b, remove b from B;
j := h+ 1

until j > n

end for each
end

Fig. 3. A pseudo-code description of procedure Greedy Color k.
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separate sets for days j with the same πj and noting that the size of each of these sets
is at most k if a feasible color assignment exists. Full details about this latter approach
are omitted.

Proposition 6. If all blocks have the same duration k and m(j) ≥ nd for j ∈ N ,
Greedy Color k finds a feasible color assignment.

Proof. The proof is by induction on nd . If nd = 1 the claim is clearly true. Supposing it
is true for nd = g−1, we show that it holds also for nd = g. This amounts to showing the
following: after having assigned blocks to duty 1, the number of employees available on
each day is at least g− 1. This is clearly true for all days in which exactly one employee
performs duty 1. It is easy to check that at most two employees are performing duty 1
on each day. (For simplicity, we use day indices without checking if they are< 1 or> n

- each index j should be replaced by 1 if < 1 and by n if > n.) Consider a sequence of
consecutive days j, . . . , j + l, with l < k − 1, in which two employees perform duty
1. This means that one block spanning days j + l − k + 1, . . . , j + l and one block
spanning days j, . . . , j+k−1 are assigned color 1 by Greedy Color k, and therefore
no block starts on days j + 1, . . . , j + l+ 1. Hence, the, at least, g blocks spanning day
j + l + 1 are all starting on a day in j + l − k + 2, . . . , j , and only one of these blocks
is assigned color 1, i.e., in days j, . . . , j + l there are still g − 1 available blocks after
having assigned blocks to duty 1.

4.2. A heuristic for the general case

We now present a heuristic algorithm for the case in which the workload may differ from
day to day and there may be infeasible sequences. In our heuristic, we solve a sequence
of Transportation Problems (TPs), one for each day of the given planning horizon. Note
that the initial conditions may specify the duty of some employees for the first days of
the planning horizon.

We consider days 1, . . . , n in this order. For each day j , the duty for some employees
working on day j (i.e., starting a block of type t on days j, j − 1, . . . , j − kt + 1) is
specified either by the initial conditions or by the choices made for days 1, . . . , j − 1.
Let e′′q(j) be the number of employees already performing duty q on day j , e′q(j) :=
max{eqj − e′′q(j), 0} be the number of additional employees that must perform this duty
on day j , and M ′(j) be the set of available employees on day j , i.e., those working on
day j for which the duty is not fixed yet. A necessary condition to satisfy the request for
day j is that

m′(j) ≥
∑

q∈A
e′q(j), (24)

where m′(j) := |M ′(j)|. Note that this condition is not always guaranteed even if con-
straints (3) (or (15)) are imposed in Step 1, since we may have e′′q(j) > eqj for some q.
Moreover, condition (24) may not be sufficient due to infeasible sequences.

We also introduce an objective function aimed at balancing, for each employee, the
number of blocks of each color performed in the corresponding assignment as well as
the number of days between each block color.
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For day j , we solve the following TP, with one sink for each employee inM ′(j) and
one source for each duty to be performed. We define the following binary variables

zqi =
{

1 if employee i performs duty q
0 otherwise

(q ∈ A; i ∈ M ′(j)),

and solve:
min

∑

q∈A

∑

i∈M ′(j)
cqizqi (25)

∑

q∈A
zqi ≤ 1 (i ∈ M ′(j)) (26)

∑

i∈M ′(j)
zqi = e′q(j) (q ∈ A) (27)

zqi ∈ {0, 1} (q ∈ A; i ∈ M ′(j)). (28)

The cost matrix c is defined as follows. For each q ∈ A and i ∈ M ′(j) we let
cqi := +∞ if employee i cannot perform duty q (because of infeasible sequences),
otherwise we suitably define cqi with the following objectives: (a) penalizing the as-
signment of a color to a block if the color is not required for some days spanned by the
block, because in these days either it is not required at all or it has already been assigned
to another block, (b) favoring colors that were not assigned to the employee for a long
time, (c) balancing the number of days of each color assigned to the employees, and (d)
penalizing “undesired” sequences of consecutive colors. In particular, for objective (a),
letting h be the number of days spanned by the current block of employee i in which
color q is not required, we add to cqi the penalty β · h, where β is a suitable parameter.

If the cost of the optimal solution to (25)–(28) is +∞, our algorithm stops with a
failure state. Otherwise, for each zqi = 1 in the optimal solution, we let the color of the
block performed by employee i on day j be equal to q. Note that this block does not nec-
essarily start on day j , and that for each employee i ∈ M ′(j) such that

∑
q∈A zqi = 0,

the color of the associated block is not defined after the solution of this problem: it may
be defined in the following days, or the block may end up being dummy.

Note that, if all blocks have the same duration and objective (a) is dominant, our
method is a generalization of procedure Greedy Color k presented above. This shows
that, with constant workload, our approach is guaranteed to find a feasible solution.

Problem (25)–(28) is easily transformed into a classical Assignment Problem by in-
troducing a dummy duty nd+1 with request e′nd+1 := m′(j)−∑q∈A e′q(j) and replacing
each duty with request e′q(j) by e′q(j) separate duties of request 1.

4.3. An iterative coloring procedure

The definition of the cost matrix c for (25)–(28) depends on the parameters used to
weigh objectives (a) to (d). We use three different sets of parameters to obtain color
assignments with different characteristics. If none of these is feasible, we use the fol-
lowing iterative method that changes the daily workload and applies Steps 1 and 2, until
a feasible solution for the overall problem is found.
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During the procedure, we maintain the request eqj (q = 1, . . . , nd; j ∈ N ) un-
changed, whereas we possibly increase the value fj (j ∈ N ) considered in Step 1.
Initially, we set fj := ∑nd

q=1 eqj . Iteratively, we solve Step 1 and apply the heuristic of
Step 2 for all sets of parameters. If a feasible coloring is found we terminate. Otherwise,
for each set of parameters, we consider the set U ⊆ N of days in which not all duties
were covered, and find the optimal solution value of the LP relaxation of (14)–(16) with
the right hand side of (15) set to fj for j ∈ N \ U , and to fj + 1 for j ∈ U . This LP
is not solved from scratch but starting from the set of variables at the end of the last
execution of Step 1. Among all sets of parameters, we consider the one for which the
LP value is minimum. Letting U∗ be the corresponding set of uncovered days, we set
fj := fj + 1 for j ∈ U∗ and iterate.

Note that the value z1 of the ILP solution at the end of the first execution of Step 1
gives a lower bound for the overall problem. When a feasible color assignment is found,
if the number of employees, say z, is larger than z1, we try to improve the solution by
reducing the workload as follows. For each day j of the planning horizon for which
fj >

∑nd
q=1 eqj and there are, say γj , dummy blocks spanning day j , we set fj :=

max{fj − γj ,
∑nd
q=1 eqj }. The overall iterative procedure is then applied starting from

these fj s, until either a better feasible solution is found or the ILP solution value at
the end of Step 1 is not smaller than z. In the former case, we try again to improve the
solution as described above.

5. Computational experiments

In this section, we present the computational results obtained by the algorithms presented
in Sections 3 and 4 for instances obtained from the real life case study described in Sec-
tion 2. For all the instances addressed in this section, we consider a unique block duration
of k days (i.e., nt := 1, k1 := k) and set the number of blocks b := � 38·n

7·8·k � and the
maximum number of working special days s := � 2·n

3·7 �, where n is the length of the
planning horizon, and S is the set of Sundays.

We first examined the original case study and additional real life instances obtained
by considering different horizon lengths, ranging from six weeks to half a year (and all
multiples of two weeks), in order to test the effect of n on the optimal solution value,
as well as the capability of the methods to handle longer planning horizons. For these
instances we considered rest durations of 1, 2 and 5 days, and imposed exactly 1 rest
spanning 5 days (the number of 1 day and 2 days rests being determined by the consis-
tency constraints described in Section 2). Table 4 gives the exact characteristics of the
considered instances. Since the performance of the methods for the instances in our case
study was the same with and without initial conditions, we report results without these
conditions.

Our algorithms were implemented in C, whereas the LP and ILP solver used was
CPLEX 7.0.All times given in the tables are in CPU seconds on a DigitalAlpha 533MHz,
whose speed is 16.1 SpecInt95. A time limit of 3600 CPU seconds was given for each
instance.

We first present results for Step 1, which is the bottleneck of our solution method,
even when we have to resort to the iterative coloring procedure described in Section 4.3,
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Table 4. Characteristics of the instances in the case study with different values of n.

Name n b nr d a s

b42 42 9 3 1, 2, 5 6, 2, 1 4
b56 56 12 3 1, 2, 5 7, 4, 1 5
b70 70 15 3 1, 2, 5 8, 6, 1 6
b84 84 19 3 1, 2, 5 14, 4, 1 8
b98 98 22 3 1, 2, 5 15, 6, 1 9

b112 112 25 3 1, 2, 5 16, 8, 1 10
b126 126 28 3 1, 2, 5 17, 10, 1 12
b140 140 31 3 1, 2, 5 18, 12, 1 13
b154 154 34 3 1, 2, 5 19, 14, 1 14
b168 168 38 3 1, 2, 5 25, 12, 1 16
b182 182 41 3 1, 2, 5 26, 14, 1 17

and then give some results on this iterative procedure. For model (14)–(16) we explicitly
generated all the columns for the instances with up to 112 days. For the LP relaxation
of these instances, we tried both the CPLEX LP solver and the methods mentioned in
Section 3.3. The former approach was not able to solve the LP relaxation of instance
b98 because of memory requirements. For the CPLEX LP solver, the dual algorithm
obtained the best results on these instances. For method Pricing-CG, we proceed as
follows. We start computing the reduced costs from a uniformly random column, and
then proceed by considering increasing column indices (in a circular way). As soon as
a negative reduced cost is found, we store the corresponding column and start from
another random column (avoiding to consider the same column twice). The procedure
ends when either (i) the number of columns with negative reduced cost found equals n
(the number of days), or (ii) this number is positive and the number of reduced costs
computed exceeds |P|/100, or (iii) all reduced costs were computed and no column
turned out to have negative reduced cost.

The dynamic column generation methods can be preceded by the application of the
following heuristic (referred to as Heur-CG in the sequel). Fix a starting day j ∈ N

and define a block starting on day j and ending on day j + k− 1. Then, the choice to be
performed is the type of the rest that starts on day j + k. To this end, for each rest type
r ∈ R, the following score is defined

∑j+k−1
h=j π∗

h +∑j+2k+dh−1
h=j+k+dr π

∗
h

2k + dr
,

which represents the average profit of the days from the beginning of the first block (al-
ready assigned) to the end of the second block if a rest of type r is assigned (recall that
π∗ denotes the current dual solution). This score is halved if the second block contains a
day in S. Then, choose the rest associated with the maximum score, set j := j + k+ dr
and iterate (of course, a rest can be assigned only if there are still rests of that type avail-
able). The procedure is applied trying all possible starting days, and storing all feasible
columns with negative reduced cost, avoiding to store the same column twice. If this
heuristic finds no negative reduced cost column, we apply eitherDP -CG or ILP -CG.

Tables 5 and 6 give the results for the solution of the LP relaxation of model (14)–(16).
Table 5 gives, for each instance, |P|, i.e., the number of feasible patterns (if |P|

exceeds 150 millions, “-” is reported), and Tg , i.e., the time required to generate all



Models and algorithms for a staff scheduling problem 465

patterns in P . For each method, T denotes the time required to solve the LP relaxation.
In addition, for all the column generation methods described in Section 3.3, we report
nit , i.e., the number of iterations, and nc, i.e., the number of columns generated. Table
6 gives analogous information for the dynamic column generation methods preceded by
Heur-CG.

The tables show that column generation methods outperform the solution of the
entire model, as may be expected. Note that both ILP -CG and ILPC-CG, which
generate one column at a time, perform a large number of iterations, with respect to
DP -CG, producing a relatively small number of columns. On the other hand, when the
dynamic column generation methods are preceded by Heur-CG, they tend to have the
same number of iterations and columns. Computational experience showed that limiting
the number of columns generated at each iteration in DP -CG and Heur-CG changes
the value of nit and nc, but does not affect significantly the running time T . Moreover,
DP -CG is better than Pricing-CG (even for small instances) and is speeded-up if pre-
ceded by Heur-CG (as shown in Table 6), while ILPC-CG is worse than ILP -CG.
Among all methods, the best one appears to beHeur-CG+DP -CG. Hence, this method
is used in the branch-and-bound algorithm described in the following.

Table 5. LP relaxation of model (14)–(16).

Cplex Pricing-CG DP -CG ILP -CG ILPC-CG

Name |P| Tg T T nit nc T nit nc T nit nc T nit nc

b42 978 0.20 0.35 0.11 7 206 0.11 12 136 1.63 76 78 3.80 69 71
b56 12616 0.45 13.32 0.43 8 395 0.40 16 216 3.63 88 90 8.08 86 88
b70 116990 3.91 392.82 3.20 10 634 1.00 20 283 5.23 105 108 13.00 113 116
b84 176784 6.01 1313.32 5.00 8 591 1.75 21 294 7.51 122 124 15.38 113 115
b98 2972410 143.23 – 74.14 7 592 4.28 25 361 10.05 136 139 22.13 133 136

b112 37051792 2436.85 – – – – 8.65 31 453 15.31 156 158 38.33 160 162
b126 – – – – – – 15.23 33 735 24.03 185 187 52.28 201 203
b140 – – – – – – 28.29 41 921 33.88 217 220 72.59 225 228
b154 – – – – – – 44.41 46 1035 46.13 265 267 95.88 260 262
b168 – – – – – – 61.73 47 1056 48.15 251 254 107.43 263 266
b182 – – – – – – 91.66 51 1153 60.84 274 276 124.46 288 290

Table 6. LP relaxation of model (14)–(16) when the dynamic column generation methods are preceded by
Heur-CG.

Heur-CG+DP -CG Heur-CG+ ILP -CG Heur-CG+ ILPC-CG
Name T nit nc T nit nc T nit nc

b42 0.10 17 156 0.40 24 141 0.53 24 141
b56 0.26 16 242 0.73 31 209 1.53 31 209
b70 0.90 25 442 1.93 41 397 3.56 42 393
b84 1.25 20 476 2.00 31 445 3.20 31 445
b98 3.13 28 710 4.51 49 670 5.10 44 634

b112 5.63 36 817 7.83 56 799 10.70 50 807
b126 10.93 42 1277 13.45 61 1189 16.43 60 1188
b140 24.41 56 1861 32.31 84 1656 34.78 89 1662
b154 29.65 50 1995 48.41 90 2024 48.08 82 1966
b168 41.00 54 2305 56.11 87 2167 63.00 87 2167
b182 61.91 52 2924 95.61 93 3131 108.55 96 3134
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Table 7. Cplex vs. our Branch-and-bound for model (14)–(16).

Cplex Branch-and-bound
Name L0 L3 z1 nn T z1 nn T

b42 93.33 94.50 95 0 1.18 95 9 0.17
b56 93.33 94.50 95 20 193.60 95 42 2.02
b70 93.33 94.50 95 10 2887.02 95 54 8.33
b84 88.42 90.72 92 7 3666.98 91 59 13.05
b98 89.09 91.24 – – – 92 66 34.33

b112 89.60 91.63 – – – 92 62 43.02
b126 90.00 91.94 – – – 92 92 299.20
b140 90.32 92.19 – – – 93 66 131.95
b154 90.58 92.40 – – – 93 74 553.12
b168 88.42 90.72 – – – 91 134 1098.87
b182 88.78 91.00 – – – 91 73 3813.65

In order to solve the instances by using model (14)–(16) with the column genera-
tion methods, we implemented our own branch-and-bound method. For the branching,
we consider the fractional variable yP in the LP solution whose value is closest to an
integer a ≥ 1. We generate three subproblems, one by setting yP = a, one by setting
yP ≥ a + 1, and one by setting yP ≤ a − 1, and consider the subproblems in this
order in a depth-first fashion. This branching scheme tends to generate provably optimal
solutions quickly, as the LP bound at the root node is typically tight.

As is often the case, branching changes the structure of the column generation prob-
lem. More specifically, all columns with negative reduced cost found either byHeur-CG
or DP -CG may correspond to variables already fixed by branching. If this is the case,
we resort to ILP -CG, adding suitable cardinality constraints to prevent the selection
of these columns.

In Table 7, we provide the results of our branch-and-bound method, compared to the
CPLEX ILP solver applied to the whole model. The table gives, for each instance, L0,
i.e., the trivial lower bound (1), L3, i.e., the value of the LP relaxation at the root node,
and, for the two exact methods, z1, i.e., the value of the best integer solution found,
nn, i.e., the number of nodes of the branch-decision tree, and T , i.e., the global time.
The table shows that only the three smallest instances were solved to optimality within
the given time limit by directly applying the CPLEX ILP solver. The branch-and-bound
method was able to solve to proven optimality 10 instances out of 11, whereas for the
remaining one (i.e., instance b182) it found an optimal solution within 3813.65 seconds.
Note that for all instances lower bound �L3� is equal to the optimal solution value z1.

For model (2)–(12), we considered its Original version, the Fixed version obtained
by fixing zi := 1 for i = 1, . . . , �L0�, and imposing the precedence constraint zi+1 ≤ zi
for all i > L0, and the Cliques version obtained by adding the clique inequalities (13)
to the Fixed version. We set the number of potential employees (i.e., m = |M|) to
�1.1 · �L0��. The three models were tackled by using the CPLEX ILP solver. The LP
relaxation at the root node was solved by the barrier algorithm, that performs much
better than the simplex algorithms on these LPs.

Table 8 presents the corresponding results for instances with n up to 112 (larger in-
stances involved too large computing times). For each instance, all the versions provided
the same value of the LP relaxation at the root node (denoted with L1 in the table). For
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each version of the model, we also give: T (L1), i.e., the time for solving the LP relax-
ation at the root node, and z1, nn and T as in Table 7. If no feasible solution was found
within the time limit, we report “*” in column z1. The table shows that L1 is always
equal to L3 on these instances (see also Appendix B), while the corresponding times
are considerably larger than those attained by the dynamic column generation methods
proposed for model (14)–(16) (see Tables 5 and 6). As far as integer solutions are con-
cerned, the Fixed and Cliques versions are better than the Original one, although much
worse than the branch-and-bound algorithm based on model (14)–(16) (see Table 7).

In order to test the flexibility of the branch-and-bound algorithm based on model
(14)–(16), we considered three additional classes of test instances. The first class is ob-
tained by considering larger workloads for the original b112 case study, so as to handle
instances involving a larger number of employees. The other two classes are obtained
from the real life instances by changing the block and rest durations, and the workload
in a random way, respectively.

We first considered scaled instances b112 1, . . ., b112 10 obtained from instance
b112 by multiplying the number eqj of employees required on each day j ∈ N and
duty q ∈ {1, . . . , nd} by a factor δ, with δ = 1, . . . , 10, respectively. Table 9 reports the
corresponding results obtained with our branch-and-bound method. For each instance,
the table reports the factor δ,L0,L1,L3 (and the corresponding times T (L1) and T (L3),
respectively), and z1, nn and T as in Table 7. It is easy to show that L0, L1 and L3 are
proportional to the scaling factor δ. Table 9 shows that, as expected, T (L1) steeply grows
with δ, while T (L3) is essentially independent of δ. The branch-and-bound method is
able to solve all the instances to proven optimality within a computing time which is not
increasing with δ.

We then considered instances with different block durations (k = 4, 5, 6, respec-
tively), while keeping the workload equal to that of the real life case study. The values
of b and s are defined as described above. The number and duration of the rests are
defined as follows. The maximum rest duration is set to 5 days and at least one such
rest is assigned (for k = 6, at least two such rests are assigned). For k = 5 and 6, the
minimum rest duration is 2 days. We also impose that b, all entries of vector a and s are
relatively prime numbers. Subject to these constraints, we choose the configuration in
which the number nr of different rest types is at least 3 and the nonzero entries of vector
a (representing the number of rests of each duration) are as uniform as possible, i.e., the

one that minimizes
∑
r∈R(ar−a)2

nr
, with a := b/nr . Note that for k = 6 and n = 42 no

feasible configuration exists.

Table 8. Comparison of different versions of model (2)–(12).

Original version Fixed version Cliques version

Name L1 T (L1) z1 nn T T (L1) z1 nn T T (L1) z1 nn T

b42 94.50 21.32 * 160 3601.97 23.77 95 80 2737.85 70.45 95 0 1691.55
b56 94.50 40.17 * 30 3603.23 48.43 97 229 3604.63 173.47 103 7 3604.93
b70 94.50 76.47 * 10 3603.65 74.18 * 50 3605.82 446.70 * 0 3604.60
b84 90.72 87.58 * 0 3602.75 91.30 98 50 3605.68 930.13 * 0 3612.17
b98 91.24 154.13 * 0 3602.57 134.37 * 0 3604.63 3602.42 * 0 3602.42

b112 91.63 177.63 * 0 3603.70 177.07 * 0 3603.93 1744.57 * 0 3619.10
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Table 9. Results for instances with scaled workload.

Branch-and-bound

Name δ L0 L1 T (L1) L3 T (L3) z1 nn T

b112 1 1 89.60 91.63 177.07 91.63 5.63 92 62 43.02
b112 2 2 179.20 183.27 440.45 183.27 5.66 184 81 38.30
b112 3 3 268.80 274.91 782.38 274.91 5.91 275 101 113.38
b112 4 4 358.40 366.55 1154.20 366.55 6.10 367 100 50.40
b112 5 5 448.00 458.18 1660.58 458.18 6.06 459 98 49.02
b112 6 6 537.60 549.81 2341.17 549.81 6.01 550 292 906.08
b112 7 7 627.20 641.45 3105.40 641.45 5.71 642 102 57.71
b112 8 8 716.80 733.09 3945.47 733.09 5.71 734 107 80.44
b112 9 9 806.40 824.72 – 824.72 5.73 825 104 61.78

b112 10 10 896.00 916.36 – 916.36 6.11 917 106 99.83

Table 10. Characteristics of the instances with different block and rest durations, and different values of n.

Name n k b nr d a s

s42 4 42 4 7 3 1, 2, 5 3, 3, 1 4
s56 4 56 4 9 3 1, 2, 5 4, 3, 2 5
s70 4 70 4 11 4 1, 2, 3, 5 4, 3, 2, 2 6
s84 4 84 4 14 4 1, 2, 3, 5 6, 4, 3, 1 8
s98 4 98 4 16 3 1, 2, 5 7, 6, 3 9

s112 4 112 4 19 4 1, 2, 3, 5 8, 7, 3, 1 10
s126 4 126 4 21 4 1, 2, 3, 5 8, 7, 5, 1 12
s140 4 140 4 23 4 1, 2, 3, 5 9, 7, 5, 2 13
s154 4 154 4 26 4 1, 2, 3, 5 11, 8, 6, 1 14
s168 4 168 4 28 4 1, 2, 3, 5 10, 10, 7, 1 16
s182 4 182 4 30 4 1, 2, 3, 5 11, 10, 7, 2 17

s42 5 42 5 5 4 2, 3, 4, 5 1, 2, 1, 1 4
s56 5 56 5 7 4 2, 3, 4, 5 3, 2, 1, 1 5
s70 5 70 5 9 3 2, 3, 5 4, 4, 1 6
s84 5 84 5 11 3 2, 3, 5 6, 4, 1 8
s98 5 98 5 13 3 2, 3, 5 8, 4, 1 9

s112 5 112 5 15 3 2, 3, 5 10, 4, 1 10
s126 5 126 5 17 3 2, 3, 5 12, 4, 1 12
s140 5 140 5 19 3 2, 3, 5 14, 4, 1 13
s154 5 154 5 20 4 2, 3, 4, 5 10, 7, 2, 1 14
s168 5 168 5 22 4 2, 3, 4, 5 12, 7, 2, 1 16
s182 5 182 5 24 3 2, 3, 5 14, 8, 2 17

s56 6 56 6 6 3 2, 3, 5 2, 2, 2 5
s70 6 70 6 7 3 3, 4, 5 2, 3, 2 6
s84 6 84 6 9 3 2, 3, 5 3, 3, 3 8
s98 6 98 6 11 3 2, 3, 5 5, 4, 2 9

s112 6 112 6 12 4 2, 3, 4, 5 3, 4, 3, 2 10
s126 6 126 6 14 3 2, 3, 5 6, 5, 3 12
s140 6 140 6 15 3 2, 3, 5 5, 5, 5 13
s154 6 154 6 17 3 2, 3, 5 7, 6, 4 14
s168 6 168 6 19 3 2, 3, 5 9, 7, 3 16
s182 6 182 6 20 3 2, 3, 5 8, 7, 5 17

Table 10 gives the characteristics of the new instances, and Table 11 the results
obtained with our branch-and-bound method. For each instance, Table 11 reports the
values of L0, L1, L3, T (L1), T (L3), z1, nn and T as in Table 9, and the number |P| of
feasible patterns. Table 11 shows that, also for these instances, no difference exists in
the values of L1 and L3, although the computation of the former requires much longer.
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Table 11. Results for instances with different block and rest durations, and with different values of n.

Branch-and-bound

Name L0 L1 T (L1) |P| L3 T (L3) z1 nn T

s42 4 90.00 90.72 20.50 576 90.72 0.10 91 28 8.95
s56 4 93.33 94.50 41.95 4632 94.50 0.40 95 48 3.03
s70 4 95.45 95.45 84.28 235590 95.45 1.08 96 46 7.66
s84 4 90.00 90.00 106.07 3073776 90.00 3.65 90 48 28.25
s98 4 91.87 92.84 100.68 3408930 92.84 8.30 94 1595 3618.13

s112 4 88.42 88.42 202.42 – 88.42 17.85 89 65 99.25
s126 4 90.00 90.00 215.02 – 90.00 30.28 90 61 433.66
s140 4 91.30 91.30 266.60 – 91.30 64.31 92 74 472.08
s154 4 88.84 88.84 381.43 – 88.84 94.96 89 78 657.38
s168 4 90.00 90.00 468.20 – 90.00 128.14 90 68 2984.68
s182 4 91.00 91.00 450.68 – 91.00 286.00 91 70 4523.95

s42 5 100.80 103.09 33.95 432 103.09 0.03 104 39 6.83
s56 5 96.00 97.54 71.08 1920 97.54 0.13 98 45 1.01
s70 5 93.33 95.69 103.33 2500 95.69 0.26 96 53 14.50
s84 5 91.63 93.52 132.73 10416 93.52 0.51 94 65 4.80
s98 5 90.46 92.03 183.92 24696 92.03 1.15 93 67 10.95

s112 5 89.60 90.94 254.90 50880 90.94 1.83 92 1339 3615.56
s126 5 88.94 90.11 274.33 116820 90.11 2.70 91 79 29.26
s140 5 88.42 89.46 381.23 200200 89.46 4.56 90 78 49.54
s154 5 92.40 93.96 477.20 – 93.96 8.61 94 82 337.85
s168 5 91.63 93.04 576.80 – 93.04 11.20 94 85 387.45
s182 5 91.00 92.71 597.45 – 92.71 16.58 93 82 280.29

s56 6 93.33 94.50 23.23 576 94.50 0.20 95 19 0.50
s70 6 100.00 102.16 96.65 1440 102.16 0.26 103 53 7.65
s84 6 93.33 94.50 47.30 13104 94.50 1.23 95 41 6.85
s98 6 89.09 91.24 176.77 33264 91.24 0.98 92 71 9.63

s112 6 93.33 94.50 265.70 1478848 94.50 2.88 95 69 45.70
s126 6 90.00 91.94 276.75 1065618 91.94 4.43 93 891 3600.81
s140 6 93.33 94.50 81.98 5231584 94.50 17.18 95 66 190.76
s154 6 90.58 92.40 468.68 17581080 92.40 10.75 93 85 154.05
s168 6 88.42 90.72 510.20 57500256 90.72 14.25 91 109 394.28
s182 6 91.00 92.71 632.68 – 92.71 29.73 93 105 675.46

The branch-and-bound algorithm is able to determine, within the time limit, the optimal
solution of 28 out of 32 instances. For three of the four unsolved instances the solution
found is within one unit from the optimum, while for instance s182 4 an optimal solution
is found in 4523.95 seconds.

Finally we considered instances having the same block and rest durations as well
as the same set of duties as those described in Table 4, but with a workload randomly
generated for each day as follows. Initially, the workload of each day is empty. Then,
for each duty q ∈ {1, . . . , nd} and each day j ∈ N , we randomly generate a number
gqj and impose that gqj additional employees perform duty q for days j, . . . , j + k− 1
(recalling that k is the unique duration of the blocks). These values are generated so as
to guarantee that the number eqj of employees that must perform duty q on day j is
uniformly distributed in the ranges given in Table 12. In particular, the number fj of
employees that must work on day j (j = 1, . . . , n) is uniformly random in [51, 75] for
each day from Monday to Friday, in [42, 63] for each Saturday, and in [33, 51] for each
Sunday. Note that the average workload from Monday to Friday and on Sunday is equal
to the workload in the corresponding days of our real life case study, i.e., 63 and 42,
respectively.
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Table 13 gives the corresponding results, showing that these instances are easier
than those having a regular workload (see Tables 6 and 7). Moreover, note that the trivial
lower bound L0 is much worse than L3 and L1, that coincide for these instances as well,
with the exception of instance r42. The value of |P| is not given, since it coincides with
that reported for the corresponding instances of Table 5.

In order to study the behavior of our iterative coloring procedure, we report in Tables
14, 15 and 16 the results for real life instances b42-b182 (see Table 4), scaled instances
b112 1-b112 10 and random instances r42-r182, respectively. In this case, we set a time
limit of 3600 CPU seconds for each execution of Step 1 and of 10000 CPU seconds for
the overall iterative coloring procedure. Tables 14, 15 and 16 report, for each instance,
z1, i.e., the value of the optimal solution of the first execution of Step 1, z, i.e., the value
of the final solution found by the iterative coloring procedure, nit , i.e., the number of
iterations in which Steps 1 and 2 are performed, T1, i.e., the overall computing time for
Step 1, and T , i.e., the overall computing time of the method. For real life instances
b42-b182 and for scaled instances b112 1-b112 10, the method always found a prov-
ably optimal solution, typically at the first iteration. As to random instances r42-r182,
we solved to proven optimality 7 out of 11 instances, whereas the value of the heuristic
solution found for the other 4 instances is one unit above the lower bound z1.

As to instances with different block and rest durations (see Table 10), the iterative
coloring procedure finds heuristic solution values within 4% and 3% from the lower
bound z1 for k = 4 and k = 5, respectively. For k = 6 the heuristic solution value is
always equal to z1. This behavior is due to the fact that block durations of 4 and 5 days
are not suitable for our real life workload, which is composed of a constant term and a
six day periodic term from Monday to Saturday.

Table 12. Minimum and maximum number of employees required in randomly generated instances r42–r182.

duties 1-2-3 duties 4-5-6 fj

Monday–Friday [10, 14] [7, 11] [51, 75]
Saturday [8, 12] [6, 9] [42, 63]
Sunday [6, 9] [5, 8] [33, 51]

Table 13. Results for instances with the same block and rest durations as in the case study but with workload
randomly generated for each day.

Branch-and-bound
Name L0 L1 T (L1) L3 T (L3) z1 nn T

r42 92.44 93.25 26.60 93.34 0.11 94 34 4.38
r56 92.42 93.52 40.15 93.52 0.38 94 44 1.50
r70 91.27 92.73 60.23 92.73 1.03 93 51 4.38
r84 87.74 90.29 76.15 90.29 1.56 91 57 8.30
r98 86.55 88.52 102.67 88.52 3.26 89 57 17.17

r112 88.28 90.19 127.25 90.19 6.33 91 67 30.23
r126 87.79 91.00 154.92 91.00 5.91 91 66 106.58
r140 89.84 91.38 235.78 91.38 43.83 92 69 191.92
r154 88.82 91.66 242.73 91.66 34.79 92 72 209.90
r168 87.29 91.00 282.87 91.00 18.35 91 69 557.93
r182 87.44 89.82 376.22 89.82 118.91 90 73 713.25
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Table 14. Results for the iterative coloring procedure on real life instances.

Name z1 z nit T1 T

b42 95 95 1 0.17 1.57
b56 95 95 1 2.02 3.12
b70 95 95 3 15.00 25.42
b84 91 91 1 13.05 14.85
b98 92 92 1 34.33 36.48

b112 92 92 1 43.02 45.50
b126 92 92 2 571.33 584.75
b140 93 93 1 131.95 135.32
b154 93 93 1 553.12 556.92
b168 91 91 1 1098.87 1102.92
b182 91 91 1 3813.65 3818.25

Table 15. Results for the iterative coloring procedure on scaled instances.

Name z1 z nit T1 T

b112 1 92 92 1 43.02 69.22
b112 2 184 184 1 38.30 45.58
b112 3 275 275 1 113.38 120.97
b112 4 367 367 1 50.40 71.80
b112 5 459 459 1 49.02 81.55
b112 6 550 550 1 906.08 1001.63
b112 7 642 642 1 57.71 176.97
b112 8 734 734 1 80.44 238.42
b112 9 825 825 1 61.78 261.52

b112 10 917 917 1 99.83 359.60

Table 16. Results for the iterative coloring procedure on random instances.

Name z1 z nit T1 T

r42 94 95 9 3639.47 3656.20
r56 94 94 3 38.98 46.22
r70 93 94 15 5058.13 5118.12
r84 91 91 9 63.87 110.25
r98 89 89 17 899.37 1006.40

r112 91 91 11 425.83 509.67
r126 91 91 9 4439.90 4524.42
r140 92 93 15 13603.33 13815.63
r154 92 92 12 4510.38 4687.38
r168 91 91 3 1140.48 1177.98
r182 90 91 4 9770.73 9855.42
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Appendix A

We consider clique inequalities for the ILP model (2)–(12), which are derived from the
incompatibility relations among the x andw variables. We say that two binary variables
are incompatible if they cannot both take the value 1 in a feasible solution.

Recall that kmin := mint∈T kt and dmin := minr∈R dr . Considering a generic
employee i, note that, due to constraints (6), (7) and (8), each variable xtij (i ∈ M, j ∈
N, t ∈ T ) is incompatible with xsih for h ∈ {j − ks − dmin + 1, . . . , j + kt + dmin − 1}
and s ∈ T , as well as with wrih for h ∈ {j − dr + 1, . . . , j + kt − 1} and r ∈ R.
Symmetrically, each variable wrij (i ∈ M, j ∈ N, r ∈ R) is incompatible with xtih
for h ∈ {j − kt + 1, . . . , j + dr − 1} and t ∈ T , as well as with wpih for h ∈
{j − dp − kmin + 1, . . . , j + dr + kmin − 1} and p ∈ R.

Taking into account the incompatibilities listed above, define the incompatibility
graphG = (V ,E) where each vertex v ∈ V corresponds to a binary variable xtij or wrij
and each edge in E represents one of the incompatibilities above. Note that some addi-
tional incompatibilities between variables with respect to those mentioned above may
arise, depending on the specific values of kt and dr (t ∈ T , r ∈ R). Since the number
of these incompatibilities is negligible, and taking them into account would make the
structure of G much more complicated, we do not consider them in this section.

Every maximal clique of G defines a valid inequality for model (2)–(12), imposing
that the sum of the variables corresponding to the vertices of the clique must not ex-
ceed zi . We next show thatG has a polynomial (and, in practice, reasonable) number of
maximal cliques.

Proposition 7. Each maximal clique of G is associated with one of inequalities (13).

Proof. For convenience, we will call the vertices of G “variables” and identify each
vertex with the name of the associated variable.

Givenh, j ∈ N , we will writeh < j if (j−h)modn < (h−j)modn, i.e., the (cyclic)
number of days between h and j is smaller than the (cyclic) number of days between j
and h. We will (naturally) assume maxt∈T kt+dmin < n/2 and maxr∈R dr+kmin < n/2.

First of all, note that, given a (maximal) clique ofG, another (maximal) clique is ob-
tained by shifting all the day indices of the variables in the original clique by an arbitrary
value. Let s ∈ T and p ∈ R be such that ks := kmin and dp := dmin, respectively, and
consider a maximal clique C. For every variable u, let I (u) denote the set of neighbors
of u in G, including u itself. Clearly, C ⊆ ⋂

u∈C′ I (u) for every C′ ⊆ C, and C is
maximal if and only if C �⊆ I (u) for every u �∈ C.

We show that C has the structure associated with one of inequalities (13) by proving
a sequence of facts.

Fact 1 For every t ∈ T , if xtij ∈ C and xt
ij ′ ∈ C with j ′ > j , then xtih ∈ C for all

h = j, . . . , j ′.

Indeed, C ⊆ I (xtij ) ∩ I (xt
ij ′) ⊆ I (xtih) for all h = j, . . . , j ′. Symmetrically,

Fact 2 For every r ∈ R, if wrij ∈ C and wr
ij ′ ∈ C with j ′ > j , then wrih ∈ C for all

h = j, . . . , j ′.
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Fact 3 If xsij , . . . , x
s
i(j+�) are the variables in C associated with block type s, then

� ∈ {−1, 0, . . . , kmin + dmin − 1} (if � = −1, no variable associated with s is in C).

Indeed, xsij and xsi(j+kmin+dmin)
are compatible. Symmetrically (shifting the indices),

Fact 4 If wpi(j−dmin+�+1), . . . , w
p

i(j+kmin−1) are the variables in C associated with rest
type p, then � ∈ {−1, 0, . . . , kmin + dmin − 1} (if � = kmin + dmin − 1, no variable
associated with p is in C).

We first consider the case in which � ≥ 0 in Fact 3, i.e., C contains variables asso-
ciated with block type s.

Fact 5 If xsij , . . . , x
s
i(j+�) are the variables in C associated with block type s, with

� ∈ {0, . . . , kmin + dmin − 1}, then the variables in C associated with block type t ,
t ∈ T \ {s}, are xti(j−kt+kmin)

, . . . , xti(j+�).

To show that xti(j−kt+kmin)
, . . . , xti(j+�) ∈ C, note that C ⊆ ⋂j+�

h=j I (x
s
ih) ⊆

⋂j+�
h=j−kt+kmin

I (xtih). In order to complete the proof of Fact 5, we show that
xti(j−kt+kmin−1) �∈ C and xti(j+�+1) �∈ C. Suppose xti(j−kt+kmin−1) ∈ C. In this case, C ⊆
I (xti(j−kt+kmin−1))∩I (xti(j+�)). Noting that I (xti(j−kt+kmin−1))∩I (xti(j+�)) ⊆ I (xsi(j−1))

and xsi(j−1) �∈ C contradicts the maximality ofC analogously, supposing xti(j+�+1) ∈ C,
the contradiction follows from C ⊆ I (xti(j−kt+kmin)

)∩ I (xti(j+�+1)) ⊆ I (xsi(j+�+1)) and
xsi(j+�+1) �∈ C.

Fact 6 If xsij , . . . , x
s
i(j+�) are the variables in C associated with block type s, with

� ∈ {0, . . . , kmin + dmin − 1}, then the variables in C associated with rest type r , r ∈ R,
are wri(j−dr+�+1), . . . , w

r
i(j+kmin−1).

Indeed,wri(j−dr+�) is compatible with xsi(j+�), andwri(j+kmin)
is compatible with xsij . This

shows that the variables associated with rest type r in C are contained in {wri(j−dr+�+1),

. . . , wri(j+kmin−1)}. For the case dr = dmin and � = kmin + dmin − 1, we have j − dr +
� + 1 > j + kmin − 1 and the proof is complete. Otherwise, we have to show that
wri(j−dr+�+1) ∈ C and wri(j+kmin−1) ∈ C. This holds since all the resulting w variables
in C are adjacent in G, and the x variables in C are xti(j−kt+kmin)

, . . . , xti(j+�), t ∈ T ,
which are all contained in I (wri(j−dr+�+1)) ∩ I (wri(j+kmin−1)).

Facts 5 and 6 yield the proof of the proposition for the case � ≥ 0. The remaining
case � = −1 is symmetric to the case � = kmin + dmin − 1, by exchanging the role of
blocks and rests. In particular, the symmetric counterparts of Facts 5 and 6 read:

Fact 7 If wpi(j−dmin+�+1), . . . , w
p

i(j+kmin−1) are the variables in C associated with rest
type p, with � ∈ {−1, 0, . . . , kmin + dmin − 2}, then the variables in C associated with
rest type r , r ∈ R \ {p}, are wri(j−dr+�+1), . . . , w

r
i(j+kmin−1).

Fact 8 If wpi(j−dmin+�+1), . . . , w
p

i(j+kmin−1) are the variables in C associated with rest
type p, with � ∈ {−1, 0, . . . , kmin + dmin − 2}, then the variables in C associated with
block type t , t ∈ T , are xti(j−kt+kmin)

, . . . , xti(j+�).

The number of cliques (13) is n · m (kmin + dmin + 1), i.e., comparable with the
number of constraints in model (2)–(12).
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Appendix B

In order to explain why L3 and L1 are typically equal, we first describe an apparently
strange variation of (14)–(16) whose LP relaxation is equivalent to that of (2)–(12). Let
Q be the set of all (not necessarily feasible) patterns Q corresponding to an alternating
sequence of blocks and rests that span k(Q) ·n days for some positive integer k(Q), and
such that each block and rest has a duration among those specified on input (as usual, a
block or a rest may be split between the first and the last days of the planning horizon).
For each Q ∈ Q, let b(Q, t) (t ∈ T ) and a(Q, r) (r ∈ R) denote, respectively, the
number of blocks of type t and rests of type r in pattern Q. Moreover, let s(Q) be the
number of working days j in patternQ such that j mod n is a special day in S. Finally, let
n(Q, j) (j ∈ N) be the number of working days among j, n+ j, . . . , (k(Q)− 1)n+ j
in the pattern (i.e., the working days that are equal to j mod n). Consider the ILP

min
∑

Q∈Q
k(Q) yQ (29)

∑

Q∈Q
n(Q, j) yQ ≥ fj (j ∈ N) (30)

∑

Q∈Q
b(Q, t) yQ = bt

∑

Q∈Q
k(Q) yQ (t ∈ T ) (31)

∑

Q∈Q
a(Q, r) yQ = ar

∑

Q∈Q
k(Q) yQ (r ∈ R) (32)

∑

Q∈Q
s(Q) yQ ≤ s

∑

Q∈Q
k(Q) yQ (33)

yQ ≥ 0, integer (Q ∈ Q). (34)

Constraints (31)–(33) impose, respectively, that, on average, bt blocks of type t , ar rests
of type r , and at most s working special days are given for each pattern of the solu-
tion spanning n days. Correspondingly, this ILP is a relaxation of both (14)–(16) and
(2)–(12). On the other hand, we have

Proposition 8. The LP relaxations of (29)–(34) and (2)–(12) are equivalent.

Proof. Consider a solution z, x,w of the LP relaxation of (2)–(12). We will construct a
solution y of the LP relaxation of (29)–(34) having the same value. Initially, set yQ := 0
for Q ∈ Q.

Now concentrate on the variables associated with an employee i ∈ M . Construct the
corresponding directed multigraph with one vertex for each day j ∈ N and a block arc
(j, j+kt ) of capacity xtij for each xtij > 0 as well as a rest arc (j, j+dr) of capacitywrij
for each wrij > 0. Due to constraints (7) and (8), for each vertex j , the overall capacity
of the block arcs entering j is equal to the overall capacity of the rest arcs leaving j
(and viceversa). Consider an arbitrary cycle that contains alternating block and rest arcs,
and let c be the minimum capacity of an arc in the cycle. It is easy to see that this cycle
corresponds to a patternQ ∈ Q. Increase the value of yQ by c, decrease the capacity of
the arcs in the cycle by c (removing the arcs of capacity zero), and iterate the procedure
until no arc is remaining.
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It is easy to check that the processing of the cycles for employee i increases∑
Q∈Q k(Q) yQ by zi (thanks to constraints (6)) and guarantees that constraints (31)–

(33) are satisfied at the end of the processing. Hence, once this processing has been
done for all employees, the final solution y has value

∑
i∈M zi and is feasible for the LP

relaxation of (29)–(34). In particular, y satisfies (30) thanks to constraints (3).
Conversely, given a feasible solution y of the LP relaxation of (29)–(34), it is easy to

define a solution z, x,w of the LP relaxation of (2)–(12) of the same value. In particular,

for each employee i ∈ M , one may define zi :=
∑
Q∈Q k(Q) yQ

m
and then define the

variables xtij , w
t
ij so that they are associated with patternsQ ∈ Q, each taken with value

yQ
m

(further details are omitted).

The results in Section 5 suggest that, in practice, allowing the patterns to have the
strange structure as those in Q and imposing the “global” constraints (31)–(33), does
not change the LP value with respect to the case in which one pretends that each pattern
is feasible.

We conclude by discussing a nontrivial example for which �L3� > �L1�. Recall
the polynomial reduction in the proof of Proposition 1. It is easy to see that a perfectly
analogous reduction works for the Four Partitioning Problem (4PP) (see [18] for a pre-
cise statement of this problem). Consider a 4PP instance with no feasible solution such
that the LP relaxation of the associated “Set Partitioning” formulation has a feasible
solution, say γ . (This formulation has a binary variable for each four-tuple of items with
sum exactly c and one equality constraint for each item.) Such an instance is described,
e.g., in [23]. For the staff scheduling instance obtained by the reduction, it is easy to
verify that L3 > 1, whereas it is possible to show how to construct from γ a solution of
the LP relaxation of (2)–(12) of value 1, implyingL1 = 1. The difficulty in constructing
such a “bad” 4PP instance and the fact that apparently it must contain very large integer
values may reflect the fact that for real life instances L3 and L1 coincide in almost all
cases.
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