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Abstract. We study the lift-and-project procedures for solving combinatorial optimization problems, as de-
scribed by Lovász and Schrijver, in the context of the stable set problem on graphs. We investigate how the
procedures’ performances change as we apply fundamental graph operations. We show that the odd subdivi-
sion of an edge and the subdivision of a star operations (as well as their common generalization, the stretching
of a vertex operation) cannot decrease the N0-, N -, or N+-rank of the graph. We also provide graph classes
(which contain the complete graphs) where these operations do not increase the N0- or the N -rank. Hence
we obtain the ranks for these graphs, and we also present some graph-minor like characterizations for them.
Despite these properties we give examples showing that in general most of these operations can increase these
ranks. Finally, we provide improved bounds for N+-ranks of graphs in terms of the number of nodes in the
graph and prove that the subdivision of an edge or cloning a vertex can increase the N+-rank of a graph.

Key words. Stable set problem – Lift-and-project – Semidefinite lifting – Semidefinite programming – Integer
programming

1. Introduction

We are interested in the lift-and-project procedures for solving combinatorial optimiza-
tion problems as described by Lovász and Schrijver [16] (see also Balas et al. [3] and
Sherali and Adams [17]) and their performances on the stable set problem.

In Section 2 we introduce the lift-and-project procedures, set up some notations,
and mention a few well-known facts about these procedures and the stable set problem.
We study three lift-and-project procedures, denoted by N0, N , and N+ in the order of
increasing strength, and define graph ranks r0, r , and r+ based on these procedures.

In Section 3 we observe that when a graph can be decomposed into two smaller
graphs such that the intersection of the smaller graphs is a clique, then the rank of the
original graph is the maximum of the ranks of the smaller graphs. Then we prove that
when the graph has a cut vertex, a much stronger property holds, which can be gener-
alized to polytopes that have a similar “cut coordinate.” In both cases the behaviours
of N0, N , and N+ can be completely described by the behaviours of these procedures
on the smaller, decomposed pieces alone. These considerations naturally lead us to a
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problem posed by Lovász in 1992, involving perfect graphs, which we solve here as a
by-product of our work.

Section 4 is mostly concerned with procedures N0 and N ; however, many of our
proofs apply also to the N+ procedure. Among other results, we prove that r0, r , and
r+ are monotone nondecreasing under the subdivision of a star and the odd subdivision
operations (as well as under their common generalization, the stretching of a vertex
operation) on the given graph, and we give an excluded-induced-subgraph characteriza-
tion of odd-star subdivisions of cliques. We also prove that a subdivision of a clique is
odd-star if and only if r0 and r of the graph coincide and are both equal to two less than
the order of the clique which gave rise to the subdivision. Various related technical tools
which may be of independent interest are also developed in this section.

Section 5 contains some elementary facts around the similarities and differences
of N0 and N as well as the behaviour of these procedures under fundamental graph
operations.

In Section 6 we study certain α-critical graphs which arise from the line graphs of
nested blossoms (blossom inequalities on odd cliques are known to translate to high
N+-rank values [18] when we consider the corresponding stable set problem via taking
the line graph). We prove that for such graphs, r0 and r grow only logarithmically with
the dimension.

Finally, in Section 7 we focus exclusively on r+ and prove improved upper bounds
for it.

2. Notations and basic properties

The lift-and-project procedures can be defined as follows: Let K ∈ R
n+1 be a con-

vex cone (the components of the vectors are indexed by 0, 1, . . . , n, and the elements

of K are denoted by y = (y0, y1, . . . , yn)
T =:

(
y0
x

)
, where x ∈ R

n) such that{
x ∈ R

n :

(
1
x

)
∈ K

}
⊆ [0, 1]n. We use ej to denote the j th unit vector and ē to de-

note the vector of all 1’s. In this paper, all vectors are column vectors. The linear operator
diag : R

(n+1)×(n+1) → R
n+1 takes Y ∈ R

(n+1)×(n+1) and returns a vector whose ith
component is Yii . Then

M0(K) :=
{
Y ∈ R

(n+1)×(n+1) : Ye0 = YT e0 = diag(Y ),

Y ei ∈ K, ∀i ∈ 1, 2, . . . , n,

Y (e0 − ei) ∈ K, ∀i ∈ {1, 2, . . . , n}
}

defines a lifting of the next relaxation (potentially tighter than K) of the cone of all 0-1
vectors in K . We project it back onto the space of K to get

N0(K) := {Ye0 : Y ∈ M0(K)} .

Let �n+1 denote the space of (n + 1) × (n + 1) symmetric matrices with real entries.
We can now restrict the above lifting to symmetric matrices:

M(K) :=
{
Y ∈ �n+1 : Ye0 = diag(Y ),
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Yei ∈ K, ∀i ∈ {1, 2, . . . , n} ,

Y (e0 − ei) ∈ K, ∀i ∈ {1, 2, . . . , n}
}
.

Projecting this lifting back results in

N(K) := {Ye0 : Y ∈ M(K)} .

Finally, to obtain tighter relaxations, we can restrict the matrix Y to be positive semidef-
inite. Let �n+1

+ denote those elements Y of �n+1 which are positive semidefinite, i.e.,
satisfy hT Yh ≥ 0 for all h ∈ R

n+1. Defining

M+(K) :=
{
Y ∈ �n+1

+ : Ye0 = diag(Y ),

Y ei ∈ K, ∀i ∈ {1, 2, . . . , n} ,

Y (e0 − ei) ∈ K, ∀i ∈ {1, 2, . . . , n}
}

and projecting it back yields the relaxation

N+(K) := {Ye0 : Y ∈ M+(K)} .

Our main interest lies in the sets{
x ∈ R

n :

(
1
x

)
∈ N0(K)

}

(and similarly for N(K) and N+(K)). For simplicity, when we say that we are applying
the N0, N , or N+ operator to some convex set P ⊆ [0, 1]n, we mean that we consider the
cone corresponding to this convex set, apply the corresponding lifting-projecting proce-
dure, then take the convex subset of [0, 1]n defined by the intersection of this new cone
with y0 = 1. N0(P ), N(P ), or N+(P ), resp., will denote this final subset of [0, 1]n, and
we will use Nk

0 (P ), Nk(P ), and Nk+(P ) to indicate that we applied the corresponding
operator k times in succession (k = 0 will refer to the original polytope, so N0

0 (P ) = P ,
etc.).

The following fact is well-known and some related insights also exist in Balas’ work
from the 1970s (see [2]).

Lemma 1. Let F be any face of [0, 1]n and P ⊆ [0, 1]n. Then

N(P ∩ F) = N(P ) ∩ F.

Similarly for N+ and N0.

Applying Lemma 1 finitely many times we get

Corollary 2. Let F be any face of [0, 1]n and P ⊆ [0, 1]n. Then for every k ≥ 0,

Nk(P ∩ F) = Nk(P ) ∩ F.

Similarly for N+ and N0.
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Let G := (V , E) := (V (G), E(G)) denote a finite, undirected, simple graph with
vertex or node set V and edge set E. In what follows, Kn denotes the complete graph
on n vertices. We define the fractional stable set polytope as

FRAC(G) :=
{
x ∈ [0, 1]V : xi + xj ≤ 1 for all {i, j} ∈ E

}
.

This polytope is used as the initial approximation to the convex hull of incidence vectors
of the stable sets of G (sets of vertices such that no two of them are joined by an edge),
which is called the stable set polytope:

ST AB(G) := conv
(
FRAC(G) ∩ {0, 1}V

)
.

For all v ∈ V (G) let G − v denote the graph defined by V (G − v) := V (G) \ {v}
and E(G − v) := E(G) \ {{u, v} ∈ E(G) : u ∈ V (G)}, and let �G(v) := �(v) denote
the neighbourhood of v in G:

�(v) := {u ∈ V : {u, v} ∈ E} .

Let G � v be defined by

V (G � v) := V \ (�(v) ∪ {v})
and

E(G � v) := {{u, w} ∈ E(G) : u, w /∈ (�G(v) ∪ {v})} .

This operation was called the contraction of v in [16]; here we call it the destruction of
v. For any edge e ∈ E let G − e denote the graph obtained from G by the deletion of
the edge e. If the inequality aT x = ∑

u∈V (G) a(u)xu ≤ b is valid for ST AB(G), so are∑
u∈V (G−v) a(u)xu ≤ b and

∑
u∈V (G�v) a(u)xu ≤ b − a(v), obtained by the deletion

and the destruction of the vertex v, respectively.
For a given graph G = (V , E), its N0-rank (and similarly its N -rank and N+-rank)

is defined as the smallest nonnegative integer k for which the application of the N0
(N or N+) operator k times to FRAC(G) gives ST AB(G). Alternatively, this rank is
the largest rank of a facet of ST AB(G) (the N0-, N -, and N+-rank of an inequality
valid for ST AB(G) is defined as the minimum k for which the inequality is valid for
Nk

0 (FRAC(G)), Nk(FRAC(G)), and Nk+(FRAC(G)) resp.). We denote these ranks
by r0(G), r(G), and r+(G), respectively. To simplify the notation we write Nk

0 (G),
Nk(G), and Nk+(G) for Nk

0 (FRAC(G)), Nk(FRAC(G)), and Nk+(FRAC(G)) re-
spectively. The following two lemmas are due to Lovász and Schrijver [16]:

Lemma 3. For all graphs G, we have

r(G) ≤ r0(G) ≤ min
v∈V

{r0(G − v)} + 1 and r(G) ≤ min
v∈V

{r(G − v)} + 1.

Moreover, if the inequalities obtained from aT x ≤ b by the deletion and destruction
of v ∈ V are valid for Nk

0 (G), Nk(G), resp., then aT x ≤ b is valid for Nk+1
0 (G),

Nk+1(G), respectively.
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Lemma 4. For all graphs G, we have

r+(G) ≤ max
v∈V

{r+(G � v)} + 1.

So node deletion can only decrease any of the ranks, and at most by one (for N+ this
will follow later from Theorem 36).

Another fact that makes the procedures N0, N , and N+ very interesting is that we
can optimize a linear function over any of Nk

0 (G), Nk(G), and Nk+(G) in polynomial
time, provided k = O(1). (See [16, 7].)

So far, the abovementioned ranks and some of their relatives have been studied from
many points of view (see [3, 5, 6, 10, 12, 16, 18]). However, many important open
questions remain. Our goal here is to improve some of the known bounds on these ranks
for the stable set problem and to deal with some of those open problems related to the
behaviour of these ranks under fundamental graph operations.

The area of geometric representations of graphs (see Lovász [13], Grötschel, Lovász
and Schrijver [7], Kotlov, Lovász and Vempala [9] and Lovász [15]) is closely connected
to the subject of this paper. Even though there has been a lot of progress in understanding
geometric embeddings of graphs and invariants like the Colin de Verdière number of
a graph, due to the fact that we can optimize any linear function over any of Nk

0 (G),
Nk(G), and Nk+(G) in polynomial time, provided k = O(1), investigating N0-, N -
and N+-ranks of graphs and further understanding of graphs of small rank remain very
interesting.

3. An elementary decomposition

Chvátal [4] has shown that if the graph G can be decomposed into two parts, G1 and
G2, so that their intersection is a complete graph, then the facets of ST AB(G) are just
the union of the facets of ST AB(G1) and ST AB(G2). Hence we get a similar property
for the N0-rank, N -rank and the N+-rank:

Lemma 5. If G = G1 ∪ G2 such that G1 ∩ G2 is a complete graph, then

r0(G) = max {r0(G1), r0(G2)} ,

r(G) = max {r(G1), r(G2)}
and

r+(G) = max {r+(G1), r+(G2)} .

Proof. In Corollary 2 let F := {
x ∈ [0, 1]V (G) : xv = 0 for all v ∈ V (G2)\V (G1)

}
.

Then Corollary 2 and Chvátal’s result imply r0(G) ≥ r0(G1), r(G) ≥ r(G1), and
r+(G) ≥ r+(G1). Analogously we get r0(G) ≥ r0(G2), r(G) ≥ r(G2), and r+(G) ≥
r+(G2). To establish the reverse inequalities we utilize Chvátal’s result again and con-
clude that to derive all facets of ST AB(G), it suffices to derive all facets of ST AB(G1)

and ST AB(G2). By Corollary 2, the latter can be achieved in at most max
{r0(G1), r0(G2)}, max {r(G1), r(G2)}, and max {r+(G1), r+(G2)} iterations of the N0,
N , and N+ operators respectively. 
�
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The usual application of Lemma 5 occurs when there is a cut vertex v in G. In this
case, we can prove the following stronger result:

Theorem 6. If G = G1 ∪ G2 and V (G1) ∩ V (G2) = {v}, then Nk
0 (G) (Nk(G)) is

defined by the facets of the polytopes Nk
0 (G1) and Nk

0 (G2) (Nk(G1) and Nk(G2)) for
every k ≥ 0.

Proof. We prove the claim by induction on k. For k = 0 the claim is easy (see the proof
of Lemma 10), so we assume that the statement is true for k − 1 ≥ 0 and prove it for k.
First consider the N0 operator only.

Lemma 1 implies that any x ∈ Nk
0 (G) must also satisfy the inequalities defining

Nk
0 (G1) and Nk

0 (G2), hence it is enough to show the other way around. Assume that

x =
(

x(1)

xv

x(2)

)

satisfies the inequalities defining Nk
0 (G1) and Nk

0 (G2) with x(�) ∈ R
V (G�)\{v} for � =

1, 2. Then there are matrices X(�) = (X
(�)
ij ) ∈ R

(V (G�)\{v})×(V (G�)\{v}) and vectors

y(1,�), y(2,�) ∈ R
V (G�)\{v} for � = 1, 2 such that

Y (�) =

 1 (x(�))T xv

x(�) X(�) y(1,�)

xv (y(2,�))T xv


 ∈ Mk

0 (G�),

thus showing that

(
x(�)

xv

)
∈ Nk

0 (G�). By definition this means that for all u ∈ V (G�)

we have X
(�)
uu = x

(�)
u and that the vectors Y (�)eu and Y (�)(e0 − eu) are all in the cone

induced by Nk−1
0 (G�). Define now the following matrix that will show that x ∈ Nk

0 (G):

Y :=




1 (x(1))T xv (x(2))T

x(1) X(1) y(1,1) X
(1)

xv (y(2,1))T xv (y(2,2))T

x(2) X
(2)

y(1,2) X(2)


 ,

where the matrices X
(1)

and X
(2)

are defined as follows:

X
(1)

:= 1

1 − xv

(x(1) − y(1,1))(x(2) − y(2,2))T + 1

xv

y(1,1)(y(2,2))T ,

X
(2)

:= 1

1 − xv

(x(2) − y(1,2))(x(1) − y(2,1))T + 1

xv

y(1,2)(y(2,1))T .

If xv = 0 or 1, we keep only the terms that make sense. The idea of this definition is
that now we can write
 (x(1))T

X
(2)

(y(2,1))T


 = 1

1 − xv

(( 1
x(2)

xv

)
−

(
xv

y(1,2)

xv

))
(x(1)−y(2,1))T+ 1

xv

(
xv

y(1,2)

xv

)
(y(2,1))T

(1)
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and 
 (x(2))T

X
(1)

(y(2,2))T


 = 1

1 − xv

(( 1
x(1)

xv

)
−

(
xv

y(1,1)

xv

))
(x(2) − y(2,2))T

+ 1

xv

(
xv

y(1,1)

xv

)
(y(2,2))T . (2)

Now, to show that Y ∈ Mk
0 (G), we need to check that for all u ∈ V (G) we have

Yuu = xu and that Yeu and Y (e0 − eu) are all in the cone induced by Nk−1
0 (G). The first

property trivially holds, for the remaining two we use the induction hypothesis, which
says that in order to be in Nk−1

0 (G) these vectors must satisfy all valid inequalities for
Nk−1

0 (G�) for � = 1, 2.
Assume first that u ∈ G1 \ {v} and consider the vector Yeu. This satisfies the in-

equalities valid for Nk−1
0 (G1), since so does Y (1)eu. To satisfy the valid inequalities for

Nk−1
0 (G2), we only need that 

 (x(1))T

X
(2)

(y(2,1))T


 eu (3)

is in the cone induced by Nk−1
0 (G2), which follows immediately from (1), since (3) is

a nonnegative linear combination of Y (2)(e0 − eu) and Y (2)eu.
We can similarly check that Y (e0 − eu) satisfies the inequalities valid both for

Nk−1
0 (G1) and for Nk−1

0 (G2), since

( 1
x(2)

xv

)
−


 (x(1))T

X
(2)

(y(2,1))T


 eu

is again a nonnegative linear combination of Y (1)(e0 − eu) and Y (1)eu with coefficients
(

1 − x
(1)
u − y

(2,1)
u

1 − xv

)
and

(
1 − y

(2,1)
u

xv

)
,

which are nonnegative since Y (1)(e0 − eu) and Y (1)eu are in Nk−1
0 (G1).

The case u ∈ V (G2) \ {v} is analogous, while in the case of u = v it is enough to
use the induction hypothesis, finishing the induction.

For the N -operator, it is easy to check that if the matrices Y (1) and Y (2) are symmetric,
then so is Y . 
�

Theorem 6 is basically valid for the N+-operator as well; however, since N+(G) is
usually nonpolyhedral, we need to slightly rephrase it:

Theorem 7. Assume G = G1 ∪ G2 and V (G1) ∩ V (G2) = {v}. Then for every k ≥ 0,
the convex set Nk+(G) is defined by the union of all valid inequalities for Nk+(G1) and
all valid inequalities for Nk+(G2).
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Proof. We only need to show that in the proof of the previous theorem whenever the
matrices Y (�) are positive semidefinite for � = 1, 2, so is Y . We use the property that the
matrix X ∈ �n is positive semidefinite if and only if SXST is, for every nonsingular
n × n matrix S. Consider the following matrix:

S :=




1 0 0 0
0 IV (G1)\{v} 0 0

0 0 I{v} 0
s 0 t IV (G2)\{v}


 ,

where IV is the identity matrix with rows and columns indexed by the elements of the set
V , 0 indicates a matrix of 0’s of the appropriate size, and the vectors s = (su), t = (tu)

are defined for u ∈ V (G2) \ {v} by

su := −x
(2)
u − y

(2,2)
u

1 − xv

and tu :=
(

x
(2)
u − y

(2,2)
u

1 − xv

− y
(2,2)
u

xv

)
.

Using (1) and (2) we can easily check (using the symmetry of Y ) that

SYST =




1 (x(1))T xv 0
x(1) X(1) y(1,1) 0
xv (y(2,1))T xv 0

0 0 0 X
(2)


 ,

where X
(2)

is given by 


1 0 xv

0 X
(2)

0
xv 0 xv


 := SY (2)S

T
,

with

S :=

 1 0 0

s IV (G2)\{v} t

0 0 1


 .

Since S is nonsingular, Y is positive semidefinite if and only if SYST is positive semi-
definite. Clearly SYST is positive semidefinite if and only if the two square submatrices

it can be decomposed are positive semidefinite, i.e. if and only if Y (1) and X
(2)

are

positive semidefinite. Since S is also nonsingular, SY (2)S
T

is positive semidefinite if

and only if Y (2) is positive semidefinite, thus its symmetric minor, X
(2)

, is also positive
semidefinite, and the theorem is proved. 
�

A by-product of the above technique is the following positive semidefinite extension
fact:
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Proposition 8. Let Y ∈ �n+1, and suppose that Y0j = Yjj for some j . Define the
matrix

Y :=
(

Y Y (e0 − ej )

(e0 − ej )
T Y (Y00 − Y0j )

)
.

Then
Y ∈ �n+2

+ if and only if Y ∈ �n+1
+ .

Moreover, the (linear algebraic) ranks of the matrices Y and Y are the same.

Theorems 6 and 7 can be generalized to polytopes. We will assume that the coordi-
nates of the polytope are split into two sets I and J such that I ∩ J = {v}, i.e. there is
one common coordinate, and let I ′ and J ′ denote the nonempty sets I \ {v} and J \ {v}.
We will use the following notations: If x = (xi)i∈I ∈ R

I , then x′ = (xi)i∈I ′ ∈ R
I ′

and
similarly for J . Thus, if x ∈ R

I and y ∈ R
J , then both vectors (x, y′) and (x′, y) are in

R
I∪J , but they are the same only if xv = yv .

Now given a polytope P ⊂ [0, 1]I∪J , let its projections to coordinates I , J , resp.,
be PI , PJ , respectively. So, e.g.,

PI =
{
x ∈ R

I : there is a y′ ∈ R
J ′

such that (x, y′) ∈ P
}

.

We will say that v is a cut coordinate for the polytope P , if P has the property that
whenever x ∈ PI and y ∈ PJ with xv = yv , then (x, y′) = (x′, y) ∈ P . Thus v is a cut
coordinate for P if and only if the inequalities defining its projections PI and PJ suffice
to define P itself.

From Corollary 2 it easily follows that
[
Nk(P )

]
I

= Nk(PI ) and
[
Nk(P )

]
J

=
Nk(PJ ) for any k ≥ 1, and similarly for N0 and N+. Hence, Theorems 6 and 7 can be
phrased for polytopes as follows:

Theorem 9. If v is a cut coordinate for the polytope P , then it is a cut coordinate for
Nk

0 (P ), Nk(P ), and Nk+(P ) as well for every k ≥ 0.

Proof. The proof is essentially the same as that of Theorem 6 with I playing the role of
V (G1) and J the role of V (G2). 
�

To see that Theorems 6 and 7 are special cases of Theorem 9, one just needs to check
the following:

Lemma 10. If G is a graph with a vertex v, then v is a cut coordinate for FRAC(G)

(and for ST AB(G) as well) if and only if v is a cut vertex of G.

Proof. If v is a cut vertex in G, then G = G1 ∪ G2 such that V (G1) ∩ V (G2) = {v},
and then it is easy to check that v is a cut coordinate for FRAC(G) with I = V (G1)

and J = V (G2), since if x ∈ FRAC(G1) and y ∈ FRAC(G2) with xv = yv , then
(x, y′) will also satisfy all edge inequalities.

On the other hand, if v is not a cut vertex in G, then for any split V (G) = I ∪ J of
the vertices with I ∩ J = {v} and I ′ �= ∅, J ′ �= ∅, there will be an edge {u, w} ∈ E(G)

with u ∈ I ′ and w ∈ J ′, and then the vectors x and y defined by

xi :=
{

1 if i = u,

0 if i ∈ I \ {u};
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and

yi :=
{

1 if i = w,

0 if i ∈ J \ {w};

will be in FRAC(G1), FRAC(G2), respectively, but (x, y′) is not in FRAC(G) (or
ST AB(G)). 
�

Theorem 6 does not generalize to the case when G1 ∩ G2 is a larger clique (even if
only an edge). An example is presented in Figure 1.

Claim 11. For the graph G given in Figure 1, the inequality

2x1 + 3x2 + 3x6 + x3 + x4 + x5 ≤ 3 (4)

has N0-rank 2. Moreover, it defines a facet of N2(G).

Proof. Theorem 2.3 of [16] shows that for all graphs, one application of N and N0 are
the same and both are defined by the trivial, edge, and odd cycle inequalities. Therefore
in our example N0(G) = N(G), and they are both defined by the nonnegativity and the
triangle constraints.

It is clear that (4) is a valid inequality for ST AB(G) (K5 inequality plus twice the
triangle inequality of {1, 2, 6}). Since the deletion and destruction of vertex 1 both result
in an inequality of N0-rank 1 (deletion of 1 gives the sum of three triangles, destruction
of 1 leaves just a triangle inequality), (4) has N0-rank at most 2.

The point 1
3 ē ∈ [0, 1]6 satisfies all triangle inequalities, but it violates (4). Thus the

N -rank of the inequality is at least 2, hence the N0- and N -ranks of (4) are both equal to 2.
To see that (4) defines a facet of N2(G), consider the characteristic vectors of the

stable sets {1, 3}, {1, 4}, {1, 5}, {2}, {6} and the vector
( 3

8 , 1
4 , 1

4 , 1
4 , 1

4 , 1
4

)T
. The first five

vectors are in ST AB(G), so they also lie in N2(G). The last one is in N2(G) because
the following matrix is in M2(G):
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Fig. 1. G = K5 ∪ K3 with K5 ∩ K3 = K2
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1

8




8 3 2 2 2 2 2
3 3 0 1 1 1 0
2 0 2 0 0 0 0
2 1 0 2 0 0 0
2 1 0 0 2 0 0
2 1 0 0 0 2 0
2 0 0 0 0 0 2




.

It is easy to see that the six vectors mentioned above are affinely independent and they
all satisfy (4) with equality. Since the dimensions of ST AB(G) and N2(G) are equal to
6 in this example, the claim follows. 
�

In fact, for this example, N2
0 (G) = N2(G) and both are defined by all K4 inequalities,

the triangle inequality on {1, 2, 6}, and (4). However, ST AB(G) has just two nontrivial
facets, the two maximal cliques (hence r0(G) = 3 = r0(K5)), and we need both of them
to get (4) as a linear combination of facets of ST AB(G).

Note that although for perfect graphs (by the results of Lovász and Schrijver [16]),
r+(G) = 1 and

r0(G) = r(G) = (size of the largest clique in G) − 2,

it is not true in general that Nk
0 (G) (or Nk(G)) is equal to the (k + 2)-clique polytope of

G (the polytope defined by the clique inequalities for every clique of G of size at most
(k + 2)). This obviously holds for k = 0 and k = r(G), and also for k = 1, and it is an
interesting question for what perfect graphs it will hold for some other values of k.

Our example above and Claim 11 solve Problem 5 of Lovász [14]. Lovász asked
(paraphrased here) whether Nk(G) is defined only by the clique inequalities (up to Kk+2)
and nonnegativity constraints when G is perfect. Our example and claim prove that the
answer to this question is “no.”

4. The N0-rank and the N-rank of a graph

Lovász and Schrijver [16] proved that for any graph G the polytopes N0(G) and N(G)

are the same and both are the odd-cycle polytope of G. This motivates the following
conjecture:

Conjecture 12. Nk
0 (G) = Nk(G) for all graphs G and all k ≥ 0.

By the abovementioned results, Conjecture 12 is true for k = 1 for all graphs and for
k = 2 when r0(G) = 2. This conjecture is also true for every clique. It is easy to check
this directly (since the stronger condition Mk

0 (G) = Mk(G) holds for every k ≥ 0); also,
this fact can be seen as a consequence of a general geometric condition given in Theorem
6.3 of [6]. As we prove in Theorem 21, a weaker version of this conjecture (namely that
the N0- and N -ranks of all graphs are equal) holds for a wide variety of subdivisions
of cliques. Upcoming Proposition 14 provides similar additional evidence. First let us
point out that for some very special polytopes P we do have Nk

0 (P ) = Nk(P ).
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Theorem 13. (Theorem 3.1 of Cook and Dash [5]) If the convex polytope P ⊂ [0, 1]d

contains all vertices of the unit cube except one, then Nk
0 (P ) = Nk(P ) = Nk+(P ) for

every k ≥ 0.

However, N0(P ) �= N(P ) in general, even if P is lower-comprehensive, i.e. for
any y ∈ [0, 1]d if y ≤ x, and x ∈ P , then y ∈ P as well (it was observed in [5] and
[6] that N0, N , and N+ preserve lower-comprehensiveness of the argument—of course,
FRAC(G) is lower-comprehensive). An example is easy to find when two adjacent
vertices of the unit cube are cut.

The question of the equivalence of the N0 and the N -operators in our setting and
Lemma 3 motivate the examination of such graphs that have a vertex whose deletion
decreases its N0-rank or N -rank. Hence, we define the following two classes of graphs,
B0 and B:

– Bipartite graphs belong to B0.
– If G has a vertex v such that its deletion decreases its N0-rank and G − v is in B0,

then G is in B0.

The definition is similar for B, we just use the N -rank instead.

Proposition 14. We have B ⊆ B0. Moreover, for all G ∈ B there exists a bipartite
subgraph (VB, EB) of G such that

r(G) = r0(G) = |V | − |VB |.

Proof. If G ∈ B, there exists a sequence of graphs

G = G|V |−|VB | ⊃ G|V |−|VB |−1 ⊃ · · · ⊃ G1 ⊃ G0 = GB

such that Gi+1 is obtained from Gi by adding a new node v to Gi and some edges
incident to v such that r(Gi+1) = r(Gi)+ 1. Initially, r(GB) = r0(GB) = 0 (since GB

is bipartite). We proceed by induction to show that r(Gk+1) = r0(Gk+1) = k + 1 for
all k. Assume that we have r(Gi) = r0(Gi) for all i ≤ k. Clearly

r0(Gk+1) ≥ r(Gk+1) = r(Gk) + 1.

On the other hand, the deletion of the special node in Gk+1 gives Gk and r0(Gk) = k.
Thus r0(Gk+1) ≤ r0(Gk)+1 = r(Gk)+1, and we proved r(Gk+1) = r0(Gk+1) = k+1.
Since every G ∈ B can be constructed in this way, this also proves G ∈ B0. 
�

We do not know whether B = B0, and finding a description of the graphs belonging
to these classes would also be interesting. Clearly Kn ∈ B, but there are other examples,
see Figure 2. We are interested in properties of graphs in B0 and in B. However, since
not all graphs of N0-rank k contain an induced subgraph of N0-rank (or N -rank) k that
is also in B0 (or B), we introduce another pair of graph classes, C0 and C:

– If r0(G) = k, and for every vertex v ∈ V the graph G − v has N0-rank k − 1, then
G is in C0.
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Fig. 2. A graph G ∈ B

The definition is similar for C with the N -rank. Then we have the following fact: If the
N0-rank (or the N -rank) of the graph G is k ≥ 1, then G has an induced subgraph G′ of
N0-rank (or N -rank) k such that G′ ∈ C0 (or C).

A subdivision of a graph G is obtained by replacing every edge by a path of length
at least 1 (the new vertices, if any, on these paths should be all different). A vertex of
degree at least 3 in the subdivision must be also a vertex of the original graph; it will
be referred to as a vertex of G. The path that replaced the edge {v, w} ∈ E(G) in the
subdivision is called the path induced by v and w (or by the edge {v, w}); these paths are
the induced paths of the subdivision. An odd subdivision of an edge replaces the edge by
a path of odd length (again, all new vertices on the path are different). The subdivision
of a star operation picks a vertex v in G, and introduces a new vertex on every edge
incident to v. The graph in Figure 2 is obtained from K4 by applying the subdivision of
a star operation at vertex 1.

Theorem 15. If G ∈ B0 ∪ C0 (or G ∈ B ∪ C), then deletion or odd subdivision of an
edge or subdivision of a star does not increase the N0-rank (the N -rank). Moreover,
for G ∈ B0, B, resp., the new graph obtained by the odd subdivision of an edge or the
subdivision of a star operation is also an element of B0, B, respectively.

Proof. We prove the first claim for the N0-rank, the case of the N -rank is identical.
Assume first that G ∈ C0. Let {v, w} = e be the deleted edge. Since deleting v decreases
the N0-rank of G, and G−v = (G−e)−v, we get that r0(G−e) ≤ r0(G−e−v)+1 =
r0(G − v) + 1 = r0(G). The proof is similar for the odd subdivision of e or for the
subdivision of a star of v, since then the deletion of v gives a graph that is G − v plus
a path (paths) of length 2 (1). By Lemma 5 this graph has the same N0-rank as G − v.

Next let G ∈ B0. We prove the claim by induction on the N0-rank. For bipartite
graphs the claim is true, since the deletion or odd subdivision of an edge e or the subdi-
vision of a star gives another bipartite graph. Now, we assume that r0(G) = k > 0 and
that we have shown the claim for any graph in B0 with N0-rank k−1. Then by definition
there is a vertex v such that G − v has N0-rank k − 1 and G − v ∈ B0. We have two
cases:

(1) If v is incident to e to be deleted or subdivided or the subdivision of a star is
applied to v, then the proof is the same as in the case G ∈ C0.
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(2) Otherwise G − v ∈ B0 has N0-rank r0(G − v) = k − 1, hence by the induction
hypothesis the deletion or subdivision of an edge or the subdivision of a star does not
increase its N0-rank. Thus, by Lemma 3, the same holds for G.

To prove the second claim (G′ ∈ B0) for N0 (the proof for N is identical), it is
enough to show that r0(G

′) = r0(G) and G′ − v ∈ B0 with r0(G
′ − v) = r0(G) − 1,

where v is a vertex in G with G − v ∈ B0 and r0(G − v) = r0(G) − 1.
To show r0(G

′) = r0(G) we already have r0(G
′) ≤ r0(G), and we prove the other

direction separately, in Theorem 16 below.
Finally we show by induction on r0(G) that G′ − v is also in B0, and r0(G

′ − v) =
r0(G) − 1. This is clear for r0(G) = 1, since then G − v and hence G′ − v are both bi-
partite. Now let r0(G) ≥ 2. In case (2), the claims follow from the induction hypothesis,
while in case (1) they follow from Lemma 5. 
�

Remark 1. From the proof of Theorem 15 it is clear that the first claim holds for any
subdivision of G. Deletion of an edge can increase the rank for G �∈ B0, an example is
given later in Figure 4 (p. 339).

Theorem 16. If the graph G′ is obtained from G using the subdivision of a star or odd
subdivision of an edge operations, then r0(G

′) ≥ r0(G) (and similarly for the N - and
the N+-rank).

Proof. Let us consider the odd subdivision operation first. To prove r0(G
′) ≥ r0(G), it

is enough to show the property when we replace edge {v, w} ∈ E(G) by a path of length
3, say vv′w′w. If r0(G) = k, then there is a point x ∈ R

V (G) such that x ∈ Nk−1
0 (G)

but x �∈ ST AB(G). Define x′ ∈ R
V (G′) as follows:

x′
u :=




1 − xv if u = v′,
xv if u = w′,
xu otherwise.

Now the claim will follow from the following lemma:

Lemma 17. If x �∈ ST AB(G), then x′ �∈ ST AB(G′), and if x ∈ Nk
0 (G), then x′ ∈

Nk
0 (G′) (similarly for N and N+).

Proof. To prove the first claim we use the following fact from Wolsey [20]: If aT x ≤ b

is a valid inequality for ST AB(G), then (a′)T x ≤ b′ is valid for ST AB(G′), where
b′ := b + a(v) and

a′(u) :=
{

a(v) if u = v′ or u = w′,
a(u) otherwise.

(Sometimes a′(v′), a′(w′), and b′ can be chosen smaller, but this is not important for
us.) Now if x �∈ ST AB(G), then there is an inequality aT x ≤ b valid for ST AB(G)

that is violated by x. It is very easy to check that x′ will also violate (a′)T x ≤ b′, which
is valid for ST AB(G′), thus x′ �∈ ST AB(G′).

We prove the second statement by induction on k. For k = 0 the statement is
trivial, since if x satisfies the edge inequalities, so will x′ (and x ∈ [0, 1]V implies
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x′ ∈ [0, 1]V (G′)). Now, we assume that the claim holds for k ≥ 0 and prove it for k + 1.
If x ∈ Nk+1

0 (G), then there is a matrix X = (Xij ) ∈ R
V (G)×V (G) such that

Y :=
(

1 xT

x X

)
∈ Mk+1

0 (G),

hence Xuu = xu and Yeu, Y (e0 − eu) ∈ Nk
0 (G) for any u ∈ V (G). We define the

following matrix that will show x′ ∈ Nk+1
0 (G′):

Y ′ :=
(

1 (x′)T
x′ X′

)
,

where the matrix X′ = (X′
ij ) ∈ R

V (G′)×V (G′) is defined as follows:

X′
v′u :=




1 − xv if u = v′,
0 if u = w′,

xu − Xvu otherwise.
X′

w′u :=



0 if u = v′,
xv if u = w′,

Xvu otherwise.

X′
uv′ :=




1 − xv if u = v′,
0 if u = w′,

xu − Xuv otherwise.
X′

uw′ :=



0 if u = v′,
xv if u = w′,

Xuv otherwise.

X′
uu′ := Xuu′ if u, u′ ∈ V (G).

Thus in Y ′ the row corresponding to w′ is the same as the row corresponding to v while
the row corresponding to v′ is the first row minus the row corresponding to v, and simi-
larly for the columns. Because of this, it is easy though somewhat tedious to check that
Y ′ ∈ Mk+1

0 (G′) using the induction hypothesis. We consider one example:
To show that Y ′(e0 − ev′) ∈ Mk

0 (G′) just notice that

Y ′(e0 − ev′) =
(

xv

y

)
,

where y = (yu) ∈ R
V (G′) is given by

yu :=



0 if u = v′,
xv if u = w′,

Xuv otherwise.

Using that Yev ∈ Nk
0 (G) and the induction hypothesis it now follows that Y ′(e0 −ev′) ∈

Nk
0 (G′). The other cases are analogous. Since the matrix Y ′ is symmetric if Y is sym-

metric, the statement is also valid for the N -operator.
For the N+-operator one needs to check that whenever Y is positive semidefinite,

so is Y ′. But this follows immediately from our earlier observation that the new rows
(and columns) are linear combinations of the first row (column) and the row (column)
corresponding to v, hence by simple row and column operations we can eliminate them,
showing that Y ′ is also positive semidefinite. 
�
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The rest of the proof for the subdivision of a star operation is similar. Assume that
we get G′ by applying the subdivision of a star operation to vertex v ∈ V (G), and for
any w ∈ �(v) replace the edge {v, w} ∈ E(G) with the path vw′w. Given x ∈ R

V (G)

define x′′ ∈ R
V (G′) by

x′′
u :=




1 − xv if u = v,

xv if u = w′ and {v, w} ∈ E(G),

xu otherwise.

Again the claim will follow from the following lemma, analogous to Lemma 17:

Lemma 18. If x �∈ ST AB(G), then x′′ �∈ ST AB(G′), and if x ∈ Nk
0 (G), then x′′ ∈

Nk
0 (G′) (similarly for N and N+).

Proof. For the first part, we use the following theorem from [12]: Let aT x ≤ b be a valid
inequality for ST AB(G), and define a(�G(v)) := ∑

w∈�G(v) a(w). Then (a′′)T x ≤ b′′
is valid for ST AB(G′), where b′′ := b + a(�G(v)) − a(v) and

a′′(u) :=



a(�G(v)) − a(v) if u = v,

a(w) if u = w′ and w ∈ �G(v),

a(u) otherwise.

(Again, sometimes some of the new weights a′′(w′), a′′(v), and b′′ can be chosen small-
er.) Now if x �∈ ST AB(G), then there is an inequality aT x ≤ b valid for ST AB(G) that
is violated by x. It is very easy to check that x′′ will also violate (a′′)T x ≤ b′′, which is
valid for ST AB(G′), thus x′′ �∈ ST AB(G′).

The proof of the second statement is similar to that of Lemma 17, so we only give
a sketch of the induction. For k = 0 the statement is trivial, since if x satisfies the edge
inequalities, so will x′′ (and x ∈ [0, 1]V (G) implies x′′ ∈ [0, 1]V (G′)). If x ∈ Nk+1

0 (G),
then there is a matrix X = (Xij ) ∈ R

V (G)×V (G) such that

Y :=
(

1 xT

x X

)
∈ Mk+1

0 (G).

We define the corresponding matrix Y ′′

Y ′′ :=
(

1 (x′′)T
x′′ X′′

)
,

where the matrix X′′ = (X′′
ij ) ∈ R

V (G′)×V (G′) is defined as follows:

X′′
vu :=




1 − xv if u = v,

0 if u = w′ and w ∈ �G(v),

xu − Xvu otherwise;

X′′
uv :=




1 − xv if u = v,

0 if u = w′ and w ∈ �G(v),

xu − Xuv otherwise;
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for any w ∈ �G(v)

X′′
w′u :=




0 if u = v,

xv if u = w′ and w ∈ �G(v),

Xvu otherwise;
X′′

uw′ :=



0 if u = v

xv if u = w′ and w ∈ �G(v),

Xuv otherwise;

and finally X′′
uu′ := Xuu′ if u, u′ ∈ V (G) \ {v}. The rest of the proof, showing Y ′′ ∈

Mk+1
0 (G′), is the same. Note that Y ′′ is symmetric if and only if Y is, therefore the proof

also applies to the N -operator. For the N+-operator one just needs to notice that the new
rows (columns) corresponding to the new vertices w ∈ �G(v) are simple extensions
of the rows (columns) corresponding to v in Y , while the row (column) corresponding
to v in Y ′′ is just the first row (column) minus the row (column) corresponding to any
w ∈ �G(v). Thus by appropriate row and column operations we can eliminate these ex-
tra rows and columns to get that Y ′′ is positive semidefinite if and only if Y is, finishing
the proof. 
�

This finishes the proof of Theorem 16. 
�

Remark 2. The rank can increase in Theorem 16 when applying these operations. For
the N0- and N -rank, an example can be obtained from the graph in Figure 3 (use odd
subdivision for edge {1, 4} or subdivision of a star for vertex 1), while for the N+-rank
an example is mentioned later in Proposition 37 for odd subdivision.

Theorem 15 also immediately implies the following:

Corollary 19. If G ∈ B0 (resp. B) and G′ is obtained from G using a sequence of
the subdivision of a star and the odd subdivision of an edge operations, then G′ ∈ B0
(resp. B) and r0(G

′) = r0(G) (resp. r(G′) = r(G)).

A similar statement for the N0-rank (or N -rank) is true for graphs in C0 (or C) if
every edge in the graph G is rank-critical, i.e. r0(G− e) < r0(G) (or r(G− e) < r(G))
for all e ∈ E(G) (though G′ will usually not be in C0 or C).

Combining Theorem 15 with Lemma 14 gives a lot of graphs G with the property
that r0(G) = r(G). In particular, every graph obtained from Kn by a sequence of odd
subdivisions of edges and/or subdivisions of stars belongs to B and B0 and has N0- and
N -rank n − 2.

When G can be obtained from Kn using the subdivision of a star and the odd sub-
division of an edge operations, we say that G is an odd-star subdivision of Kn. We can
recognize when a subdivision of Kn is odd-star:

Lemma 20. Let G be a subdivision of Kn (n ≥ 3) where every induced path of G con-
tains 0, 1, or 2 new vertices. The graph G is an odd-star subdivision of Kn if and only
if the following two properties are satisfied:

(a) Every cycle formed by three induced paths of G is odd;
(b) G does not contain the graph shown in Figure 3 as an induced subgraph.
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Fig. 3. A non-odd-star subdivision of K4

Remark 3. It is easy to see that if a subdivided edge contains at least three additional
vertices, then having two fewer vertices on the path does not change whether the graph is
an odd-star subdivision of Kn or not. Thus, it is enough to examine the graphs specified
in the lemma.

Proof. (of Lemma 20) Assume first that G is an odd-star subdivision of Kn. Property
(a) holds for Kn, and it clearly remains valid after the application of these operations.
If property (b) is not true, then G contains the induced subgraph shown on Figure 3.
Clearly the vertices 1, 2, 3, and 4 belonged to the original Kn. Since the path from
vertex 1 to vertex 2 contains exactly one additional vertex, to obtain G from Kn we
must have applied the subdivision of a star operation to either vertex 1 or 2. However,
in the first case we should have at least one additional vertex on the path joining vertex
1 to vertex 4, while in the second case we should have at least one additional vertex on
the path joining vertex 2 to vertex 3. Since none of these paths is subdivided, we get
a contradiction, so property (b) is valid for G.

Now assume that G satisfies properties (a) and (b). If every induced path of the sub-
division contains 0 or 2 new vertices, then G can be obtained from Kn by using only the
odd subdivision of an edge operation. Assume now that the path induced by the vertices
v, w ∈ Kn has exactly one new vertex. Let A be the set of those vertices of Kn that with
v, induce a path having exactly 1 new vertex, and let B be the remaining vertices of Kn,
i.e. those that with v induce a path having 0 or 2 new vertices. Because of property (a),
induced paths between a vertex of A and a vertex of B must have exactly 1 new vertex,
while induced paths within vertices of A or within vertices of B can contain 0 or 2 new
vertices. If every induced path within vertices of B ∪ {v} contain 2 new vertices, then
G can be obtained from Kn by applying the subdivision of a star operation to every
vertex of B ∪ {v} and odd-subdividing those edges within vertices of A that induce a
path having 2 new vertices in G. Similarly, if every induced path within vertices of A

has exactly 2 new vertices, then G can be obtained from Kn by applying the subdivision
of a star operation to every vertex of A and odd-subdividing those edges within vertices
of B ∪ {v} that induce a path having 2 new vertices. If neither of these cases occur, then
we have two vertices of B ∪ {v} (say 1 and 4) and two vertices of A (say 2 and 3) such
that the paths induced by 1 and 4 and by 2 and 3 contain no new vertices, while the rest
of the paths between these vertices contain exactly 1 new vertex. Since this is exactly a
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forbidden induced subgraph in property (b), this third case is impossible, thus G is an
odd-star subdivision of K4. 
�

Using the above lemma we can prove that only these odd-star subdivisions of Kn

have the property that their N0-ranks and N -ranks are the same as that of Kn:

Theorem 21. Let G be a subdivision of Kn. Then the following are equivalent:

(i) r0(G) = r0(Kn) = n − 2,
(ii) r(G) = r(Kn) = n − 2,

(iii) G is an odd-star subdivision of Kn.

Proof. First assume that G is not an odd-star subdivision of Kn. By Lemma 20 either
property (a) or (b) is not satisfied. If property (a) is not satisfied, then a cycle induced
by three vertices of Kn is even, hence deleting the remaining n − 3 vertices of Kn in G

leaves a bipartite graph having rank 0, hence r0(G) (and thus r(G)) is at most n − 3 by
Lemma 3. Similarly, if property (b) is not satisfied, then four vertices of Kn induce the
graph shown on Figure 3 in G (or a graph having an odd number of vertices on the paths
1–2, 2–4, 4–3, and 3–1). Thus, deleting the remaining n − 4 vertices of Kn leaves this
graph plus possibly paths. It was shown by Gerards and Schrijver [8] that the N0-rank
of such a graph is 1, thus again G has N0-rank at most n − 3.

When G is an odd-star subdivision of Kn, we have already seen that its N0- and
N -rank are both n − 2, and the theorem is proved. 
�

Lovász and Schrijver [16] proved r(Kn) = n − 2 by showing that the point x =
( 1
k
, 1

k
, . . . , 1

k
)T belongs to Nk−2(Kn) (they actually showed this for any graph). Using

Lemmas 17 and 18 one can similarly obtain points in Nk−2(G) for the graph G when
G is obtained from Kn using odd subdivision of an edge and subdivision of a star op-
erations. That these points belong to Nk−2(G) also follows from the following, more
general statement:

Lemma 22. Let S ⊂ V (G) be a stable set in the graph G. For k ≥ 3 define the vector
x(S,k) ∈ R

V (G) as follows:

x
(S,k)
i =

{
k−1
k

if i ∈ S,

1
k

if i /∈ S.

If x(S,3) ∈ N(G), then x(S,k) ∈ Nm(G) for all k ≥ m + 2 for any m ≥ 1.

Remark 4. Lemma 2.7 of [16] is the statement of this lemma with S = ∅.

Proof. (of Lemma 22) First define an equivalence relation on the vertices of G depend-
ing on S: Let G′ be a subgraph of G containing those edges of G that are incident to
a vertex of S, and for i, j ∈ V (G) define i ∼ j if and only if there is a path from i to j

in G′, and let Sj = {i ∈ S : i ∼ j}.
The proof of the lemma goes by induction on m. For m = 1, if x(S,3) ∈ N(G), then

since N(G) is defined by the trivial, edge, and odd cycle inequalities (see Lovász and
Schrijver [16]), the assumption x(S,3) ∈ N(G) is equivalent to requiring that S contains
at most j − 1 vertices of any odd cycle of length 2j + 1 (note that by the definition of
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x(S,3) only the odd cycle inequalities have to be checked), but then x(S,k) also satisfies
any odd cycle inequality for k ≥ 4, thus x(S,k) ∈ N(G).

Next we assume that the statement holds for m ≥ 1, and prove it for m + 1. Let
k ≥ m + 3, and define the matrix X = (Xij ) ∈ R

V (G)×V (G) as follows:
If i ∼ j , then let

Xij =




1
k

if x
(S,k)
i = x

(S,k)
j = 1

k
,

k−1
k

if x
(S,k)
i = x

(S,k)
j = k−1

k
,

0 otherwise;

while if i �∼ j , then set

Xij =




0 if x
(S,k)
i = x

(S,k)
j = 1

k
,

k−2
k

if x
(S,k)
i = x

(S,k)
j = k−1

k
,

1
k

otherwise.

We claim now that the matrix

Y :=
(

1 (x(S,k))T

x(S,k) X

)
∈ M(Nm(G)),

showing that x(S,k) ∈ Nm+1(G).
X is clearly symmetric, thus so is Y . Next we check that every column of Y is in the

cone defined by Nm(G). This is trivial for the first column by the induction hypothesis.
If x

(S,k)
j = 1/k, then after rescaling (multiplying the vector by 1/x

(S,k)
j ) the j th column

becomes

k · Xij =
{

1 if i ∼ j and x
(S,k)
i = 1

k
, or if i �∼ j and x

(S,k)
i = k−1

k
,

0 otherwise.

This is the characteristic vector of the set containing the vertices �(Sj ) \ Sj and S \ Sj .
We claim that this is a stable set. Clearly, two vertices of S \Sj cannot be adjacent, since
S is a stable set. If a vertex v ∈ �(Sj ) \ Sj is adjacent to a vertex w ∈ S \ Sj , then
w ∈ Sj , contradiction. Finally, if v, w ∈ �(Sj ) \ Sj are adjacent, then v ∼ w implies
that there is a path from v to w such that every second vertex on the path belongs to S

(but neither v nor w), thus together with the edge {v, w} this forms an odd cycle, and
x(S,k) violates the corresponding odd cycle inequality, again a contradiction. Since this
vector is the characteristic vector of a stable set, it is in ST AB(G) ⊆ Nm(G).

If x
(S,k)
j = (k − 1)/k, then similarly after rescaling (multiplying by k/(k − 1)) the

j th column becomes

k

k − 1
· Xij =




1 if i ∼ j and x
(S,k)
i = k−1

k
,

0 if i ∼ j and x
(S,k)
i = 1

k
,

k−2
k−1 if i �∼ j and x

(S,k)
i = k−1

k
,

1
k−1 if i �∼ j and x

(S,k)
i = 1

k
.
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This is just the characteristic vector of the stable set Sj on Sj ∪ �(Sj ) and equals to
x(S′,k−1) with S′ = S \Sj on G−Sj −�(Sj ), thus it belongs to Nm(G) by the induction
hypothesis (k − 1 ≥ m + 2) and Lemma 2.

It is easy to check that when we take the difference of the first and the j th columns,
we get exactly the same vectors (in the opposite order), which completes the proof. 
�

Note that the edge deletion operation can increase the N0-rank or the N -rank of a
graph, an example is shown on Figure 4. If we delete the edge e from that graph, we get
an odd-star subdivision of K4, hence its N -rank is 2. However, that inequality is just the
sum of two odd cycle inequalities in the original graph, hence its rank is just 1, and it
can be checked that the graph indeed has rank 1, so the deletion of e has increased the
rank.

Odd-star subdivisions of K4 are the only minimal graphs we know which have N0-
rank 2. However, for n ≥ 5 not only odd-star subdivisions of Kn have rank n − 2. In
fact, we can construct graphs that have arbitrarily large rank while no vertex has degree
higher than 3. To show this, we need the following generalizations of the odd subdivision
of an edge and the subdivision of a star operations:

Let v be a vertex with neighbourhood �(v). Partition �(v) into two nonempty, dis-
joint sets A1 and A2 (so A1 ∪ A2 = �(v), and A1 ∩ A2 = ∅). A stretching of the vertex
v is obtained as follows:

Remove v, introduce two vertices instead, called v1 and v2, add an edge between
vi and every vertex in Ai for i ∈ {1, 2}, add the edge {v1, v2}, and then do one of the
following:

(i) subdivide the edge {v1, v2} with one vertex w; or
(ii) subdivide every edge between v2 and A2 with one vertex.

These operations are illustrated on Figure 5.
Notice that when A1 contains a single vertex, the stretching of a vertex operation

reduces to the odd subdivision of an edge (in case of (i)) and the subdivision of a star (in
case of (ii)) operations, so it is really their common generalization. Now we can identify
another class of graphs that have N -rank at least n − 2:

Theorem 23. If G is a graph obtained from Kn using the stretching of a vertex operation
finitely many times, then r0(G) ≥ r(G) ≥ n − 2.
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Fig. 5. Two types of stretching of v

Proof. We follow the idea of the proof of Theorem 21 by defining an inequality induc-
tively that has N -rank at least n− 2, which is proven by a point x(S,n−1) ∈ N(n−3)(G) \
ST AB(G) for some stable set S in G.

Clearly Kn has such an inequality, namely
∑n

i=1 xi ≤ 1 with x(∅,n−1) (i.e. S = ∅).
Now we assume inductively that after applying the stretching of a vertex operation a
finite number of times we have an inequality aT x ≤ b which has N -rank at least n−2 in
G, and this is shown by the point x(S,n−1) for some stable set S. Now apply a stretching
of v ∈ V (G) to get the new graph G̃. Define the corresponding inequality ãT x ≤ b̃ and
the set S̃ as follows:

In case (i), let

ã(u) :=
{

a(v) if u = v1, v2, or w,
a(u) otherwise;

b̃ := b + a(v);
S̃ :=

{
(S \ {v}) ∪ {v1, v2} if v ∈ S,
S ∪ {w} otherwise.

In case (ii), let w̃ denote the vertex which was used to subdivide the edge {v2, w} for
w ∈ A2, recall that a(A) := ∑

u∈A a(u), and let

ã(u) :=




a(v) if u = v1,
a(A2) if u = v2,
a(w) if u = w̃ and w ∈ A2,
a(u) otherwise;

b̃ := b + a(A2);
S̃ :=

{
(S \ {v}) ∪ {w̃ : w ∈ A2} ∪ {v1} if v ∈ S,
S ∪ {v2} otherwise.

The new weights are illustrated on Figure 6.
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Fig. 6. New weights after the stretchings of v

First check that the new inequality ãT x ≤ b̃ is valid for ST AB(G̃) (though it might
not be a facet). Consider type (i) stretching, and let M be a stable set in G̃. If M contains
at most one of the vertices v1, w, and v2, then M ′ := M \ {v1, v2, w} is stable in G,
hence

ã(M) ≤ ã(M ′) + a(v) = a(M ′) + a(v) ≤ b + a(v).

The remaining possibility is that M contains both v1 and v2, but not w, and then M ′ :=
(M ∪ {v}) \ {v1, v2} is stable in G, hence

ã(M) = a(M ′) + a(v) ≤ b + a(v).

Now lets examine type (ii) stretching, and let M be a stable set in G̃ as before. If v2 ∈ M ,
then M ′ := M \ {v2} is stable in G, hence

ã(M) = ã(M ′) + ã(v2) = a(M ′) + a(A2) ≤ b + a(A2).

If v1, v2 /∈ M , then (M ∪ {v2}) \ {w̃1, . . . , w̃k} is also stable in G̃ with at least as much
weight (since ã(v2) = a(A2)), so we are done by the first case. In the remaining case,
when v1 ∈ M and v2 /∈ M , we have M ′ := ((M ∩ V (G)) ∪ {v}) \ A2 stable in G, thus

ã(M) ≤ (a(M ′) − a(v)) + ã(v1) + a(A2) = b − a(v) + a(v) + a(A2) ≤ b + a(A2),

where the first inequality follows from the fact that we removed v1 and at most one of
wi and w̃i for any i from M , and then added v to get M ′.

This proves that ãT x ≤ b̃ remains valid for ST AB(G̃), and it is easy to check that
x(S̃,n−1) still violates this inequality if x(S,n−1) violated aT x ≤ b.

Since x(S̃,3) will satisfy all odd cycle inequalities (every odd cycle going through
some of the new vertices in G̃ corresponds to a shorter odd cycle in G), by Lemma 22
we proved that the N -rank of G̃ is also at least n − 2. 
�
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Even though we can only prove this lower bound for the rank of these graphs, we
think that it is actually sharp:

Conjecture 24. If G is obtained from Kn using the stretching of a vertex operation
finitely many times, then r0(G) = r(G) = n − 2.

Theorem 23 also follows from the following generalization of Theorem 16:

Theorem 25. If the graph G′ is obtained from G using the stretching of a vertex oper-
ation, then r0(G

′) ≥ r0(G) (and similarly for the N - and the N+-rank).

Proof. The proof is analogous to that of Theorem 16. It is enough to prove the claim
when G′ is obtained from G by a single application of the stretching of a vertex op-
eration. If r0(G) = k, then there is a point x ∈ R

V (G) such that x ∈ Nk−1
0 (G) but

x �∈ ST AB(G). For type (i) stretching define x′ ∈ R
V (G′) as follows:

x′
u :=




1 − xv if u = w,

xv if u = v1 or u = v2,

xu otherwise;

while for type (ii) stretching define

x′
u :=




1 − xv if u = v2,

xv if u ∈ �G′(v2),

xu otherwise.

Now the claim will follow from the generalization of Lemma 17:

Lemma 26. If x �∈ ST AB(G), then x′ �∈ ST AB(G′), and if x ∈ Nk
0 (G), then x′ ∈

Nk
0 (G′) (similarly for N and N+).

Proof. The first claim follows easily since if aT x ≤ b is a valid nontrivial inequality
for ST AB(G) violated by x, then we can define ã as in Theorem 23 to get a new valid
inequality for ST AB(G) violated by x′.

The proof of the second statement is very similar to the previous proofs seen in Lem-
mas 17 and 18 so we again only give a sketch of the induction. For k = 0 the statement
is trivial (x′ will satisfy the trivial and the edge inequalities if x did), so assume that the
claim holds for k ≥ 0. If x ∈ Nk+1

0 (G), then there is matrix X = (Xij ) ∈ R
V (G)×V (G)

such that

Y :=
(

1 xT

x X

)
∈ Mk+1

0 (G),

and we define the corresponding matrix Y ′ showing x′ ∈ Nk+1
0 (G′) by

Y ′ :=
(

1 (x′)T
x′ X′

)
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where the matrix X′ = (X′
ij ) ∈ R

V (G′)×V (G′) is defined as follows: For type (i) stretching
and i = 1, 2 let

X′
viu

:=



xv if u = v1 or u = v2,

0 if u = w,

xu otherwise;

X′
uvi

:=



xv if u = v1 or u = v2,

0 if u = w,

xu otherwise;
while the remaining new row and column is

X′
wu :=




0 if u = v1 or u = v2,

1 − xv if u = w,

xu − Xvu otherwise;
X′

uw :=



0 if u = v1 or u = v2,

1 − xv if u = w,

xu − Xuv otherwise;
and finally X′

uu′ := Xuu′ if u, u′ ∈ V (G) \ {v}.
To get Y ′ for type (ii) stretching first apply type (i) stretching to vertex v, then the

subdivision of a star to vertex v2, then delete w and w̃ and the corresponding rows and
columns.

The proof showing Y ′ ∈ Mk+1
0 (G′) is the same as in Lemmas 17 and 18. The proofs

for the N - and N+-operators are the same, too, finishing the proof. 
�

This finishes the proof of Theorem 25. 
�

5. Further facts about the N0 and N operators

The polytope N0(P ) has a nice geometric description as follows: for every coordinate
xi take the convex hull of those points of P that have xi = 0 or 1, then the intersection
of these convex hulls is N0(P ) (see Balas et al. [3]). We know of no similar nice way to
describe the polytope N(P ), except for P ⊂ R

2:

Theorem 27. When P ⊂ [0, 1]2, the polytope N(P ) is defined by the following inequal-
ities:

(i) The inequalities obtained by the N0 operator.
(ii) Pick any vertex v of the unit square and a direction (clockwise or counterclock-

wise). Find the first points of P in the chosen direction on the two sides of the unit square
not containing v. The two nontrivial coordinates of these two points give another point
w (e.g. if the two points were (a, 1), (0, b), then w = (a, b)). The inequality defined by
the line vw that contains the vertex before v in the chosen direction is valid for N(P ).

Proof. We use the alternative definition of the N0 and N operators using the derivation
of the valid inequalities. An inequality is valid for N0(P ) if we can obtain it from in-
equalities valid from P by multiplying them by xi or 1−xi , then replacing x2

i by xi , and
xixj by yij , and taking their nonnegative linear combination eliminating all y-variables.
If we assume yij = yji for all coordinates i, j , we get the N operator. For more details,
see [11].
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Without loss of generality we can assume that v is the origin, and the first two points
of P in clockwise direction on its boundary are (a, 1) and (1, b) with 0 < a, b < 1.
Then with some 0 ≤ c, d ≤ 1 the inequalities

0 ≤ ca + (1 − c)x − ay (5)

(going through the points (0, c) and (a, 1)) and

0 ≤ 1 − db − (1 − b)x − (1 − d)y (6)

(going through the points (d, 1) and (1, b)) are valid for P . To get the inequalities that
may not be valid for N0(P ), we need to use different variables when multiplying (5)
and (6). Since we have only two variables, it is easy to see that to get a meaningful new
inequality we need to multiply (5) by y and (6) by x. After replacing x2 and y2 by x and
y, respectively, and replacing xy and yx by yxy we get

0 ≤ (c − 1)ay + (1 − c)yxy

and
0 ≤ b(1 − d)x − (1 − d)yxy.

Divide these inequalities by 1 − c and 1 − d , then add them to eliminate yxy to get

0 ≤ bx − ay,

which is exactly the line going through the origin and (a, b), and (1, 0) clearly satisfies
it. This proves the claim. 
�

It is unclear whether N(P ) admits an analogous description when d ≥ 3.
Now let us turn back to the graph ranks. We say that e ∈ E is r0-critical (r-critical,

resp.) if r0(G − e) < r0(G) (r(G − e) < r(G), resp.). Lemmas 3 and 5 imply that
if e ∈ E is r0-critical then r0(G − e) = r0(G) − 1, and similarly for the r-critical
edges. The proof of the next fact is elementary and hence is omitted. Below, we say
odd-contraction to mean the inverse of the odd subdivision of an edge.

Proposition 28. Let G be a graph and e := {u, v} ∈ E be such that d(u) = d(v) = 2.
Name the other neighbors of u and v as w, z respectively (so that the odd-contraction
of the edge e replaces the path wuvz by the edge {w, z}). If e is r-critical then

r(G) − 1 ≤ r(G/e) ≤ r(G),

where G/e denotes the graph obtained from G by the odd-contraction of the edge e.
Moreover, if G/e ∈ C then r(G) = r(G/e). Finally, r(G/e) = r(G) − 1 if and only if
the edge {w, z} is not r-critical in G/e.

Analogous statement holds for r0, C0, etc. The last statement of Proposition 28 is
not empty. Let G denote the graph obtained from the graph in Figure 2 (p. 331) by the
subdivision of a star operation applied to node 7. Let e denote the edge in G defined
by node 4 and a new node. Then r(G) = r0(G) = 2, but r(G/e) = r0(G/e) = 1. (Of
course, the edge {1, 7} is neither r-critical nor r0-critical in G/e.)
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Let α(G) denote the size of a maximum stable set in G. An edge e ∈ E is called
α-critical if α(G − e) > α(G), while the graph G is called α-critical if all of its edges
are α-critical. Lovász and Schrijver [16] proved that α(G) can be used to bound the
N0-rank:

r0(G) ≤ |V | − α(G) − 1, (7)

since we can repeatedly delete vertices outside a maximum stable set. What graphs have
the property that there is equality in (7)? Clearly every complete graph. Odd subdivision
of an edge destroys this property, since it increases α(G) only by 1, while the number of
vertices increases by 2, unless the N0-rank is also increased. The subdivision of a star
operation also destroys it (apply the subdivision of a star operation to any vertex of K4).

We conclude this section with two very elementary theorems.

Theorem 29. If r0(G) = 1 = |V | − α(G) − 1 in the connected graph G, then G has
the following property: there is an edge {u, v} such that the vertices of V (G) \ {u, v}
can be partitioned into three disjoint sets A, B, and C such that vertices of A are joined
only to u, the vertices in B are joined only to v, while the vertices of C (which must be
nonempty) are joined to both u and v.

Proof. Suppose G = (V , E) satisfies the assumptions. Then |V | = α(G) + 2. Let S

be a maximum stable set in G, so |V \ S| = 2. Define {u, v} := V \ S. There must be
at least one path from u to v, since G is connected. Since S is a stable set, such a path
cannot have more than one intermediate node. If all such paths have one intermediate
node, then r0(G) = r(G) = 0 (since G is bipartite). If there is only an edge connecting
u and v, then G is again bipartite and has N0-rank zero. Therefore {u, v} ∈ E, and
there is at least one path of length two between u and v. These intermediate nodes make
up the set C. Since G is connected, V \ {u, v} is partitioned as in the statement of the
theorem. 
�
Theorem 30. If r0(G) = |V |−α(G)−1, then the deletion of an edge e cannot increase
the N0-rank. Moreover, if the edge e is α-critical, then r0(G−e) = |V |−α(G−e)−1 =
r0(G) − 1.

Proof. The first claim follows from (7), since the deletion of an edge cannot decrease
α(G). If e isα-critical, thenα(G−e) = α(G)+1, hence r0(G−e) ≤ |V |−α(G−e)−1 =
r0(G) − 1. But by Lemma 3 the deletion of an edge can decrease the rank by at most 1,
hence we have equality. 
�

6. On the ranks of some sparse graphs

Even though the stable set problem on line graphs and related graphs is rather trivi-
al to solve by matching techniques, such graphs seem quite important in our current
understanding of the inefficiencies of N0, N , and N+ operators. Therefore, a better
understanding of these operators’ behaviour on such graphs seems relevant.

The line graph L(G) of a graph G = (V (G), E(G)) is defined by V (L(G)) := E(G)

and E(L(G)) := {{e, f } : e, f ∈ E(G) are adjacent in G}. Consider L(K2k+1), the
line graph of the complete graph K2k+1. Then r+(L(K2k+1)) = α(L(K2k+1)) = k
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(see [18]—also see Aguilera et al. [1], which includes a study of Balas–Ceria–Cor-
nuéjols ranks in addition to N - and N+-ranks for matching and very closely related
problems), and this graph is maximal in the sense that the addition of an edge to it de-
creases the stability number and hence r+. In an effort to understand graphs with high
r+, we would like to understand very sparse graphs with as high an r+ as possible.

Let FRACM(G) denotes the usual LP relaxation of the matching polytope of G,
i.e. in addition to the restriction x ∈ [0, 1]V (G), FRACM(G) is defined by the following
constraints:

∑
e∈E(G): e is incident to v in G

xe ≤ 1 for all v ∈ V (G). (8)

Note that {e, f } ∈ E(L(G)) implies that the edges e and f are incident to some node
v ∈ V (G), thus (8) for v implies the inequality xe + xf ≤ 1.

Proposition 31. We have FRAC(L(G)) ⊇ FRACM(G), where equality holds if and
only if G is a cycle or a path or a disjoint union of these.

Proof. The inclusion is clear from the definitions above. It is also clear that if G

is a cycle or a path, then equality holds. For the converse, suppose that the equality
holds. Then every node in G has degree less than or equal to 2 (otherwise 1

2 ē ∈
FRAC(L(G))\FRACM(G), a contradiction). Thus G is a cycle or a path or a dis-
joint union of these. 
�

From Proposition 31 we can conclude that

Nk
� (FRAC(L(G))) ⊇ Nk

� (FRACM(G))

for all k ≥ 0 and for all N� ∈ {N0, N, N+}. We know from [18] that for G = K2k+1 the
N+-rank of the matching polytope relative to FRACM(G) is k. This proves that there
exist graphs G with

r+(G) ≥
⌊

1

4

(√
8|V (G)| + 1 − 1

)⌋
.

This is the best lower bound known to date for r+(G).
Motivated by the results of the previous section, we are interested in determining r0

and r values of blossom inequalities on very sparse graphs (before we consider r+ in
the next section). In this section, an odd subdivision of a graph is obtained by replacing
an edge by a path of length 3. Let the graph shown on Figure 7 be denoted by Gk . If
we replace the path v3k−2v3k−1v3kv3k−3 with the edge {v3k−2, v3k−3} in the graph Gk ,
denote the resulting graph by G̃k (e.g. G̃2 = K4). Then Gk is an odd subdivision of G̃k ,
and α(G̃k) = α(Gk)−1. To motivate these graphs, consider the house on five nodes for
the matching problem (see Figure 8). Then its line graph has six nodes and the removal
of an appropriate edge makes it α-critical (actually, the resulting α-critical graph is ex-
actly G2). In general, Gk can also be obtained from an apartment with k − 1 floors (or
a blossom ladder with k steps—see Figure 8) after taking the line graph and removing
k − 1 special edges. The motivation for studying these graphs came from the desire



Stable set problem and graph ranks 347














































�
�

��

�
�

��

�
�

��

�
�
�
�
�
��

� � �

� � �

� � �

� � �

� �

� �

� �

1

2

3

4

5

6

7

8

9

3k−5

3k−4

3k−3

3k−2

3k−1

3k

Fig. 7. The graph Gk .

�
�

�
�











1

2

3

4

5

�

�

�

�

�

�

�

� �

�










�
�

��

� � �

�

� � �

��

Fig. 8. A house and an apartment

to understand how the lift-and-project procedures behave under the nested blossom in-
equality structures. We see below in Theorem 35 that the N0-rank grows logarithmically
(as a function of k). As a result, we also see that for this class of graphs, the information
given by the destruction lemma (Lemma 4) is extremely weak while the deletion lemma
(Lemma 3) can be used to obtain the sharp, logarithmic upper bound.

Lemma 32. The graphs G̃k and Gk are α-critical for k ≥ 1, and α(Gk) = k.

To prove the above lemma we use the following union operation used to obtain new
α-critical graphs (see Wessel [19]): Suppose that H1 and H2 are disjoint graphs. Let
{x1, x2} ∈ E(H1), {y1, y2} ∈ E(H2). Take the disjoint union of the two graphs, delete
the edges {x1, x2} and {y1, y2}, add the edge {x1, y1}, and identify x2 with y2. Denote
the resulting graph by H := H1 ⊕ H2. The operation is demonstrated on Figure 9 with
H1 = H2 = K4. Note that odd subdivision is the same as the union with K3. We also
utilize the following theorem of Wessel [19]:

Theorem 33. If H1 and H2 are α-critical, then so is H = H1 ⊕ H2, and α(H) =
α(H1) + α(H2).

Proof. (of Lemma 32) The proof goes by induction. The cases k = 1, 2 are trivial, since
G1 = K3 and G̃2 = K4, hence its subdivision is also α-critical. Now assume that we
have shown that Gk−1 is α-critical for k ≥ 2. We will show that so is Gk+1. Notice that
G̃k+1 = Gk−1 ⊕K4. Hence Theorem 33 implies that G̃k+1 is α-critical, thus so is Gk+1,
and it is easy to see that α(Gk) = k. 
�
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Fig. 9. The union of two K4

Notice that we can have the edge v3j−4v3j instead of the edge v3j−4v3j−2 for any
2 ≤ j ≤ k, and the conclusion of Lemma 32 would still apply, so the resulting graph is
also α-critical. Chvátal [4] proved the following nice property of α-critical graphs:

Theorem 34. If the graphG isα-critical, then ēT x ≤ α(G)defines a facet ofST AB(G).

We can now establish the N0-rank of the graphs Gk:

Theorem 35. r0(Gk) = �log2
k+1

3 � + 2 for any k ≥ 1.

Proof. Since by Lemma 32 the graph Gk is α-critical for any k ≥ 1, Theorem 34 implies
that ēT x ≤ α(Gk) defines a facet of ST AB(Gk). We will show by induction on k that
this inequality achieves the N0-rank of Gk , and this will enable us to find a recursion for
r0(Gk).

The case k = 1 is easy to check, so let k > 1, and assume for any 1 ≤ m < k

that the N0-rank of ēT x ≤ α(Gm) is equal to r0(Gm). We use the following property of
the N0-rank of an inequality, proved in [11]: If aT x ≤ b is a facet of ST AB(G) with
N0-rank k, then there is a vertex v ∈ V (G) such that the deletion and the destruction of
v give rise to inequalities with N0-rank strictly less than k.

Turning this around and by using Lemma 3 we get that if k − 1 is the minimum over
all vertices of G of the maximum of the ranks of the inequalities obtained by the deletion
and the destruction of v, then the rank of the original inequality is exactly k.

Clearly there are basically three different choices for the vertex v to be deleted and
destroyed:

(i) v = v3m+1 for some 0 ≤ m ≤ k − 1;
(ii) v = v3m+2 for some 0 ≤ m ≤ k − 1;

(iii) v = v3m+3 for some 0 ≤ m ≤ k − 1.

Consider case (i). If we delete v3m+1, then in the remaining graph v3m is a cut ver-
tex, so by Lemma 5 we can also delete the edge v3mv3m+3, then the remaining two
disjoint subgraphs will be α-critical, since one of them is Gm, the other one is an odd
subdivision of Gk−(m+1) as shown on Figure 10 (the cases m = 0 or k − 1 are sim-
pler). Similarly, if we destroy v3m+1, then the remaining graph will have the following
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Fig. 10. The deletion of v3m+1.

α-critical components: Gm+1, the edge v3mv3m+3, and an odd subdivision of Gk−(m+2),
as demonstrated on Figure 11. Since clearly r0(Gm) ≤ r0(Gm+1) for any m ≥ 1, we
obtain using the induction hypothesis that the N0-rank of ēT x ≤ α(Gk) is at most
1 + max

{
r0(Gm), r0(Gk−(m+1))

}
, and by Lemma 3 it follows that

r0(Gk) ≤ 1 + max
{
r0(Gm), r0(Gk−(m+1))

}
.

When we delete and destroy v3m+2 we obtain similarly that (notice that the resulting
graph can be obtained as the union of Gm and Gk−m, hence it is α-critical)

r0(Gk) ≤ 1 + max
{
r0(Gk−1), r0(Gm−1), r0(Gk−(m+1))

}
,

and in case of v3m+3 we get

r0(Gk) ≤ 1 + max
{
r0(Gm), r0(Gk−(m+2))

}
.

Clearly the smallest N0-rank (hence the N0-rank of ēT x ≤ α(Gk)) is obtained in this
last case when m = � k−1

2 �. Since this N0-rank is also an upper bound for r0(Gk), we
get that

r0(G2k) = 1 + r0(Gk−1)

and
r0(G2k+1) = 1 + r0(Gk).

This recurrence is easy to solve by finding the indices when the N0-rank is first n. It can
be seen easily that for n ≥ 2

r0(Gk) ≥ n if and only if k ≥ 3 · 2n−2 − 1,
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hence

r0(Gk) =
⌊

log2
k + 1

3

⌋
+ 2

for k ≥ 2, and this formula gives correct result for k = 1, too. 
�
This example shows that Lemma 4 itself can be rather weak. However, one can

combine the N+ operator with the weaker operators to achieve stronger bounds:

Theorem 36. For every graph G = (V , E), we have

r+(G) ≤ min

{
max
v∈V

{r+(G � v)} , min
v∈V

{r+(G − v)}
}

+ 1.

Proof. Since we already have Lemma 4, we only need to prove that if there exists v ∈ V

such that r+(G − v) ≤ k, then r+(G) ≤ k + 1. To prove this, consider Nk+(G). Then
N(Nk+(G)) = ST AB(G) by Lemma 1.3 of [16] since both

Nk
+(G) ∩ {x ∈ R

V : xv = 0} and Nk
+(G) ∩ {x ∈ R

V : xv = 1}
are integral polytopes by Lemma 1 and the assumption that r+(G − v) ≤ k. Since
N+(Nk+(G)) ⊆ N(Nk+(G)), we conclude that r+(G) ≤ k + 1. 
�

7. On the N+-rank of graphs

Let us continue with the thread of investigation from the previous section. With a slight-
ly different slant, we can ask “what is the smallest graph whose N+-rank is 1?” The
answer is “the triangle.” The next question in the sequence is a bit harder and its answer
exposes a significant amount of new insights into the behaviour of the N+-rank under
the fundamental graph operations.

Proposition 37. For the graph G2 on Figure 7 we have r+(G2) = 2. Moreover, every
graph G with V (G) ≤ 5 or E(G) ≤ 7 satisfies r+(G) ≤ 1. Therefore, G2 is the smallest
graph with N+-rank equal to 2.

Proof. Let

Y (ξ) :=




1 17
40

17
40 1/3 1/3 1/4 1/4

17
40

17
40 0 ξ 0 1/8 1/8

17
40 0 17

40 0 ξ 1/8 1/8

1/3 ξ 0 1/3 1/3 − ξ 0 0

1/3 0 ξ 1/3 − ξ 1/3 0 0

1/4 1/8 1/8 0 0 1/4 0

1/4 1/8 1/8 0 0 0 1/4




,

where the corresponding weights on G2 are illustrated in Figure 12. It can be easily
checked that
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Y (ξ) ∈ M (G2) if and only if
11

60
≤ ξ ≤ 3

10
.

Setting ξ := 497+√
609

2400 ∈ ( 11
60 , 3

10

)
makes Y positive semidefinite. Since the projection

of Y onto the space of FRAC(G) corresponds to the vector x̄ := ( 17
40 , 17

40 , 1/3, 1/3, 1/4,

1/4)T with ēT x̄ = 2 + 1
60 , and α(G2) = 2, we have r+(G2) ≥ 2. Using Corollary 2.19

of [16], it is easy to see that r+(G2) ≤ 2. Therefore, r+(G2) = 2.
Next we prove r+(G) ≤ 1 for |V (G)| ≤ 5 or |E(G)| ≤ 7. By Lemma 5 we can

assume G is 2-connected (otherwise we have a cut vertex and a smaller graph with the
same N+-rank). Thus the degree of every node is at least 2, so for |V (G)| ≤ 5 the
destruction of any node leaves at most an edge, thus the remaining graph has N+-rank
0, and we get r+(G) ≤ 1. Now we can assume |V (G)| ≥ 6 and |E(G)| ≤ 7. Since
the degree of any node is at least 2, |V (G)| ∈ {6, 7}. If |V (G)| = 7, then G is an odd
hole, which has N+-rank 1, while if |V (G)| = 6, then G is a 6-cycle with a chord.
The deletion of any of the degree 3 nodes leaves a path (having N+-rank 0), therefore
r+(G) ≤ r0(G) ≤ 1 + minv∈V {r0(G − v)} = 1. 
�

Now we consider an arbitrary graph G. First, we present a summarizing theorem,
then give a new upper bound on r+(G) in general. The operation of cloning a vertex
v ∈ G is replacing v by a clique of size at least 2 and connecting every new vertex to
every original neighbour of v.

Theorem 38. Each of the following operations can increase r+(G): odd subdivision of
an edge, subdivision of an edge, cloning of a vertex, adding an edge, deleting an edge,
contracting an edge.

Proof. We proved in Proposition 37 that r+(G2) = 2. Since r+(K4) = 1 and G2 can be
obtained from K4 by an odd subdivision of any edge, odd subdivision and consequently
subdivision can increase r+. Next consider the odd hole on 5 nodes (N+-rank is 1), and
clone any node. Since we again get G2, cloning can increase r+. Next, take a path of
length 2 (N+-rank is 0) and add the edge that joins the endpoints of the path, yielding
a triangle which has N+-rank 1. To see that deleting an edge can increase the N+-rank,
start with K6 (which has N+-rank 1) and notice that G2 can be obtained from K6 by
deleting some edges. Since r+(G2) = 2, at some point throughout these deletions, the
N+-rank must increase. Finally, usual contraction can also increase the N+-rank, since
contracting an edge from a 4-cycle (N+-rank is zero), results in a triangle. 
�
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Using Corollary 2.8 of [16], we get

r+(G) ≤ r(G) ≤ r0(G) ≤ |V | − α(G) − 1.

(The last two inequalities above are tight for G = Kn.) Using Corollary 2.19 of [16],
we have

r+(G) ≤ α(G).

(The inequality above is tight for G = Kn and G = L(Kn).) Therefore

r+(G) ≤
⌊ |V | − 1

2

⌋
.

We can further improve the above upper bound:

Theorem 39. Let G = (V , E). Then r+(G) ≤
⌊ |V |

3

⌋
.

Proof. For each k ≥ 1, let n+(k) denote the minimum number of nodes needed in
a graph G to have r+(G) = k. Clearly, n+(1) = 3. Let G′ be a graph with n+(k + 1)

nodes such that r+(G′) = k + 1. Then G′ cannot contain a leaf node or an isolated node
(since removing the isolated node or the leaf node does not decrease the N+-rank, this
would contradict the minimality of G′). Thus every node in G′ has degree at least 2.
Now, there must exist a node in G′ whose destruction leaves a graph Ḡ with r+(Ḡ) ≥ k

(otherwise by Lemma 4 we have r+(G′) ≤ k, a contradiction). Since G′ is a graph with
n+(k + 1) nodes such that r+(G′) = k + 1, the N+-rank of Ḡ must be exactly k. So

n+(k) ≤ |V (Ḡ)| ≤ |V (G′)| − 3 = n+(k + 1) − 3.

Since n+(1) = 3, we have the desired result. 
�
Note that n+(2) = 6 was proved using the graph G2 in Proposition 37. It is an

interesting open question whether the relation r+(G) ≤
⌊ |V |

3

⌋
is tight for an infinite

family of graphs, or whether n+(k) = 3k for all k ≥ 1.

Conjecture 40. n+(k) = 3k for all k ≥ 1. Moreover, the equality is attained by a
subdivision of the clique Kk+2.
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6. Goemans, M.X., Tunçel, L.: When does the positive semidefiniteness constraint help in lifting proce-
dures?. Math. Oper. Res. 26, 796–815 (2001)

7. Grötschel, M., Lovász, L., Schrijver, A.: Geometric algorithms and combinatorial optimization (Springer,
New York, 1988)

8. Gerards,A.M.H., Schrijver,A.: Matrices with the Edmonds–Johnson property. Combinatorica 6, 365–379
(1986)

9. Kotlov, A., Lovász, L., Vempala, S.: The Colin de Verdière number and sphere representations of a graph.
Combinatorica 17, 483–521 (1997)

10. Laurent, M.: Tight linear and semidefinite relaxations for max-cut based on the Lovász-Schrijver lift-
and-project technique. SIAM J. Optim. 12, 345–375 (2002)

11. Lipták, L.: Critical Facets of the Stable Set Polytope. Ph.D. Thesis, Yale University, 1999
12. Lipták, L., Lovász, L.: Critical facets of the stable set polytope. Combinatorica 21, 61–88 (2001)
13. Lovász, L.: On the Shannon capacity of a graph. IEEE Trans. Inform. Theory 25, 1–7 (1979)
14. Lovász, L.: Combinatorial optimization: some problems and trends. DIMACS Tech. Report 92-53, NJ,

USA, (1992)
15. Lovász, L.: Steinitz representations of polyhedra and the Colin de Verdière number. J. Combin. Theory

Ser. B 82, 223–236 (2001)
16. Lovász, L., Schrijver, A.: Cones of matrices and set-functions and 0-1 optimization. SIAM J. Optim. 1,

166–190 (1991)
17. Sherali, H.D., Adams, W.P.: A hierarchy of relaxations between the continuous and convex hull represen-

tations for zero-one programming problems. SIAM J. Discrete Mathematics 3, 411–430 (1990)
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