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Abstract. We study the mixed–integer knapsack polyhedron, that is, the convex hull of the mixed–integer
set defined by an arbitrary linear inequality and the bounds on the variables. We describe facet–defining in-
equalities of this polyhedron that can be obtained through sequential lifting of inequalities containing a single
integer variable. These inequalities strengthen and/or generalize known inequalities for several special cases.
We report computational results on using the inequalities as cutting planes for mixed–integer programming.
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1. Introduction

We investigate the facial structure of the convex hull of the mixed–integer knapsack set

K =
{
(x,w) ∈ Z

I
+× R

C
+ : ax + gw ≤ b, x ≤ u, w ≤ v

}
,

where I is the index set of integer variables, C is the index set of continuous variables.
The mixed–integer knapsack set K is the set of points in Z

I+× R
C+ that satisfy an arbi-

trary linear inequality and the upper bounds on the variables. We assume that the data
is rational, with the exception that u and v may have entries equal to infinite, so that the
variables are not necessarily bounded. We impose no sign restriction on a, g, or b.

Since each constraint of a mixed–integer programming (MIP) formulation defines a
mixed–integer knapsack set, strong valid inequalities forK can be used as cutting planes
for MIP. There are many important polyhedral studies on special cases of the mixed–
integer knapsack set K . The most studied is probably the 0–1 knapsack set (u = 1 and
C = ∅) for which seminal works [5, 7, 19, 33] date back to 70’s; see also [16, 28, 32,
37]. Crowder, Johnson, and Padberg [13] demonstrate the effectiveness of cutting planes
from individual 0–1 knapsack constraints in solving 0–1 programming problems.

Carrying this line of research to mixed 0–1 programming, Marchand and Wolsey
[22] give strong inequalities for the 0–1 knapsack set with a continuous variable. Re-
cently, Richard et al. [31] study the mixed 0–1 knapsack set with bounded continuous
variables.

Most of the research on polyhedral analysis of structured sets is done on (mixed)
0–1 problems. Polyhedral studies on problems with integer variables, even for the pure

A. Atamtürk∗: Department of Industrial Engineering and Operations Research, University of California at
Berkeley, Berkeley, CA 94720–1777, e-mail: atamturk@ieor.berkeley.edu

Mathematics Subject Classification (2000): 90C10, 90C11, 90C57
∗ Supported, in part, by NSF grants DMII–0070127 and DMII–0218265.



146 A. Atamtürk

integer case, are rare; see [2, 8, 10, 20, 21, 25] for certain network design problems.
Pochet and Weismantel [29] and Pochet and Wolsey [30] study the convex hull of the
pure integer knapsack set with divisible coefficients. Ceria et al. [11] give an extension
of the 0–1 knapsack cover inequalities for integer knapsacks.

Gomory mixed–integer cuts [14] or, the equivalent, mixed–integer rounding (MIR)
cuts [27] are well–known valid inequalities for K , and, consequently, for mixed–inte-
ger programming. They are incorporated in leading optimization software systems after
their computational effectiveness has been evidenced in a branch–and–cut framework
[6, 23]. These general algebraic inequalities depend on the representation of the con-
straints rather than the geometry of the feasible set since multiplying the coefficients
of a constraint by a constant may lead to a different MIR inequality [12]. Furthermore,
Gomory mixed–integer cuts or mixed–integer rounding cuts are not only valid for an
MIP problem, but also for its group relaxation [15], obtained by dropping the bounds
of the basic variables. This suggests that stronger inequalities for K may be identified
by studying directly K , rather than its group relaxation, as illustrated in Example 1 in
Section 2. Our goal here is to derive strong inequalities based on the geometric structure
of the convex hull of K (conv(K)).

One difficulty with studying (mixed) integer polyhedra is that simple extensions of
combinatorial, disjunctive and/or rounding arguments, that give strong inequalities for
(mixed) 0–1 programming, generally do not lead to inequalities that define high–dimen-
sional faces for integer programming. For instance, even though for 0–1 knapsacks a
minimal cover inequality is facet–defining on the space of the variables defining the
cover, its extension to integer knapsacks may not define a high dimensional face. An
intuitive reason for this is that integer points lie “deep” in the linear programming (LP)
relaxation as opposed to on the “surface” as in the case for (mixed) 0–1 problems. Recall
that all integer points of a 0–1 programming problem are among the extreme points of
its LP relaxation.

In this study we make use of superadditive functions for defining strong inequalities
for the mixed–integer knapsack set. It is well–known that the convex hull of the feasible
region of any MIP problem can be described with inequalities defined by superadditive
functions and convex functions [4]. However, from a practical perspective, the challenge
is to identify the shape of specific functions that can be used effectively as cutting planes
in branch–and–cut computations. See Gu et. al [17] and Marchand and Wolsey [22] for
two successful works in this direction for mixed 0–1 programming.

In Section 2 we review recent developments that motivated this study and compute
the lifting function of a simple MIR inequality with two variables. Section 3 contains the
main results of the paper. Here we describe facet–defining inequalities for conv(K) by
building on the results in Section 2. In Section 4 we highlight the connections between
the new inequalities and others defined earlier in the literature for certain special cases.
In particular, if the coefficients of all integer variables (ai i ∈ I ) have the same sign,
either positive or negative, then the new inequalities dominate mixed–integer rounding
inequalities [14, 27]. For the special case of 0–1 knapsack with a single continuous
variable, the inequalities reduce to the ones given in [22]. For the knapsack set with
bounded integer variables, they generalize and strengthen integer cover inequalities
[11] and weight inequalities [24]. In Section 5 we present a summary of computational
experiments for testing the effectiveness of the new inequalities as cutting planes. The
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results indicate that the inequalities may be useful in branch–and–cut algorithms for
MIP.

In order to simplify the notation, we assume (wlog) that gi ∈ {−1, 1} for all i ∈ C
since continuous variables can be rescaled. We define C+ = {i ∈ C : gi = 1}, C− =
C \ C+, IB = {i ∈ I : ui < ∞}, and CB = {i ∈ C : vi < ∞}. We assume (wlog)
that gi = 1 for all i ∈ CB , after complementing variables if necessary; thus CB ⊆ C+.
Throughout we assume that conv(K) is full–dimensional. We let a+ denote max{a, 0}
for a ∈ R.

2. Preliminaries

We start with an example to illustrate that inequalities stronger than Gomory mixed–in-
teger or mixed–rounding inequalities can be identified by studying conv(K) directly,
rather through its group relaxation.

Example 1. Suppose the mixed–integer knapsack set is given as

K ′ =
{
(x,w) ∈ Z

2 × R : x1 + ax2 − w ≤ 1 + ε, x1 ≥ 0, x2 ≥ 0, w ≥ 0
}
,

where 0 < ε < 1 and a > 2. Although it is not necessary, in order to keep the ex-
ample simple, we assume that a is integer. The Gomory mixed–integer inequality or
mixed–integer rounding (MIR) inequality [6, 23]

x1 + ax2 − w

1 − ε
≤ 1 (1)

cuts off the fractional vertex (x1, x2, w) = (1 + ε, 0, 0) of the LP relaxation of K ′.
Inequality (1) defines a facet of the convex hull of the group relaxation [15] of K ′

conv(K ′
G) = conv{x ∈ Z

2, w ∈ R : x1 + ax2 − w ≤ 1 + ε, x2 ≥ 0, w ≥ 0},
obtained by dropping the nonnegativity constraint x1 ≥ 0; however, it is not facet–
defining for conv(K ′). On the other hand, inequality

x1 + a − 2ε

1 − ε
x2 − w

1 − ε
≤ 1 (2)

is stronger than (1) since a < (a − 2ε)/(1 − ε) for a > 2 and 0 < ε < 1. Indeed,
inequality (2) defines a facet of conv(K ′). Notice that the difference between the coeffi-
cients of x2 in inequalities (1) and (2) becomes arbitrarily large as ε approaches to one.
Inequality (2) is the special form of (15) for K ′. 	


This study is motivated by the following recent developments: the knowledge of a
complete linear description of the convex hull of the restriction ofK with a single integer
variable, the existence of a polynomial–time separation algorithm for this restriction, and
the possibility of sequence independent lifting for general mixed–integer programming.
In the rest of Section 2 we review these developments and compute the lifting function
of a simple MIR inequality with two variables as building blocks for studying conv(K).
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2.1. The convex hull of the restriction with a single integer variable

We start by describing a property of the facets of the convex hull of the mixed–integer
knapsack set

K =

(x,w) ∈ Z

I
+ × R

C
+ :

∑
i∈I

aixi +
∑
i∈C+

wi −
∑
i∈C−

wi ≤ b, x ≤ u, w ≤ v




regarding the unbounded continuous variables. We call the nonnegativity constraints on
the variables, the knapsack constraint, and the upper bound constraints as the trivial
inequalities of conv(K). The following property is useful.

Proposition 1. Any non–trivial facet–defining inequality πx + µw ≤ πo of conv(K)
satisfies

1. µi = 0 for all i ∈ C+ \ CB ,
2. µi = α for all i ∈ C−, where α is a negative scalar.

Proof. Let πx+µw ≤ πo be a non–trivial inequality defining facet F of conv(K). For
i ∈ C+ \ CB , since πx + µw ≤ πo differs from wi ≥ 0, there exists a point (x′, w′)
on F with w′

i > 0. Since reducing w′
i by a small ε > 0 gives a feasible point, validity

of the inequality implies µi ≥ 0. Also since the inequality differs from ax + gw ≤ b,
there exists (x̄, w̄) on F with ax̄ + gw̄ < b. Since by increasing w̄i by small ε > 0, we
maintain feasibility, validity of πx + µw ≤ πo implies µi ≤ 0.

On the other hand for i ∈ C−, since wi can be increased without violating feasi-
bility, validity of πx + µw ≤ πo implies that µi ≤ 0. However if µi = 0, then the
feasible point (x̂, ŵ) with πx̂ > π0, ŵi large enough (as CB ⊆ C+), and ŵj = 0 for
j ∈ C \ {i} is violated by πx + µw ≤ πo. Notice that the point (x̂, ŵ) exists, since
otherwise πx + µw ≤ πo is dominated by bound constraints, hence cannot define a
facet. Thus we have µi < 0. Since πx +µy ≤ πo is different from wi ≥ 0, there exists
a point (x̃, w̃) on F with w̃i > 0. The point obtained from (x̃, w̃) by decreasing w̃i by
small ε > 0 and increasing w̃j for j ∈ C− \ {k} by ε is feasible. Since (x̃, ỹ) is on F ,
we have µi ≥ µj . Finally µi ≤ µj follows from symmetry. 	


The first part of Proposition 1 is stated in [22] without proof. Now for some � ∈ I ,
consider the restriction of K obtained by fixing all integer variables but x� to zero:

T =

(x�, w) ∈ Z+× R

C
+ : a�x� +

∑
i∈C+

wi −
∑
i∈C−

wi ≤ b, x� ≤ u�, wi ≤ vi i ∈ CB


 .

It follows from Proposition 1 and [21] that conv(T ) is given by the inequalities in the
description of T and

(a� − r)x +
∑
i∈S

wi −
∑
i∈C−

wi ≤ b − ηr ∀S ⊆ CB if a� > 0, (3)

rx +
∑
i∈S

wi −
∑
i∈C−

wi ≤ vS + ηr ∀S ⊆ CB if a� < 0, (4)
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where η = �(b−vS)/a�
, r = b−vS −�(b−vS)/a��a�, and vS = ∑
i∈S vi . Moreover,

an exact linear–time algorithm is given for separating inequalities (3)–(4) in [3]. This
suggests that inequalities for K lifted from (3)–(4) may be potentially useful as cutting
planes for K .

2.2. Sequence independent lifting

In this section we review a lifting technique for (general) integer variables. Consider a
mixed–integer set P = {x ∈ Z

I , y ∈ R
C : Ax + Gy ≤ b}, where A, G, and b are

rational matrices withm rows. Let (L,U,R) be a partition of I and PL,U,R(d) = {xR ∈
Z
R, y ∈ R

C : ARxR + Gy ≤ d} be a nonempty restriction of P , obtained by fixing
xi = li for i ∈ L and xi = ui for i ∈ U , where li > −∞ and ui < +∞ are the
minimum and maximum values xi attains in P , respectively. Let

πRxR + µy ≤ πo (5)

be a valid inequality for PL,U,R(d) and the lifting function � : R
m �→ R ∪ {∞} of

πRxR + µy ≤ πo be defined as

�(a) = πo − max
{
πRxR + µy : (xR, y) ∈ PL,U,R(d − a)

}
.

We let �(a) = ∞ if PL,U,R(d − a) = ∅. Since (5) is valid for PL,U,R(d − a), the
maximization problem above is bounded and consequently �(a) > −∞.

Definition 1. ϕ : R
m �→ R is superadditive onD ⊆ R

m if ϕ(a)+ ϕ(b) ≤ ϕ(a+ b) for
all a, b ∈ D such that a + b ∈ D.

A valid inequality for P can be obtained from (5) by sequential lifting, i.e., introduc-
ing the fixed variables xi i ∈ L∪U to the inequality one at a time in some sequence [34].
One difficulty with this approach is that it requires the solution of a nonlinear (fraction-
al) mixed–integer problem for each fixed variable, as opposed to a linear mixed–integer
problem as in 0–1 programming.

For monotone (A ≥ 0) 0–1 programming and monotone mixed 0–1 programming,
Wolsey [35] and Gu et al. [18] show that superadditive lifting functions lead to sequence
independent lifting of valid inequalities, which reduces the computational burden of lift-
ing significantly. The theorem below states that this property holds for general mixed–
integer programming as well if lower dimensional restrictions are obtained by fixing
integer variables to a bound rather than to some intermediate value.

Theorem 1. [1] Let � be defined as before and let φ : R
m �→ R be a superadditive

function such that φ ≤ �. Then inequality

πRxR +
∑
i∈L

φ(Ai)(xi − li )+
∑
i∈U

φ(−Ai)(ui − xi)+ µy ≤ πo (6)

is valid for P . In addition, if φ(Ai) = �(Ai) for all i ∈ L, φ(−Ai) = �(−Ai) for
all i ∈ U , and inequality (5) defines a k–dimensional face of conv(PL,U,R(d)), then
inequality (6) defines an at least k + |L| + |U |–dimensional face of conv(P ).

We note that if the lifting function is superadditive, nonlinearity of the lifting prob-
lems is resolved easily and lifting (5) in any sequence leads to a unique inequality for
P . We use Theorem 1 for deriving strong inequalities for K in Section 3.
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2.3. Lifting function of a simple MIR inequality

Here we compute the lifting function of a simple MIR inequality for a two–variable
mixed–integer restriction of K as a building block for studying conv(K). Let

S = {x ∈ Z, y ∈ R+ : cx − y ≤ d, l ≤ x ≤ u}

with c, d ∈ Q and l, u ∈ Z ∪ {−∞,+∞}, l < u. Let η = �d/c
 and r = d − �d/c�c.
Observe that the LP relaxation of S has a fractional vertex (d/c, 0) if and only if d/c �∈ Z

(or equivalently r �= 0) and l < d/c < u. If c > 0, the fractional vertex (d/c, 0) is cut
off by the simple mixed–integer rounding (SMIR) inequality [27, 36]

(c − r)x − y ≤ d − ηr. (7)

On the other hand, if c < 0, it is cut off by inequality

rx − y ≤ ηr. (8)

As illustrated in Figure 1 inequalities (7) and (8) are sufficient to describe conv(S)when
added to the original inequalities of S in either case. Lifting these inequalities amounts
to maximizing a linear function over S as a function of d.

Maximizing an arbitrary linear function over S is easy. Without loss of generality,
we assume that the objective coefficient of y is negative and by scaling is −1, since
otherwise the problem is unbounded, and write the optimization problem as

ζ(d̄) = max{ex − y : cx − y ≤ d̄, l ≤ x ≤ u, x ∈ Z, y ∈ R+}. (9)

If e ≤ 0 or e > c, problem (9) has a trivial optimal solution with x = l or with x = u.
Otherwise, an optimal solution, which is an extreme point of conv(S), can be found
graphically in Figure 1 as stated in the following lemma.

xuηη − 1

y

l xl u

y

(c > 0)

d/c d/c

(c < 0)

η − 1 η

−rc − r

Fig. 1. SMIR inequality and the convex hull of S
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Lemma 1. If 0 < e ≤ c, then problem (9) has an optimal solution (x, y) with objective
value ζ(d̄) that can be expressed as

(x, y, ζ(d̄)) =




(u, 0, eu) if d̄/c ≥ u,

(η̄, c − r̄ , (e − c)η̄ + d̄) if c − r̄ < e ≤ c & l < d̄/c < u,

(η̄ − 1, 0, e(η̄ − 1)) if 0 < e ≤ c − r̄ & l < d̄/c < u,

(l, lc − d̄, (e − c)l + d̄) if d̄/c ≤ l,

(10)

where η̄ = �d̄/c
 and r̄ = d̄ − �d̄/c�c.
Now we can compute the lifting function � of the SMIR inequality (7) over S.

Lifting function of (8) can be computed similarly. Let

�(a) = d − ηr − max{(c − r)x − y : cx − y ≤ d − a, l ≤ x ≤ u, x ∈ Z, y ∈ R+}.
Theorem 2. The lifting function � of inequality (7) can be expressed as

�(a) =




(η − u− 1)(c − r) if a < d − uc,

k(c − r) if kc ≤ a < kc + r,

a − (k + 1)r if kc + r ≤ a < (k + 1)c,
a − (η − l)r if a ≥ d − lc.

k ∈ Z (11)

Proof. The result follows from setting d̄ in (10) equal to d − a and evaluating the
objective function.

1. If a ≤ d − uc, or equivalently (d − a)/c ≥ u, then �(a) = d − ηr − (c − r)u =
(η − u− 1)(c − r).

2. Let r̄ = d − a − �(d − a)/c�c and η̄ = �(d − a)/c
. If kc ≤ a < kc + r , or
equivalently r̄ ≤ r , then �(a) = d − ηr − (c − r)(η̄ − 1). Using η̄ = η − k in this
case, we get �(a) = k(c − r).

3. If kc+r ≤ a < (k+1)c, or equivalently r < r̄ , then�(a) = d−ηr−(−rη̄+d−a).
Using η̄ = η − (k + 1) in this case, we obtain �(a) = a − (k + 1)r .

4. If a ≥ d− lc, or equivalently (d−a)/c ≤ l, then�(a) = d−ηr− (−lr+d−a) =
a − (η − l)r . 	

A particular realization of� is depicted in Figure 2.� is superadditive on R+ and on

R− separately. However, it is superadditive on R if and only if l = −∞ andu = +∞. The
function� depicted in Figure 2 is not superadditive on R, as�(−c)+�(3c) > �(2c).
Observe from (11) that the function values on intervals a < (η−u−1)c and a > (η−l)c
are due to the finite upper bound and lower bound on x. If we let l = −∞ and u = +∞,
� equals its superadditive lower bound

φ(a) =
{
k(c − r) if kc ≤ a < kc + r,

a − (k + 1)r if kc + r ≤ a < (k + 1)c.
k ∈ Z (12)

It is shown in [1] that lifting (7) with the superadditive approximation φ gives exactly
the MIR inequality [26]

∑
i∈I
(�ai/c� + (fi − f )+

1 − f
)xi − y

c(1 − f )
≤ �d/c�,

where fi = ai/c − �ai/c� and f = d/c − �d/c�.



152 A. Atamtürk

−(c − r)

−(u− η + 1)(c − r)

(c − r)−3c

−3(c − r)

3(c − r)

(η − l)c

(η − u− 1)c

−c

cr 3c a

φ

�

d − uc

d − lc

(η − l)(c − r)

Fig. 2. Lifting function � and its superadditive approximation φ (η = u− 1 = l + 2)

3. Facets of conv(K)

In this section we describe valid inequalities for K defined by the exact lifting function
�, rather than its superadditive approximation φ. Let � ∈ I and U ⊆ IB \ {�}. Defining
zi = ui − xi for i ∈ U and zi = xi for i ∈ I \ U , we rewrite K as

K =

(z, w) ∈ Z

I
+ × R

C
+ :

∑
i∈I

āizi +
∑
i∈C+

wi −
∑
i∈C−

wi ≤ b̄, z ≤ u, w ≤ v


 ,

where āi = −ai for i ∈ U , āi = ai for i ∈ I \ U , and b̄ = b − ∑
i∈U aiui . Now by

fixing all integer variables except z� to zero, we obtain the following restriction of K

KU,�=

(z�, w) ∈ Z+× R

C
+ : a�z� +

∑
i∈C+

wi −
∑
i∈C−

wi ≤ b̄, z� ≤ u�, w ≤ v


 .

IfC− = ∅, we update u� as min{u�, �b̄/a��} and require that u� ≥ 1, so that conv(KU,�)
is full–dimensional.

The facets of this restriction have been presented in Section 2.1. Here we extend
them to facets of conv(K) using Theorem 1. Since the families of inequalities for KU,�
depend on the sign of a�, we consider these cases separately in Sections 3.1 and 3.2.
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3.1. Case 1: a� > 0

In order to obtain facets of conv(K)we lift the facet–defining inequalities of conv(KU,�)

(a� − r)z� +
∑
i∈S

wi −
∑
i∈C−

wi ≤ b̄ − ηr, (13)

where η = �(b̄ − vS)/a�
 and r = b̄ − vS − �(b̄ − vS)/a��a� for S ⊆ CB . Letting
y = ∑

i∈C− wi + ∑
i∈S(vi − wi), we write (13) as

(a� − r)z� − y ≤ d − ηr, (14)

where d = b̄ − vS . Since this aggregation of variables has no impact on the objective
value of the lifting problems, the lifting function of (13) over KU,� is equivalent to the
lifting function of (14) over

K ′
U,� = {z� ∈ Z+, y ∈ R+ : a�z� − y ≤ d, z� ≤ u�} .

Hence, lifting inequality (13) reduces to lifting SMIR inequality (14).

3.1.1. Inequality class I Recall that the lifting function � of the SMIR inequality is
not superadditive on R. However, it is superadditive on R+ and on R− separately, which
allows us to use Theorem 1 in two phases. Let I+ = {i ∈ I \ {�} : āi > 0} and
I− = {i ∈ I \ {�} : āi < 0}. In order to simplify the notation, we define �I+ = {�}∪ I+
and �I− = {�} ∪ I−. Since � is superadditive on R+, by Theorem 1, inequality (14)
can be lifted to ∑

i∈�I+
�(āi)zi − y ≤ d − ηr (15)

since �(ā�) = a� − r . In order to lift (15) with xi i ∈ I−, we compute

�(a) = d − ηr − max




∑
i∈�I+

�(āi)zi−y : (z, y) ∈ KI−,�I+(a)


 , (16)

where

KI−,�I+(a) =

(z, y) ∈ Z

�I+
+ × R+ :

∑
i∈�I+

āizi − y ≤d − a, zi ≤ ui i ∈ �I+



for a ∈ R−.
Lemmas 2 and 3 below are the central results on the structure of optimal solutions to

problem (16) that lead to an explicit description of � in a special case, a superadditive
lower bound on �, and the valid inequalities described in Theorem 4.

Let I++ = {i ∈ I+ : āi ≥ d} = {1, 2, . . . , n′} be indexed in nonincreasing or-
der of āi , ties broken arbitrarily, and let n = min{i ∈ I++ : ui = ∞} (if I++ = ∅,
then let n = 0; if ui < ∞ for all i ∈ I++, then let n = n′). Also if I++ �= ∅, let
J++ = {i ∈ I++ : āi ≥ ηa�} = {1, 2, . . . , s′}, s = min{i ∈ J++ : ui = ∞} (if
ui < ∞ for all i ∈ J++, then let s = s′). Since J++ ⊆ I++, we have s′ ≤ n′ and if
ui = ∞ for some i ∈ J++, then n = s.
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Lemma 2. For a ≤ 0 the maximization problem (16) has an optimal solution (z, y)
such that

(i) zi = ui for all i ∈ {1, 2, . . . , j − 1} and zi = 0 for all i ∈ {j + 1, j + 2, . . . , n′}
for some j ∈ {1, 2, . . . , n′},

(ii) zi = 0 for all i ∈ I+ with 0 ≤ āi ≤ r , and
(iii) zi = 0 for all i ∈ I+ with r < āi < ηa� if the constraint x� ≤ u� is removed from

(16).

Proof. (i) For i ∈ I++ we have �(āi) = āi − ηr . Let āh > āi for h, i ∈ I++ and
suppose zh < uh and zi > 0. Decreasing zi by one, increasing zh by one and y by
āh − āi , we obtain a feasible solution with the same objective value. (ii) Follows from
�(āi) = 0 for i ∈ I+ if 0 ≤ āi ≤ r . (iii) Suppose zi = q > 0 for some i ∈ I+ such that
r < āi < ηa�. If ka� ≤ āi < ka�+r , then�(āi) = (a�−r)k. Since x� ≤ u� is removed,
decreasing zi to 0 and increasing z� by kq, we obtain a feasible solution with the same
objective value. Otherwise if ka� + r ≤ āi < (k + 1)a�, then �(āi) = āi − (k + 1)r .
Similarly, decreasing zi to 0 and increasing z� by (k + 1)q and y by ((k + 1)a� − āi )q

we obtain a feasible solution with the same objective value. 	

Lemma 3. If I+ = I++, then for a2 < a1 ≤ 0 the maximization problem (16) has
optimal solutions (z(a1), y(a1)) and (z(a2), y(a2)) that satisfy zi(a1) ≤ zi(a2) for all
i ∈ I++.

Proof. Let (z(a1), y(a1)) and (z(a2), y(a2)) be two solutions satisfying Lemma 2 (i) for
a1 > a2. Suppose zk(a1) > zk(a2) for some k ∈ {1, 2, . . . , n′}. Then, since zk(a1) > 0
and zk(a2) < uk , Lemma 2 (i) implies that zi(a1) = ui for all i ∈ {1, 2, . . . , k − 1}
and zi(a2) = 0 for all i ∈ {k + 1, k + 2, . . . , n′}. Thus zi(a1) ≥ zi(a2) holds for all
i ∈ I++.

Next we show that the knapsack constraint
∑
i∈I++ āizi(a2)+ a�z�(a2)− y(a2) ≤

d − a2 has a slack of at most r . Suppose the slack is r + ε with ε > 0. If z�(a2) < u�,
then by increasing z�(a2) by one and y(a2) by (a� − r − ε)+, we obtain a solution
with objective value min{a� − r, ε} larger than for (z(a2), y(a2)) . On the other hand,
if z�(a2) = u�, then by decreasing z�(a2) by η − 1, and increasing zk(a2) by one and
y(a2) by (ak − d − ε)+, the objective value is increased by min{ak − d, ε}. Both cases
either contradict the optimality of (z(a2), y(a2)) or give an alternative optimal solution
in which zk(a2) is increased. Therefore, we may assume that the slack of the knapsack
constraint for (z(a2), y(a2)) is at most r . Then, since a1 > a2 as well, feasibility of
(z(a1), y(a1)) requires that

y(a1) > y(a2)+
∑
i∈I++

āi (zi(a1)− zi(a2))+ a�z�(a1)− a�z�(a2)− r (17)

≥ āk + a�z�(a1)− a�z�(a2)− r. (18)

The second inequality follows from y(a2) ≥ 0, zi(a1) ≥ zi(a2) for i ∈ I++, and
zk(a1) > zk(a2). Now let δk = āk − ηa�. We consider two cases depending on the sign
of δk . In each case we either obtain a contradiction or change the value of zk(a1) or
zk(a2) toward satisfying zk(a1) ≤ zk(a2).
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First suppose that δk ≥ 0. If z�(a2) ≥ η, then the solution obtained from (z(a2), y(a2))

by increasing zk(a2) by one and y(a2) by δk , and decreasing z�(a2) by η is another opti-
mal solution in which zk(a2) is increased. Therefore, we may assume that z�(a2) ≤ η−1.
Then from (18) we have

y(a1) > āk + a�z�(a1)− a�(η − 1)− r = āk − d + a�z�(a1).

Thus y(a1) = āk − d + a�z�(a1)+ ε, where ε > 0. If z�(a1) ≥ 1, the solution obtained
from (z(a1), y(a1)) by decreasing z�(a1) by one and y(a1) by a� has an objective value
r larger than for (z(a1), y(a1)). Otherwise z�(a1) = 0, and the solution obtained from
(z(a1), y(a1)) by increasing z�(a1) by η − 1, decreasing zk(a1) by one and y(a1) by
āk − d + min{r, ε} has an objective value min{r, ε} larger than for (z(a1), y(a1)). Both
cases contradict the optimality of (z(a1), y(a1)).

Now suppose that δk < 0. If z�(a1) ≤ u� − η, then the solution obtained from
(z(a1), y(a1)) by decreasing zk(a1) by one and increasing z�(a1) by η and y(a1) by
−δk is an alternative optimal solution in which zk(a1) is decreased. Therefore, we may
assume that z�(a1) ≥ u� − η + 1. Let κ = z�(a1)− (u� − η + 1). From (18) we have

y(a1) > āk + a�(u� − η + 1)+ a�κ − a�z�(a2)− r

= āk − a�(η − 1)− r + a�(u� − z�(a2))+ a�κ ≥ āk − d + a�κ.

So y(a1) = āk − d + a�κ + ε, where ε > 0. If κ ≥ 1, then the solution obtained
from (z(a1), y(a1)) by decreasing z�(a1) by one and y(a1) by a� has an objective value
r larger than for (z(a1), y(a1)). Otherwise, κ = 0 or z�(a1) = u� − (η − 1), and the
solution obtained from (z(a1), y(a1)) by increasing z�(a1) by η − 1, decreasing zk(a1)

by one and y(a1) by āk − d + min{r, ε} has an objective value min{r, ε} larger than for
(z(a1), y(a1)). Both cases contradict the optimality of (z(a1), y(a1)). 	

Theorem 3. If āi ≤ r or āi ≥ d for all i ∈ I+, then

�(a)=




uihηr + a if mih−δi ≤ a ≤ mih,

(uihη + k)r + a if mih−δi− (k + 1)a� + r ≤ a ≤ mih−δi−ka�,
uihηr +mih − δi − (k + 1)(a� − r) if mih−δi−(k + 1)a� ≤ a ≤ mih−δi−(k + 1)a�+r,
usus ηr + pr + a if mJ++ − (p + 1)a� + r ≤ a ≤ mJ++ − pa�,

mJ++ + usus ηr − (p + 1)(a� − r) if mJ++ − (p + 1)a� ≤ a ≤ mJ++ − (p + 1)a� + r,

uiui ηr + (η−u�−1)r + a if m̄ih−δi − (a� − r) ≤ a ≤ m̄ih,

uiui ηr+(η−u�)r + m̄ih−δi−(k+1)a� if m̄ih−δi −(k+1)a� ≤ a ≤ m̄ih−δi− (k+1)a�+r,
uiui ηr + (η−u�−1)r + (a� − r)+ a if m̄ih−δi − (k + 1)a� + r ≤ a ≤ m̄ih−δi − ka�,

mI++ + ununηr + (u� − η + 1)r if a ≤ mI++ ,

where δi = āi − ηa� for i ∈ I++, uih = ∑i−1
k=1 uk + h, mih = m(i−1)ui−1 − hāi for

h ∈ {0, 1, . . . , ui}, i ∈ {1, 2, . . . , n} with m0u0 = 0, and m̄ih = mih − (u� − η + 1)a�
for h ∈ {0, 1, . . . , ui}, i ∈ {s, s + 1, . . . , n}, and mJ++ = msus , mI++ = m̄nun ,
k ∈ {0, 1, . . . , η − 1}, and p ∈ {0, 1, . . . , u� − η}.
Proof. From Lemma 2 (ii), we may assume that zi = 0 for all i ∈ I+ with āi ≤ r .
Consequently, the condition of Lemma 3 is satisfied. If i ∈ I++ = ∅, then (15) equals
(14); hence �(a) = �(a) for a ≤ 0 as mJ++ = 0 and mI++ = (η − u� − 1)a�.
Otherwise, from Lemma 2 (i) and Lemma 3, there exist optimal solutions to (16), in
which zi i ∈ I++ increase monotonically in nonincreasing order of āi as a decreases.
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That is, as a decreases from 0 there exists optimal solutions, where first z1 is incremented
from 0 to u1 and then z2 and so on. Thus by fixing zi i ∈ I++ in the order described in
Lemma 2 (i) and Lemma 3, the lifting problem reduces to optimizing over the remaining
variables z� and y. Suppose zi = ui for i ∈ {1, 2, . . . , j − 1}, zj = ρ, and zi = 0 for
i ∈ {j + 1, j + 2, . . . , n′}. So the right hand side of the knapsack constraint for the
reduced problem in two variables is d − mj(ρ−1) − a. Then, if δj ≥ 0, similar to the
discussion in Section 2.3, for mjρ ≤ a + mj(ρ−1) ≤ mj(ρ−1) an optimal solution for
the maximization problem (16) is given by

(zj , z�, y) =




(ρ, 0, a + δj + a� − r) if − δj ≤ a ≤ 0,
(ρ, k, a + δj + (k + 1)a� − r)

if − δj − ka� − (a� − r) ≤ a ≤ −δj − ka�,

(ρ, k, 0) if − δj − (k + 1)a� ≤ a ≤ −δj − ka� − (a� − r),

where k ∈ {0, 1, . . . , η− 1}. Since (ρ, η− 1, 0) and (ρ + 1, 0, δj + a� − r) both have
the same objective value, as a decreases further, the structure of optimal values of z�
and y repeats for zj ∈ {ρ + 1, ρ + 2, . . . , uj }. On the other hand if δj < 0, then for
m̄jρ ≤ a + m̄j (ρ−1) ≤ m̄j (ρ−1)

(zj , z�, y) =




(ρ, u� − η + 1, a + δj + a� − r)

if − (a� − r)− δj ≤ a ≤ 0,
(ρ, u� − η + 1 + k, 0)

if − δj − (k + 1)a� ≤ a ≤ −δj − (k + 1)a� + r,

(ρ, u� − η + 1 + k, a + (k + 1)a� − r + δj )

if − δj − (k + 1)a� + r ≤ a ≤ −ka� − δj ,

where k ∈ {0, 1, . . . , η− 1} is optimal for the lifting problem (16). Since (ρ, u�, 0) and
(ρ + 1, u� − η + 1, δj + a� − r) have the same objective value, as a decreases further,
zj increases to ρ + 1 and the structure of optimal values of z� and y repeats. Evaluating
� for these optimal solutions by incrementing z1, z2, . . . , zn one at a time in the order
given in Lemma 2 (i) and Lemma 3 we obtain the expression in the statement of the
theorem for �. 	


An example lifting function� is depicted in Figure 4. Observe that the last case in the
definition of� applies if un < ∞ and the three cases before that apply if u� < ∞. Also
note that if I++ = ∅,�(a) = �(a) for a ≤ 0 asmJ++ = 0 andmI++ = (η−u�−1)a�.

Giving an explicit description of � is difficult in general, because the properties
described in Lemma 2 (i) and Lemma 3 do not hold for xi i ∈ I+ with r < āi < d .
Therefore, instead, we give a lower bound on�, which equals� over a significant part of
its domain. The lower bound is obtained by dropping the upper bound constraint z� ≤ u�
from the lifting problem (16) so that there is an easy description of the optimal solutions
to this relaxed problem as described in part (iii) of Lemma 2. Dropping z� ≤ u� from
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(16), we obtain the following lower bound on �:

ω(a) = d − ηr − max




∑
i∈�I+

�(āi)zi − y :

∑
i∈�I+

āizi − y ≤ d − a, zi ≤ ui i ∈ I+, z ∈ Z
�I+
+ , y ∈ R+




= d − ηr − max


(a� − r)z� +

∑
i∈J++

(āi − ηa�)zi − y :

a�z� +
∑
i∈J++

āizi − y ≤ d − a, zi ≤ ui i ∈ J++, z ∈ Z
�J++
+ , y ∈ R+


 .

The last equality follows from part (iii) of Lemma 2. Since āi ≥ d for all i ∈ J++ and
the upper bound on z� is dropped, it follows from Theorem 3 that ω can be expressed as

ω(a)=




uihηr + a if mih−δi ≤ a ≤ mih,

(uihη + k)r + a if mih−δi− (k+1)a� + r ≤ a ≤ mih−δi− ka�,

uihηr +mih −δi − (k+1)(a� − r) if mih−δi− (k+1)a� ≤ a ≤ mih−δi− (k+1)a�+r,
usus ηr + pr + a if mJ++ − (p+1)a� + r ≤ a ≤ mJ++ − pa�,

mJ++ + usus ηr − (p + 1)(a� − r) if mJ++ − (p+1)a� ≤ a ≤ mJ++ − (p+1)a� + r,

where k ∈ {0, 1, . . . , η − 1} and p ∈ Z+.

Proposition 2. Let � and ω be defined as above:
1. ω is a superadditive lower bound on � on R−.
2. �(a) = ω(a) for m̄J++ ≤ a ≤ 0; hence � is superadditive on [m̄J++ , 0], where
m̄J++ = mJ++ − (u� − η + 1)a�.

3. � is superadditive on R− under any of the following conditions:
(i) u� = ∞, (ii) η = 1, (iii) �i ∈ I+ s.t. r < āi < ηa�, (iv) ∃i ∈ I++ s.t. ui = ∞.

Proof. 1. Since δi ≥ 0 for all i ∈ J++, ω is a special case of the superadditive function
ψ introduced in Section 3.3 with parameters bi = δi , e = a�, ρ = r , and τ = η. As
ω is obtained by dropping the constraint z� ≤ u� from the lifting problem (16), ω is a
lower bound on�. 2. Follows from the descriptions of the functions� and ω. 3. In case
(i) � = ω on R−. In case (ii) � is a special case of the superadditive function ψ̄ in
Section 3.3 with parameters bi = δi + a� − r , e = r , ρ = r , and τ = 1. In cases (iii)
and (iv) � is a special case ψ̄ with the same parameters as in part 1. 	

Remark 1. Observe that wheneverx� ∈ {0, 1} and (13) is facet–defining for conv(KU,�),
we have r = d and η = 1. Therefore the condition of Theorem 3 is satisfied and, from
Proposition 2, � is superadditive on R−. It is possible to construct � that is not super-
additive on R− if none of the conditions of part 3 of Proposition 2 is satisfied.

From Theorem 1 and Proposition 2 we obtain the valid inequalities described in
Theorem 4.
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Theorem 4. For � ∈ I such that a� > 0, U ⊆ IB \ {�}, and S ⊆ CB let�,�, and ω be
defined as before. Then inequality

∑
i∈�I+\U

�(ai)xi +
∑

i∈I+∩U
�(−ai)(ui − xi)+

∑
i∈I−\U

ω(ai)xi

+
∑

i∈I−∩U
ω(−ai)(ui − xi)+

∑
i∈S

wi −
∑
i∈C−

wi ≤ b̄ − ηr (19)

is valid for K . It is facet–defining for conv(K) if inequality (13) is facet–defining for
conv(KU,�) and āi ≥ m̄J++ for all i ∈ I−. Moreover, when any one of the conditions
of part 3 of Proposition 2 is satisfied, ω may be replaced with the exact lifting function
� so that (19) is facet–defining for conv(K).

Example 2. Let K = {x ∈ Z
3+, w ∈ R

2+ : 3x1 + 10x2 − 4x3 + w1 − w2 ≤ 8, x1 ≤
3, w1 ≤ 1}. For � = 1 consider the restrictionK∅,1 = {x1 ∈ Z+, w ∈ R

2+ : 3x1 +w1 −
w2 ≤ 8, x1 ≤ 3, w1 ≤ 1}. From Section 2.1 the two additional inequalities needed to
describe conv(K∅,1) are

2x1 + w1 − w2 ≤ 5, (20)

x1 − w2 ≤ 2 (21)

with S = {1} and S = ∅, respectively. Lifting (20) first with x2 using �, and then with
x3 using � gives us the facet–defining inequality (19)

2x1 + 7x2 − 3x3 + w1 − w2 ≤ 5. (22)

Note that here η = �(h − v1)/a�
 = 3, r = 1, and consequently �(10) = 7, δ1 =
a2 − ηa� = 1, and �(−4) = −3. The lifting functions � and � for (20) are drawn in
Figures 3 and 4. Observe that the MIR inequality

2x1 + 6x2 − 3x3 + w1 − w2 ≤ 5, (23)

obtained by lifting (20) using the lower bound φ is weaker than (22).
Similarly, lifting (21) first with x2 using �, and then with x3 using � gives us the

facet–defining inequality (19)

x1 + 4x2 − 2x3 − w2 ≤ 2 (24)

as η = �h/a�
 = 3, r = 2, and consequently �(10) = 4 and since δ1 = 1 we have
�(−4) = −2. Lifting functions for this inequality are not drawn. Again the correspond-
ing MIR inequality

x1 + 3x2 − 2x3 − w2 ≤ 2 (25)

obtained by lifting (21) using φ is weaker than (24). 	
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Fig. 3. Lifting function � in Example 2 (η = u� = 3)
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Fig. 4. Lifting functions � in Example 2 (η = 3)

3.1.2. Inequality class II Since � is superadditive also on R−, this time we lift the
SMIR inequality (14) first with xi i ∈ I− to obtain the intermediate inequality

∑
i∈�I−

�(āi)zi − y ≤ d−ηr (26)
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since�(ā�) = a�− r . Next we lift (26) with xi i ∈ I+. Let us define the lifting function
of (26) as

�(a) = d − ηr − max




∑
i∈�I−

�(āi)zi − y : (z, y) ∈ KI+,�I−(a)



 , (27)

where

KI+,�I−(a) =

(z, y) ∈ Z

�I−
+ × R+ :

∑
i∈�I−

āizi − y ≤ d−a, zi ≤ ui i ∈ �I−



for a ∈ R+.
Lemmas 4 and 5 below are the central results on the structure of optimal solutions to

problem (27). They lead to an explicit description of � in a special case, a superadditive
lower bound on �, and the valid inequalities described in Theorem 6.

Let I−− = {i ∈ I− : āi ≤ d − u�a�} = {1, 2, . . . , n′} be indexed in nonde-
creasing order of āi , ties broken arbitrarily. Let n = min{i ∈ I−− : ui = ∞} (if
I−− = ∅, then let n = 0; if ui < ∞ for all i ∈ I−−, then let n = n′). If I−− �= ∅, let
J−− = {i ∈ I−− : āi ≤ (η−1−u�)a�} = {1, 2, . . . , s′}, s = min{i ∈ J−− : ui = ∞}
(if ui < ∞ for all i ∈ J−−, then let s = s′). Since J−− ⊆ I−−, we have s′ ≤ n′ and if
ui = ∞ for some i ∈ J−−, then n = s.

Lemma 4. For a ≥ 0 the maximization problem (27) has an optimal solution (z, y)
such that

(i) zi = ui for all i ∈ {1, 2, . . . , j − 1} and zi = 0 for all i ∈ {j + 1, j + 2, . . . , n′}
some j ∈ {1, 2, . . . , n′},

(ii) zi = 0 for all i ∈ I− with r − a� ≤ āi ≤ 0, and
(iii) zi = 0 for all i ∈ I− with (η− 1 − u�)a� < āi < r − a� if z� ≥ 0 is removed from

(27).

Proof. (i) For i ∈ I−−, we have �(āi) = (η − 1 − u�)(a� − r). Let āh < āi for
h, i ∈ I−− and suppose zh < uh and zi > 0. Decreasing zi by one, increasing zh by
one, we obtain a feasible solution with the same objective value. (ii) Since �(āi) = āi
for i ∈ I− with r − a� ≤ āi ≤ 0, if zi = p > 0, we obtain a feasible solution, with the
same objective value by increasing y by −āip and decreasing zi to zero. (iii) Suppose
zi = p > 0. If ka� ≤ āi < ka� + r , then �(āi) = (a� − r)k. Notice that since āi < 0
and ā� > 0, k is a negative integer. Since z� ≥ 0 is removed, by decreasing zi to 0 and
decreasing z� by −kp, we obtain a feasible solution with the same objective value. Else
if ka� + r ≤ āi < (k + 1)a�, then �(āi) = āi − (k + 1)r . Similarly, decreasing zi to
0 and decreasing z� by −(k + 1)p and y by ((k + 1)a� − āi )p, we obtain a feasible
solution with the same objective value. 	

Lemma 5. If I− = I−−, then for a1 > a2 ≥ 0 the maximization problem (27) has
optimal solutions (z(a1), y(a1)) and (z(a2), y(a2)) that satisfy zi(a1) ≥ zi(a2) for all
i ∈ I−−.
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Proof. Let a1 > a2 and (z(a1), y(a1)) and (z(a2), y(a2)) be two optimal solutions
satisfying Lemma 4 (i). Suppose zk(a1) < zk(a2) for some k ∈ {1, 2, . . . , n′}. Then
zk(a1) < uk , zk(a2) > 0, and from Lemma 4 (i), we have zi(a1) = 0 for all i ∈ {k +
1, k+2, . . . , n′} and zi(a2) = ui for all i ∈ {1, 2, . . . , k−1}, implying zi(a1) ≤ zi(a2)

for all i ∈ I−−.
Let ϕ be the slack of the knapsack constraint

∑
i∈I−− āizi(a2)+a�z�(a2)−y(a2) ≤

d − a2. Since a1 > a2, feasibility of (z(a1), y(a1)) requires that

y(a1) > y(a2)+
∑
i∈I−−

āi (zi(a1)− zi(a2))+ a�z�(a1)− a�z�(a2)− ϕ (28)

≥ −āk + a�z�(a1)− a�z�(a2)− ϕ. (29)

The last inequality follows fromy(a2) ≥ 0, zk(a1) < zk(a2), āi < 0, and zi(a1) ≤ zi(a2)

for all i ∈ I−−. Let δk = (η− u� − 1)a� − āk . The upper bound we give on the slack ϕ
is a function of the sign of δk and the value of z�(a2). If z�(a2) < u�, then ϕ ≤ r . Since
otherwise ϕ = r + ε with ε > 0 and increasing z�(a2) by one and increasing y(a2)

by (a� − r − ε)+ gives a solution with objective value min{a� − r, ε} larger than for
(z(a2), y(a2)). On the other hand, if z�(a2) ≥ u� − η, then ϕ ≤ r + δk . Since otherwise
ϕ = δk + r + ε, with ε > 0 and the solution obtained from (z(a2), y(a2)) by decreasing
z�(a2) by u�− η and y(a2) by (a�− r − ε)+ and increasing zk(a2) by one has an objec-
tive value min{a� − r, ε} larger than for (z(a2), y(a2)). Hence, we conclude that when
δk ≥ 0, we have ϕ ≤ r + δk if z�(a2) = u� and ϕ ≤ r otherwise; and when δk < 0, we
have ϕ ≤ r + δk if z�(a2) ≥ u� − η and ϕ ≤ r otherwise.

Next we use the bounds on ϕ either to obtain a contradiction or to change the value
of zk(a1) or zk(a2) toward satisfying zk(a1) ≥ zk(a2). First consider the case δk ≥ 0.
If z�(a1) ≤ η − 1, then the solution obtained from (z(a1), y(a1)) by increasing zk(a1)

by one and increasing z�(a1) by u� − η + 1 is feasible since δk ≥ 0 and has the same
objective value. So we may assume that z�(a1) ≥ η. Then, using ϕ ≤ r + δk , from (29)
we get

y(a1) > −āk − a�(u� − η)− δk − r ≥ a� − r.

That is, y(a1) = a� − r + ε, where ε > 0. But then the solution obtained from
(z(a1), y(a1)) by decreasing z�(a1) by one and decreasing y(a1) by a� − r + min{r, ε}
is feasible since z�(a1) ≥ 1 and has an objective value min{r, ε} larger than for (z(a1),

y(a1)), which contradicts the optimality of (z(a1), y(a1)).
Now consider the case δk < 0. If z�(a2) ≥ u� − η + 1, then the solution obtained

from (z(a2), y(a2)) by decreasing zk(a2) by one and decreasing z�(a2) by u� − η+ 1 is
feasible has the same objective value. Therefore, we may assume that z�(a2) ≤ u� − η.
We need to consider three subcases depending on the values of z�(a1) and z�(a2).

(i) z�(a1) > 0: Using z�(a2) ≤ u� − η and ϕ ≤ r , from (29) we get

y(a1) > −āk + a�z�(a1)− a�(u� − η)− r ≥ a�z�(a1)− r ≥ a� − r.

So y(a1) = a� − r + ε with ε > 0. Since z�(a1) ≥ 1, the solution obtained
from (z(a1), y(a1)) by decreasing z�(a1) by one and decreasing y� by a� − r +
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min{r, ε} gives a feasible solution with objective value min{r, ε} larger than for
(z(a1), y(a1)), contradicting its optimality.

(ii) z�(a1) = 0 and z�(a2) < u�−η: Let κ = u�−η− z�(a2). Using ϕ ≤ r , (29) gives

y(a1) > −āk − a�(u� − η − κ)− r ≥ (a�(η − u�)− āk)+ a�κ − r

≥ a�κ − r ≥ a� − r.

Thus again y(a1) = a� − r + ε with ε > 0. Since z�(a1) = 0, in this case the
solution obtained from (z(a1), y(a1)) by increasing zk(a1) by one and increasing
z�(a1) by u� − η and y(a1) by a� − r + min{ε, δk + r} is feasible and improves
the objective value by min{ε, δk + r}. If δk + r > 0, this contradicts the optimality
of (z(a1), y(a1)). If δk + r = 0, we have an alternative solution in which zk(a1) is
one larger.

(iii) z�(a1) = 0 and z�(a2) = u� − η: Using ϕ ≤ δk + r from (29) we have

y(a1) > −āk − a�u� + a�η − δk − r

= (−āk + (η − u� − 1)a� − δk)+ a� − r = a� − r.

Since and z�(a1) = 0 and y(a1) = a� − r + ε with ε > 0 the case reduces to case
2 above. 	


Theorem 5. If āi ≤ d − u�a� or āi ≥ r − a� for all i ∈ I−, then

�(a)=




uih(u�−η+1)(a�−r) if mih ≤ a ≤ mih+δi ,
(uih(u�−η+1)+ k)(a�−r) if mih+δi+ka� ≤ a ≤ mih+δi+ ka�+r,
uih(u�−η+1)(a�−r)+a−mih−δi−(k+1)r if mih+δi+ka�+r≤a≤ mih+δi+ (k+1)a�,
(usus (u�−η+1)+ p)(a�−r) if mJ−− +pa� ≤ a ≤ mJ−− +pa� + r,

usus (u�−η+1)(a�−r)+a−mJ−− −(p+1)r if mJ−−+pa� + r ≤ a ≤ mJ−− +(p+1)a�,
(uiui (u�−η+1)+η)(a�−r) if m̄ih ≤ a ≤ m̄ih +δi + r

(uiui (u�−η+1)+η)(a�−r)+a−m̄ih−δi−(k+1)r if m̄ih+δi+ka�+r ≤ a ≤m̄ih+δi+(k+1)a�
(uiui (u�−η+1)+η+k)(a�−r) if m̄ih+δi + ka� ≤ a ≤ m̄ih + δi + ka�+r
unun (u�−η+1)(a�−r)+a−mI−− −ηr if a ≥ mI−− ,

where δi = (η−u�−1)a�−āi for i ∈ I−−, uih = ∑i−1
k=1 uk+h,mih = m(i−1)ui−1 −hāi

for h ∈ {0, 1, . . . , ui} and i ∈ {1, 2, . . . , n} with m0u0 = 0, m̄ih = mih + ηa� for
h ∈ {0, 1, . . . , ui} and i ∈ {s, s + 1, . . . , n}, mJ−− = msus , mI−− = m̄nun , k ∈
{0, 1, . . . , u� − η}, and p ∈ {0, 1, . . . , η − 1}.
Proof. From Lemma 4 (ii), we may assume that zi = 0 for all i ∈ I− such that
āi ≥ r − a�. Hence the condition of Lemma 5 is satisfied. Observe that if I−− = ∅,
inequality (26) equals (14). Consequently �(a) = �(a) for a ∈ R+ as mJ−− = 0 and
mI−− = ηa�. Otherwise, from Lemma 4 (i) and Lemma 5, as a increases, there exist
optimal solutions in which zi i ∈ I− is incremented monotonically in nondecreasing
order of āi . Thus after fixing z1, z2, . . . , zn′ in this order, the problem reduces to one
with two variables z� and y as in Section 2.3. Suppose zi = ui for i ∈ {1, 2, . . . , j −1},
zj = ρ, and zi = 0 for i ∈ {j + 1, j + 2, . . . , n′}. For the restricted problem the right
hand side of the knapsack constraint becomes d − mj(ρ−1) − a. Then, if δj ≥ 0, for
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mj(ρ−1) ≤ mj(ρ−1) + a ≤ mjρ an optimal solution for the restricted problem is given
by

(zj , z�, y) =


(ρ, u�, 0) if 0 ≤ a ≤ δj
(ρ, u� − k, 0) if δj + ka� ≤ a ≤ δj + ka� + r

(ρ, u� − k, a − δj − ka� − r) if δj + ka� + r ≤ a ≤ δj + (k + 1)a�,

where k ∈ {0, 1, . . . , u� − η}. Since (ρ, η, a� − r) and (ρ + 1, u�, 0) are alternative
optimal solutions when a increases further, the values of z� and y repeat the same pat-
tern for zj ∈ {ρ + 1, ρ + 2, . . . , uj }. On the other hand, if δj < 0, then similarly for
m̄j (ρ−1) ≤ m̄j (ρ−1) + a ≤ m̄jρ

(zj , z�, y) =


(ρ, u� − η, 0) if 0 ≤ a ≤ δj + r

(ρ, u� − η − k, a−δj−ka�−r) if δj + ka� + r ≤ a ≤ δj + (k + 1)a�
(ρ, u� − η − k, 0) if δj + ka� ≤ a ≤ δj + ka� + r,

where k ∈ {0, 1, . . . , u� − η} is an optimal solution to the restricted lifting problem.
Since (ρ, 0, a�−r) and (ρ+1, u�−η, 0) have the same objective value, when a increases
further, the structure of optimal solutions is repeated for zj ∈ {ρ + 1, ρ + 2, . . . , uj }.
Using the equality d − ηr = (η − 1)(a� − r) in (27) and evaluating � for these opti-
mal solutions by in incrementing z1, z2, . . . , zn one at a time in the order described in
Lemma 4 (i) and Lemma 5 gives the expression of the theorem for �. 	


An example lifting function � is depicted in Figure 5. Observe that the last case in
the definition of � applies if un < ∞. Also note that if I−− = ∅, �(a) = �(a) for
a ≥ 0 as mJ−− = 0 and mI−− = ηa�.

The properties described in Lemma 4 (i) and Lemma 5 do not hold for xi i ∈ I−−
with d−u�a� < āi < r−a�, which makes it hard to characterize� in general. Therefore,
we give a lower bound γ on � by dropping the nonnegativity constraint z� ≥ 0 from
(27) so that an optimal solution can be easily described based on part (iii) of Lemma 4.
So consider the relaxation of problem (27)

γ (a) = d − ηr − max





∑
i∈I−

�(āi)zi + (a� − r)z� − y :

∑
i∈I−

āizi + a�z� − y ≤ d − a, zi ≤ ui i ∈ �I−, z� ∈ Z, z ∈ Z
I−
+ , y ∈ R+




= (η − 1)(a� − r)− max





∑
i∈J−−

(η − 1)(a� − r)zi + (a� − r)z� − y :

zi ≤ ui i ∈ �J−−, z� ∈ Z, z ∈ Z
J−−
+ , y ∈ R+

∑
i∈J−−

āizi + a�z� − y ≤ (η − 1)a� + r − a


 .
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Fig. 5. Lifting function � in Example 2 (cont.) (η = 3)

The second equality follows from Lemma 4 (iii). Since āi ≤ d − u�a� for all i ∈ J−−
and the lower bound on z� is dropped, from Theorem 5 we get

γ (a) =




uih(u� − η + 1)(a� − r)

if mih ≤ a ≤ mih + δi,

(uih(u� − η + 1)+ k)(a� − r)

if mih+δi+ka� ≤ a ≤ mih + δi+ka�+r,
uih(u�−η+1)(a� − r)+a−mih−δi−(k + 1)r

if mih+δi+ka�+r ≤ a ≤ mih+δi+(k + 1)a�,
(usus (u� − η + 1)+ p)(a� − r)

if mJ−− + pa� ≤ a ≤ mJ−− + pa� + r,

usus (u� − η + 1)(a� − r)+a−mJ−− −(p + 1)r
if mJ−− + pa� + r ≤ a ≤ mJ−− + (p + 1)a�,

where k ∈ {0, 1, . . . , u� − η} and p ∈ Z+.

Proposition 3. Let � and γ be defined as above:

1. γ is a superadditive lower bound on � on R+.
2. �(a) = γ (a) for 0 ≤ a ≤ m̄J−− ; hence � is superadditive on [0, m̄J−− ], where
m̄J−− = mJ−− + ηa�.

3. � is superadditive on R+ under any of the following conditions:
(i) η = u�, (ii) �i ∈ I− s.t. (η − u� − 1)a� < āi < r − a�, (iii) ∃i ∈ I−− s.t.
ui = ∞.

Proof. 1. Since δi ≥ 0 for all i ∈ J−−, γ is a special case of the superadditive function
χ in Section 3.3 with parameters bi = δi , e = a�, ρ = r , and τ = u� − η + 1. Since
γ is obtained by solving a relaxation of the lifting problem obtained by dropping the
constraint z� ≥ 0, it is a lower bound on �. 2. Immediate from the descriptions of � and
γ . 3. In case (i) � is a special case of the superadditive function χ̄ in Section 3.3 with
bi = δi + r , e = a� − r , ρ = 0, and τ = 1. In cases (ii) and (iii) � is a special case of
χ̄ with the same parameters as in part 1. 	
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Remark 2. Observe that if x� ∈ {0, 1} and (13) is facet–defining for conv(KU,�), then
r = d and η = u�. Therefore the condition of Theorem 5 is satisfied and by Proposition 3
� is superadditive on R+. It is possible to construct � that is not superadditive on R+ if
none of the conditions of part 3 of Proposition 3 is satisfied.

Finally Theorem 1 and Proposition 3 lead to the valid inequalities described in
Theorem 6.

Theorem 6. For � ∈ I s.t. a� > 0,U ⊆ IB \{�}, and S ⊆ CB let�,�, and γ be defined
as before. Then inequality

∑
i∈I+\U

γ (ai)xi +
∑

i∈I+∩U
γ (−ai)(ui − xi)+

∑
i∈�I−\U

�(ai)xi

+
∑

i∈I−∩U
�(−ai)(ui − xi)+

∑
i∈S

wi −
∑
i∈C−

wi ≤ h− ηr (30)

is valid for K . It is facet–defining for conv(K) if inequality (13) is facet–defining for
conv(KU,�) and āi ≤ m̄J−− for all i ∈ I+. Moreover, when any one of the conditions of
part 3 of Proposition 3 is satisfied, γ may be replaced with� so that (30) is facet–defining
for conv(K).

Example 2 (cont.) When we lift (20) first with x3 using �, and then with x2 using � we
obtain the facet–defining inequality (30)

2x1 + 4x2 − 2x3 + w1 − w2 ≤ 5 (31)

since�(−4) = −2 and �(10) = 4 for η = 3, r = 1, and δ1 = (η−u�−1)a�−a3 = 1.
The lifting functions � and � for (20) are depicted in Figures 3 and 5.

On the other hand lifting (21) first with x3 using �, then with x2 using � gives us
the facet–defining inequality (30)

x1 + 2x2 − x3 − w2 ≤ 2 (32)

as η = 3, r = 2 and consequently �(−4) = −1 and since δ1 = 1, we have �(10) = 2.
	


3.2. Case 2: a� < 0

In this case the inequalities

−rz� +
∑
i∈S

wi −
∑
i∈C−

wi ≤ vS − ηr ∀ S ⊆ CB (33)

where η = �(b̄ − vS)/a�
 and r = vS − b̄ + �(b̄ − vS)/a��a� are sufficient to describe
conv(KU,�) when added to formulation with a�z� + ∑

i∈C+ wi − ∑
i∈C− wi ≤ b̄ and

the bounds. Lifting them in a similar way as in Section 3.1, we obtain the inequalities
described in Theorems 7 and 8.
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Theorem 7. For � ∈ I such that a� < 0, U ⊆ BI \ {�}, and S ⊆ CB let � and ω be
defined as before. Then inequality

∑
i∈�I−\U

(ai +�(−ai))xi +
∑

i∈�I−∩U
(−ai +�(ai))(ui − xi)

+
∑

i∈I+∩U
(−ai+ω(ai))(ui−xi)+

∑
i∈I+\U

(ai+ω(−ai))xi+
∑
i∈S

wi−
∑
i∈C−

wi ≤ vS−ηr

is valid for K . It is facet–defining for conv(K) if inequality (33) is facet–defining for
conv(KU,�) and āi ≤ m̄J−− for all i ∈ I+.

Theorem 8. For � ∈ I such that a� < 0, U ⊆ BI \ {�}, and S ⊆ CB let � and γ be
defined as before. Then inequality

∑
i∈�I+\U

(ai +�(−ai))xi +
∑

i∈�I+∩U
(−ai +�(ai))(ui − xi)

+
∑

i∈I−\U
(ai+γ (−ai))xi+

∑
i∈I−∩U

(−ai+γ (ai))(ui−xi)+
∑
i∈S

wi−
∑
i∈C−

wi ≤ vS−ηr

is valid for K . It is facet–defining for conv(K) if inequality (33) is facet–defining for
conv(KU,�) and āi ≥ m̄J++ for all i ∈ I−.

3.3. Four superadditive functions

Here we prove the superadditivity of four general piecewise–linear continuous functions
of which the lifting functions �, �, ω, and γ introduced in Sections 3.1.1 and 3.1.2 are
particular cases. Let bi ∈ R+ i = 1, 2, . . . , m be such that bi ≥ bi+1. Let e ≥ ρ ≥ 0
and ai = τe + bi for some nonnegative integer τ . Define the partial sums A0 = 0,
Ai = ∑i

k=1 ak , and Bi = Ai−1 + bi for 1 ≤ i ≤ m. Let χ : [0, Am] �→ R+ be defined
as

χ(a)=


iτ (e − ρ) if Ai ≤ a ≤ Bi+1,

(iτ + k)(e − ρ) if Bi+1 + ke ≤ a ≤ Bi+1 + ke + ρ,

iτ (e − ρ)+ a − Bi+1 − (k+1)ρ if Bi+1 + ke + ρ ≤ a ≤ Bi+1 + (k+1)e,

where k ∈ {0, 1, . . . , τ − 1} and ψ : [−Am, 0] �→ R− be ψ(a) = a + χ(−a) for
a ∈ [−Am, 0]. Also let χ̄ : R+ �→ R+ be defined as

χ̄(a) =
{
χ(a) if 0 ≤ a ≤ Am,

χ(Am)+ a − Am if Am ≤ a.

and ψ̄ : R− �→ R− as ψ̄(a) = a + χ̄(−a) for a ∈ R−.
As stated in Proposition 2, ω is a special case of ψ and and � is a special case of

ψ̄ under the conditions of part 3 of the same proposition. Also γ is a special case of χ
as described in Proposition 3 and � is a spacial case of χ̄ under the conditions of part 3
of the same proposition. By the following lemmas, χ, χ̄, ψ , and ψ̄ are superadditive on
their domain.
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Lemma 6. χ is superadditive on [0, Am].

Proof. Throughout we will make use of the following observations:

1. χ is nondecreasing.
2. Ai+j ≤ Ai + Aj for i, j ∈ {0, 1, . . . , m} such that i + j ≤ m

(since 0 ≤ bi+1 ≤ bi).

The proof consists of verifying that χ(a)+ χ(b) ≤ χ(a + b) for all a, b ≥ 0 such that
a + b ≤ Am, which reduces to the verification of the following six cases by symmetry.

(i) Ai ≤ a ≤ Bi+1 and Aj ≤ b ≤ Bj+1.

χ(a)+ χ(b) = (i + j)τ (e − ρ) = χ(Ai+j ) ≤ χ(Ai + Aj) ≤ χ(a + b).

(ii) Ai ≤ a ≤ Bi+1 and Bj+1 + ke ≤ b ≤ Bj+1 + ke + ρ.

χ(a)+ χ(b) =((i + j)τ + k)(e−ρ) =χ(Ai+j + bi+j+1+ ke)

≤χ(Ai + Aj + bj+1+ ke) ≤χ(a + b).

(iii) Ai ≤ a ≤ Bi+1 and Bj+1 + ke + ρ ≤ b ≤ Bj+1 + (k + 1)e.

χ(a)+ χ(b) = (i + j)τ (e − ρ)+ b − Bj+1− (k + 1)ρ

= ((i + j)τ + k)(e − ρ)+ b − Bj+1− ke − ρ

= χ(Ai+j+ bi+j+1 + ke + ρ +�)

≤ χ(Ai + Aj + bj+1 + ke + ρ +�) ≤ χ(a + b),

where � = b − Bj+1 − ke − ρ ≤ e − ρ.
(iv) Bi+1 + ke ≤ a ≤ Bi+1 + ke + ρ and Bj+1 + te ≤ b ≤ Bj+1 + te + ρ.

χ(a)+ χ(b) = ((i + j)τ+k+t)(e−ρ)≤χ(Ai+j+ bi+j+1+ bi+j+2+ (k + t)e)

≤ χ(Ai + Aj + bi+1 + bj+1 + (k + t)e) ≤ χ(a + b).

The first inequality above follows from k + t ≤ 2τ − 1.
(v) Bi+1 + ke ≤ a ≤ Bi+1 + ke + ρ and Bj+1 + te + ρ ≤ b ≤ Bj+1 + (t + 1)e.

χ(a)+ χ(b) = ((i + j)τ + k + t)(e − ρ)+ b − Bj+1 − te − ρ

≤ χ(Ai+j + bi+j+1 + bi+j+2 + (k + t)e +�)

≤ χ(Ai + Aj + bi+1 + bj+1 + (k + t)e +�) ≤ χ(a + b),

where � = b − Bj+1 − te − ρ ≤ e − ρ.
(vi) Bi+1 + ke+ρ ≤ a ≤ Bi+1 + (k+ 1)e and Bj+1 + te+ρ ≤ b ≤ Bj+1 + (t + 1)e.

Let�a = a−Bi+1−ke−ρ and�b = b−Bj+1−te−ρ. Note that�a,�b ≤ e−ρ.

χ(a)+ χ(b) = ((i + j)τ + k + t)(e − ρ)+�a +�b.

If �a + �b ≤ e − ρ, the result is obtained as in (v). Otherwise let � = �a +
�b − (e − ρ). Then

χ(a)+ χ(b) = ((i + j)τ + k + t + 1)(e − ρ)+�.

Since k + t + 1 ≤ 2τ − 1 and � ≤ e − ρ, the result is obtained as in (v). 	
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Lemma 7. χ̄ is superadditive on R+.

Proof. χ̄ is superadditive over [0, Am] since χ is. In order to prove that χ̄ is super-
additive over R+, it suffices to show that χ̄(a) + χ̄(b) ≤ χ̄(a + b) for all a, b ≥ 0
such that a + b > Am, because χ̄ is superadditive over [0, Am]. Observe that since
bi i = 1, 2, . . . , m are nonincreasing, χ̄(a)≤αa, where α= mτ(e−ρ)

Am
< 1.

(i) 0 ≤ a, b ≤ Am and Am ≤ a + b.

χ̄(a)+ χ̄(b) ≤ α(a + b) = mτ(e − ρ)+ α(a + b−Am)
≤ mτ(e − ρ)+ (a+b−Am) = χ̄(a+b).

(ii) 0 ≤ a ≤ Am and Am ≤ b.

χ̄(a)+ χ̄(b) ≤ αa +mτ(e − ρ)+ (b − Am)

≤ mτ(e − ρ)+ (a + b − Am) = χ̄(a + b).

(iii) Am ≤ a, b.

χ̄(a)+ χ̄(b) = 2mτ(e − ρ)+ (a + b − 2Am)

≤ mτ(e − ρ)+ (a + b − Am) = χ̄(a + b).

	

Lemma 8. Let χ ′ : R+ �→ R and ψ ′ : R− �→ R be such that ψ ′(a) = a + χ ′(−a) for
a ∈ R−. Then χ̄ is superadditive on R+ if and only if ψ ′ is superadditive on R−.

Proof. Suppose χ ′ is superadditive on R+. Then ψ ′(a)+ ψ ′(b) = a + χ ′(−a)+ b +
χ ′(−b) ≤ a + b + χ ′(−a − b) = ψ ′(a + b). The other direction is proven similarly,
since χ ′(a) = a + ψ ′(−a) for a ∈ R+. 	


4. Special cases

In this section we highlight some special cases and show the connection between the
inequalities introduced in Section 3 and inequalities already known for these cases.

4.1. Mixed integer rounding inequalities

Consider the mixed–integer knapsackK ′ with either positive or negative coefficients for
all integer variables. That is, K ′ = {(x, y) ∈ Z

I+ × R
C+ :

∑
i∈I aixi +

∑
i∈C giyi ≤ b},

where either ai > 0 for all i ∈ I or ai < 0 for all i ∈ I . By introducing an artificial
integer variable z to K with coefficient c > 0, writing inequality (15) if coefficients are
positive, or inequality (26) if coefficients are negative, and then fixing z back to zero,
we obtain

∑
i∈I

�(ai)xi +
∑
i∈C−

giyi ≤ b − ηr, (34)
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where η = �b/c
 and r = b − �b/c�c as a valid inequality for K ′. For any c > 0, (34)
is stronger than the MIR inequality [26]

∑
i∈I
(�ai/c� + (fi − f )+

1 − f
)xi +

∑
i∈C−

gi

c(1 − f )
yi ≤ �b/c�, (35)

where fi = ai/c − �ai/c�, and f = b/c − �b/c�, or equivalently [1]

∑
i∈I

φ(ai)xi +
∑
i∈C−

giyi ≤ b − ηr (36)

because φ ≤ �. This is illustrated in Example 1 with c = 1.
Also observe that for the general knapsack set K if I++ = ∅, then �(a) = �(a)

and ω(a) = φ(a) for a ≤ 0; consequently, inequality (19) reduces to the MIR in-
equality (36). Similarly, if I−− = ∅, then �(a) = �(a) and γ (a) = φ(a) for a ≥ 0;
consequently, inequality (30) reduces to the MIR inequality (36).

4.2. Mixed 0–1 knapsack inequalities

For the special case K̄ = {(x, y) ∈ {0, 1}I × R+ :
∑
i∈I aixi − y ≤ b} with ai > 0

inequalities (30) and (19) reduce to the continuous cover and continuous reverse cover
inequalities introduced in [22]. Observe that for the 0–1 case, SMIR inequality (7) with
r > 0 is facet defining for conv(S) if and only if 0 < d/c < 1, hence η = 1 and r = d.
Consequently, (7) reduces to (c−d)x−y ≤ 0, which goes through the origin, and since
u� = 1 as well, � reduces to

�(a) =
{
(a − d)+ if a ≥ 0,
max{a, d − c} if a < 0.

(37)

LetC ⊆ I and � ∈ C be such that λ = ∑
i∈C ai−b > 0 andµ = b−∑

i∈C\{�} ai >
0. Fixing all xi i ∈ I \ C to zero and all xi i ∈ C \ {�} to one, we obtain the restriction
a�x� − y ≤ µ. Lifting the corresponding SMIR inequality λx� − y ≤ 0 first with xi
i ∈ C \ {�} using � and then with xi i ∈ I \ C using �, we get the continuous cover
inequality

λx� −
∑

i∈C\{�}
min{ai, λ}(1 − xi)+

∑
i∈I\C

�(ai)xi − y ≤ 0, (38)

which is facet–defining by Theorem 6 since η = u�. On the other hand, lifting λx� ≤ y

first with xi i ∈ I \C using� and then with xi i ∈ C \ {�} using�, we get this time the
reverse continuous cover inequality

λx� +
∑

i∈C\{�}
�(−ai)(1 − xi)+

∑
i∈I\C

(ai − µ)+xi − y ≤ 0, (39)

which is facet–defining by Theorem 4 since η = 1.
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4.3. Mixed bounded integer knapsack inequalities

Let us now consider the case K̂ = {(x, y) ∈ Z
I+ × R+ :

∑
i∈I aixi − y ≤ b, xi ≤

ui i ∈ I } with bounded integer variables. Since ui < ∞, we have, if necessary after
complementing variables, ai > 0 for all i ∈ I . Let C ⊆ I and � ∈ C be such that
λ = ∑

i∈C aiui − b > 0 and µ = b − ∑
i∈C\{�} aiui > 0. The set C is called a cover,

whereas C \ {�} is called a packing. Observe that λ+µ = a�u�. Fixing all xi i ∈ C \ {�}
to ui and all xi i ∈ I \C to zero, we obtain the restriction a�x�−y ≤ µ. Let η = �µ/a�

and r = µ − �µ/a��a�. Suppose the LP relaxation of the restriction has a fractional
vertex, i.e., r > 0; thus we have the nontrivial SMIR inequality (a�−r)x�−y ≤ µ−ηr .
The lifting function � for this inequality is not as simple as (37) since η = 1 = u� may
not hold. Two special cases lead to inequalities that generalize and strengthen the ones
defined in the literature.

1. If η = 1, then r = µ and�(a) = (a−µ)+ for a > 0. In this case, lifting the SMIR
inequality first with xi i ∈ I \C using� and then with xi i ∈ C \ {�} using�, gives
inequality

(a� − µ)x� +
∑

i∈C\{�}
�(−ai)(ui − xi)+

∑
i∈I\C

(ai − µ)+xi − y ≤ 0, (40)

which is facet–defining by Theorem 4 since η = 1. If �(−ai) = −ai for all
i ∈ C \ {�}, then (40) reduces to the weight inequality [24]

∑
i∈C\{�}

aixi +
∑

i∈{�}∪I\C
(ai − µ)+xi − y ≤ b − µ; (41)

otherwise (40) is stronger than the weight inequality (41). Also by lifting SMIR first
with xi i ∈ C \ {�}, then with xi i ∈ I \ C, we obtain inequality (30).

2. If η = u�, then a� − r = λ and �(a) = max{a, λ} for a < 0. Lifting the SMIR
inequality first with xi i ∈ C \ {�} using � and then with xi i ∈ I \ C using �, we
obtain inequality

λx� −
∑

i∈C\{�}
min{ai, λ}(ui − xi)+

∑
i∈I\C

�(ai)xi − y ≤ µ− ηr, (42)

which is facet–defining by Theorem 6 since η = u�. If λ ≤ ai for all i ∈ C and
�(ai) = 0 for all i ∈ I \ C, then (42) reduces to the integer cover inequality [11],

∑
i∈C
(ui − xi) ≥ α − y/(a� − r), (43)

where α = �λ/a�
 = u� − η + 1; otherwise, (42) is stronger than the integer cov-
er inequality (43). Also by lifting SMIR first with xi i ∈ I \ C and then with xi
i ∈ C \ {�} we obtain inequality (19).

Recall that inequalities (19) and (30) are applicable more generally than the two
cases listed above, that is when η ∈ {1, 2, . . . , u�} as well. The examples in this sec-
tion illustrate that the functions �,�, and � are fundamental in providing a common
explanation for the inequalities given for special cases of the mixed–integer knapsack
set K .
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5. Computational experiments

In this section we report our computational results on using inequalities (19) and (30)
as cutting planes. In the experiments we compare these inequalities with MIR cuts and
default CPLEX1 MIP solver cuts. Toward this end two data sets of instances of the form

max
∑
i∈I

cixi −
∑
i∈C

diwi

s.t.
∑
i∈I

airxi −
∑
i∈C

wir ≤ br r ∈ R,

x ≤ u, w ≤ v, x ∈ Z
I
+, w ∈ R

C
+

are prepared. The coefficients of the instances are randomly generated integers from
the following intervals: br ∈ [951, 999], air ∈ [1, 2br ], ci ∈ [�0.1ai1�, �0.9ai1�],
di ∈ [101, 200]. In the first set variables are unbounded, whereas in the second set they
are bounded with ui ∈ [1, 4] and vi ∈ [1, 20]. Recall that if I++ = ∅, inequality (19)
reduces to the MIR inequality. In order to ensure that there is at least one inequality dif-
ferent from the MIR inequality for each row r , we require that ai1r > ai2r�br/ai2r
 for
two variables. This allows us to make a comparison between the MIR inequalities and the
new inequalities. The data set is available for download at http://ieor.berke-
ley.edu/∼atamturk/data.

After solving the LP relaxation of an instance, we attempt to find violated inequali-
ties from each constraint r ∈ R in the following way. Given a fractional solution (x̄, w̄),
let U = {i ∈ I : x̄i = ui}. For all single integer variable restrictions KU,� with
� ∈ {i ∈ I : 0 < x̄i < ui}, the separation method described in [3] is used to find a
violated inequality (13). Once such an inequality is found, it is lifted to (19) and (30)
and the most violated one is added to the formulation. If no violated inequality is found
this way, U is augmented with i ∈ I \ ({�} ∪U) in nondecreasing order of ui − x̄i (> 0)
one at a time and the procedure is repeated at most five times. If we fail to find cuts we
resort to the branch–and–bound algorithm. In the current implementation, cuts are not
added after branching. Implementation of the cut generation procedure is done using
callback functions of CPLEX version 7.5. All experiments are performed on a 2 GHz
Intel Pentium 4 / Linux workstation with 1 GB memory.

In Tables 1 and 2 we compare the performance of the algorithm when only the
new cuts (19) and (30) are added versus when only the mixed–integer rounding (MIR)
cuts (36) are added. MIR cuts are implemented also as described in the previous pa-
ragraph. CPLEX MIP solver also generates MIR cuts as well as other classes of cuts.
The purpose of comparing the new cuts with our implementation of MIR cuts is to
isolate the impact of merely using φ (12) versus the lifting functions �,ω, and γ ,
by eliminating other factors due to differences in the implementations. For instance,
CPLEX generates MIR cuts not only from individual rows of the formulation, but also
from mixed–integer knapsack set relaxations obtained by aggregation of constraints and

1 CPLEX is a trademark of ILOG, Inc.
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Table 1. Experiments with unbounded variables

CPLEX7.5 MIR cuts (36) New cuts (19) & (30)
|I | : |C| : |R| cuts gapimp nodes time cuts gapimp nodes time cuts gapimp nodes time

250:1:50 111 67 68611 42 99 79 4416 4 101 83 1612 2
500:1:50 50 47 83061 63 99 77 6777 8 101 80 2929 4
250:1:75 177 56 196053 98 147 76 199883 183 153 79 40014 32
500:1:75 178 55 113745 92 147 75 176551 221 153 77 69242 79

250:1:100 220 71 251725 184 170 74 500125 417 204 75 226633 166
500:1:100 225 71 208047 283 196 73 256791 391 204 76 134211 187

substitution of variables similar to [23]. It also has several adaptive rules to decide when
to, how often, how many cuts to add depending on the progress of the improvement of
the bounds and size of the formulation, among others. Our implementation is simple and
does not perform variable substitution or row aggregation. All CPLEX cuts are disabled
when running these two cut generation procedures. In the tables we also present results
with default CPLEX cuts. In all experiments CPLEX heuristic is turned off.

Under the columns for CPLEX7.5, MIR cuts, and new cuts, we report the averages
(rounded to a nearest integer) for the number of cuts added (cuts), the percentage
improvement in the integrality gap with the addition of the cuts (gapimp), the number
of branch–and–bound nodes explored (nodes), and the CPU time elapsed in seconds
(time) for five random instances. Thegapimp is calculated as100×(zlp-zroot)/
(zlp-zopt), where zlp, zroot, and zopt refer to the objective values of the ini-
tial LP relaxation, of the LP relaxation after the cuts are added, and of an optimal MIP
solution.

In Tables 1 and 2 we observe that the new cuts are more effective in closing the
integrality gap than MIR cuts. They lead to a significant reduction in the number of
branch–and–bound nodes and in the CPU time when compared with the MIR imple-
mentation. For the experiments with unbounded variables (Table 1) the algorithm with
the new cuts is on the average 2.5 faster than the one with MIR cuts. For the experiments
with bounded variables (Table 2) the average speed–up factor increases with the number
of continuous variables, ranging from 3.8 for |C| = 5 to 16.6 for |C| = 20.

Interestingly for instances with large number of constraints default CPLEX7.5 is
faster than our MIR implementation, even though it generally explores more nodes.
Note that we generate cuts only at the root node, whereas CPLEX adds MIR cuts as
well as others throughout the search tree. An important observation is that in both MIR
and new cut implementations we add generally many more cuts than CPLEX does. It
seems that adding many MIR cuts slows down the progress of computations, whereas
the addition of a similar number of new cuts has the opposite effect.

Generating cuts (19) and (30) not only from individual constraints of the formulation,
but also from mixed–integer knapsack relaxations obtained by variable substitution and
row aggregation – as it is done for MIR cuts in [23] and in CPLEX – should improve the
effectiveness of these cuts further. Substitution and aggregation appear to be essential
especially for problems with network substructures as the ones in MIPLIB [9]. Another
implementation strategy might be to generate them from the rows of the simplex tableau
as in Gomory mixed–integer cuts.
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6. Concluding remarks

We identified facet–defining inequalities of a very general mixed–integer knapsack poly-
hedron, which is the convex hull of the feasible set of an arbitrary linear inequality on
integer and continuous variables. These facets are described through superadditive func-
tions and are closely related to the MIR inequalities. Interestingly, the new inequalities
strengthen and/or generalize known inequalities for special cases of the mixed–integer
knapsack set studied earlier. Our computational results suggest that the inequalities can
be useful in branch–and–cut algorithms for mixed–integer programming.

The polyhedral structure of the mixed–integer knapsack set deserves further investi-
gation. The inequalities described in this paper are from restrictions of the mixed–integer
knapsack set with a single integer variable. Restrictions with more than one integer vari-
able have facets that are different from the ones identified here. Characterizing facets of
the mixed–integer knapsack polyhedron with a small number of integer variables and
lifting them may be an effective way of deriving new classes of strong valid inequalities.
We are currently exploring this strategy to identify other facets of the mixed–integer
knapsack polyhedron.

Acknowledgements. We are thankful to an anonymous referee for many valuable comments that led to an
improved presentation.
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