
Digital Object Identifier (DOI) 10.1007/s10107-003-0397-3

Math. Program., Ser. B 98: 73–88 (2003)

Andrew J. Miller · Laurence A. Wolsey

Tight formulations for some simple mixed integer
programs and convex objective integer programs

Received: March 11, 2002 / Accepted: December 13, 2002
Published online: April 10, 2003 – © Springer-Verlag 2003

Abstract. We study the polyhedral structure of simple mixed integer sets that generalize the two variable
set {(s, z) ∈ R

1+ × Z
1 : s ≥ z − b}. These sets form basic building blocks that can be used to derive tight

formulations for more complicated mixed integer programs. For four such sets we give a complete description
by valid inequalities and/or an integral extended formulation, and we also indicate what constraints can be
added without destroying integrality.

We apply these results to provide tight formulations for certain piecewise–linear convex objective integer
programs, and in a companion paper we exploit them to provide polyhedral descriptions and computationally
effective mixed integer programming formulations for discrete lot-sizing problems.
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1. Introduction

Recently several authors have shown that two variable mixed integer rounding (MIR)
inequalities can be used to generate interesting inequalities for a variety of models, and
to generate the convex hull in certain special cases, see Magnanti et al. (1993), Pochet
and Wolsey (1995), Marchand and Wolsey (2001). All the sets studied can be seen as
simple generalizations of the basic two variable setX = {(s, z) ∈ R

1+ ×Z
1 : s ≥ z−b},

or the equivalent set {(x, z) ∈ R
1 × Z

1 : x ≥ b, x ≥ z} obtained by substituting
s = x − b. In this case the addition of the MIR inequality s ≥ (1 − f )(z− �b�), where
f = b − �b�, suffices to give a description of the convex hull of X. Here we look at
some natural generalizations of the setX, attempt to describe the convex hulls, and give
tight extended formulations where appropriate.
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We also observe that (s, z) ∈ X if and only if s ≥ g(z) where g(z) = max{0, z− b}
is a piecewise–linear convex function in the integer variable z. Thus a study of X and
its generalizations is also a study of the convex objective integer program (COIP ):
min{g(z) : z ∈ Z

1}. Pursuing this direction therefore leads naturally to the study of tight
formulations for integer programs with separable piecewise–linear convex objective
functions.

Given these tight descriptions, the next question is whether these convex hull formu-
lations remain tight, or whether these formulations ofCOIP s still have integer solutions,
when additional constraints are added to these integer programs. Specifically, ifXi with
variables (si, zi) for i = 1, . . . , n are sets of the formX given above, andBz ≤ d are con-
straints linking the integer variables (z1, . . . , zn), when is

⋂
i conv(Xi)∩ {z : Bz ≤ d}

integral?
Below we study four generalizations of the set X. The first two involve a single

integer variable:

V = {(σ, z) ∈ R
K
+ × Z

1 : σk ≥ z− bk for k = 1, . . . , K}
and

W = {(φ, z) ∈ R
1
+ × Z

1 : φ ≥ akz− ck for k = 1, . . . , K}
to which we can associate the function g(z) = max{0,maxk(akz − ck)}. Here we note
that any COIP with a separable piecewise–linear convex objective function can be
written either as min{∑j gj (zj ) : Az ≤ b, z ∈ Z

n} where each function gj is of the
above form, or as min{∑j φj : (φj , zj ) ∈ Wj for all j, Az ≤ b} where each setWj has
the structure of W .

In contrast, the last two generalizations give rise to nonseparable objective functions.
Specifically with

Y = {(φ, y) ∈ R
1
+ × Z

n : φ ≥ bi − yi for i = 1, . . . , n},
we associate the function g(y) = max{0,maxi (bi − yi)}, and with

Z = {(φ, r, y) ∈ R
1
+ × R

n
+ × Z

n : φ ≥ bi − ri − yi for i = 1, . . . , n}
the function g(r, y) = max{0,maxi (bi − ri − yi)} with r ≥ 0.

In Sections 2–5 we study the sets V,W, Y,Z in turn. In Section 2 we show that the
MIR inequalities suffice to give a description of the convex hull of the set V . In Section
3 we use this result to give a tight formulation for W , and thus for all single variable
piecewise–linear convex functions appearing in the objective function of an integer pro-
gram. We also show that, after the addition of constraints on the integer variables with
a totally unimodular constraint matrix, the reformulation still has integer solutions.

The latter results relate to those in Chapter 13 of Ahuja et al. (1993), where it is
shown that it is possible to solve COIP s of the form min{g(z) : Bz ≤ d, z ∈ Z

n+},
when g(z) = ∑

j gj (zj ) is separable andB is a network flow matrix, by breaking up the
flow zj on arc j into separate flows zkj for each cost segment k of the integer closure ḡj ,
and then solving by a standard network flow algorithm. This approach extends to the case
where B is totally unimodular (TU), since in this case it suffices to duplicate columns
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in the matrix. Also in Hochbaum and Shantikumar (1990) a polynomial algorithm is
given for COIP s where the objective g is separable, each function of a single variable
gj is an arbitrary convex function, and A is TU. The algorithm is based on solving
successive linear programs and applying proximity results. In contrast, our approach is
to find effective LP or MIP reformulations rather than specialized algorithms. For cases
of multi–variate convex integer functions, we are not aware of research that describes
polynomial algorithms for COIP s.

The set Y examined in Section 4 has already been studied by Pochet and Wolsey
(1994) and Günlük and Pochet (2001) (see also Atamtürk et al. (2000)). Here we show
that it is possible to retain integrality when adding dual network flow constraints. We also
give a simple proof of a compact extended formulation for Y . For the set Z examined
in Section 5 we have not succeeded in finding a description of the convex hull in the
original space of variables, but we provide an extended formulation for it.

The approach used to prove integrality for formulations for each of the unbounded
sets V , W , and Y consists of showing that all the bounded faces of the associated poly-
hedra are integral. This technique was first used in Pereira and Wolsey (2001), and it
seems particularly suitable for analyzing COIP s.

In addition to enabling us to reformulate integer programs with piecewise affine
convex objective functions, the results also have immediate applications to discrete lot-
sizing, see e.g. Fleischmann (1990), van Hoesel et al. (1994) and van Eiji and van Hoesel
(1997). These are explored and tested computationally in a companion paper of Miller
and Wolsey (2002).

2. A simple extension

We first consider a very simple extension of the two variable mixed integer setX, namely

V = {(σ, z) ∈ R
K+ × Z

1 : σk ≥ z− bk for k = 1, . . . , K}. (1)

Note that we can also express V as

{(σ, y) ∈ R
K+ × Z

1 : σk ≥ dk − y for k = 1, . . . , K}
by letting y = −z and dk = −bk for k = 1, . . . , K , but we have chosen to work with the
formulation (1). We let fk = bk−�bk�, the fractional part of bk , for each k = 1, . . . , K .

To describe conv(V ), we first establish a simple result.

Lemma 1. For z ∈ R
1, let σk = max{0, z− bk, (1 − fk)(z− �bk�)}.

i) σk = z− bk if and only if z ≥ �bk�,
ii) σk = 0 if and only if z ≤ �bk�,

iii) σk = (1 − fk)(z − �bk�) if and only if either bk ∈ Z
1 and z ≥ �bk�, or bk /∈ Z

1

and �bk� ≤ z ≤ �bk�.

Proof. Suppose bk /∈ Z
1. σk = z− bk holds if and only if z− bk ≥ (1 − fk)(z− �bk�)

and z− bk ≥ 0. But

z− bk ≥ (1 − fk)(z− �bk�) ⇐⇒ fkz ≥ bk − (1 − fk)�bk�
⇐⇒ fkz ≥ fk(1 + �bk�) ⇐⇒ z ≥ �bk�.
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Similarly, σk = 0 holds if and only if 0 ≥ (1−fk)(z−�bk�) and 0 ≥ z−bk . The first in-
equality holds if and only if z ≤ �bk�. Finally the last possibility,σk = (1−fk)(z−�bk�),
holds if and only if �bk� ≤ z ≤ �bk�. The case with bk ∈ Z

1 is similar. ��

It turns out that MIR inequalities suffice to give the convex hull of V .

Theorem 2. i). conv(V ) is described by the inequalities

σk ≥ z− bk for k = 1, . . . , K (2)

σk ≥ (1 − fk)(z− �bk�) for k = 1, . . . , K (3)

σk ≥ 0 for k = 1, . . . , K. (4)

ii). Let V j ⊆ R
Kj
+ × Z

1 be sets of the form (1) for j = 1, . . . , n; then

conv(
n⋂

j=1

V j ∩ {z ∈ Z
n : Bz ≤ d}) =

n⋂

j=1

conv(V j ) ∩ {z ∈ R
n : Bz ≤ d}

when the matrix B is totally unimodular, and d is an integer vector.

Proof. i). Let T be the polyhedron described by the inequalities (2)–(4). Clearly conv(V )
⊆ T . Consider now a bounded face T ′ of T of maximum dimension. As each σk must
be minimal on such a face, σk = max{0, z − bk, (1 − fk)(z − �bk�)}. Let K1 = {k :
σk = 0},K2 = {k : σk = z = bk} and K3 = {k : σk = (1 − fk)(z − �bk�). From the
previous Lemma, it follows that K1 ∪ K2 ∪ K3 = {1, . . . , K}. Therefore the face T ′
can be written as

T ′ = {(σ, z) : z ≤ �bk�, σk = 0, k ∈ K1, z ≥ �bk�, σk = z− bk, k ∈ K2,

�bk� ≤ z ≤ �bk�, σk = (1 − fk)(z− �bk�), k ∈ K3}.

Therefore T ′ = {(σ, z) ∈ R
n × R

1 : σ = c + dz, l ≤ z ≤ u} where c, d ∈ R
n and

l, u ∈ Z
1 ∪ {±∞}. Thus each bounded face of T has extreme points with z integral, and

the claim follows.
ii). The same argument shows that each maximal bounded face is of the form Bz ≤ d,
lj ≤ zj ≤ uj for j = 1, . . . , n. As the matrix (BT , I − I ) is totally unimodular, the
face again has extreme points with z integral, and the claim follows. ��

Note that nonnegativity constraints z ≥ 0, or simple bound constraints p ≤ z ≤ q

with p, q ∈ Z
1 correspond to a trivial TU matrix, so the addition of such constraints to

the set V does not alter the results.
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Example 1.
An example of the set V is

V = {(σ, y) ∈ R
2
+ × Z

1 : σ1 ≥ z− 1

3
, σ2 ≥ z− 5

4
}

In this case b1 = 1
3 and b2 = 5

4 , so f1 = 1
3 and f2 = 1

4 , and the additional inequalities
needed to describe conv(V ) are

σ1 ≥ 2
3 (z− 0) (5)

σ2 ≥ 3
4 (z− 1). (6)

��

3. Model W: Separable convex objectives

Here we consider sets of the form

W = {(φ, z) ∈ R
1 × Z

1 : φ ≥ akz− ck for k = 0, . . . , K}, (7)

where 0 = a0 = c0 and ak ≥ 0 for k = 1, . . . , K , which can also be written as
W = PW ∩ (R1 × Z

1), where

PW = {(φ, z) ∈ R
1 × R

1 : φ ≥ akz− ck for k = 0, . . . , K}.

Note that PW is the epigraph of the function

g(z) = max
k
(akz− ck),

which is a nonnegative, nondecreasing piecewise–linear convex function of the single
variable z. Adding the restriction that z is integer, the set conv(W ) that we are interested
in is the epigraph of a function ḡ, the integer closure of g. (See Figure 1.)

We now make some observations about such functions. We assume for simplicity
that each of the K + 1 segments in the description of g is necessary for its description,
in which case we can assume wlog that 0 = a0 < a1 < . . . < aK .

Observation 1. The breakpoints of the function g, the points bk = ck−ck−1
ak−ak−1

for k =
1, . . . , K , satisfy b1 < . . . < bK as each pair (ak, ck) is necessary in the description of
g(z).

Observation 2. akz − ck = (ak−1z − ck−1) + (ak − ak−1)(z − bk) = ∑k
i=1(ai −

ai−1)(z − bi) for k = 1, . . . , K . Let b0 = −∞ and bK+1 = ∞. Then akz − ck =
maxi=0,... ,K{aiz− ci} if and only if bk ≤ z ≤ bk+1 for k = 0, . . . , K .
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Observation 3. For z ∈ R
1,

g(z) =
∑K

k=1
(ak − ak−1)(z− bk)

+

= min{
∑K

k=1
(ak − ak−1)σk : σk ≥ z− bk, σk ≥ 0, for k = 1, . . . , K}

= min{
∑K

k=1
aksk :

K∑

k=1

sk ≥ z− b1, 0 ≤ sk ≤ bk+1 − bk for k = 1, . . . , K},

where (x)+ denotes max{x, 0}.
The last equality holds because σk = ∑K

t=k st for σ and s that minimize the second
and third expressions, respectively, due to the fact that {ak} are strictly increasing.

Observation 4. In studying sets such as W , there is no loss of generality in assuming
that the associated function g is nonnegative and nondecreasing. Assume that h is an ar-
bitrary piecewise linear function, i.e., with ak, ck that are arbitrary, but with each segment
necessary. LetW ′ = {(ψ, z) ∈ R

1+ ×Z
1 : ψ ≥ akz−ck for k = 1, . . . , K}. To obtain a

function that is nonnegative and nondecreasing, it suffices to find a0 = mink=0,1,... ,K ak
and define g(z) = h(z)− (a0z− c0); this corresponds to defining W via the change of
variable φ = ψ − (a0z− c0).

1/3 5/4
1 2

Fig. 1. Graph of ḡ(z), the integer closure of g(z)
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Fig. 2. Graph of the functions h(z) and g(z)

Example 2.
Consider a set W ′ defined by

W ′ = {(ψ, z) ∈ R
1
+ × Z

1 : ψ ≥ −3

2
z− (−1

2
), ψ ≥ 2z− 5

2
, ψ ≥ 0}.

W ′ = PW ′ ∩ (R1 × Z1), where PW ′ is the epigraph of the function h(z) = max{− 3
2z−

(− 1
2 ), 0z − 0, 2z − 5

2 }, which is convex but not nondecreasing. By setting g(z) =
h(z)− (− 3

2z− (− 1
2 )), we obtain

g(z) = max{0, 3

2
z− 1

2
,

7

2
z− 3},

a nonnegative and nondecreasing function whose epigraph is

PW = {(φ, z) ∈ R
1
+ × Z

1 : φ ≥ 3

2
z− 1

2
, φ ≥ 7

2
z− 3}.

The functions h and g for this example appear in Figure 2. ��

Two extended formulations of conv(W ) are easily obtained using Theorem 2 and
Observation 3. Consider the polyhedron P :

φ ≥ ∑K
k=1 aksk (8)

0 ≤ sk ≤ bk+1 − bk for k = 1, . . . , K (9)
∑K
k=1 sk ≥ z− b1 (10)

∑K
i=k si ≥ (1 − fk)(z− �bk�) for k = 1, . . . , K, (11)
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and the polyhedron Q:

φ ≥ ∑K
k=1(ak − ak−1)σk (12)

σk ≥ z− bk for k = 1, . . . , K (13)

σk ≥ (1 − fk)(z− �bk�) for k = 1, . . . , K (14)

σk ≥ 0 for k = 1, . . . , K. (15)

Theorem 3. conv(W) =projφ,z(P ) =projφ,z(Q).

Proof. From Observation 3,

PW = projφ,z{(φ, z, σ ) : φ ≥
K∑

k=1

(ak − ak−1)σk : σk ≥ z− bk, σk ≥ 0,

for k = 1, . . . , K}.

Now by Theorem 2, any linear program over Q with an objective function in the
φ, z variables will have an optimal solution with z integer. It follows directly that
conv(W) = projφ,z(Q).

We now show that projφ,z(P ) =projφ,z(Q). If (φ, z) ∈ projφ,z(P ), there exists an s
such that (φ, z, s) ∈ P . Setting σk = ∑K

i=k si , it is readily checked that (φ, z, σ ) ∈ Q.
So projφ,z(P ) ⊆ projφ,z(Q). Conversely we see from Observation 3 that

PW = projφ,z{(φ, z, s) : φ ≥
K∑

k=1

aksk :
K∑

k=1

sk ≥ z− b1, 0 ≤ sk ≤ bk+1 − bk

for k = 1, . . . , K}.

Clearly the inequality
∑K
i=k si ≥ z − bk is valid for PW and thus the MIR inequality

∑K
i=k si ≥ (1 − fk)(z− �bk�) is valid for conv(W ). Thus conv(W) ⊆ projφ,z(P ). ��

The model obtained by taking (9)–(10) and requiring z to be integer has been studied
before. Magnanti et al. (1993) showed that an exponential family of MIR inequalities
describe the convex hull of this model, andAtamtürk and Rajan (2002) gave a linear time
separation algorithm for these inequalities. Theorem 3 implies that optimizing a given
linear objective function over this MIP model can be accomplished by linear program-
ming by adding only theK constraints (11). These form a subset of the MIR inequalities
described in the two papers just cited.

Example 2 (continued)

For g(z), a0 = 0, a1 = 3
2 , a2 = 7

2 , and c0 = 0, c1 = 1
2 , c2 = 3. Thus

b1 =
1
2
3
2

= 1

3
, b2 = 3 − 1

2
7
2 − 3

2

= 5

4
, and b2 − b1 = 11

12
.
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Recall that b0 = −∞ and b3 = ∞ by definition. So P takes the form

φ ≥ 3
2 s1 + 7

2 s2 (16)

s1 + s2 ≥ z− 1
3 (17)

0 ≤ s1 ≤ 11
12 , 0 ≤ s2 (18)

s1 + s2 ≥ 2
3 (z− 0) (19)

s2 ≥ 3
4 (z− 1), (20)

and Q becomes

φ ≥ 3
2σ1 + 2σ2 (21)

σ1 ≥ z− 1
3 (22)

σ2 ≥ z− 5
4 (23)

σ1 ≥ 2
3 (z− 0) (24)

σ2 ≥ 3
4 (z− 1) (25)

σ ≥ 0. (26)

Note the relationship between the MIR inequalities (5) and (6), (19) and (20), and (24)
and (25). ��

Finally we would like a description of conv(W) in the original (φ, z) space. Note
that some of the linear segments defining g may not be needed in the description of ḡ. In
particular only the segments k in which the interval [bk, bk+1) contains an integer point
are supports of ḡ. Below we will initially assume that the segments that are not supports
have been removed, and thus �bk� < �bk+1� for all k.

We consider the following polyhedron R:

φ ≥ akz− ck for k = 1, . . . , K (27)

φ ≥ ak−1z− ck−1 + (ak − ak−1)(1 − fk)(z− �bk�) for k = 1, . . . , K (28)

φ ≥ 0. (29)

We derive a lemma for R resembling Lemma 1 that is easily checked.

Lemma 4. For z ∈ R
1, let

φ = max{0,max
k
(akz− ck),max

k
(ak−1z− ck−1 + (1 − fk)(ak − ak−1)(z− �bk�))}.

i) For each k, φ = akz− ck if and only if �bk� ≤ z ≤ �bk+1�.
ii) For each k, φ = ak−1z− ck−1 + (ak − ak−1)(1 − fk)(z− �bk�) if and only if either
bk ∈ Z

1 and �bk� ≤ z ≤ �bk+1�, or bk /∈ Z
1 and �bk� ≤ z ≤ �bk�.

iii) φ = 0 if and only if z ≤ �b1�.

Note that if bk ∈ Z for a given k, because of Observation 2, i) and ii) reduce to the same
statement for that k. Using this Lemma, we can show that R is the formulation required.
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Theorem 5. conv(W) = R.

Proof. projφ,z(Q) ⊆ R as every inequality describing R is valid for Q. We now show
that R ⊆projφ,z(Q). Given (φ, z) ∈ R, let

φ∗ = max{0,max
k
(akz− ck),max

k
(ak−1z− ck−1 + (ak − ak−1)(1 − fk)(z− �bk�))}.

We just verify the case where bk /∈ Z
1.

i). If φ∗ = akz− bk for some k, �bk� ≤ z ≤ �bk+1� from Lemma 4. Set σi = (z− bi)+
for i = 1, . . . , K , so (13) and (15) are satisfied. Also for i ≤ k, z ≥ �bk�+1 ≥ �bi�+1
which implies σi ≥ (1 − fi)(z − �bi�), and for i > k, z ≤ �bk+1� ≤ �bi+1�, which
implies that σi = 0 ≥ (1 − fi)(z− �bi�), so (14) hold. Finally

K∑

i=1

(ai − ai−1)σi =
k∑

i=1

(ai − ai−1)(z− bi) = akz− ck = φ∗ ≤ φ

and (12) holds.
ii). If φ∗ = ak−1z− ck−1 + (ak − ak−1)(1 −fk)(z−�bk�) for some k, �bk� ≤ z ≤ �bk�
by Lemma 4. Set σi = z−bi for i ≤ k−1, σk = (1−fk)(z−�bk�) and σi = 0 for i > k.
Again for i ≤ k − 1, z ≥ �bk� ≥ �bi� + 1 implies σi = z − bi ≥ (1 − fi)(z − �bi�).
For i = k, �bk� ≤ zk ≤ �bk� implies σi = (1 − fi)(z − �bi�) ≥ z − bi , and for i > k,

σi = 0 ≥ z−bi and σi = 0 ≥ (1−fi)(z−�bi�). Finally
∑K
i=1(ai−ai−1)σi = φ∗ ≤ φ.

iii). When φ∗ = 0, it suffices to take σk = 0 for all k. ��
Example 2 (continued)

By Theorem 5, the additional inequalities needed to describe conv(W ) are

φ ≥ z− 0 (30)

φ ≥ 3
2 (z− 1

3 )+ 3
2 (z− 1) (31)

These inequalities also allow us to form ḡ, the integer closure of g:

ḡ(z) = max{0, z− 0,
3

2
z− 1

2
,

3

2
z− 1

2
+ 3

2
(z− 1),

7

2
z− 3}.

This numerical example is illustrated in Figure 1. ��

Now we drop the assumption �bk� < �bk+1� for all k. LetU = {k : k > 1, �bk−1� <
�bk�}. For k ∈ U , let p(k) denote the predecessor of k in U . The constraints needed to
describe conv(W ) now take the form

φ ≥ ap(k)z− cp(k) +
k∑

j=p(k)+1

(aj − aj−1)(1 − fj )(z− �bk�) for k ∈ U. (32)

Finally, we consider what additional constraints on the integer variables can be added
without destroying integrality.
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Theorem 6. Let Wj ⊆ R
1+ × Z

1 be sets of the form (7) with variables (φj , zj ). The
polyhedron

n⋂

j=1

conv(Wj ) ∩ {z : Bz ≤ d}

is integral when B is totally unimodular and d is integral.

Proof. Using the same argument as in the proof of Theorem 2, it follows from Lem-
ma 4 that all maximal bounded faces of R are of the form : lj ≤ zj ≤ vj for
j = 1, . . . , K,Bz ≤ d where lj , vj are integers or infinite. As B is TU, the face is
integral, and the claim follows. ��
Thus, given an IP with a separable, piecewise–linear objective function and a TU con-
straint matrix, we can reformulate this IP as an LP with integral extreme points by adding
the MIR constraints (28) (or if necessary (32)) for each set Wj . Again it follows from
Theorem 6 that nonnegativity of z, or integral bounds on z do not affect the results.

4. Model Y: g(y1, . . . , yn) = max{0, maxj=1,... ,n(bj − yj)}.

Here we consider the set

Y = {(φ, y) ∈ R
1+ × Z

n : φ ≥ bj − yj for j = 1, . . . , n}. (33)

We can also express Y as

{(φ, z) ∈ R
1+ × Z

n : φ ≥ zj − dj for j = 1, . . . , n}
by substituting yj = −zj and bj = −dj for j = 1, ..., n, but we work with (33) because
this form was used in earlier research.

We associate with Y the polyhedron

PY = {(φ, y) ∈ R
1
+ × R

n : φ ≥ bj − yj for j = 1, . . . , n}.
PY can be viewed as the epigraph of the convex function g(y) = max{0,maxj (bj−yj )},
in which case conv(Y ) is the epigraph of the integer closure of gY .

First we present the convex hull of Y in the original space, and then we address the
question of what additional constraints can be added without losing integrality. We let
fj = bj − �bj � for j = 1, . . . , n.

Theorem 7. i). (Günlük and Pochet (2001)). conv(Y ) is described by the polyhedron

φ ≥ bj − yj for j = 1, . . . , n (34)

φ ≥ ∑P
p=1(fjp − fjp−1)(�bjp� − yjp )

for all {j1, . . . , jP } ⊆ {1, . . . , n}, 0 = fj0 < fj1 < . . . < fjP (35)

φ ≥ ∑P
p=1(fjp − fjp−1)(�bjp� − yjp )+ (1 − fjP )(�bj1� − yj1 − 1)

for all {j1, . . . , jP } ⊆ {1, . . . , n}, 0 = fj0 < fj1 < . . . < fjP (36)

φ ∈ R
1+, y ∈ R

n. (37)
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ii). Let Y k ⊆ R
1+ × Z

nk for k = 1, . . . , K be sets of the form (33) in the variables
(φk, y

k). Then

K⋂

k=1

conv(Y k) ∩ {y : By ≤ d} (38)

is integral if B is the transpose of a network flow matrix and d is integer, where
y = (y1, . . . , yK).

Proof. i). We consider the different faces of the polyhedron (34)–(37) in which φ is
bounded. Note that in such a face, at least one of the inequalities (35), (36) and φ ≥ 0
holds at equality. The following claims essentially follow from the separation algorithm
for the mixing inequalities (Pochet and Wolsey (1994), Günlük and Pochet (2001)).

a) φ = 0 if and only if yj ≥ �bj � for all j .
b) φ = ∑P

p=1(fip − fip−1)(�bip� − yip ) if and only if

1 ≥ �bi1� − yi1 ≥ . . . ≥ �biP � − yiP ≥ 0

�bip� − yip ≥ �bj � − yj for ip−1 < j < ip and p = 1, . . . , P

0 ≥ �bj � − yj for j > iP .

c) φ = ∑P
p=1(fip − fip−1)(�bip� − yip )+ (1 − fiP )(�bi1� − 1 − yi1) if and only if

�bi1� − yi1 ≥ . . . ≥ �biP � − yiP ≥ �bi1� − 1 − yi1 ≥ 0

�bip� − yip ≥ �bj � − yj for ip−1 < j < ip and p = 1, . . . , P

�bi1� − 1 − yi1 ≥ �bj � − yj for j > iP .

Thus every face is of the form

lij ≤ yi − yj ≤ vij for i, j ∈ {1, . . . , n}
lj ≤ yj ≤ vj for j ∈ {1, . . . , n}

with lij , lj either integer or −∞, and vij , vj either integer or +∞. So the constraint
matrix has the form of the transpose of a network flow matrix, which is totally uni-
modular, and the claim follows.
ii). With the multiple sets and the additional constraints, each face is of the form

lij ≤ yi − yj ≤ vij for i, j ∈ {1, . . . , n} (39)

lj ≤ yj ≤ vj for j ∈ {1, . . . , n} (40)

By ≤ d, (41)

and the constraint matrix is still the dual of a network flow matrix. ��
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Since adding integer bounds on yj preserves the dual network flow structure of the
constraint matrix, this result easily extends to the case when bounds are present.

Even if B is not the dual of a network flow matrix, ii) of Theorem 7 can be slightly
generalized. In particular it suffices to show that each of the faces (39)–(41) is integral.
An example of this is provided by the single-item constant capacity lot-sizing model with
Wagner-Whitin costs – when modelled in the form (38), B is not a network dual matrix,
but the constraint matrix of the face (39)–(41) can be shown to be totally unimodular,
an observation of Constantino (2002).

As noted above, a polynomial separation algorithm for the mixing inequalities (35)–
(36) is known. Now as an alternative to the exponential description of conv(Y ) provided
by the mixing inequalities, we give a simple derivation of a compact extended formula-
tion. This formulation is similar to an extended formulation presented for the constant
capacity lot–sizing problem in Pochet and Wolsey (1994), which was used there to define
the separation algorithm for the mixing inequalities.

Proposition 8. An extended formulation for conv(Y ) is

φ = ∑n
i=0 fiδi + µ (42)

yj ≥ ∑n
i=0�bj − fi�δi − µ for j = 1, . . . , n (43)

∑n
i=0 δi = 1 (44)

µ ≥ 0, δi ≥ 0 for i = 0, . . . , n, (45)

where f0 = 0.

Proof. The n+1 extreme points {φi, yi}ni=0 of conv(Y ) are given by φ0 = 0, y0
j = �bj �

for j = 1, . . . , n, and φi = fi, y
i
j = �bj − fi� for j = 1, . . . , n, as i varies over

{1, . . . , n}. The convex hull of the union of these points is given by the constraints (42)–
(45) with (42) and (43) as equalities, and µ = 0. Letting ej be the j th unit vector, and 1
be the vector of all 1’s, the claim follows as the extreme rays of Y are (φ, y) = (0, ej ),
for j = 1, . . . , n, and (φ, y) = (1,−1) represented by the variable µ. ��

Note that ii) of Theorem 7 does not hold when B is TU (counterexamples include
those arising from discrete lot–sizing problems discussed in the companion paper of
Miller and Wolsey (2002)). It is not clear whether there is a polynomial algorithm for
optimization over such sets when B is TU.

5. Model Z: g(y, r) = maxj=1,... ,n(bj − rj − yj)+.

Here

Z = {(φ, r, y) ∈ R
1
+ × R

n
+ × Z

n : φ ≥ bj − rj − yj for j = 1, . . . , n}, (46)

and its associated polyhedron PZ represents the epigraph of the function g(r, y) =
max{0,maxj (bj − rj − yj )}. For such sets, we can define valid “mixing” inequalities
for conv(Z) that are analogous to the inequalities (35) and (36):
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φ + ∑P
p=1 rjp ≥ ∑P

p=1(fjp − fjp−1)(�bjp� − yjp )

for all {j1, ..., jP } ⊆ {1, ..., n}, 0 = fj0 < fj1 < . . . < fjP (47)

φ + ∑P
p=1 rjp ≥ ∑P

p=1(fjp − fjp−1)(�bjp� − yjp )+ (1 − fjP )(�bj1� − yj1 − 1)

for all {j1, ..., jP } ⊆ {1, ..., n}, 0 = fj0 < fj1 < . . . < fjP . (48)

However, these inequalities do not suffice to give a description of conv(Z).

Example 3. Let n = 3 and b = (2.1, 0.4, 0.6), and consider an instance of the set Z

φ + r1 + y1 ≥ 2.1

φ + r2 + y2 ≥ 0.4

φ + r3 + y3 ≥ 0.6

φ, r ≥ 0, y ∈ Z
3.

It is straightforward to check that the inequality

φ + 0.5r1 + 0.5r2 + 0.5r3 + 0.35y1 + 0.2y2 + 0.25y3 ≥ 1.2

is valid and facet-defining for conv(Z). Clearly it is not a mixing inequality of the form
(47) or (48), since the coefficients of φ and the rj variables are different. ��

We do not know a characterization of the facets of conv(Z), but there is an extended
formulation.

Theorem 9. An extended formulation for conv(Z) is

φ = ∑n
i=0 fiδi + µ (49)

rj = ∑n
i=0 f

j
i β

j
i + νj for j = 1, . . . , n (50)

yj ≥ �bj � + ∑
i:fi<fj (δi − β

j
i )− ∑

i:fi>fj β
j
i − µ− νj for j = 1, . . . , n (51)

β
j
i ≤ δi for j = 1, . . . , n, i = 0, . . . , n (52)

∑n
i=0 δi = 1 (53)

β, δ, µ, ν ≥ 0, (54)

where f0 = 0, f ji = fj − fi if fi ≤ fj and f ji = 1 + fj − fi if fi > fj .

To prove this, we need the following lemma.

Lemma 10. In each extreme point of conv(Z), either φ = 0, or else there exists a
j ∈ {1, ..., n} such that both rj = 0 and φ + yj = bj .

Proof. Let (φ̄, r̄, ȳ) ∈ conv(Z) be such that φ̄ > 0, and either r̄j > 0 or φ̄ + ȳj > bj ,
j = 1, . . . , n. If φ̄ + r̄j + ȳj > bj for all j , then (φ̄, r̄, ȳ) is clearly not an ex-
treme point of conv(Z). So let T = {j = 1, ..., n : φ̄ + r̄j + ȳj = bj }, and let
T̄ = {j = 1, ..., n : j �∈ T }. By hypothesis, for each j ∈ T , r̄j > 0 must hold. Now
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define ε = min{φ̄,minj∈T [r̄j ],minj∈T̄ [φ̄ + r̄j + ȳj − bj ]}. It is clear that ε > 0, and
thus the following two points are in Y (g):

φ = φ̄ − ε; rj = r̄j + ε, j ∈ T , rj = r̄j , j ∈ T̄ ; yj = ȳj , j = 1, . . . , n

φ = φ̄ + ε; rj = r̄j − ε, j ∈ T , rj = r̄j , j ∈ T̄ ; yj = ȳj , j = 1, . . . , n

Moreover, (φ̄, ȳ, z̄) is a convex combination of these points and so cannot be an extreme
point of conv(Z). The claim follows. ��
Proof of Theorem 9. Given Lemma 10, it follows that conv(Z) has the following extreme
points:

Case 1. φ = 0. (Variable δ0 = 1).

For each j = 1, . . . , n, either rj = 0 and yj = �bj � (variable βj0 = 0), or rj = fj = f
j
0

and yj = �bj � (variable βj0 = 1). Thus, in this case, both (50)–(51) hold at equality for
j = 1, . . . , n, where δ and β take the values indicated.

Case 2. ri = 0 and φ + yi = bi (variable δi = 1) for some i ∈ {1, . . . , n}.
If fj > fi , either rj = 0, yj = �bj − fi� = �bj � (variable βji = 0), or rj = fj −
f i0 , yj = �bj � (variable βji = 1). If fj < fi , either rj = 0, yj = �bj − fi� = �bj − 1�
(variable βji = 0), or rj = 1 + fj − fi, yj = �bj − 1� (variable βji = 1). If fj = fi ,
then rj = 0, yj = bj − fi = �bj � must hold, or else (φ, r, z) is not an extreme point of
conv(Z). Thus, in this case as well, (49)–(51) hold at equality for j = 1, . . . , n, where
δ and β take the values indicated.

Therefore, similarly to the proof of Proposition 8, the convex hull of the extreme points of
conv(Z) is exactly the projection of (49)–(54), with (49)–(51) at equality andµ = 0 = νj
for j = 1, . . . , n, onto the (φ, r, y) space. The result follows as the extreme rays of
conv(Z) are (φ, r, y) = (0, 0, ej ) for j = 1, . . . , n, (φ, r, y) = (1, 0,−1) represent-
ed by the variable µ, and (φ, r, y) = (0, ej ,−ej ) represented by the variable νj for
j = 1, . . . , n. ��
This extended formulation is related to that presented for conv(Y ) in Section 4, but
because of the extra continuous variable rj , it requires a quadratic rather than linear
number of extra variables. It is not known if dual network flow constraints can be added
to link the y variables of multiple sets of the form Z without destroying the integrality
provided by this extended formulation.

6. Closing remarks

There are other mixed integer sets that are related to convex integer objective functions.
For instance, study of the continuous knapsack set {(y, s) ∈ Z

n+ × R
1+ :

∑n
j=1 ajyj ≤

b + s} can be interpreted as study of the integer hull of the function g(y) =
max{0,∑j aj yj − b}. Here results are known for the divisible knapsack case when
a1| . . . |an (Pochet and Wolsey (1995)), and for the case n = 2 (Agra and Constantino
(2001)). However some two variable functions seem to be inherently complicated,
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such as the function g(z1, z2) = max{−z1,−z2, z1 + z2 − 2} based on the IP max{s :
y1 + y2 + s ≤ 2, s ≤ y1, s ≤ y2, s ∈ R

1+, y ∈ Z
2}. This is a problem for which an infi-

nite set of Gomory mixed or MIR inequalities is apparently needed to attain the optimal
value (White (1961), see also Salkin (1975)).

In a companion paper Miller and Wolsey (2002), we discuss how these results can be
used to derive tight formulations for various discrete lot–sizing problems. In particular,
results for W provide tight formulations for problems with backlogging and/or safety
stock requirements, results for Y provide tight formulations for problems in which initial
inventory variables are present, and results forZ provide tight formulations for problems
with both backlogging and initial inventory variables. These reformulations turn out to
be effective on a set of industrial problems.
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