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Abstract. Robust-optimization models belong to a special class of stochastic programs, where the traditional
expected cost minimization objective is replaced by one that explicitly addresses cost variability. This paper
explores robust optimization in the context of two-stage planning systems. We show that, under arbitrary
measures for variability, the robust optimization approach might lead to suboptimal solutions to the second-
stage planning problem. As a result, the variability of the second-stage costs may be underestimated, thereby
defeating the intended purpose of the model. We propose sufficient conditions on the variability measure to
remedy this problem. Under the proposed conditions, a robust optimization model can be efficiently solved
using a variant of the L-shaped decomposition algorithm for traditional stochastic linear programs. We apply
the proposed framework to standard stochastic-programming test problems and to an application that arises
in auctioning excess electric power.

Key words. stochastic programming – robust optimization – decomposition methods – risk modeling – utility
theory

1. Introduction

Applications requiring decision-making under uncertainty are often modeled as two-
stage stochastic programs. In these models, the decision variables are partitioned into
two sets. The first is that of variables that are decided prior to the realization of the
uncertain event. The second is the set of recourse variables which represent the response
to the first-stage decision and realized uncertainty. The objective is to minimize the
cost of the first-stage decision and the expected cost of optimal second-stage recourse
decisions. The classical two-stage stochastic program [4, 9] with fixed recourse is

min
x

{
cx + EP {Q(x, ξ̃ )} | Ax = b, x ≥ 0

}
,

where Q(x, ξ̃ ) = miny{q(ξ̃ )y | Dy = h(ξ̃ ) − T (ξ̃ )x, y ≥ 0}. The vector x is the
first-stage decision variable with an associated cost vector c and a feasible set {x |Ax =
b, x ≥ 0}. The uncertain parameters are functions of the random vector ξ̃ belonging to
the set � with a probability distribution P . For a given first-stage decision and realization
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of the uncertain parameters, the cost of second-stage decisions is given by the optimal
value of the recourse problem Q(x, ξ̃ ). Note that both cost vectors, c and q(ξ̃ ), have a
row representation.

If the distribution of the random variable is discrete with a finite support, one can
write the two-stage stochastic program in the form

min
x

{
cx +

K∑
k=1

pkQk(x) | Ax = b, x ≥ 0

}
, (1)

where for each k

Qk(x) = min
y

{
qky | Dy = hk − Tkx, y ≥ 0

}
. (2)

Formulation (1) assumes K possible realizations – scenarios – for the random variable
ξ̃ , each with a probability pk > 0, k = 1, . . . , K . Due to the separability of the recourse
problems, Qk(x), k = 1, . . . , K , model (1) can be reformulated as

min
x,y1,... ,yK

{
cx +

K∑
k=1

pkqkyk | Ax = b, x ≥ 0,

Tkx +Dyk = hk, yk ≥ 0, k = 1 . . . , K

}
. (3)

Note that the KKT optimality conditions for (1) imply those for (3) and vice versa. Con-
sequently, given an optimal solution x∗, y∗1 , . . . , y∗K , for problem (3), the vector y∗k is
optimal for Qk(x

∗), k = 1, . . . , K . The linear program in (3) is called the deterministic
equivalent [4, 9].

Formulation (1) generally assumes that the decision maker – modeler – is risk neu-
tral; i.e., an optimal x is chosen solely on its present and expected future cost cx +∑K

k=1 pkQk(x). To capture the notion of risk in a two-stage stochastic program, several
studies suggest modifying the probability measure pk , k = 1, . . . , K [5, 12]. Alterna-
tively, Mulvey, Vanderbei, and Zenios [18] propose capturing risk explicitly using the
following model:

min
x,y1,... ,yK

{
cx +

K∑
k=1

pkqkyk + λf (q1y1, . . . , qKyK) | Ax = b, x ≥ 0,

Tkx +Dyk = hk, yk ≥ 0, k = 1, . . . , K

}
, (4)

where f : R
K → R is a variability measure, usually the variance, on the second-stage

costs. The non-negative scalar λ represents the risk tolerance of the modeler. Depending
on the value of λ, the optimization may favor solutions with a higher expected second-
stage cost

∑K
k=1 pkqkyk in exchange for a lower variability in the second-stage costs

as measured by f (q1y1, . . . , qKyK). Mulvey et al. [18] refer to their model as robust
optimization. This framework has found applications in power-system capacity plan-
ning [17], chemical-process planning [1], telecommunications-network design [2, 13],
and financial planning [2, 18].
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In this paper we show that, for an arbitrary variability measure f , the robust
optimization model (4) might lead to second-stage solutions yk , k = 1, . . . , K , that
are not optimal to the recourse problem (2). As a result, formulation (4) may underesti-
mate the actual variability of the second-stage costs which, we feel, violates the intent
of the model and results in misleading decisions. We propose sufficient conditions on
f to remedy this problem. Furthermore, we show that, under the proposed conditions,
a robust optimization model can be efficiently solved using a variant of the L-shaped
decomposition algorithm for stochastic linear programs.

The remainder of this paper is organized as follows. In the next section, we illustrate
the potential difficulty with model (4) through an example, and discuss the optimality
conditions of the model to explain this behavior. In Section 3, we propose conditions to
ensure that the second-stage solutions of a robust model are optimal with respect to (2)
and suggest a decomposition scheme for solving the resulting robust problem. We also
discuss extensions of two-stage stochastic programming to a more general dis-utility
minimization setting which permits capturing the modeler’s risk attitude. Finally, in
Section 4, we report on our computational experience with the proposed approach.

2. Issues with robust optimization

2.1. An illustrative example

Consider the following instance of the two-stage stochastic-programming model (1) with
two equi-probable scenarios

min
x

{
2x + 0.5Q1(x)+ 0.5Q2(x) | x ≥ 0

}
,

where Q1(x) = miny

{
y | y ≥ 3−x, y ≥ 0

}
, and Q2(x) = miny

{
y | y ≥ 2−x, y ≥ 0

}
.

Clearly, the optimal second-stage solutions are [3−x]+ and [2−x]+ for scenarios 1 and
2, respectively, where [ · ]+ = max(0, ·). Let us now consider the robust optimization
framework (4) with the aim of controlling the variability of the second-stage costs

min
x,y1,y2

{
2x + 0.5y1 + 0.5y2 + λf (y1, y2) | x + y1 ≥ 3, x + y2 ≥ 2,

x ≥ 0, y1 ≥ 0, y2 ≥ 0

}
, (5)

where f is the variance of the second-stage costs; i.e., f (y1, y2) = (y1 − y2)
2/4. It is

easily verified that for 0 ≤ λ < 1, the optimal solution of (5) is x = 0, y1 = 3, and
y2 = 2. In this case, for a first-stage value of x = 0, the solutions y1 and y2 are optimal
to the recourse problems corresponding to scenarios 1 and 2, respectively. However, as
λ exceeds one, the optimal solution of (5) becomes x = 0, y1 = 3, and y2 = 3 − 1/λ.
Note that y2 is no longer optimal to miny

{
y | y ≥ 2 − x, y ≥ 0

}
, when x = 0. While

the robust model (4) results in a variance of 1/4λ2, the actual variance at x = 0 is 1/4.
By varying λ in formulation (5), the decision maker’s intent is to control risk – sec-

ond-stage variance. However, the change in the variance is not a result of changing x but



112 Samer Takriti, Shabbir Ahmed

rather a consequence of changing y2. We believe that it is unlikely that a decision maker
would be interested in such a model. As a matter of fact, it is often the case that decision
makers do not control the second-stage decisions completely; and that the model is an
attempt to approximate their costs. An example is the truss-design problem discussed
in [18]. The first stage determines the structural design, while the second-stage decisions
represent the forces in the truss elements. For a given load, these forces – second-stage
decisions – are completely controlled by laws of physics and cannot be affected by the
decision maker. The only way to control them is through the adoption of a suitable
design x that minimizes the deviation in the second-stage response. As a result, we
feel that an appropriate model is one that enforces robustness while guaranteeing that
the second-stage solution is optimal for the recourse problem (2). Additional examples
illustrating that robust models may result in second-stage solutions that are suboptimal
for the recourse problem are presented in [11] and [23].

2.2. Optimality conditions

The above simple example illustrates that the second-stage solutions obtained from the
robust optimization model (4) can be suboptimal to the second-stage recourse prob-
lem (2) and that the variability may be underestimated. In this section, we analyze the
optimality conditions of (4) to understand this behavior.

Throughout the rest of this paper, we assume that the two-stage model (1), and equiv-
alently (3), is feasible and bounded below, and that the robust model (4) is bounded below.
We also assume, without loss of generality, that all probabilities, pk , k = 1, . . . , K , are
strictly positive. Furthermore, we assume that the variability measure f : R

K �→ R is
subdifferentiable, and denote the subdifferential of f at z = (z1, . . . , zK) by ∂f (z).

For a given x and λ, let us consider the value function

φλ(x) = min
y1,... ,yK

{ K∑
k=1

pkqkyk + λf (q1y1, . . . , qKyK) | Dyk = hk − Tkx

yk ≥ 0, k = 1, . . . , K

}
. (6)

Proposition 1. Let f be subdifferentiable. Given λ and x, let yk , k = 1, . . . , K , be a
feasible solution for (6) and denote qkyk by zk , k = 1, . . . , K . Then, yk , k = 1, . . . , K ,
satisfies the Kuhn-Tucker optimality conditions for (6) if and only if there exists a sub-
gradient g = (g1, . . . , gK) ∈ ∂f (z1, . . . , zK) such that the following two conditions
are satisfied:

(a) if (pk + λgk) > 0, the vector yk solves the kth recourse problem

Qk(x) = min
y

{
qky | Dy = hk − Tkx, y ≥ 0

}
;

and
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(b) if (pk + λgk) < 0, the vector yk solves

Rk(x) = max
y

{
qky | Dy = hk − Tkx, y ≥ 0

}
. (7)

Proof. Note that a feasible solution yk , k = 1, . . . , K , for (6) is feasible for both (2)
and (7). First, we assume that yk , k = 1, . . . , K , satisfies the Kuhn-Tucker optimality
conditions for (6) and show that conditions (a) and (b) must hold. Since yk is optimal,
then there exists a subgradient g ∈ ∂f (z1, . . . , zK) and a row vector πk , k = 1, . . . , K ,
such that πkD ≤ (pk+λgk)qk and (pkqk+λgkqk−πkD)yk = 0, k = 1, . . . , K , where
g has row representation. For claim (a), the row vector µk = πk/(pk + λgk) is dual
feasible and satisfies complementarity slackness (qk − µkD)yk = 0 for (2). Therefore,
yk is optimal for (2), which proves claim (a). Claim (b) can be shown in a similar fashion
through duality. Now, we show the sufficiency of the condition; i.e., the presence of a
suitable g that satisfies both (a) and (b) guarantees that yk , k = 1, . . . , K , is optimal
for (6). Let µk be the dual multiplier associated with yk in an optimal solution for (2)
if pk + λgk > 0, or for (7) if pk + λgk < 0. Now, define πk to be (pk + λgk)µk if
pk + λgk �= 0 and to be zero otherwise. Then, the pair (y, π) satisfies the Kuhn-Tucker
optimality conditions for (6). �	

Corollary 1. Let f be subdifferentiable. Given λ and a solution x∗, let y∗1 , . . . , y∗K ,
be optimal for (6); let z∗k = qky

∗
k , k = 1, . . . , K; and let g∗ ∈ ∂f (z∗1, . . . , z∗K). Let

�Q = {k |pk+λg∗k > 0, k = 1, . . . , K}, and �R = {k |pk+λg∗k < 0, k = 1, . . . , K}.
Then the row vector −∑K

k=1(pk + λg∗k )µ∗kTk is a subgradient of φλ at x∗, where µ∗k is
an optimal dual solution for (2) if k ∈ �Q, an optimal dual solution for (7) if k ∈ �R ,
and the zero vector otherwise.

Proposition 1 explains why the robust model’s second-stage solution may be sub-
optimal for the recourse problem. Depending on the nature of f and the value of λ,
the robust model may yield a second-stage solution yk that is not optimal for the kth
recourse problem (2). Referring back to the example in Section 2.1, for 0 ≤ λ < 1, the
optimal solution is x = 0, y1 = 3, and y2 = 2, with p1 + λ∇f1 = (1+ λ)/2 > 0 and
p2+λ∇f2 = (−1+λ)/2 > 0. Accordingly, each of y1 and y2 solves its corresponding
recourse problem (2). However, when λ exceeds one, the optimal solution is x = 0,
y1 = 3, and y2 = 3 − 1/λ, with p1 + λ∇f1 = 1 and p2 + λ∇f2 = 0. Hence, the
solution y2 is no longer guaranteed to be optimal for (2).

Note that for a given x, the actual variability of the optimal second-stage costs
is f (Q1(x), . . . , QK(x)). The following proposition shows that the robust model (4)
underestimates the actual second-stage variability.

Proposition 2. Given λ ≥ 0, let x∗, y∗1 , . . . , y∗K , be an optimal solution for (4). Then,

f (Q1(x
∗), . . . , QK(x∗)) ≥ f (q1y

∗
1 , . . . , qKy∗K),

where Qk(x
∗) is as defined in (2).
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Proof. Let y
Q
k be optimal for the recourse problems; i.e., Qk(x

∗) = qky
Q
k ,

k = 1, . . . , K . As x∗, y
Q
1 , . . . , y

Q
K , is a feasible solution for (4), we have

cx∗ +
K∑

k=1

pkqky
∗
k + λf (q1y

∗
1 , . . . , qKy∗K)

≤ cx∗ +
K∑

k=1

pkqky
Q
k + λf (q1y

Q
1 , . . . , qKy

Q
K ).

The result follows from noting that λ ≥ 0 and that y∗k is feasible for the recourse prob-

lem, hence qky
∗
k ≥ qky

Q
k , k = 1, . . . , K . �	

3. Robust optimization under an appropriate variability measure

The previous section highlights a crucial deficiency of the robust optimization framework
under arbitrary variability measures. In this section, we suggest sufficient conditions on
the variability measure f to ensure that the robust model (4) produces second-stage
solutions that are optimal for (2). Under the proposed conditions, a modified version
of the L-shaped decomposition algorithm solves (4) efficiently. Finally, we discuss the
issue of modeling risk using a dis-utility minimization setting.

3.1. Conditions guaranteeing second-stage optimality

Consider the following robust model

min
x

{
cx +

K∑
k=1

pkQk(x)+ λf (Q1(x), . . . , QK(x)) | Ax = b, x ≥ 0

}
. (8)

The above model dispenses with the issue of second-stage suboptimality, since the opti-
mal second-stage costs are explicitly considered. The discussion in Section 2.2 suggests
that under an arbitrary variability measure f , models (4) and (8) are not equivalent.

We now provide a sufficient condition on f to guarantee the equivalence of mod-
els (4) and (8). Given two vectors z1 and z2 in R

K , the notation z1 < z2 means z1
k ≤ z2

k

for k = 1, . . . , K , and z1
k < z2

k for some k. A function f : R
K �→ R is called non-de-

creasing if z1 < z2 implies f (z1) ≤ f (z2); and is called increasing if z1 < z2 implies
f (z1) < f (z2).

Proposition 3. Let f be a non-decreasing function and λ ≥ 0. Then, models (4) and
(8) are equivalent.

Proof. Let xQ be an optimal solution for (8) with the vectors y
Q
1 , . . . , y

Q
K , being

optimal for the recourse problems; i.e., Qk(x
Q) = qky

Q
k , k = 1, . . . , K . Note that

xQ, y
Q
1 , . . . , y

Q
K , is feasible for (4); i.e., the optimal value of (4) is a lower bound

on that of (8). Now, let x∗, y∗1 , . . . , y∗K , be an optimal solution for (4). Furthermore,
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assume that there exists a k such that y∗k is not optimal for the kth recourse problem; i.e.,
qky
∗
k > qkyk where yk solves miny{qky |Dy = hk−Tkx

∗}. Then, replacing y∗k with yk

maintains feasibility. In addition, and due to the assumptions that f is non-decreasing,
λ ≥ 0, and pk > 0, the objective function value of (4) improves, which contradicts
the assumption that the solution x∗, y∗1 , . . . , y∗K , is optimal. Therefore, the vector y∗k ,
k = 1, . . . , K , solves the kth recourse problem, resulting in the value of (4) being an
upper bound on the optimal value of (8). Hence, program (4) and program (8) are equiv-
alent. �	

The above result suggests that using a non-decreasing variability measure resolves
the issue of second-stage suboptimality in (4). Under subdifferentiability of f , this
condition is also evident from Proposition 1, since a non-decreasing subdifferentiable
function has a non-negative subgradient. The use of non-decreasing variability measures
is not new to the modeling community. Such functions have been widely used in the
finance literature. We refer the reader to [3], [6], [10], and [20] for examples of such
functions.

Next, we consider an alternative robust optimization model where second-stage cost
variability is minimized subject to an upper bound on the expected cost.

Proposition 4. Let f be an increasing function and ρ ∈ R. Then,

min
x

{
f (Q1(x), . . . , QK(x)) | Ax = b, x ≥ 0, cx +

K∑
k=1

pkQk(x) ≤ ρ

}
, (9)

is equivalent to

min
x,y1,... ,yK

{
f (q1y1, . . . , qKyK) | Ax = b, x ≥ 0, cx +

K∑
k=1

pkqkyk ≤ ρ,

Tkx +Dyk = hk, yk ≥ 0, k = 1, . . . , K

}
. (10)

Proof. Observe that either both (9) and (10) are feasible or both are infeasible. We
assume that both are feasible under the given ρ. As in the proof of Proposition 3, one can
show that the optimal objective value of (10) is a lower bound on that of (9). Now, let x∗,
y∗1 , . . . , y∗K , be an optimal solution for (10). Furthermore, assume that there exists a k

such that y∗k is not optimal for the kth second-stage problem; i.e., qky
∗
k > qkyk where yk

solves miny{qky | Dy = hk − Tkx
∗}. Then, replacing y∗k with yk maintains feasibility.

Furthermore, and due to the assumption that f is increasing, the objective function value
improves, which contradicts the assumption that the solution x∗, y∗1 , . . . , y∗K , is optimal
for (10). Therefore, the vector y∗k , k = 1, . . . , K , solves the kth second-stage problem,
resulting in the value of (9) being a lower bound on the optimal value of (10). Hence,
program (9) and program (10) are equivalent. �	

Note that a non-decreasing f in (4) and an increasing f in (10) are sufficient to
guarantee that the resulting second-stage solutions are optimal for the recourse prob-
lem (2). However, for computational tractability, one needs to assume that f is convex.
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The convex and non-decreasing nature of f , in conjunction with the convexity of Qk

guarantee that the function f (Q1(·), . . . , QK(·)) is convex in x (see, for example, The-
orem 5.1 of [22]). Furthermore, also from convexity, problem (10) can be reformulated
in the form of (4) by relaxing the constraint cx+∑K

k=1 pkqkyk ≤ ρ with an appropriate
Lagrange multiplier. Hence, formulations (4) and (10) are equivalent.

Corollary 2. Let f be convex and increasing. Then, formulations (4), (8), (9), and (10)
are equivalent.

3.2. A modified L-shaped decomposition algorithm

In this section, we suggest a decomposition algorithm for (4) for a convex and non-
decreasing variability measure f .

In the space of the first-stage variables, model (4) can be stated as

min
x

{
cx + φλ(x) | Ax = b, x ≥ 0

}
, (11)

where φλ(x) is defined as in (6). Problem (11) is a convex non-linear program, and can
be solved using a cutting-plane algorithm, such as generalized Benders’ decomposition
[7]. Recall that, in each iteration, this class of algorithms solves a linear relaxation of
the problem, wherein the convex function φλ(x) is under-approximated by a collection
of supporting hyperplanes using subgradient information. As the iterations progress,
the approximation of φλ(x) improves and the solutions to the relaxation converge to a
solution of the true problem.

In general, evaluating and computing a subgradient of φλ(x) would require the
solution of the large-scale non-linear program (6). However, under the non-decreasing
condition on f suggested by Proposition 3, the function φλ(x) can be evaluated by
(independently) solving the linear recourse programs Qk(x), k = 1, . . . , K , and
assigning

φλ(x) =
K∑

k=1

pkQk(x)+ λf (Q1(x), . . . , QK(x)).

Furthermore, from Corollary 1, a subgradient ofφλ(x) can be calculated using a subgradi-
ent of f and the optimal dual multipliers of the recourse problems Qk(x), k = 1, . . . , K .
Thus, given a first-stage solution x, a support of φλ(x) can be computed in a decomposed
fashion by independently solving the linear recourse problems Qk(x), k = 1, . . . , K .
A cutting-plane algorithm for (11) can then be stated as follows.

Initialization. Let λ ≥ 0 be given. Set the iteration counter i to 1. Set UB ←∞ and
LB ← −∞. Let ε > 0 be the error tolerance in an optimal solution. Let Io ← ∅
and If ← ∅ be the sets of indices corresponding to the optimality and feasibility
cuts, respectively.
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General Step.
1. Set the value of the LB to

min
x,w
{cx + w | Ax = b, x ≥ 0, w ≥ φλ(x

ι)−
K∑

k=1

πι
kTk(x − xι), ι ∈ Io,

ηι
k(hk − Tkx) ≤ 0, k ∈ Kι, ι ∈ If },

and let xi be its optimal solution. If the problem is unbounded, choose any
feasible x as a solution and set LB ←−∞.

2. Solve the second-stage recourse problems miny{qky |Dy = hk−Tkx
i, y ≥ 0},

k = 1, . . . , K . If all recourse problems are feasible,
Let zk be the optimal objective value and µk be optimal dual multipli-
ers for the kth recourse problem. Calculate UB = cx + ∑K

k=1 pkzk +
λf (z1, . . . , zK). If UB − LB < ε, terminate. The current solution xi ,
yi

1, . . . , yi
K is ε-optimal for (4). Otherwise, let πi

k = (pk + λgk)µ
i
k , where

(g1, . . . , gK) ∈ ∂f (z1, . . . , zK). Let Io ← Io ∪ {i}. Set i ← i + 1. Go to
Step 1.

3. If any of the second-stage recourse problems is infeasible with respect to the
current xi ,

Let Ki be the set of infeasible constraints and ηi
k , k ∈ Ki , be the extreme

dual rays associated with these constraints. Set i ← i + 1. Go to Step 1.

Apart from the scenario-wise decomposition in the evaluation of φλ(x) and its subgradi-
ent, the essential elements of the above algorithm are identical to standard cutting-plane
methods for convex programs, and convergence follows from existing results (see, for
example, [7]). In particular, the above method is a modification of the L-shaped
decomposition algorithm [25] for stochastic linear programs, wherein the optimality-cut
coefficients corresponding to the dual solutions of the kth recourse problems are scaled
by the factor (pk + λgk), with gk being the kth component of a subgradient of f . We
refer the reader to [4] for a detailed discussion on the L-shaped decomposition algorithm
for stochastic linear programs.

3.3. Extensions to a dis-utility minimization setting

In this section, we discuss risk modeling in two-stage systems using a more general
dis-utility minimization framework. In this setting, risk may be incorporated into the
two-stage stochastic program using a dis-utility function U : R → R that captures
the modeler’s risk tolerance. For a given U , two random cost variables can be ranked
using the expected value of the dis-utility associated with each of them [8]. In (1), the
cost associated with a decision x is a random variable with K realizations, cx +Qk(x),
k = 1, . . . , K . Therefore, a feasible solution x∗ is preferred over another solution x

if
∑K

k=1 pkU(cx∗ + Qk(x
∗)) <

∑K
k=1 pkU(cx + Qk(x)). Then, an optimal decision

can be found by minimizing the expected dis-utility over the feasible domain of the
first-stage variable x

min
x

{ K∑
k=1

pkU(cx +Qk(x)) | Ax = b, x ≥ 0

}
, (12)
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where U(.) is non-decreasing; i.e., lower costs are preferred over higher costs, and
Qk(x), k = 1, . . . , K , is as defined in (2). The choice of U determines the modeler’s
attitude towards risk. For example, if U is a convex function, then the model is risk
averse, while if it is linear, the model is risk neutral.

Let θ(x) = ∑K
k=1 pkU(cx + Qk(x)). For a convex and non-decreasing dis-utili-

ty function U , the objective function θ(x) of problem (12) is a convex function of x.
Consequently, standard cutting-plane algorithms for convex programs are applicable.

Proposition 5. Let U : R→ R be convex and increasing. Given a solution x∗, let µ∗k
be an optimal dual for the kth recourse problem Qk(x

∗), k = 1, . . . , K . Furthermore,
let w∗k = cx∗ + Qk(x

∗), k = 1, . . . , K , and v∗k ∈ ∂U(w∗k ), k = 1, . . . , K . Then the

row vector
∑K

k=1 pkv
∗
k (c − µ∗kTk) is a subgradient of θ at x∗.

Proof. Due to the convexity of Qk(x) and to the fact that−µ∗kTk is a subgradient of Qk

at x∗, we can write cx+Qk(x) ≥ cx∗ +Qk(x
∗)+ (c−µ∗kTk)(x− x∗), k = 1, . . . , K .

Now, one can apply the increasing function U to both sides of the previous inequality,
resulting in

U(cx +Qk(x)) ≥ U(cx∗ +Qk(x
∗)+ (c − µ∗kTk)(x − x∗))

≥ U(cx∗ +Qk(x
∗))+ v∗k (c − µ∗kTk)(x − x∗).

The last inequality follows from the convexity of U . The statement of the proposi-
tion follows from multiplying both sides by pk > 0 and summing over all scenarios
k = 1, . . . , K . �	

Note that for a given x, evaluating θ(x) can be accomplished by independently solv-
ing the recourse problems and calculating

∑K
k=1 pkU(cx +Qk(x)). A subgradient can

be evaluated, as suggested by Proposition 5, using the dual multipliers of the recourse
problems. Consequently, the modified L-shaped decomposition algorithm of Section 3.2
is directly applicable to the more general dis-utility minimization problem (12).

4. Computational results

In this section, we report on our numerical experience with the proposed robust
optimization framework on standard test problems and on an application arising in the
electric-power industry. The purpose of our numerical experiments is two-fold. The first
is to illustrate the applicability of robust optimization to control variability in stochastic
programming applications. The second is to demonstrate the computational advantage of
the proposed linear-programming-based decomposition algorithm over direct non-linear
programming approaches for solving robust optimization models.

4.1. Application to standard test problems

Our first set of experiments concerns with two standard two-stage stochastic-linear pro-
grams from the literature, namely STORM and 20TERM. Briefly, STORM is a problem
of routing cargo-carrying flights over a set of routes in a network while meeting the
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Table 1. The number of constraints and variables in the first and second stage of the two test problems

STORM 20TERM

1st Stage 2nd Stage 1st Stage 2nd Stage

Const. Vars. Const. Vars. Const. Vars. Const. Vars.

185 121 528 1259 3 63 124 764

uncertain demand [19]; and 20TERM is a fleet routing problem in which the second-
stage demand is uncertain [16, 21]. Data for these problems were obtained from the
web site of [14]. Table 1 provides the number of rows and columns in a deterministic
instance for each of the two problems. The stochastic parameters in these test problems
have independent discrete distributions resulting in a total of 6 × 1081 scenarios for
STORM and 1.1 × 1012 scenarios for 20TERM. We generated test instances with up
to 100 scenarios using Monte Carlo sampling. A 100-scenario instance of STORM has
52,985 constraints and 126,021 variables and that of 20TERM has 12,403 constraints
and 76,463 variables.

To test the robust optimization framework, we extended STORM and 20TERM by
appending a measure of second-stage-cost variability in the objective. We use the fol-
lowing variability measure for the second-stage costs in our computations

f (Q1(x), . . . , QK(x)) =
K∑

k=1

pk[Qk(x)− R∗]2
+, (13)

where R∗ is the target second-stage cost. Note that the variability measure is convex and
non-decreasing. Various properties of this measure have been studied in the context of
financial applications [6]. We compared three approaches for solving the robust exten-
sion of STORM and 20TERM: direct solution of model (4) as a large-scale quadratic
program; a generalized Benders’ decomposition approach for (11) where φλ(x) is com-
puted directly by solving the quadratic program (6); and the linear-programming-based
decomposition algorithm of Section 3.2. We refer to these approaches by (Q), (QD), and
(LD), respectively. We use the CPLEX 7.5 barrier solver for approach (Q). Approaches
(QD) and (LD) were implemented using C++ with CPLEX’s dual simplex solver for
the linear subproblems, and CPLEX’s barrier solver for the quadratic subproblems. All
calculations were performed on a Sun Sparc Workstation 450 MHz running Solaris 5.7.

We begin by comparing the effect of the problem size in terms of the number of
scenarios K on each of the solution approaches. Figure 1 compares the execution times
of the three solution approaches for STORM when the number of scenarios K is var-
ied from 5 to 100 for three λ-R∗ combinations. These combinations are chosen such
that the penalty on cost variability is increasing from chart (a) to chart (c) in Figure 1.
The significant CPU advantage of approach (LD) over the other two approaches as the
number of scenarios increases is evident. It can be observed that increasing the penalty
on variability increases the required computational effort for all three approaches. We
observed similar behavior with 20TERM.
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Fig. 1. Comparison of execution times for STORM when number of scenarios K is changed between 5 and 100

Next, we study the applicability of the proposed framework for controlling the vari-
ability of the second-stage costs with respect to a target cost R∗. We use the proposed
linear-programming-based decomposition approach (LD) for solving the robust model
for various λ-R∗ combinations. Table 2 and Table 3 present the results for STORM and
20TERM when K = 100. The first column of each table provides the target cost R∗ as a
percentage of the optimal second-stage cost

∑K
k=1 pkQk(x

∗) when λ = 0 (the standard
stochastic program). For example, the expected second-stage cost for STORM without
any penalty on variability is 9679627. When Table 2 provides the value of 80% in col-
umn “R∗,” the target value is 9679627×80% = 7743701. The second column provides
the value of λ in multiples of 10−7 in case of Table 2, and in multiples of 10−5 in case
of Table 3. Column “Cuts” provides the number of cuts added in the (LD) algorithm.
Note that the number of cuts depends on the accuracy required in an optimal solution.
Our code stops when the relative difference between the upper and lower bounds is
below 10−6. Columns “cx∗,” “EQ(x∗),” “Cost,” and “f (·)” provide the values of the
first-stage cost, the expected value of the second-stage cost, the sum of first and expected
second-stage costs, and the variability as computed using (13), respectively. Finally, the
last column provides the CPU seconds required by (LD). For 20TERM, both “Cost” and
“f (.)” are depicted graphically in Figure 2.

As expected, for a given value of R∗, increasing λ reduces the variability at the
expense of increasing the total cost. For a given λ, decreasing the target second-stage
cost R∗ forces the second-stage costs to be smaller at the expense of higher first-stage
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Table 2. Results for STORM with 100 scenarios. The values of λ are in multiples of 10−7 and those of f (.)

are in multiples of 107

R∗ λ Cuts cx∗ EQ(x∗) Cost f (.) CPU

– 0 50 5818723 9679627 15498350 – 26.70

100% 1 44 5853398 9645328 15498726 4990 23.40

5 57 5899601 9601937 15501537 4104 29.46

10 52 5941350 9564835 15506186 3454 25.21

90% 1 47 5942561 9563800 15506361 82936 24.39

5 121 6487955 9159346 15647301 29997 59.99

10 120 6880558 8890016 15770574 11749 59.69

80% 1 89 6123922 9417984 15541905 290568 44.54

5 162 7823787 8251453 16075240 35771 83.61

10 150 8257502 7967127 16224629 13913 77.42

70% 1 115 6626946 9063971 15690917 533799 59.24

5 146 9249246 7319257 16568503 39551 77.91

10 191 9715286 7020317 16735603 15029 109.45

60% 1 134 7775395 8283304 16058699 622996 67.56

5 219 10599947 6472183 17072130 53542 137.30

10 291 11140819 6155373 17296192 20731 188.72

Table 3. Results for 20TERM with 100 scenarios. The values of λ are in multiples of 10−5 and those of f (.)

is in multiples of 105

R∗ λ Cuts cx∗ EQ(x∗) Cost f (.) CPU

– 0 314 53602 200981 254583 – 131.19

100% 1 302 53807 200800 254607 597 123.73

5 421 54900 200068 254968 406 184.90

10 484 55513 199865 255378 356 217.65

90% 1 360 54501 200293 254793 4683 164.62

5 530 55500 199844 255344 4399 233.49

10 815 56499 199708 256208 4284 364.23

80% 1 374 55050 199986 255036 16209 165.90

5 485 55800 199787 255587 15991 224.85

10 694 57300 199607 256907 15794 299.30

70% 1 442 55200 199914 255113 35912 202.16

5 1110 56696 199672 256368 35536 516.78

10 1276 57500 199588 257088 35417 643.18

60% 1 366 55200 199913 255113 63758 163.30

5 981 57188 199615 256803 63182 421.51

10 1052 58000 199561 257561 63081 469.92
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Fig. 2. Contour graphs for 20TERM demonstrating the objective value cx∗ + ∑K
k=1 pkQk(x

∗) +∑K
K=1 pk[Qk(x

∗)− R∗]2+ and the cost cx∗ +∑K
k=1 pkQk(x

∗) as functions of λ and R∗
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costs. As a result, the overall cost increases. This behavior is clearer in Figure 3, where
cost-variability trade-off curves for several different values of λ and R∗ for 20TERM
are presented.

Finally, Table 2 and Table 3 indicate that the computational effort in terms of the num-
ber of cuts and CPU time typically increases with increase in the penalty on variability,
i.e., increasing λ and decreasing R∗.
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4.2. Auctioning short-term electricity

Our second set of experiments is based on a problem that is frequently faced by elec-
tric-power producers, namely that of auctioning excess generation capacity. A power
producer often finds itself in the position of having excess power at its disposal as a
result of over-committing its generators. Excess power is sold in the short-term market,
usually 24 hours, by holding an auction. A buyer submits its required capacity, which
reflects the maximum amount of power that the buyer has the right, but not the obli-
gation, to consume at time period t . When a bid i is submitted, the buyer provides the
acceptable fixed charge, αi , and the desired variable charge, βi .

Once all bids are received, the producer creates a set of scenarios, di
tk , t = 1, . . . , T ,

k = 1, . . . , K , for the potential consumption of each contract – bid i – at each time
period t . Given the probability pk , k = 1, . . . , K , of each scenario, the expected future
revenue of bid i is −ci = αi + βi

∑K
k=1 pk

∑T
t=1 dtk , i = 1, . . . , I . We denote the

producer’s excess capacity by Ctk and the cost of generating the additional power by
qtk(·), where qtk is a piecewise-linear convex function. Note that both Ctk and qtk vary
with time t and scenario k as they are the result of solving a stochastic optimization
problem [24]. Then, the producer’s problem can be posed as

min
xi ,ytk

{ I∑
i=1

cixi +
K∑

k=1

pk

T∑
t=1

qtk(ytk)+ λ

K∑
k=1

pk

[ T∑
t=1

qtk(ytk)− R∗
]2

+
| xi ∈ {0, 1},

i = 1, . . . , n,

n∑
i=1

di
tkxi ≤ ytk ≤ Ctk, t = 1, . . . , T , k = 1, . . . , K

}
, (14)

where xi denotes whether a bid is accepted or rejected, and ytk represents the amount
of power to be produced. As before, we use the variability measure

∑K
k=1 pk

[
∑T

t=1 qtk(ytk)−R∗]2+ to control the second-stage cost. Note that the first-stage variable
x is binary and that the second-stage program is a multi-period model that is separa-
ble in its periods. Furthermore, without the variability component, the problem has a
piece-wise linear objective function and can be reformulated into a mixed-integer linear
program.

We use a decomposition-based branch-and-cut strategy for model (14). The integ-
rality of the first-stage binary variables is enforced by a branch-and-bound scheme. In
each node of the branch-and-bound tree, we solve the continuous relaxation of (14)
using the linear-programming-based decomposition algorithm of Section 3.2. We use
the mixed-integer solver of CPLEX 7.5 to manage the branch-and-bound tree in con-
junction with call-back routines to our C++ implementation of (LD) for solving the
continuous relaxations.

Our experimental data for model (14) is based on the generation system of a power
company based in the Midwestern US. The number of periods is T = 24 hours. We
consider two sets of problems. The first has n = 100 bids and K = 200 scenarios, while
the second has n = 200 bids and K = 200 scenarios. The computational results for these
data sets are summarized in Table 4 and Table 5. The first column lists the target value
R∗ as a percentage of the optimal expected second-stage cost for the standard stochastic
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programming formulation. The second column labeled “λ” provides the value of the
penalty parameter in multiples of 10−6. The statistics related to solving the root node
of the branch-and-bound tree is listed in the third and fourth columns. The third column
provides the number of cuts needed to solve the continuous relaxation in the root node
to a relative accuracy of 10−6 using algorithm (LD), and the fourth column provides the
corresponding execution time in seconds. Columns 5, 6, and 7 provide statistics related
to the overall branch-and-bound search. Column “Nodes” is the total number of nodes
in the branch-and-bound tree; “Inc.” is the number of incumbent solutions found; and
“CPU” is the total execution time in seconds. The last two columns display the overall
expected cost and variability of the solutions.

The results in Table 4 and Table 5 demonstrate the usefulness of the robust opti-
mization framework in trading-off cost variability with expected costs. It appears that
significant reduction in cost variability is possible with marginal increase in the expect-
ed costs. It is also interesting to note that the execution time tends to decrease as the
penalty increases. This may be attributed to the fact that higher penalties reduce the set
of solutions that need to be searched by the branch-and-bound algorithm. Incidentally,

Table 4. Results for an auction with 100 bids and 200 scenarios. The values of λ are in multiples of 10−6 and
those of f (.) are in multiples of 106

Root Branch & Bound Objective

R∗ λ Cuts CPU Nodes Inc. CPU Cost f (.)

– 0 368 22.51 14899 179 107.84 –663305 –

100% 1 361 25.99 17249 212 128.87 –663305 630

5 368 27.78 27435 342 218.2 –661306 6

10 372 27.53 23272 307 182.06 –661306 6

90% 1 341 24.85 17300 310 136.82 –658629 2630

5 382 30.07 12262 217 113.92 –652026 724

10 452 37.78 10415 164 116.85 –651215 639

80% 1 359 26.07 5204 201 69.38 –652026 24091

5 168 9.54 63 2 10.49 –613865 8501

10 113 6.06 3980 97 18.64 –563850 2129

70% 1 255 16.02 3258 106 34.54 –641675 71495

5 33 1.72 20 4 2.12 –511100 18130

10 34 1.8 57 7 2.32 –419576 4020

60% 1 177 10.11 682 28 13.89 –628611 145902

5 27 1.41 240 17 2.63 –344328 21001

10 27 1.43 755 14 2.89 –246979 6347
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Table 5. Results for an auction with 200 bids and 200 scenarios. The values of λ are in multiples of 10−6 and
those of f (.) are in multiples of 106

Root Branch & Bound Objective

R∗ λ Cuts CPU Nodes Inc. CPU Cost f (.)

– 0 219 23.86 8561 106 72.44 –683928 –

100% 1 227 26.26 6616 113 71.89 –683928 210

5 295 26.33 20046 121 148.69 –683928 210

10 327 41.98 68885 139 395.29 –683928 210

90% 1 329 41.76 4601 83 81.88 –680733 10450

5 163 18.03 2518 35 29.42 –661300 3165

10 162 17.48 3711 31 30.83 –647234 1421

80% 1 311 38.33 756 29 48.62 –672797 42551

5 57 5.9 537 15 8.67 –599236 13643

10 37 3.86 672 17 7 –529397 3221

70% 1 185 20.53 610 21 26.03 –661300 99763

5 27 2.91 27 4 3.58 –456955 16602

10 30 3.11 51 4 3.95 –382324 5348

60% 1 82 8.63 6169 59 25.87 –647234 182488

5 33 3.47 26 4 4.24 –305622 22427

10 32 3.36 248 5 4.65 –207044 7335

CPLEX failed to find a feasible solution to the deterministic equivalent of either problem
when λ = 0 with a CPU-time limit of two hours.
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