Math. Program., Ser. A 96: 513-528 (2003)

Digital Object Identifier (DOI) 10.1007/s10107-002-0369-z

M.V. Solodov

Convergence rate analysis of iteractive algorithms for solving
variational inequality problems*

Received: April 17, 2001 / Accepted: December 10, 2002
Published online: April 10, 2003 — © Springer-Verlag 2003

Abstract. We present a unified convergence rate analysis of iterative methods for solving the variational
inequality problem. Our results are based on certain error bounds; they subsume and extend the linear and
sublinear rates of convergence established in several previous studies. We also derive a new error bound for
y-strictly monotone variational inequalities. The class of algorithms covered by our analysis in fairly broad. It
includes some classical methods for variational inequalities, e.g., the extragradient, matrix splitting, and prox-
imal point methods. For these methods, our analysis gives estimates not only for linear convergence (which
had been studied extensively), but also sublinear, depending on the properties of the solution. In addition,
our framework includes a number of algorithms to which previous studies are not applicable, such as the
infeasible projection methods, a separation-projection method, (inexact) hybrid proximal point methods, and
some splitting techniques. Finally, our analysis covers certain feasible descent methods of optimization, for
which similar convergence rate estimates have been recently obtained by Luo [14].
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1. Introduction

Given a function F : 1" — R and aset C C N", we consider the variational inequality
problem [3, 8], VIP(F, C) for short, which is to find a point x such that

xeC, (Fx),y—x)>0 forallyeC,

where (-, -) denotes the usual inner product in :”. We assume that C is closed and con-
vex, F is continuous, and the solution set of VIP(F, C), denoted by S, is nonempty. As
is well known, this problem subsumes nonlinear equations, optimization problems (over
convex feasible sets), and the nonlinear complementarity problems, among others.

Among numerous algorithms proposed for solving VIP(F, C) and its special cases,
we mention projection-type methods, linearization and Newton-type methods, proximal
point and splitting algorithms, and techniques based on merit functions. We refer the
reader to the survey [8], and to articles and references in the more recent collections [4,
5]. Many methods for VIP(F, C) can be expressed in the following form:
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where D is some closed set containing C (typically, D = Cor D = %"),and T : D —
D is the mapping which defines each specific algorithm. Many methods for solving
VIP(F, C) are based on computing a certain intermediate point, information at which
is then used to obtain the next iterate, e.g., the extragradient method [12, 11, 20, 9],
infeasible projection methods [33], separation-projection methods [30], etc. (See also
Section 4). This makes it convenient to split the iteration (i.e., the mapping 7T') in two
parts, as represented in (1) by the mappings 71 : D — D and T : D x D — D. This
two-step framework makes it more convenient to handle a number of iterative methods
considered below. (Actually, in some cases it is not clear if using a one-step scheme is at
all possible for the purposes of this paper.) In any case, one-step methods can be easily
recovered setting T>(x; y) = y.

The purpose of this paper is to identify conditions on the data of VIP(F, C) and
on the properties of the algorithm, which are sufficient for convergence of the sequence
{x*} to the solution set S, allow one to estimate in some way the rate of convergence, and
hold for a wide class of problems and algorithms. To this end, we introduce a continuous
function (often called Lyapunov function)

f:D— Ny suchthat f(x)=0 & xeS.

For feasible descent methods of minimization, f is usually the difference between the
objective function and the optimal value of the problem [18, 14]. In the setting of general
variational inequalities, f is typically the square of an appropriate distance-like function
to the solution set S. Define the norm of the natural residual for VIP(F, C) as

R(x) = llx = Pclx = FWII, xeD, 2

where Pc[-] stands for the orthogonal projection operator onto C. As is well known,
R(x) = 0if, and only if, x € S.In our algorithmic framework, we consider the following
three conditions.

VM >0 Jc; >0suchthatVx € {y € D | ||y|| < M} it holds that
f) = f(Tx) zcillx =T, a=2. 3)
It holds that
VxeD, |x—Ti(x)|=cmin{R(x), R(T(x))}, c2 >0. (€))
For some set Q2 satisfying Q2 D {y € D | R(y) <4}, § > 0, it holds that
VxeQ, RX)YP>cfx), B>1,c3>0. (5)

Conditions (3) and (4) above are related to the structure of the algorithm, while (5) is
an error bound type condition (at least when f is some distance to the solution set §).
In Section 2, assuming that the sequence {xk } is generated by (1) and conditions (3)-(5)
hold, we give explicit estimates of the rate of convergence of { f (x¥)} to zero. This rate
is at least linear if § = 1 and o« = 2. It is sublinear in the case where § > 1 and/or
o > 2.

Our analysis is in the spirit of convergence rate results in [18, 35, 14], which are also
based on error bounds. Reference [18] presents a unified analysis for linear convergence
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of feasible descent methods for optimization (see also [17, 15, 19, 13] for similar studies
of some specific methods). Those results were subsequently extended in two different
ways. In [35], the general variational inequality was considered, but the convergence
results also refer to the linear rate only. In [14], the rate of convergence can be linear
or sublinear, but the class of methods is the same as in [18], i.e., for optimization only.
The present paper can be regarded as an extension of [35] to include possibly sublinear
convergence and a larger class of algorithms for VIP(F, C), and as an extension of [14]
from optimization to general variational inequalities. Compared to [35], in addition to
allowing the sublinear rate of convergence, our conditions (3)—(5) also include a larger
class of algorithms. First, note that (3)—(5) allow one to treat infeasible methods (i.e.,
methods whose iterates need not belong to the feasible set C), thus covering the modi-
fied projection-type methods of [33], for example. Additionally, the possibility of o > 2
in (3) allows one to include algorithms for which the linear rate of convergence is not
currently known even if a Lipschitzian error bound holds. The latter is the case, for
example, for the separation-projection method of [30]. There are two more differences
between (3) and analogous conditions in [18, 35, 14]. First, in (3) appears an interme-
diate point 7 (x) rather than the more usual 7 (x). As was already commented above,
in the context of variational inequalities this setting appears more natural, at least for
some algorithms. Furthermore, in some cases, e.g., the inexact (hybrid) proximal point
schemes [31], it is not clear whether (3) holds with 7 replaced by T (See Section 4.)
The second distinctive feature of (3) is that the constant ¢ in general depends on the
bounded set in consideration. The reason why this modification is useful is that for some
methods the inequality in (3) does not hold uniformly for all x € D. Nevertheless, typi-
cally the quantity represented by c is bounded on bounded sets. For (pseudo)monotone
problems, boundedness of the iterates can often be established easily and independently
of the convergence rate analysis.

The rest of this paper is organized as follows. In Section 2 we present our general
rate of convergence estimate. Section 3 contains a discussion of error bounds used in
the convergence rate analysis, and a new error bound result for y-strictly monotone
variational inequalities. Section 4 is devoted to showing how our general results apply
to a number of specific algorithms for solving variational inequalities.

2. Convergence rate estimate

We start with a general rate of convergence estimate which will be applied to specific
algorithms in Section 4. Our result is related to [14, Theorem 4], but our estimate is
somewhat different, and the sequence { f (x*)} resulting from (3)—(5) is more general
than the sequence generated in [14] (in particular, the key condition (8) below is weaker
than condition (10) in [14]). This relaxation is due to taking the minimum of two quan-
tities in (4), and it is important for the analysis to be applicable to the classical proximal
point method; see [35] and Section 4.

Theorem 1. Suppose that F : " — R" is continuous, C C R" is closed and convex,
and the solution set S of VIP(F, C) is nonempty.
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Let {x*} be any sequence generated according to (1), and suppose that f, T and R
defined in Section 1 satisfy conditions (3)—(5). Suppose further that either c1 in (3) does
not depend on M, or that {x*} is bounded. Then the sequence { f (x¥)} converges to zero.

Furthermore, if o = 2 and B = 1, then {f (x¥)} — 0 at a linear rate. Specifically,
there exists an iteration index ko such that for all k > kg it holds that

FORY < (41§ by (6)

If o« > 2 and/or B > 1, then for any t € (0, 1) there exists some index ko such that for
all k > ko it holds that

FOR) < FGR) (1 + (k — ko) a)l/I=eP/2) 7
A = f(xkO)_1+(¥ﬁ/2_L_aﬁ/2(1 + T)_I(Ol,B/Z _ 1)C1C(2¥Cgﬁ/2 )

Proof. Either by the assumption that the inequality in (3) holds with the same c; for all
x € D, or by the assumption of boundedness of {xk }, from (1),(3) we have that f (x5 —
FOkHDy > ¢ |lxk = Ty (x%) | for all k > 0, where ¢ > 0 is fixed from now on. Hence,
the sequence { f (xF)}is monotonically non-increasing. Since f (x¥) > 0 for all k, it fol-
lows that { £ (x¥)} converges (to some a > 0). From the relation above, it then follows that
||xk - T (xk)|| — 0. Furthermore, relation (4) implies that min{R(xk), R(xk+1)} — 0.
The latter fact clearly means that lim infy R(x*) > 0 is not possible. Let {k;} be an
infinite subsequence such that R(xkf ) — 0. Since F(-) is continuous and C closed and
convex, R(-) is continuous. The continuity of R(-), definition of Q2 in (5), and the fact
that R(x*i) — 0, imply that x*/ € § for all j large enough, say j > jo. Hence, by (5),
we conclude that f(x*i) — 0. Since we already established that { f (x¥)} converges, it
must be the case that it converges to zero.
Combining (3)—(5), for each k sufficiently large, say k > kg, we obtain that

FO5 = FETY > fGHTYY orfand  fGF) — FGETY > e f Y, 8)

where ¢4 = clcgcgﬁ/z >0andy =af/2 > 1.

Consider first the case where « = 2, 8 = 1. Since f(xk) > f(xk“), in both cases
in (8) the first inequality is satisfied, and it immediately implies (6).

We next consider the case of « > 2 and/or § > 1, in which case y > 1. Fix any
T € (0, 1). Suppose that the first inequality in (8) holds, but the second does not, that is,

FeRy = FORY < caf(xhyr.

Then we have that

FOERY > FoA —eafehyrh
> tf (xh),

where the second inequality holds for all kK > k¢ (increasing the index ko, if necessary),
because f(x¥) — Oand y > 1, while t < 1. Using the latter relation with the first one
in (8), we conclude that f(x*) — f(x*¥*t1) > t7¢4 £(x*)7, and hence the two cases in
(8) can be combined into f(x¥) — f(x*t1) > ¢5 ()7, where ¢5 = t7¢cs(< ¢4). Or,
equivalently,

FORY < £BA = es b 9)
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We further obtain

=1 _ fpktlyy—1
ORI Z pkylor = f((f)(xk)f(le:—f-l))yzl
A L e e Y A L L
- (f (k) f(xektyyr=1
1—(1—csfxfr=hHr!
- fkyr-1
(y — Des f(xbyr!

TR+ (r = Des f(xR)r
>cs(y = DU +1)7",

where the first inequality is by (9); the second inequality follows from f (x¥) > f(x*+1);
the third inequality is implied by the fact that V y € i, sufficiently small 1 — (1 — y)’ >
ty/(1 4+ ty)if t > 0; and the last inequality is by f(x¥) — 0 and y > 1, taking also
into account that t € (0, 1).

Using the above relation consecutively, we have that

k—1

FERT = pe) = = 3 (FOHD - pah) )
i=ko
k—1

> Y sty —DU+D)7!

i=ko

= (k—ko)es(y — DA +1)7".
Hence,
FOEOTT = FEOTV A+ (k= ko)es £ TNy = DA+ )7,
and therefore,
FOF) < FOR)Y(1 4 (k = ko) £ (XY es(y — (A + 1)~ HYA1)

Now recalling the definitions of ¢5 and y gives (7). O

3. Error bounds

When f(x) = dist(x, $)2, the square of the distance to the solution set of VIP(F, C),
then condition (5) is a (local) error bound property:

Rx)VP > ¢} dist(x, §) VxeQ, (10)

where €2 is some set containing S and 8 > 1, as specified in (5). We refer the reader to
[22] for a survey of error bounds and their applications. Here, we first list some of the
known conditions which imply the desired error bound, and then derive a new condition.
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(a) If F is affine and C is polyhedral, then (10) holds with 8§ = 1, where 2 is some
neighborhood of S. See [24, 16].

(b) If F is strongly monotone and Lipschitz-continuous, then (10) holds with 8
and Q = N". See [21].

(c) If C is polyhedral, F(-) = Vg(-), and ¢(-) is y-strictly convex, i.e., for some y > 1
and u > 0

1

(Vo) = Vo), x —y) = ullx =y ¥x,y e ",

then (10) holds with 8§ = y and 2 = C. See [14].
We note that in [14] this result is stated for 2 = 9", but the proof of [ 14, Theorem 3]
in fact appears to require that the point under consideration be feasible, i.e., 2 = C.
On the other hand, the proof can be easily extended to the “asymmetric” case where
F is not necessarily a gradient.

(d) If C is polyhedral and F is “monotone composite”, (i.e., F(x) = ETG(Ex) + q,
where E is a matrix of appropriate dimensions with no zero column, g € %", and G
is strongly monotone and Lipschitz-continuous), then (10) holds locally with 8 = 1.
See [17].

(e) If C = {x | g(x) <0}, gis convex, C satisfies some constraint qualification, and
F and g are semianalytic functions, then (10) holds locally with some (unknown)
B. See [14, Theorem 2], where this result is established for F(-) = V¢(-). The
extension to the case of general F is immediate.

We proceed to prove a new error bound (see Theorem 2), and compare it to items (b)
and (c) above. Condition (12) below can be thought of as (local) y-strict monotonicity
with respect to the solution set S, and condition (11) as (local) Holder-continuity of F
with respect to S. Note that (12) and (11) together imply that €2 is a sufficiently small
“neighborhood” of S, and necessarily y > v. When C is a box, then condition (12) can
be replaced by the yet weaker condition that F is a y-uniform P-function with respect
to S, see (13).

Compared to item (b) above, strong monotonicity and Lipschitz-continuity of F are
replaced by weaker assumptions. Of course, instead of a global error bound in (b) we
obtain a local one. Compared to item (c) above, our result does not require C to be
polyhedral or x to be feasible (and F to be a gradient). On the other hand, we assume
Holder-continuity of F (with respect to S), and our bound is local.

Theorem 2. Suppose that the solution set S of VIP(F, C) is nonempty, and the set 2,
containing S, is such that

VxeQ, |[F(x)— F(Ps[xDIl < Lllx — Ps[x]l", v e (0,1], L > 0, (11
and either
VxeQ, (F(x)—F(Ps[x]), x—Ps[x]) > pullx=Ps[x]|'7, y =1, u>0, (12)
or C is a box (i.e, C = [['_[l;, ui] for some —oo < l; < u; < +00), and

Vx e, l_eﬁlaxn}(Fi(x) — F;i(Ps[x])(x; — (Ps[xD);) = ullx — Psix])'"T7 . (13)
Then the error bound (10) holds with R given by 2) and B = 1 +y — v, c3 =
M2(1 +L)2/(v—l—)/)-
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Proof. Since S C 2 and the error bound in question is local, we can assume that 2 is
such that for all x € Q2 we have ||x — Ps[x]|| < 1. Take any x € €2, and denote p =
Pc[x—F(x)]. By properties of the projection operator, (x — F (x)—p, p—y) > 0 for any
y € C.Choosing y = Pg[x]inthisinequality and addingitto (F (Ps[x]), p—Ps[x]) > 0
(which holds because Ps[x] € S and p € C), we have that

(x = p+ F(Ps[x]) — F(x), p— Ps[x]) > 0. (14)
We further obtain that

pllx — Pg[x]I"™ < (F(Ps[x]) — F(x), Ps[x] — x)
< (x — p, p — Ps[x]) + (F(Ps[x]) — F(x), p — x)
< —lx = plI* + lIx = pllllx — Ps[x]|

+HIF(Ps[x]) — F)|llx — pll
< [lx = pll (Ix — Ps[x]ll + Liix — Ps[x]]")

< (I +LD)llx = plillx = Pslx]ll”

where the first inequality is by (12); the second inequality is by (14); the fourth fol-
lows from (11); and the last follows from ||x — Ps[x]|| < 1 and v € (0, 1]. Since
lx — pll = R(x), we conclude that

RV > (1 + L)YV disi(x, §),

which establishes the claim under the assumptions (11) and (12).

The proof under the assumptions (11) and (13) is similar. As is well known and easy
to see, C being a box implies that Pc[-] is separable. In particular, for alli € {1, ..., n}
it holds that (x; — Fj(x) — pi)(pi — (Ps[x])i) = 0 and F;(Ps[x])(pi — (Ps[x])i) > 0,
so that

(xi — pi + Fi(Ps[x]) — F;(x))(p;i — (Ps[x])i) > 0.

Taking j € {1,...,n} which realizes the maximum in (13), similarly to the analysis
above we obtain

pllx — Ps[x]I'™Y < (Fj(Ps[x]) — F;(x)((Ps[x]); — x;)
<I|xj — pjllx; = (Ps[xD;| + |F;(Ps[x]) — F;(x)|lx; — pj]
<A+ L)x — pllllx — Ps[x]|I",

where we also use the monotonicity of the norm. O

4. Applications to specific algorithms

In this section, we outline applications of our results to some algorithms that have been
previously proposed for solving variational inequalities. After some initial comments
on the methods considered in [35, 14], to which our results also apply, we shall turn our
attention to methods not discussed in those references.
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4.1. Feasible descent methods for optimization

First, note that our framework covers the feasible descent methods studied in [14], by
setting

Fx)=Vol), fx)=ek) - Izréigw(Z),
T1(x) = Pclx =n(x)Ve(x) +e(x)], Tax;y) =y,

where ¢ is the objective function of the problem, n(x) > 0 is the (typically, stepsize)
parameter, and the mapping e : C — 3" defines each specific algorithm. In particular,
this setting includes the gradient projection, (symmetric) matrix splitting, and coordinate
descent methods, among others (see [18, 14]). It is not difficult to see that conditions
(3),(4) are satisfied under appropriate assumptions on e(-) and 7 (-). Indeed, suppose that

O0<n=nx =i and e =rlx—-Ti0)|.7€l0,1), 5)

conditions which are known to be satisfied by the feasible descent methods mentioned
above. For x € D = C, by properties of the projection operator,

(x =) Vex) +elx) — Ti(x), x = Ti(x)) <0.
Hence,

—n()(Vox), Ti(x) —x) > [lx — T1 () |1> = le(x) | Ix — T1(x)]|
> (1—1)x — Ti)1%,

where the second inequality is by (15). Assuming that Vg(-) is Lipschitz-continuous
(with modulus L > 0), we have that

L
f) = fTx) =2 =(Ve(x), Ti(x) —x) = Z|lx = (x|

1—1 L 5
> — — = ) Ix =Tix)|".
n 2

In particular, inequality in (3) holds uniformly for all x € D = C witha = 2 and
c1 = (1 —1)/fj—L/2,provided j < 2(1 — t)/L. Furthermore, for R given by (2) with
F(x) = Vp(x), we obtain

lx —T1 ()|l = llx — Pclx — n(x)Ve(x) + e(x)]|l

min{1, n}R(x)

= Pclx —n(x)Ve(x)] — Pclx — n(x)Ve(x) + e(x)]l
min{l, 7} R(x) — [le(x) |

min{l, 7}R(x) — t|lx — T1 ()|,

v

=
=

where the first inequality is by [7, Lemma 1]; the second is by the nonexpansiveness
of the projection operator; and the last follows from (15). Using the above relation, we
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conclude that (4) holds with ¢ = min{1, n}/(1 + 7). Finally, if error bound (10) is
satisfied and ¢(-) is Lipschitz-continuous (with modulus L > 0), then for x € 2

R(x)P > cadist(x, S)

L™ (p(x) — ¢(Ps[x]))
=L7'f(x),

which verifies (5).

4.2. Classical extragradient, proximal point and matrix splitting methods

Note further that algorithms for solving VIP (F, C) considered in [35] can also be cast
in our framework. This is easy to see, as the conditions used in [35] are similar in form,
but less general. In [35], T is regarded as a “one-step” mapping (i.e., T2 (x; y) = y), in
(3) one always has @ = 2 and ¢ cannot depend on M, and finally the error bound is
always Lipschitzian (i.e., 8 = 1). Therefore, our analysis yields the rate of convergence
estimates for all methods mentioned in [35]: the extragradient method, the classical
proximal point method, the (asymmetric) matrix splitting, and a certain feasible descent
method. The difference is that our results establish conditions not only for the linear
convergence rate, but also sublinear. Furthermore, as already mentioned in the Introduc-
tion and will be exhibited below, our framework applies to some algorithms to which
[35] does not apply. In particular, [35] does not cover the following situations: when the
sequence {x*} is infeasible; if in (3) we have a > 2; if (3) does not hold uniformly on
D; and when it is not clear whether (3) holds with 77 replaced by T'.

4.3. Infeasible projection-type methods

Let F be monotone, and consider Algorithm 3.1 of [33] (it had been shown to be typically
more efficient computationally than the classical extragradient algorithm). In terms of
(1), the method is given by

T1(x) = Pclx —n(x)F(x)],

o(1—o)llx—y|?
[QV2(x —y—n(x)F(x)+n(x)F(y)

where Q is any symmetric positive definite matrix, 8 € (0, 2), and n(x) > 0 is deter-
mined by linesearch to satisfy the condition

I(x; y)=x— 5 Q(x—=y—=n(x)F(x)+n(x) F(y)) .

nO)(F(x) = F(T1(x)), x = Ti(x)) < ollx = Ti@)|*, o € (0, 1).

If F is Lipschitz-continuous (with modulus L > 0), then itis clear that0 < < n(x) <
n < o/L. With

. -2
x) =min|lx — x||%_,
£ () = min lx = F[,-,
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where ||x||2Q_] = (Q~'x, x), the analysis in [33, Theorem 3.1] shows that

02 —0)(1—0)|x —Ti)|*
— (T .
J@ = FTO) =2 45 G =100 — 10 F®) + 10 FT @D

By the Lipschitz-continuity of F, it is easy to see that

lx = Ty ()2 _ =Tl
1012(x = Ti(x) = n(x)F(x) +n)F(TiNI — 10211 +7AL)
Combining the last two relations, we verify that condition (3) holds with « = 2 and

c1 = 602 —0)1d —o)*(|QY?||(1 + AL))~". Here, ¢; does not depend on M, i.e.,
inequality in (3) holds uniformly for all x € D = R". Furthermore, by [7, Lemma 1],

X = T1 ()l = llx = Pelx —n() F ()]l = min{l, 7}R(x)

and so condition (4) is satisfied.

Finally, by the equivalence of the norms in fi", condition (5) holds whenever we
have error bound (10).

Theorem 1 applied in this context subsumes the linear rate of convergence result in
[33] for the case when (10) holds with 8 = 1, and establishes a new rate of convergence
estimate for 8 > 1. Note that the analysis in [35] does not cover the method consid-
ered above even for 8 = 1, because the generated sequence is infeasible (the range of
T, is R", and not C). Finally, we note that other infeasible projection-type algorithms
discussed in [33] can be analyzed similarly to what has been done above.

4.4. A separation-projection method

Let F be pseudomonotone (with respect to the solution set S), and consider the method
discussed in [30] (see also [10]). In this context, we choose

T1(x) = n(x)Pclx — F()] + (1 — n(x))x,
Ty(x;y) = argmin{llz —x[| [ (F(y), 2 —y) =0,z € C},
where 7(x) € (0, 1] is chosen (by linesearch) to satisfy
N(X)(F(T1(x)), x — Ti(x)) = ollx — Ti(x)[*, o € (0, 1).

As is well known and easy to check, (F(x), x — Pc[x — F(x)]) > ||lx — Pc[x — F (x)] ||2.
Hence, if F is Lipschitz-continuous (with modulus L > 0) then

(F(T1(x)), x = T1(x)) = (F(x),x = T1(x)) — [|F(T1(x)) = F()lllx = T1(x)l

{
M) = L)lx — T2

=
=

Therefore, the linesearch specified above would generate stepsize values satisfying
0 <7 <nkx)<n=<(—o0)/L.Choosing

f(x) = dist(x, $)2,
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the analysis in [30, Theorem 2.1] shows that

f(x) = f(T(x) > o’llx = Ti@I*
T PIET e

If x belongs to some bounded set B, obviously the set {T}(x), x € B} is bounded, and
hence also {F(T1(x)), x € B}. It then follows from the inequality above that condition
(3) holds with & = 4 and appropriate c¢; which depends on M defining each bounded
set.

Furthermore, condition (4) is also satisfied:

lx =Ti(x)|l = n(x)R(x) = nR(x).

Now, whenever an error bound (10) holds, so does condition (5). Finally, the proof of
[30, Theorem 2.1] shows that {x} generated by the method is bounded, because for any
fixed X € S itholds that ||x¥ —x|| > |lx**! —X||. Therefore, Theorem 1 is applicable and
gives a rate of convergence estimate for the algorithm. Note that no rate of convergence
was given in [30]. Note also that the framework of [35] is not applicable here, because
(3) does not hold uniformly, and also & = 4 rather than o = 2.

This algorithm does not have a proven linear rate of convergence. Nevertheless, it
has some advantages over extragradient and related methods when the projection onto
the feasible set is computationally expensive (note that the linesearch procedure here
does not require any projections for computing or testing each trial point). Also, this
algorithm appears useful for globalizing certain Newton-type algorithms for solving
VIP(F, C) [27, 32, 26].

4.5. Hybrid inexact proximal point algorithms

Denoting by N¢(-) the normal operator for the feasible set C, the exact proximal point
method [25] for solving VIP(F, C) can be written in the form of (1) by choosing

Ti(x) = +n()(F +Ne) ' (x), Ty =y,
where n(x) > 1 > 0 is the regularization parameter. As is well known [25], for
f(x) = dist(x, S)°
condition (3) holds witha = 2 and ¢; = 1 for all x € D = C. Also, as shown in [35],
llx = T1()|| = minfl, n(x)}R(T (x)) ,

so that condition (4) is satisfied. The analysis in [35] establishes the linear rate of conver-
gence of the exact proximal point method, provided error bound (10) holds with 8 = 1
(note that this is already weaker than the more usual condition of Lipschitz-continuity
of (F + N¢)~ ! at zero [25], which implies uniqueness of the solution). In what follows,
we extend those results to a class of inexact proximal-type algorithms, and beyond the
case of linear convergence rate.
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We consider here the inexact proximal-based algorithm of [31] (see also conceptually
related methods in [29, 28]). To this end, let

Fr(y)=n)FQy)+y—x,
i.e., Fy(-) is the proximal regularization of F (-) with respect to x with parameter n(x) >
0. We take o
ni ={yec i =2y -xP} . oelon,
(x5 y) = Pclx —n(x)F(y)],
where

1
V() = (F(), y = Pely = Fx0))) = 3 lly = Pely = FeII?

is the regularized gap function [2, 6] for VIP(F,, C). Note that formally, 77 is not single-
valued here. On one hand, the extension of conditions (3), (4) to the multi-valued case is
straightforward. Alternatively, 77 above can be considered single-valued (as a function
of given x) if we are to specify explicitly how y with the given property is computed (for
example, by applying a specific feasible descent method to the problem minyec Wy (y)
with x as a starting point, and iterating until the tolerance prescribed in the definition of
T is achieved). One advantage of the approximation criterion represented by 77, is that
it is directly and constructively related to the subproblem VIP(Fy, C), see [27, 28, 32,
26] for some applications of hybrid proximal-based strategies.
Choosing
£ (x) = dist(x, )2,

by the analysis in [31, Theorem 3], it holds that
f@) = f(Tx) = (1 —o)|x—Ti@)|*,

so that (3) holds witha = 2and¢; = 1 —o2 forallx € D = C.To verify (4), we argue
as follows. It is well known that the regularized gap function provides an upper bound
for the natural residual. Specifically for VIP(Fy, C), we have that

1
V() = 51y = Pely = EWII* vy eC.
Using this relation and the definition of 77, we have that
o' Plx = Ti®)| = V2, (T (x))

= [ITi(x) — PelTi(x) — Fx (T1 )]

= [|[T1(x) — Pc[x — () F(T1(x)]|l

> |lx = Pclx —n@)F(T1 o)l — llx — T1 (o)l .
If F is Lipschitz-continuous (with modulus L > 0), we further obtain

(A+06"2)x = Ti@)| = llx — Pclx — n(x)F(Ti(x)]]
> min{1, n}R(x)

—1Pclx = n(x)F(T1(x))] = Pclx — n(x)F(x)]||
> min{1, N}R(x) — Lillx = i),
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where the the second inequality is by [7, Lemma 1] assuming 1 (x) > 7, and the last fol-
lows from the nonexpansiveness of the projection operator, assuming also that n(x) < 7.
The relation above implies (4) with c; = min{1, 7}(1 + o'/? + L)~ L.

Now, if the error bound (10) holds with some 8 > 1, then Theorem 1 gives a rate
of convergence estimate for the inexact proximal point algorithm, including linear and
sublinear rates. We remark that it is not clear whether the framework of [35] applies to
the inexact hybrid scheme, even in the case of linear convergence. Specifically, it is not
clear how to establish (3) with 77 replaced by T. Regarding T as a two-step mapping
appears to be very natural in this setting.

Finally, we note that in the special case of optimization other convergence estimates
are possible [37, 1]; these can be in terms of the objective function rather than the distance
to the solution set.

4.6. A splitting algorithm

Suppose now that the function F defining VIP(F, C) has the structure
F(x)=Ax)+ B(x).

Suppose further that, for each x fixed, VIP(A(-) + B(x), C) is in some sense easier
to solve than the original problem. In this setting splitting-type methods are often use-
ful. Assume that F is continuous and monotone, and — B (and hence also A) strongly
monotone with modulus ;> 0. The following splitting method was considered in [26]:

Ti(x) = (A + No) ™ (B(x) + p(x))

Ty(x;y) = argminlz — x| [ (F(T1(x)), z — Ti(x)) = O},

where p (x) measures approximation to the solution of VIP(A(-) + B(x), C) and satisfies

o) <oupllx =Ti(x)|l, o €[0,1).
For

f(x) = dist(x, $)?,

the analysis in [26] shows that

£ = @) = eI -
VAT

It is not difficult to see that if x is contained in some bounded set B, then { F (T} (x)), x €
B} is bounded, and so (3) is satisfied with ¢ = 4 and some ¢; which depends on M.
Furthermore, assuming that A is Lipschitz-continuous (with modulus L > 0), we have
lx = T1 ()| = llx = PclTi(x) — A(T1(x)) — B(x0)]||
> R(x) — | Pclx — F(x)] = Pc[Ti(x) — A(T1(x)) — B(x)]||
> R(x) = lx = Ti(x0)| = |[Ax) = AT ()|l
> Rx)— A+ LD)lx =TI,

which implies condition (4) with ¢c; = (2 + L)y~L.
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Since [26] also shows convergence of the sequence, the sequence is certainly bound-
ed, and hence Theorem 1 provides a convergence rate estimate for this splitting method
under the given assumptions.

4.7. Minimizing the D-gap function

As one example of an (infeasible) descent algorithm for solving VIP(F, C), we shall
consider minimization of the D-gap function [23, 36, 34]

his(x) = gi(x) — gs(x) Vx e R",

where t > s > 0 are parameters and g is the regularized gap function [2, 6] for
VIP(F, C):

1
81(x) = (F(x),x — Pclx —tF(x)]) — ZIIX — Pclx —tF)]|1*.
The gradient method for minimizing 4, s is given by

Ti(x) =x =n(x)Vhis(x), Ta(x;y)=y.

If Vh; g is Lipschitz-continuous (which holds, for example, if F” is Lipschitz-continuous
and C is bounded), then any standard linesearch ensures that 7 > 7 > 0 and condition (3)
is satisfied with « = 2 for all x € D = N". Furthermore, it holds that VA, g (xk) — 0.
Note however that linear convergence does not follow from the classical analysis of
gradient descent, because /;  is not strongly convex, even locally.

To verify (4), we assume that F is uniformly positive definite on the set of stationary
points of 4, . In that case,

lx = Ti () = n() VA s ()l
c7(1/s —1/t)hs 5 (x)
727 1 /s — 1/6)> min{1, s}R(x) ,

VoIV

where the second inequality is by n(x) > 5 and [34, Lemma 5], and the third is well
known, e.g., [34, Lemma 1]. Since F’ is positive definite (on the set of interest), error
bound (10) holds with 8 = 1 (locally). Then Theorem 1 establishes the linear rate of
convergence for gradient algorithm based on the D-gap function. Alternatively, the lin-
ear convergence could also be obtained applying [18], once the error bound in terms of
[IVh; s (x)|| is established.

5. Concluding remarks

We have presented a unified analysis of some iterative algorithms for solving variational
inequalities. Our framework includes the class of feasible descent methods of optimi-
zation, various popular projection schemes for variational inequalities, and proximal
point methods, among others. This unifies convergence rate analysis for optimization
and variational inequalities, including both linear are sublinear estimates. In addition, the
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framework has been extended to include a number of methods which do not appear to fit
in previous studies. Finally, a new error bound result for y-strictly monotone problems
was presented.
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