
Digital Object Identifier (DOI) 10.1007/s10107-002-0360-8

Math. Program., Ser. A 95: 573–616 (2003)

Javier M. Moguerza · Francisco J. Prieto

An augmented Lagrangian interior-point method using
directions of negative curvature

Received: July 2000 / Accepted: October 2002
Published online: December 19, 2002 – © Springer-Verlag 2002

Abstract. We describe an efficient implementation of an interior-point algorithm for non-convex problems
that uses directions of negative curvature. These directions should ensure convergence to second-order KKT
points and improve the computational efficiency of the procedure. Some relevant aspects of the implemen-
tation are the strategy to combine a direction of negative curvature and a modified Newton direction, and
the conditions to ensure feasibility of the iterates with respect to the simple bounds. The use of multivariate
barrier and penalty parameters is also discussed, as well as the update rules for these parameters. We analyze
the convergence of the procedure; both the linesearch and the update rule for the barrier parameter behave
appropriately. As the main goal of the paper is the practical usage of negative curvature, a set of numerical
results on small test problems is presented. Based on these results, the relevance of using directions of negative
curvature is discussed.

Key words. Primal-dual methods – Nonconvex optimization – Linesearches

1. Introduction

We are interested in developing an algorithm to compute local solutions for nonlinear,
and possibly non-convex, problems of the form

minx f (x)

s.t. c(x) = 0
x ≥ 0,

(1)

where f : R
n �→ R and c : R

n �→ R
m. More specifically, we wish to compute second-

order KKT points for problem (1), that is, points that can be assured to satisfy both the
first-order conditions and the second-order necessary conditions [20].

The use of directions of negative curvature plays a crucial role in this context; only
by considering this second-order information it is possible to ensure convergence to such
points. Trust-region methods can take negative curvature into account provided that a
sufficiently accurate approximation to an eigenvector corresponding to a (sufficiently)
negative eigenvalue of the Hessian matrix can be computed [9]. Linesearch procedures,

J.M. Moguerza: School of Engineering, Univ. Rey Juan Carlos, Madrid, Spain, e-mail: j.moguerza@
escet.urjc.es

Research supported by Spanish MEC grant TIC2000-1750-C06-04

F.J. Prieto: Dept. of Statistics and Econometrics, Univ. Carlos III de Madrid, Spain, e-mail:
fjp@est-econ.uc3m.es

Research supported by Spanish MEC grant BEC2000-0167

Mathematics Subject Classification (1991): 49M37, 65K05, 90C30

Used Distiller 5.0.x Job Options
This report was created automatically with help of the Adobe Acrobat Distiller addition "Distiller Secrets v1.0.5" from IMPRESSED GmbH.
You can download this startup file for Distiller versions 4.0.5 and 5.0.x for free from http://www.impressed.de.

GENERAL --
File Options:
 Compatibility: PDF 1.2
 Optimize For Fast Web View: Yes
 Embed Thumbnails: Yes
 Auto-Rotate Pages: No
 Distill From Page: 1
 Distill To Page: All Pages
 Binding: Left
 Resolution: [600 600] dpi
 Paper Size: [595 842] Point

COMPRESSION --
Color Images:
 Downsampling: Yes
 Downsample Type: Bicubic Downsampling
 Downsample Resolution: 150 dpi
 Downsampling For Images Above: 225 dpi
 Compression: Yes
 Automatic Selection of Compression Type: Yes
 JPEG Quality: Medium
 Bits Per Pixel: As Original Bit
Grayscale Images:
 Downsampling: Yes
 Downsample Type: Bicubic Downsampling
 Downsample Resolution: 150 dpi
 Downsampling For Images Above: 225 dpi
 Compression: Yes
 Automatic Selection of Compression Type: Yes
 JPEG Quality: Medium
 Bits Per Pixel: As Original Bit
Monochrome Images:
 Downsampling: Yes
 Downsample Type: Bicubic Downsampling
 Downsample Resolution: 600 dpi
 Downsampling For Images Above: 900 dpi
 Compression: Yes
 Compression Type: CCITT
 CCITT Group: 4
 Anti-Alias To Gray: No

 Compress Text and Line Art: Yes

FONTS --
 Embed All Fonts: Yes
 Subset Embedded Fonts: No
 When Embedding Fails: Warn and Continue
Embedding:
 Always Embed: []
 Never Embed: []

COLOR --
Color Management Policies:
 Color Conversion Strategy: Convert All Colors to sRGB
 Intent: Default
Working Spaces:
 Grayscale ICC Profile:
 RGB ICC Profile: sRGB IEC61966-2.1
 CMYK ICC Profile: U.S. Web Coated (SWOP) v2
Device-Dependent Data:
 Preserve Overprint Settings: Yes
 Preserve Under Color Removal and Black Generation: Yes
 Transfer Functions: Apply
 Preserve Halftone Information: Yes

ADVANCED --
Options:
 Use Prologue.ps and Epilogue.ps: No
 Allow PostScript File To Override Job Options: Yes
 Preserve Level 2 copypage Semantics: Yes
 Save Portable Job Ticket Inside PDF File: No
 Illustrator Overprint Mode: Yes
 Convert Gradients To Smooth Shades: No
 ASCII Format: No
Document Structuring Conventions (DSC):
 Process DSC Comments: No

OTHERS --
 Distiller Core Version: 5000
 Use ZIP Compression: Yes
 Deactivate Optimization: No
 Image Memory: 524288 Byte
 Anti-Alias Color Images: No
 Anti-Alias Grayscale Images: No
 Convert Images (< 257 Colors) To Indexed Color Space: Yes
 sRGB ICC Profile: sRGB IEC61966-2.1

END OF REPORT --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Job Option File
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments false
 /DoThumbnails true
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize true
 /ParseDSCCommentsForDocInfo false
 /EmitDSCWarnings false
 /CalGrayProfile ()
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue false
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.2
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends false
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo false
 /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /sRGB
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 150
 /EndPage -1
 /AutoPositionEPSFiles false
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 600
 /AutoFilterGrayImages true
 /AlwaysEmbed []
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 150
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [576.0 792.0]
 /HWResolution [600 600]
>> setpagedevice

574 J.M. Moguerza, F.J. Prieto

while presenting interesting properties from a practical point of view, must consider
second-order information by explicitly computing some direction of negative curvature,
if it is available. The idea of using directions of negative curvature was proposed by
Fiacco and McCormick [12]. Later, Moré and Sorensen [25] described how to modify
Newton’s method to incorporate this second-order information.

If exact second derivatives are used, the explicit computation of these directions
can be carried out with limited cost, from an appropriate factorization of the coeffi-
cient matrix in the system of Newton equations, see [18] for example. Nevertheless,
the requirement to obtain both descent and negative curvature directions from the New-
ton system of equations limits the choice of numerical procedures that can be used to
compute the search direction.

In this paper we will be concerned with deriving a linesearch algorithm that uses
negative curvature, extending the ideas of Moré and Sorensen [25] to nonlinearly con-
strained problems. The directions required to update the iterates will be generated using
an interior-point approach. In this setting, problem (1) is transformed into a sequence of
equality constrained problems of the form (see [12])

minx f (x)−
n∑

i=1

µi log xi

s.t. c(x) = 0.

(2)

The search directions are computed to approximate the solutions of these barrier prob-
lems. We have chosen to use a vector of barrier parameters µ ∈ R

n, one for each simple
bound x ≥ 0.

Interior-point methods have proved to be very successful for the solution of linear
and general convex problems. More recently, a significant amount of effort has been de-
voted to extending these procedures to non-convex problems, see for example El-Bakry
et al. [10], Gajulapalli [14], Gay et al. [16], Vanderbei and Shanno [28], Yamashita [32],
among others. Nevertheless, very few of these proposals have taken into consideration
the use of negative curvature directions.

Once directions of negative curvature have been obtained, it is still necessary to
combine them with traditional descent directions. In general, iterates will fail to satisfy
both first-order and second-order conditions; it is important to make use of both types of
information simultaneously to ensure the efficiency of the procedure. The combination
of descent and negative curvature directions has been considered by McCormick [23]
and Moré and Sorensen [25] for the unconstrained case using linesearch approaches.
Trust-region methods for the unconstrained case have been proposed by Byrd, Schnabel
and Schultz [8]. Forsgren and Murray [13] have proposed a method for the linear equal-
ity-constrained case. Other approaches to ensure convergence to second-order KKT
points for the constrainted case are described in [1, 2, 5, 15]. Designing an efficient
procedure to obtain a satisfactory combination of these directions poses considerable
difficulties, as the Newton direction is well-scaled in general, and specifically near a
stationary point, while directions of negative curvature have no inherent scale. Note that
from a theoretical point of view this problem is not particularly relevant, but from a
practical point of view it may have a large impact on the efficiency of the algorithm.
Rather than attempting to provide solutions to this complication, our aim in this paper

An interior-point method using negative curvature 575

has been to offer some suggestions on how to use these directions to reduce the impact
of the scaling problem, and at the same time to improve the performance of methods
that use negative curvature.

As we already mentioned, the approach implemented in the proposed algorithm
will be similar to that in Moré and Sorensen [25]. In this approach we generate iter-
ates from combinations of descent directions and negative curvature directions. These
iterates should have reasonable properties, such as global convergence. A linesearch
has been introduced in our algorithm as a mechanism to enforce this property. We will
compute the iterates in such a manner that the value of an augmented Lagrangian merit
function is decreased in each iteration. For problem (2) this merit function takes the
form

LA(x, λ; ρ,µ) = f (x)−
n∑

i=1

µi log xi − λT c(x)+ 1

2

m∑

j=1

ρj cj (x)
2. (3)

The penalty term in the merit function is defined using a vector of penalty parameters,
one for each constraint, ρ ∈ R

m. This function has been extensively studied by Bertsekas
[3] among others. It has the advantage of being differentiable at all points where it is
defined (the interior of the positive orthant). Also, under suitable assumptions the local
minimizers for problem (2) are minimizers for this merit function, if all components of
ρ are large enough.

This merit function introduces variables and parameters, λ and ρ, that have to be
updated through the successive iterations in the algorithm to ensure convergence. Anal-
ogously, the barrier problems (2) also include parameters µ that must be updated. The
choice of updating strategies may affect significantly the efficiency of the overall pro-
cedure and will be considered in some detail in the following sections.

Our proposal will address the three issues discussed in the preceding paragraphs:
the definition of the search directions, their combination and the updating of the param-
eters, in a manner that produces an efficient and robust procedure. We intend to do this
from a practical point of view, that is, we wish to derive a procedure that is efficient
in practice, and we check that this is the case by conducting numerical tests on a set
of small problems. We are also interested in studying the impact that using negative
curvature information may have in practice on the efficiency of the algorithm. Although
the paper is mostly numerically oriented, we will also present some theoretical results
on the convergence of the algorithm. These results should help to justify some of our
implementation choices.

The paper is organized as follows: In Section 2 we introduce the general results and
the notation used to motivate and describe the algorithm, as well as its general scheme.
Section 3 describes the procedure to compute the search directions. In Section 4 we
indicate how to combine the directions to obtain the next iterate. Section 5 gives the
rules for updating the algorithm parameters. In Section 6 we derive some convergence
results. Section 7 discusses implementation issues and gives the structure of the algo-
rithm. Finally, in Section 8 we present and comment some computational results on a
problem test set.

576 J.M. Moguerza, F.J. Prieto

2. Notation and general comments

The first-order Karush-Kuhn-Tucker (KKT) conditions for problem (1) are:

∇f (x)− ∇cT (x)λ− z = 0,
c(x) = 0,
Zx = 0,
x, z ≥ 0,

(4)

where λ and z are the multipliers for the equality and bound constraints respectively,
and Z denotes a diagonal matrix having as entries the elements of z, Z = diag(z).

In the proposed algorithm, instead of considering directly the preceding conditions,
we solve a sequence of problems (2) such that µi → 0 for all i, following [12]. The
first-order KKT conditions for (2) are:

∇f (x)− ∇cT (x)λ−X−1µ = 0,
c(x) = 0,

(5)

where X = diag(x). Replacing

z = X−1µ, (6)

in the first equation of (5), the first-order KKT conditions for the barrier problem can be
rewritten as:

∇f (x)− ∇cT (x)λ− z = 0,
c(x) = 0,
Zx = µ.

(7)

The set of equations (7) is known as the primal-dual equations for problem (2). Initially
implemented by Mehrotra [24], the search directions obtained from them have better
theoretical and practical properties than those computed from (5). The algorithm will
compute search directions based on these primal-dual KKT equations. In addition to
trying to satisfy these conditions, to ensure that the logarithmic terms in the objective
function of (2) are well defined, the algorithm should force the variables xi to remain
strictly positive. From the comparison of these conditions and (4), it will be of interest
to have z ≥ 0 in all iterations of the algorithm.

We also want to satisfy the necessary second-order condition. For problem (2) this
condition requires that

WT
A

(
∇xxL(x, λ)+MX−2

)
WA p.s.d., (8)

where L is defined as L(x, λ) ≡ f (x) − λT c(x), M is a diagonal matrix with entries
those of µ, M = diag(µ) and WA has columns that form a basis for the null-space of
∇c(x).

We will use the notation u = O(v) for two functions u and v of a common variable x
whenever limx→0 u(x)/v(x) ≤ K for some positive constantK . Analogously, u = o(v)

will be used to indicate two functions satisfying limx→0 u(x)/v(x) = 0.
The algorithm we propose must carry out the following tasks in each iteration:

An interior-point method using negative curvature 577

– The computation of search directions, both to improve the satisfaction of the first-
order KKT conditions (7) based on Newton’s method, and the satisfaction of the
second-order condition (8) using directions of negative curvature for the merit func-
tion LA.

– The combination of these directions to compute the next iterate, ensuring sufficient
decrease for the augmented Lagrangian merit function (3).

– Finally, the updating of the multipliers λ and penalty parameters ρ in the merit
function, and the barrier parameters µ associated with problem (2).

In the following sections we indicate how to conduct these tasks in an efficient man-
ner. A schematic version of the algorithm, indicating the Sections of the paper where the
different steps are described, is presented below.

Initialize variables (x0, λ0, z0), barrier (µ0)

and penalty (ρ0) parameters Section 7.3
repeat

From the Newton primal-dual equations: Sections 3.1, 3.2
Compute a descent direction, dkx ,

for the primal variables x
Compute search directions, dkλ and dkz ,

for the multipliers λ and z
Compute, if it exists, dkn , a direction

of negative curvature Section 3.3
Adjust the penalty parameter ρk Section 5.2
Compute αp using a curvilinear search Section 4
Update the primal variables using

xk+1 = xk + α2
pd

k
x + αpd

k
n

Update the multipliers Sections 4, 5.1
Decrease the barrier parameter vector µk Section 5.3

until convergence Section 7.2

It can be shown that this algorithm has good global and local convergence properties,
under reasonable assumptions on the problem. In Section 6 we show that the method
converges to second-order KKT points for problem (1), under some assumptions on the
penalty parameter. A more general analysis of the behavior of this penalty parameter can
be derived by adapting the results in [26]. Also, the local convergence properties (super-
linear convergence) could be derived in a straightforward manner from the arguments
in [33].

3. Computation of the search directions

We will start by considering the computation of a descent direction for the variables x,
dx , based on a modified Newton method applied to the primal-dual equations (7).

578 J.M. Moguerza, F.J. Prieto

3.1. The descent direction

Newton’s method provides search directions dx, dλ and dz, corresponding to update
directions for the variables x, λ and z respectively. From the first-order Taylor series ex-
pansion for the primal-dual KKT conditions (7) about the values x, λ and z, the resulting
system of linear equations defining the search directions is:




H −∇cT −I
∇c 0 0
Z 0 X








dx
dλ
dz



 =



−∇f + ∇cT λ+ z

−c
µ− Zx



 , (9)

whereH(x, λ) = ∇xxL(x, λ) = ∇2f (x)−∑j λj∇2cj (x),Z = diag(z), I denotes the
identity matrix and X = diag(x).

From the last set of equations in (9), we have

dz = X−1µ− z−X−1Zdx. (10)

Replacing (10) in the first two sets of equations in (9), the movement direction dx can
be computed as the solution of the symmetric system

K

(
dx

−dλ
)

=
(−∇f + ∇cT λ+X−1µ

−c
)
, (11)

where K is defined as

K =
(
G ∇cT
∇c 0

)
, (12)

for G = H +X−1Z.

3.2. Solving the system of equations

The direction obtained from (11) may fail to provide descent for any reasonable merit
function; for example, if the iterates are close to a stationary point that is not a minimizer.
To ensure good global convergence properties for the algorithm it is important to adapt
system (11) so that the direction dx provides sufficient decrease for the merit function
(3).

The gradient of the merit function is given by

∇xLA = ∇f −X−1µ− ∇cT (λ− Rc), (13)

where R = diag(ρ). The Hessian of LA with respect to x will be given by

∇xxLA = ∇2f +MX−2 −∑
j (λj − ρj cj)∇2cj + ∇cT R∇c

= ∇xxL(x, λ− Rc)+MX−2 + ∇cT R∇c. (14)

The Newton direction for the minimization of the merit function (3) will be given by

(∇xxL(x, λ− Rc)+MX−2 + ∇cT R∇c)dx = −(∇f −X−1µ− ∇cT (λ− Rc)).

(15)

An interior-point method using negative curvature 579

As the minimization of the merit function is not a very efficient procedure to ensure the
satisfaction of the constraints, the additional condition that ∇c(x)dx = −c(x), already
included in (11), is imposed. Using this condition, (15) now becomes

(∇xxL(x, λ− Rc)+MX−2)dx = −(∇f −X−1µ− ∇cT λ). (16)

To ensure that dx is a direction of descent for (3), we may replace the coefficient matrix
∇xxL(x, λ − Rc) + MX−2 in (16) with a matrix Ḡρ = H̄ + X−1Z that is positive
definite on the null space of the constraints ∇c(x), that is, such that WT

A ḠρWA is posi-
tive definite. H̄ is a bounded approximation forH(x, λ−Rc(x)), obtained as described
below.

The modified system used to define the search directions is then
(
Ḡρ ∇cT
∇c 0

)(
dx

−dλ
)

=
(−∇f + ∇cT (λ− Rc)+X−1µ

−c
)
, (17)

where its coefficient matrix (and Ḡρ in particular) is computed from a modification of

Kρ =
(
Gρ ∇cT
∇c 0

)
, (18)

for Gρ = ∇xxL(x, λ̂− Rc)+X−1Z and λ̂ an approximation to λ.
The matrix Ḡρ in (17) can be generated in the process of factorizing Kρ . Instead of

a modified Cholesky factorization of the reduced HessianWT
AGρWA, see [16], we have

chosen to use a version of the symmetric indefinite factorization on the full matrix Kρ ,
see [7] for example, incorporating the modifications proposed in [13]. This alternative
is able to obtain the desired modification for the reduced Hessian directly from system
(17), it allows the computation of appropriate directions of negative curvature, as we
will describe in Section 4, and it can be applied to medium-sized and large problems.

The modified factorization selects the pivots using rules that ensure that the rows of
the Jacobian ∇c are considered first. In this manner, the modifications in the pivots will
not affect the part of the system corresponding to this Jacobian matrix. For additional
details see [13]. We now state the basic properties of this factorization. Assume that the
LDLT factorization of Kρ , defined in (18), has been computed using the factorization
algorithm described in [13], and that the matrixD in the factorization is partitioned into

D =
(
D1 0
0 D2

)
, (19)

where D1 and D2 are block-diagonal matrices with 1 × 1 and 2 × 2 blocks and D1
includes all the pivots chosen from elements of ∇c(x). The precise rules to choose
these pivots can be found in [13]. ForD2 the Schur decomposition is computed, that is,
D2 = U�UT , whereU is a matrix whose columns are the eigenvectors ofD2 and� is a
diagonal matrix of eigenvalues, πi . This computation is straightforward since the blocks
in D2 are at most of size two. For a given ε > 0, define a diagonal matrix �̄ having as
its i-th diagonal element the value π̄i = max(|πi |, ε). Construct D̄2 as D̄2 = U�̄UT

where �̄ = diag(π̄i) and define D̄ as:

D̄ =
(
D1 0
0 D̄2

)
.

580 J.M. Moguerza, F.J. Prieto

Let d̃ be the solution of

LD̄LT d̃ = PT b, (20)

for P an appropriate permutation matrix, and b the right-hand side of (17). Finally let
d = P d̃, the vector of unknowns in system (17),

d =
(
dx

−dλ
)
.

It holds that ∇cdx = −c andWT
A ḠρWA is positive definite, where Ḡρ is the submatrix

corresponding to the appropriate rows and columns of LD̄LT , see [13].
The factorization in [13] requires that the matrix ∇c has full row rank. This can-

not be guaranteed in practice, but our algorithm detects this rank deficiency within the
factorization procedure and takes into account those rows of ∇c that numerically are
linearly dependent, that is, those associated with very small pivots. This modification
introduces errors in the solution of the system, but the computed directions seem to
behave reasonably well in practice.

3.3. Second-order directions

If we wish to avoid convergence to points that do not satisfy the second-order necessary
condition (8), we must make use of directions of negative curvature. For an unconstrained
problem minx f (x), we would look for directions satisfying the classical definition, see
[25], that is, we will require a direction of negative curvature d to satisfy at an iterate x

∇f (x)T d ≤ 0 and dT∇2f (x)d < 0. (21)

To ensure convergence to second-order KKT points, these directions should also satisfy

dTk ∇2f (xk)dk → 0 ⇒ lim supk→∞λmin(∇2f (xk)) ≥ 0 and dk → 0,

where λmin(∇2f (xk)) denotes the smallest eigenvalue of ∇2f (xk).
For equality constrained problems these conditions can be easily generalized: from

(8) negative curvature information is only relevant on the subspace spanned byWA; we
consider only negative curvature directions that lie in this subspace, d = WAv. How-
ever, for (nonlinear) inequality constrained problems it is not clear how to define these
directions, or how to use them. Now negative curvature information will depend on the
current estimate of the active set and the procedure to update it. This information will
be relevant in a given iteration both when this estimate does not change, and when the
estimate is modified by moving away from some of the active bounds. We will build
directions of negative curvature for the merit function using the preceding unconstrained
conditions, under certain additional restrictions on the infeasibility of the current iterate.

We now give a more precise statement for these conditions. The gradient of the
merit function (3) and its Hessian matrix with respect to x are given by (13) and (14),
respectively. Analogously to the case of the descent Newton direction, and due to the
limitations of the merit function regarding the satisfaction of the constraints, we will

An interior-point method using negative curvature 581

impose the additional condition that the direction of negative curvature should lie in the
null-space of the matrix ∇c. This is reasonable, as the constraints must hold with equality
at the solution, and the descent direction is computed to satisfy these constraints. From
the definition (21) and this additional condition, a direction of negative curvature dn for
our algorithm should satisfy

dn = WAw, d
T
n (∇f −X−1µ) ≤ 0, dTn (∇xxL(x, λ̂− Rc)+MX−2)dn < 0. (22)

At each iterate we need to determine if negative curvature is present, and if that is
the case we also need to compute a direction satisfying the preceding conditions. We
will conduct this analysis and compute this direction from matrix (18), used to define
the descent direction, to reduce as much as possible the computational cost within the
algorithm. However, the matrix used in definition (22), ∇xxL(x, λ̂−Rc)+MX−2, may
differ from ∇xxL(x, λ̂ − Rc) + X−1Z, the matrix that appears in (18). Both matrices
will be close if (6) is approximately satisfied. A direction of negative curvature will be
computed as an approximate eigenvector corresponding to a negative eigenvalue of the
coefficient matrix of (18), and we will check if conditions (22) are satisfied before using
it in the search. Note that close to a stationary point for the barrier problem (2), condition
(6) will be approximately satisfied and directions of negative curvature, if they exist, will
eventually be accepted.

Another theoretical issue must be considered. The definition (22) has been made for
the barrier problem (2), but the problem of interest is (1). It would be important to en-
sure that by computing second-order KKT points for problem (2), we are in fact solving
problem (1). This issue has been treated in detail in [16] and [29]; we now present the
basic result that justifies the validity of our approach.

A second-order KKT point (x∗, λ∗) for problem (1) will satisfy the first-order con-
ditions (4), and the matrixWT

J ∇xxL(x∗, λ∗)WJ will be positive semidefinite. Here,WJ

denotes a matrix whose columns form a basis for the null-space of the Jacobian of the
active constraints at the solution of (1). If Î ∈ R

p×n denotes the p rows of the identity
associated with the components of x∗ that are equal to zero (the active bounds in x ≥ 0),
then WJ corresponds to a basis for the null-space of the matrix

J ∗ ≡
(∇c(x∗)

Î

)
.

Without loss of generality, we can construct a basisWA for the null-space of ∇c(x∗),
having the formWA = (

Y WJ

)
, where Y is a set of p columns inWA that do not belong

to the null-space of J ∗ (p is the number of active bounds at x∗). Let v∗ = (x∗, λ∗, z∗)
denote the corresponding values at a second-order KKT point of (1). We will use the
notation Hρ = ∇xxL(x, λ̂− Rc) and Gρ = Hρ +X−1Z.

Theorem 1. Given v = (x, λ, z) such that ‖v − v∗‖ < ε for some small enough ε, for
the matrix WT

AGρWA evaluated at v it holds that

– The largest (in magnitude) p eigenvalues ofWT
AGρWA are positive and unbounded

as v → v∗.
– The remainingn−m−p eigenvalues are withinO(ε)of the eigenvalues ofWT

J HρWJ .

582 J.M. Moguerza, F.J. Prieto

– Gρ has invariant subspaces for which there exist bases Ỹ and W̃ such that

‖Y − Ỹ‖ = O(ε) ‖WJ − W̃‖ = O(ε),

and in particular

‖W̃T GρW̃ −WT
J HρWJ ‖ = O(ε).

Proof. See Theorem 3.3 of [30] and Theorem V.2.7 of [27]. �

As a consequence of this result, close to a stationary point, the observation of the

finite eigenvalues of WT
AGρWA from (18) provides enough information on the eigen-

values of WT
J HρWJ , the ones entering the definition of second-order KKT points for

problem (1). Moreover, if we are close enough to a second-order KKT point of (1), the
(finite) negative eigenvalues of WT

AGρWA and their associated eigenvectors will pro-
vide good approximations to the corresponding ones in WT

J HρWJ . As a consequence,
we will be able to compute in an efficient manner directions of negative curvature as
approximate eigenvectors corresponding to negative eigenvalues of the matrix in (18),
while ensuring convergence to second-order KKT points of (1).

3.4. Computation of directions of negative curvature

We compute a direction of negative curvature dn (assuming that it exists) from the same
symmetric indefinite factorization used to obtain the descent direction dx in (20). If no
negative curvature is available at the current iterate, we set dn = 0. LetKρ be the matrix
defined in (18), and assume that its symmetric indefinite factorizationKρ = LDLT has
been computed using the algorithm in [13]. Assume that from the factorization it has
been determined that this matrix has more than m negative eigenvalues, implying that
WT
AGρWA has at least one negative eigenvalue, see [19].

We obtain dn in the following manner: let w be defined as w = P w̃, where P is the
permutation matrix in (20) and w̃ = (w̃T1 w̃

T
2)
T satisfies

(
LT11 L

T
21

0 LT22

)(
w̃1
w̃2

)
= ±

√
−λmin(D2)

(
0
uλ

)
, (23)

where λmin(D2) denotes the most negative eigenvalue of D2, defined in (19), and uλ
is a unit eigenvector corresponding to this smallest eigenvalue. The negative curvature
direction dn is defined as the first n components of w. In [13] it is shown that

∇c(x)dn = 0, (24)

so that dn lies in the correct subspace, and there exist positive constants c1 and c2 such
that

dTn Gρdn ≤ −c1λ
2
min(W

T
AGρWA) and dTn dn ≤ −c2λmin(W

T
AGρWA). (25)

Nevertheless, this scaling may not be adequate for the search procedure. We rescale this
negative curvature direction using the norm of the descent direction dx , to ensure that
both directions are comparable in size.

An interior-point method using negative curvature 583

If condition (6) is approximately satisfied, the direction dn computed using the
preceding procedure will be a direction of negative curvature for the merit function
LA(x, λ; ρ,µ). In this case, as ∇cdn = 0, in order to satisfy (22) it will be enough to
choose the sign of dn so that

dTn (∇f −X−1µ) ≤ 0. (26)

As in general (6) may not be satisfied, each time a direction of negative curvature is
computed we will also check if

dTn (Hρ +MX−2)dn < −βncc1λ
2
min(W

T
AGρWA) (27)

is satisfied for some prespecified constant βnc ∈ (0, 1). If this is not the case, the negative
curvature direction dn will not be used.

An additional condition on the use of negative curvature is related to the violation
of the constraints. If this violation is too large, that is, if ‖c(x)‖ > βv for some positive
constant βv , we set dn = 0. We only use negative curvature when it has been computed
close enough to feasible points, where it is most relevant.

The primal iterates xk must remain positive throughout the algorithm to ensure that
the barrier function is well-defined. This condition is imposed in the search procedure,
described in the following Section, by limiting the largest acceptable step. This limita-
tion may impact the convergence of the procedure, if the size of some component of the
negative curvature direction becomes too large compared with the corresponding primal
iterate. To ensure that this does not happen we impose the additional condition

(dkn)i ≥ −βdnxki , (28)

where βdn � 1 is a prespecified constant. This condition is automatically satisfied for
large enough βdn if the matrixL inKρ = LDLT is computed so that it remains bounded
as xk → 0. The factorization described above satisfies this condition, see [6]. Note that
from (23)

(
H +X−1Z ∇cT

∇c 0

)(
dn
w2

)
= ±(−λmin(D2))

3/2PT L

(
0
uλ

)
,

andX−1dn remains bounded if the other matrices are bounded. For other factorizations,
condition (28) can be enforced as part of the algorithm, without affecting its conver-
gence. Let d̄kn denote the direction obtained from the computation in (23); if βdnxki < zki
and (d̄kn)i < −βdnxki , set (dkn)i = −βdnxki , otherwise (dkn)i = (d̄kn)i . The values of those
components of dkn satisfying βdnxki ≥ zki are readjusted to ensure (24) is satisfied. If this
is not possible or the readjusted direction does not satisfy (25), set dkn = 0.

4. The curvilinear search

For a given iterate (x, λ), classical linesearch methods applied to problem (2) compute

a direction of movement d = (
dTx d

T
λ

)T
, and then determine a scalar α such that the

next iterate (x + αdx, λ + αdλ) provides sufficient decrease for an appropriate merit

584 J.M. Moguerza, F.J. Prieto

function. The role of the merit function is to ensure, through the proper choice of α, the
convergence to a minimizer of this merit function, that should correspond to a minimizer
of (2). The computation of α is usually referred to as a linesearch (see [18], for example).

This approach works quite well in practice whenever there is a single search direc-
tion dx . In our case we may have a pair of search directions at a given iteration, dx and
dn. In this case, the preceding procedure must be modified to take into account that the
next iterate must be found by searching on a subspace having dimension two, instead
of dimension one as was the case for the classical approach. We have chosen to use a
curvilinear search, defined on the subspace generated by both directions, and applied
to the augmented Lagrangian merit function (3). This curvilinear search will be based
on the directions dx computed from (17) and dn obtained as described in the preceding
section from (23).

A search will also be carried out on the multipliers. Their search direction will be
defined from dλ, obtained from (17), but it will be modified to take into account the
right-hand side used in (17) and the Newton direction for the merit function given in
(16). The actual search direction is defined as

dλρ = dλ − Rc(x). (29)

To combine the preceding directions we will follow the proposal in [25]. Given an
iterate (x, λ) and directions dx , dn and dλ, the next iterate will be obtained as a point on
the curves

x(α) = x + α2dx + αdn, (30)

λ(α) = λ+ α2dλρ. (31)

This combination is the simplest one that guarantees sufficient decrease for the
merit function whenever either we have a direction of descent or we have a direction of
negative curvature. See Lemma 2.2 in [25].

The value of α is determined to ensure that (x(α), λ(α)) provides sufficient decrease
for the augmented Lagrangian merit function (3). Let

φ(α) = LA(x(α), λ(α); ρ,µ),
where ρ is the penalty parameter vector. For an initial value αmax, defined later on, we
will check if

φ(αmax) ≤ φ(0)+ γ
1

2
α2

maxφ
′′(0). (32)

If this condition is satisfied, we choose α̃ = αmax. Otherwise, we apply a backtracking
procedure from αmax to find a value α̃ ∈ (0, αmax) satisfying

φ(α̃) ≤ φ(0)+ γ
α̃2

2
φ′′(0), (33)

φ′(α̃) ≥ η(φ′(0)+ α̃φ′′(0)), (34)

where γ and η are scalar parameters satisfying 0 < γ < 1
2 and 1

2 < η < 1.

An interior-point method using negative curvature 585

In addition to the sufficient decrease conditions (33)–(34), we also force the iterates
to remain on the domain of the merit function (the positive orthant). Thus, α is chosen
so that x(α) > 0 by defining αmax appropriately, that is, we choose αmax so that all
α ∈ [0, αmax] satisfy

Pi(α) = α2(dx)i + α(dn)i + xi > 0 ∀i. (35)

If ᾱi denotes the smallest positive root of Pi(α), if it exists, or ∞ otherwise, the preced-
ing condition is satisfied for a given i and all α ∈ [0, ᾱi), as xi > 0. As a consequence,
we must choose αmax < mini ᾱi .

On the other hand, to take advantage of the good local convergence properties of the
Newton direction we consider the step to this Newton direction (α = 1) whenever it is
reasonable, that is, whenever the Newton step lies within the positive orthant and there
is no negative curvature available. Consequently, the initial step αmax is defined as

αmax = min(δmin
i
(ᾱi), 1), (36)

where the parameter δ, introduced to ensure the strict positivity of the iterates, has been
defined as

δ = max(0.995, 1 − ‖µ‖). (37)

Near the solution (when µ � 0), the term 1 − ‖µ‖ guarantees that a step of one will
not be prevented by the positivity requirement. This is relevant to ensure adequate local
convergence properties.

Finally, we impose an additional condition that helps to ensure that the iterates re-
main in a compact set throughout the algorithm. The next iterate is computed as x(αp),
where αp = α̃ if α̃, satisfying (33)–(34), also satisfies

‖c(x(α))‖ ≤ βc, (38)

for some positive constant βc satisfying βc > 2βv , where βv was the constant introduced
at the end of Section 3.4. Otherwise, a value αp is determined by applying a backtracking
procedure from α̃ until conditions (33) and (38) are both satisfied. From (30) and (31),
the next iterates are defined as

xk+1 = xk + (αkp)
2dkx + αkpd

k
n, λk+1 = λk + (αkp)

2dkλρ

λ̂k+1 = λk + max
(
βλ, (α

k
p)

2
)
dkλρ,

(39)

where λ̂ is the value used in the definition of Gρ , (18), and Hρ , and βλ ∈ [0, 1] is a
prespecified constant.

5. Parameter updates

A complete specification of the algorithm should indicate how to update the different
parameters that appear in the computation of the search directions and the curvilin-
ear search. In the following paragraphs we describe the procedures used to update the
multiplier estimates, the penalty parameters and the barrier parameters.

586 J.M. Moguerza, F.J. Prieto

5.1. The multipliers

Two sets of dual variables are generated by the algorithm, the equality constraint mul-
tipliers λ and the approximations to the multipliers for the bound constraints z. The
multipliers λ are updated within the curvilinear search using (31) and the value αp
chosen for the variables x according to the procedure described in the preceding
section.

The solution of Newton’s system of equations (9) provides a search direction for the
multipliers z, dz, defined in (10). These dual variables will be updated from

z(αd) = z+ αddz, (40)

using an adequate value of αd . The only condition on the values of the dual variables is
their non-negativity. The scalar αd is chosen as the largest reasonable value that satisfies
this condition, as follows. Let

ᾱd = min

(
δmin

(−zi
(dz)i

∣∣∣∣ (dz)i < 0

)
, 1

)
, (41)

where δ is defined as in (37). The step length for the dual variables, αd , is defined as

αd = max
(
βz, (αp/αmax)

2
)
ᾱd , (42)

where βz ∈ [0, 1] is another prespecified parameter. The correction to ᾱd is introduced
to scale αd so that its value is related to the value of αp obtained from the linesearch.

5.2. The penalty parameters

The penalty parameters ρj are used in the algorithm to ensure the convergence to points
satisfying the constraints c(x) = 0. The Newton direction should generate iterates that
satisfy this condition in the limit, but if the penalty parameters are not sufficiently large,
this Newton direction may not be a descent direction for the merit function and will not
be accepted. As a consequence, the penalty parameters are chosen so that the sufficient
decrease condition given by inequality (33) can be satisfied. The updating of these pa-
rameters is also very relevant for the computational efficiency of the procedure. A very
large value of these parameters may cause numerical problems in the computation of
the search directions from (17). Also, these parameters have an impact on the updating
of the λ multiplier estimates.

The update formula will be derived in terms of condition (33). This condition includes
the initial derivatives of the merit function along the curve x(α) defined in (30),

φ′(0) = dTn (∇f −X−1µ), (43)

φ′′(0) = dTn (∇xxL(x, λ̂− Rc)+MX−2)dn + 2dTx (∇f −X−1µ− ∇cT (λ− Rc))

− 2dTλρc. (44)

An interior-point method using negative curvature 587

As (24) holds, the terms dTn ∇cT (λ− Rc) and dTn ∇cT R∇cdn have been removed from
the preceding expressions. To simplify the following arguments, define θρ as

θρ = dTx (∇f −X−1µ− ∇cT λ)− dTλ c. (45)

Also, note that (17) implies θρ = −dTx Ḡρdx .
If negative curvature is available in the current iteration, that is, if dn �= 0, from

(26) and ∇cdn = 0 it follows that φ′(0) ≤ 0. We still need to have a sufficient descent
condition

φ′′(0) ≤ δ̂ρ(min(θρ, 0)− ‖c‖2), (46)

for some constant 0 < δ̂ρ � 1. If the current values of dx , dn, dλρ and ρ are such that
(46) is not satisfied, we set dn = 0 for the search.

If no negative curvature has been detected or the preceding condition has resulted in
having dn = 0, then φ′(0) = 0 and condition (33) becomes equivalent to

φ(α̃) ≤ φ(0)+ γ α̃2(dTx (∇f −X−1µ− ∇cT (λ− Rc))− dTλρc).

For the curvilinear search to be well defined we need to have again a sufficient descent
condition equivalent to (46) (see [25]):

φ′′(0) = dTx (∇f −X−1µ− ∇cT (λ− Rc))− dTλρc ≤ δ̂ρ(min(θρ, 0)− ‖c‖2).

This condition is a slightly stronger version of the classical descent requirement
dTx ∇xLA ≤ 0, but (46) must take into account that the multiplier update λ(α) (31)
is also included in the curvilinear search.

Condition (46) can always be satisfied for an adequate choice of the penalty param-
eter vector ρ. If at the current iterate the equality constraints are satisfied, c(x) = 0, (46)
can be rewritten as

dTx (∇f −X−1µ) ≤ δ̂ρ min(θρ, 0) ⇔ θρ ≤ δ̂ρ min(θρ, 0),

using (45), ∇cdx = −c from (11), and c = 0. From (17), ∇cdx = 0 and the positive
definiteness of Ḡρ in the appropriate subspaces,

−dTx Ḡρdx = dTx (∇f +X−1µ) = θρ ≤ 0, (47)

and the preceding condition, and (46), are satisfied.
If c(x) �= 0, (46) may not hold for the current value of the penalty parameter ρ, and

it must be modified. We can rewrite (46) as

φ′′(0) = θρ + dTx ∇cT Rc ≤ δ̂ρ(min(θρ, 0)− ‖c‖2). (48)

From (17), implying ∇cdx = −c, (48) is equivalent to

θρ − cT Rc ≤ δ̂ρ(min(θρ, 0)− ‖c‖2). (49)

588 J.M. Moguerza, F.J. Prieto

Define ζ ∈ R
m as ζj = c2

j , and note that cT Rc = ζ T ρ. Following the procedure used
in code NPSOL [17], the update of the penalty parameter vector ρ is obtained from the
following problem:

min 1
2ρ

T ρ

s.t. ζ T ρ ≥ θρ − δ̂ρ(min(θρ, 0)− ‖c‖2)

ρ ≥ 0.

(50)

The solution of this problem is given by

ρ∗ = max
(

0, θρ − δ̂ρ(min(θρ, 0)− ‖c‖2)
) ζ

ζ T ζ

This solution satisfies (49) and (46).
If (46) does not hold and ρj < δρρ

∗
j , the j -th component of ρ will be updated to

δρρ
∗
j for some δρ > 1. In practice, it will also be necessary to ensure that ρ does not

become too large (see [18]) to avoid ill-conditioning. If ρj is much larger than ρ∗
j , we

will reduce its value while ensuring that (46) is still satisfied. The strategy we will follow
to update ρ is similar to the one described in [11]. We will compute a trial value ρ̂j :

ρ̂j =
√
ρj (δ̄ρ + ρ∗

j),

where δ̄ρ ≥ 1, and the new value of ρ at iteration k will be defined as

ρk+1
j =






δρρ
∗
j if δρρ∗

j > ρkj ,

ρ̂j if ρ̂j ≤ 1
2ρ

k
j ,

ρkj otherwise.

(51)

To avoid having to modify ρ too often, the parameter δ̄ρ is increased at each iteration
where ρ is modified.

5.3. The barrier parameters

The vector of barrier parameters in (2) is also updated in each iteration. The updating
rule is based on the relationship between the satisfaction of the first-order conditions,
the complementarity conditions and the values of the barrier parameters. The definition
of µi , given below, can be shown to be O(‖F(x, λ, z)‖2

2) near a KKT point, that is one
of the conditions required to attain superlinear convergence (see [10] or [33]), where
F(x, λ, z) is related to the satisfaction of the first-order KKT conditions for problem (1)
at the current iterate.

Define

F(x, λ, z) =



∇f (x)− ∇c(x)T λ̂− z

c(x)

(1 − βm)Xz+ βm
(
z−X−1µ+ µ

)



 , (52)

An interior-point method using negative curvature 589

for some prespecified constant βm ∈ [0, 1], and set

θµ =
{

‖F(x, λ, z)‖ if ‖F(x, λ, z)‖ ≥ 1,

‖F(x, λ, z)‖2 otherwise,
(53)

and let y = Xz. Vector µ is updated in a manner similar to the penalty parameter ρ. The
problem

min 1
2µ

T µ

s.t. yT µ = θµ

µ ≥ 0

(54)

has its solution for µ = θµy/‖y‖2. A small perturbation is introduced on this solution
to define µ∗ as

µ∗ = θµ
y + βy‖y‖e

yT y
, (55)

where e = (1 . . . 1)T and βy ∈ [0, 1/
√
n] is a prespecified constant.

Definition (53) has been introduced to prevent µ∗
i from becoming too large when

far from a KKT point. On the other hand, if yi is small then µ∗
i may become too small.

To avoid this situation we compute a reference value µ̂, similar to the one used in [10],

µ̂ = xT z

n
, (56)

and define the new value of µ at iteration k as

µk+1
i =

{
βµδ

k max((µ∗
i)
k, µ̂k) if δk max((µ∗

i)
k, µ̂k) < µki

µki otherwise,
(57)

where βµ < 1 is a prespecified constant,

δk = min(0.25, exp(−(1/θkµ))), (58)

and θkµ is the value of θµ at iteration k. Note that µki will not be decreased in every
iteration, but only when a sufficient reduction in the satisfaction of the KKT conditions
has been achieved. This definition ofµ ensures thatµ → 0 if problem (2) has a solution.

6. Theoretical results

Although the convergence analysis of the proposed procedure is not the main goal of
this paper, in this Section we study some of its properties to justify the validity of some
of the choices made in the algorithm. In particular, we wish to justify that the choice
of linesearch and barrier parameter updates (the more unusual parts of the algorithm)
are reasonable from a theoretical point of view. Nevertheless, from a numerical point
of view the contents of this section could be omitted, as they have no impact on the

590 J.M. Moguerza, F.J. Prieto

remainder of the paper. For the sake of a clearer presentation, the detailed proofs for
these results have been collected in an Appendix at the end of the paper.

We will study the properties of the limit points for the sequence generated by the
algorithm (if they exist). We will see that they are second-order KKT points for the
problem of interest (1), under some regularity assumptions on the problem. We will also
introduce some conditions on the sequence of iterates, to simplify the arguments in the
proofs. The assumptions on problem (1) are:

A.1 The functions f and cj have Lipschitz-continuous third derivatives on the region
defined by the bounds.

A.2 Strict complementarity holds at all first-order KKT points.
A.3 The iterates generated by the algorithm remain in a compact set.
A.4 The penalty parameter remains bounded in the algorithm.
A.5 The Jacobian matrix of the equality constraints, ∇c(x), has full row rank at all

feasible points of problem (1).

Note that A.1 and A.3 imply that the objective function remains bounded below in the
algorithm.

Assumptions A.1, A.2 and A.5 are related to the problem, while the other two as-
sumptions concern the algorithm. Excluding these assumptions would imply a significant
increase in the technical complication of the proofs, not our main concern for this pa-
per. Assumption A.3 is mostly relevant for the primal variables, as for the dual ones the
boundedness condition can be imposed within the algorithm by limiting the size of the
corresponding search directions. Assumption A.4 is quite strong, but it would be very
difficult to show the boundedness of the parameter (without making any assumption on
it), given the complex update rule we use. For slightly simpler update rules, see [26]
for example, it is possible to remove this condition, under some alternative assumptions
on the behavior of the multiplier estimates in the algorithm. Assumption A.5 is also
very strong, but it simplifies significantly the arguments in the proofs. It ensures that
∇c(xk)dkx = −c(xk) close to the solution, and as a consequence that both (47) and
condition (46) hold in the algorithm.

As an additional simplification, we will ignore condition (34). It ensures that the
steplength is not unnecessarily small. While this is a reasonable practical requirement,
it does not impact the theoretical properties of the algorithm. From the definition of
ρ, that ensures descent for the merit function, and the existence of a step α, see Moré
and Sorensen [25], the iterates generated by the algorithm are well-defined. Also, from
Assumption A.4 and (51), as the value ρ̂j is increased by a finite amount every time
that ρj is reduced, the number of reductions is finite and the value of ρ eventually re-
mains constant in the algorithm. Several constants were introduced in the definition of
the algorithm; to simplify the proofs we only analyze the case where βλ = 1 in (39),
βz ∈ (0, 1] in (42), βm ∈ (0, 1] in (52) and βy ∈ (0, 1/

√
n] in (55).

We now summarize the structure of the arguments in this section:

– Our main result shows that the update rule we use for the barrier vector parameter
enforces its convergence to zero. This same rule guarantees convergence to first-or-
der KKT points for problem (1). In addition to these results, we also show that the
limit points must be second-order KKT points. We prove that the descent conditions

An interior-point method using negative curvature 591

in the linesearch force the algorithm to move away from points that do not satisfy
the required second-order conditions. All these properties are proved in Theorem 2.

– To establish this main result, we first show that if the algorithm updates the barrier
parameter only a finite number of times, then the primal variables converge to first-
order KKT points for the barrier problem (2). This result, presented in Lemma 3,
will be used in Theorem 2 to prove a contradiction, as the barrier parameter must
eventually be updated when sufficiently close to a first-order KKT point for problem
(2). An auxiliary result in Lemma 4 shows that dual variables also converge to the
correct values.

– A previous intermediate result, proved in Lemma 2, shows that whenever one com-
ponent of the barrier vector parameter converges to zero, all of them must converge
to zero. As a consequence, we only need to consider the cases when all components
are bounded away from zero, Lemma 3, and when all of them converge to zero,
Theorem 2.

– Our first auxiliary result, Lemma 1, establishes the boundedness of the primal iterates
whenever the barrier parameter is bounded away from zero.

From (57), the components of the barrier parameter µ are nonincreasing. It might
happen that some or all of the components inµk would not converge to zero. The follow-
ing Lemmas show that this cannot happen. To prove this result, we start by introducing
a bound on the values of the primal variables in terms of the barrier parameter value.

Lemma 1. Let I denote the set of components µki (i ∈ I) of the barrier parameter that
change only a finite number of times in the course of the algorithm, and assume I is
nonempty. Then there exists γ̄x > 0 such that xki ≥ γ̄x for all sufficiently large k and all
i ∈ I.

We can now present a first result related to the convergence of the barrier parameter
µk . In it we show that the case in which some of the components of the parameter con-
verge to zero and other components remain bounded away from zero cannot happen in
the algorithm. We will continue using the notation introduced in Lemma 1.

Lemma 2. Let J denote the set of components µki (i ∈ J) of the barrier parameter
that change an infinite number of times in the course of the algorithm, and assume J is
nonempty. Then J = {1, . . . , n} and lim infk→∞ θkµ = 0.

From this result only two situations are possible in the algorithm: i) the components
of the barrier parameter change only a finite number of times in the algorithm, and the
barrier parameter eventually remains constant, and ii) all components of the barrier pa-
rameter change an infinite number of times. The following Lemma considers the first
case.

Lemma 3. Let J denote the set of components µki (i ∈ J) of the barrier parameter µ
that change an infinite number of times in the course of the algorithm, and assume J
is empty. Then any limit point x∗ of the sequence {xk} generated by the algorithm is a
first-order KKT point of the barrier problem (2).

We need an additional auxiliary lemma to show that the sequences of dual variables
{λ̂k}, {zk}, also converge to the desired values.

592 J.M. Moguerza, F.J. Prieto

Lemma 4. Let J denote the set of components µki (i ∈ J) of the barrier parameter µ
that change an infinite number of times in the course of the algorithm, and assume J is
empty. The sequences {xk}, {λ̂k} and {zk} generated by the algorithm satisfy

lim
k→∞

‖∇f (xk)− (Xk)−1µk − ∇c(xk)T λ̂k‖ = 0 and lim
k→∞

‖zk − (Xk)−1µk‖ = 0.

We now show that the barrier parameter converges to zero, that is, that the situation
analyzed in Lemma 3 cannot happen in practice, and also that the limit points of the
sequence generated by the algorithm must have the correct properties.

Proving thatµk → 0 and the limit points must be first-order KKT points follows eas-
ily from the definition of the barrier parameter in the algorithm. The proof that any limit
point must also be a second-order KKT point is less straightforward, as we have to consid-
er now thatµk can be arbitrarily small and the arguments in the proofs of Lemmas 1 and 3
can no longer be applied. We show the desired result by proving that in this case the step-
length α is also bounded away from zero, and as a consequence that the algorithm cannot
converge unless (φk)′′(0) → 0, implying that any negative curvature must also vanish.

The algorithm obtains both the descent and the negative curvature information from
the barrier problem (2). The convergence of the algorithm to second-order KKT points
for problem (1) requires the existence of a relationship between the negative curvature
in both problems, as shown in Theorem 1. One of the requirements for that theorem
is the correct identification of the active set at the solution, that follows from the strict
complementarity Assumption A.2.

Theorem 2. The barrier parameter is updated an infinite number of times in the algo-
rithm. Furthermore, there exists a subsequence of iterates converging to second-order
KKT points of problem (1).

Although our aim is not the study of the local convergence of the algorithm, we
provide a few comments on its local properties. The following condition would also be
required:

A.6 The sufficient optimality conditions hold at all second-order KKT points of
problem (1).

Under this assumption and Theorem 2 there can only be a finite number of iterations
where negative curvature is used, as in a ball around the solution point the relevant Hes-
sian matrices are strictly positive definite. Asymptotically, only Newton directions are
used to obtain the new iterates. The arguments in [33] can be adapted to the proposed
algorithm to prove superlinear convergence, by showing that the steps taken close to the
solution coincide with the feasible steps α̃kp and ᾱkd , that these steps converge to one at
a rate related to the size of µk and that having a vector barrier parameter does not affect
the arguments in the proofs. Different approaches, such as the one in [21], can also be
adapted but may require modifying the barrier parameter update rule.

7. Implementation issues

The algorithm described in the preceding sections includes certain parameters and con-
ditions that have not been completely specified yet. In the following paragraphs we
indicate how to carry out some of these computations.

An interior-point method using negative curvature 593

7.1. Use of directions of negative curvature

After the factorization process has detected the presence of negative curvature in a given
iteration, some additional conditions are checked before using this negative curvature
direction in the curvilinear search. Appropriately restricting the use of negative curva-
ture has a significant impact on the efficiency of the algorithm. In particular, the three
following conditions should hold:

dTn ∇xxLAdn ≤ −ε1, (59)

dTn ∇xxLAdn ≤ dTn Gρdn + ε2, (60)

‖c(x)‖ ≤ ε3, (61)

where ε1, ε2 and ε3 are positive constants. Condition (59) guarantees that dn is a di-
rection of negative curvature for the augmented Lagrangian merit function. Condition
(60) takes into account those cases where (6) is far from being satisfied. Finally, (61)
guarantees that we only use negative curvature when we are close enough to feasibility.
If any of these conditions is not satisfied, the algorithm sets dn = 0. In practice, if these
conditions are not taken into account the algorithm may get stuck away from a solution.

In our implementation we have defined ε1 = 10−7 and ε2 = 10−3. The parameter
ε3 is defined in each iteration as:

εk3 = min(10−2(0.1 + ‖xk‖ + |f k|), 3),

where f k is the objective function of (1) at iteration k.

7.2. Convergence criterion

The stopping criterion for the algorithm will be related to the satisfaction of the first and
second-order KKT conditions for problem (1). The algorithm will stop if no negative
curvature has been detected at the current iteration and the condition

‖F(x, λ, z)‖2 ≤ ε(1 + ‖∇f (x)‖)
is satisfied at the current iterate. In this condition F(x, λ, z) denotes the measure of
optimality defined in (52) and f (x) is the objective function for problem (1). We have
taken ε = 10−8.

7.3. Initial values of parameters and variables

Let x̄0 denote the starting point for the algorithm, assumed to be specified by the
user. Sometimes these initial points may not satisfy the bound constraints. The algo-
rithm transforms the given initial point following an automatic strategy similar to that
described in [28]. Basically, for problems with zero lower bounds, such as (1), if the
initial value of one of the variables is outside the bounds it has been redefined by

x0
i = max

(
1,
∑
i |x̄0

i |/n
)
.

594 J.M. Moguerza, F.J. Prieto

For problems with upper and lower bounds, l ≤ x ≤ u,

x0
i = max

(
min

(
x̄0
i , ui − 0.1(ui − li)

)
, li + 0.1(ui − li)

)
,

that is, the initial value has been redefined by moving it inside the bounds to within 10%
of the closest bound.

The remaining initial values for the variables and parameters are defined from x0.
The initial value of the dual variables z0 is defined as z0 = (X0)−1e. The initial Lagrange
multiplier estimate λ0 is chosen as an approximation to the least-squares solution of the
linear system

∇c(x0)T λ0 = ∇f (x0)− z0.

The penalty parameter vector ρ0 is initially taken to be zero. The initial barrier vector
µ0 is defined using (57) evaluated at the preceding values.

7.4. Other parameters

The constant βc in (38) is updated recursively. In iteration k + 1 it is defined to be

βk+1
c = max

(√
K‖c(xk)‖βkc , 1

)
,

where K > 1 is a constant (in our implementation we use K = 7.5). The initial value
of βc is defined as

β0
c = max

(√
K‖c(x0)‖, 1

)
.

The parameter δ̂ρ in (46), controlling the sufficient descent in the linesearch, has been set
to zero in the algorithm. Also, βµ, introduced in (57), the update of the barrier parameter,
has been set to one. Other constants have been taken in the implementation as βλ = 0
in (39), βz = 0 in (42), βm = 0 in (52) and βy = 0 in (55). These values are in the
limit of their theoretically acceptable ranges, but this does not seem to have an impact
in practice.

7.5. Numerical difficulties

In the preceding description of the algorithm we have considered only simple bounds
of the form x ≥ 0, to simplify the resulting expressions. The implementation of the
algorithm used for the tests is able to handle simple bounds of the form l ≤ x ≤ u,
where some of the entries in l could be equal to −∞, and some of those in u could be ∞.
The finite bounds are included in the objective function via logarithmic barrier terms.

If a variable gets very close to its corresponding bound at a given iteration, it is pos-
sible that due to roundoff errors its value may be considered to be equal to the bound and
the logarithmic function will not be defined in subsequent iterations. A possible solution
is given in [14], where the variables are forced to be removed from their bounds by a

An interior-point method using negative curvature 595

fixed distance, chosen as 10−9. However, this strategy presents a clear disadvantage: the
solution of a particular problem, for a sufficiently small value of µ, might be closer to
the bound than the previous tolerance. Also, from our numerical experience this option
may delay convergence by a significant number of iterations.

In our strategy, the information on the distance to the bounds will be kept in a vector
r , that will be updated separately from the values of the variables, using the same in-
formation. The independent term in inequality (35) will also be defined in terms of this
vector.

Another numerical problem that might arise is the ill-conditioning of the symmet-
ric system (17) to solve in each iteration, due to the terms X−1Z. Under reasonable
conditions, it can be shown that this ill-conditioning is benign (see [29] and [31]).

7.6. The algorithm

We present below a more detailed scheme of the proposed interior point algorithm
(Curvilinear Search Interior Point Method - CSIPM).

Algorithm CSIPM

Select x0 by modifying the user-specified initial value x̄0, if necessary
Choose initial values for λ0 and z0.
Choose initial values for vectors ρ0 and µ0

Set k = 0
repeat

Compute dkx , dkλ and dkz from (17) using the factorization
described in [13]

Compute dkλρ from (29)

Compute, if it exists, dkn , a direction of negative
curvature from (23)

Compute ρk+1 from (51)
Set dkn = 0 if any one of the conditions (59), (60)

or (61) is not satisfied
Compute αp using the curvilinear search procedure

satisfying (33), (34) and (38)
Compute αd from (42)
xk+1 = xk + α2

pd
k
x + αpd

k
n

λk+1 = λk + α2
pd

k
λρ

zk+1 = zk + αdd
k
z

Compute the updated barrier vector µk+1 from (57)
k = k + 1

until convergence

596 J.M. Moguerza, F.J. Prieto

8. Numerical results

We have conducted a set of numerical experiments on a collection of test problems using
algorithm CSIPM. The algorithm has been implemented, and the tests have been carried
out, on MATLAB.

8.1. Test problems

The test set we have considered is composed of 145 small problems from the CUTE
collection [4], selected from those nonlinear constrained problems having less than 100
variables and continuous derivatives (note that exact first and second derivatives have
been used). The initial points given in CUTE have been used.

Table 1 shows the results obtained by CSIPM for these problems. The columns in
the table correspond to:

– Prob.: problem name.
– Obj.: value of the objective function f (x) at the solution.
– Const.: norm of the constraint vector, ‖c(x)‖, at the solution, including slacks.
– KKT: norm of the first-order KKT conditions at the solution, ‖F(x, λ, z)‖.
– Iter.: iteration count (number of factorizations of the primal-dual system).
– Eval.: number of evaluations of the objective function and the constraints.
– NC: number of iterations in which directions of negative curvature were used.

In those cases where negative curvature was detected the problem was solved a
second time, setting the negative curvature direction to zero. Table 1 includes two
lines for those problems, one for the results from each of the two versions of the
algorithm.

8.2. Analysis of the results

The algorithm was able to solve all problems but two, problems HS13 (with a rank-
deficient Jacobian at the solution) and HS109 (after exceeding 250 iterations no solution
was reached). For some of the problems the code finds better local minimizers than
those given in [22] (this happens for problems HS106, HS107, HS112 and HS116, for
example), while for other problems the local minimizers found are worse (HS97 and
HS98). Problem HS99 is an example of a badly scaled problem. The termination toler-
ance is satisfied when the norm of the first-order KKT conditions is 0.4994. Introducing
a more demanding stopping criterion (a tolerance of 10−14), the norm of the KKT condi-
tions goes down to 10−6 after 3 additional iterations, but the value of the merit function
remains basically unaltered.

In general, the number of iterations required to solve the problems is fairly small.
The number of function evaluations is higher, but no particular care was taken with the
strategy to choose the value of α (a standard backtracking search was implemented). It
is also interesting to note the large number of cases in which a unit step was directly
accepted.

An interior-point method using negative curvature 597

Table 1. Results for small-size problems

Prob. Obj. Const. KKT Iter. Eval. NC

AIRPORT 47952.7018 1.5e-07 1.4e-04 15 15 0
ALJAZZAF 75.005 5.6e-10 2.0e-07 20 27 0
ALSOTAME 0.08208499 2.2e-16 6.8e-11 8 8 0
BIGGSC4 -24.499999 8.9e-16 7.1e-08 19 19 3

-24.499999 0 6.9e-08 20 20 0
BT13 1.29e-121 5.1e-09 5.1e-09 21 25 0
CANTILVR 1.33995636 5.2e-11 7.9e-11 15 18 0
CB2 1.95222449 3.3e-14 5.1e-14 11 12 0
CB3 2.0 4.1e-11 5.4e-11 10 11 0
CHACONN1 1.95 3.2e-09 5.0e-09 9 11 0
CHACONN2 2.0 3.8e-09 5.1e-09 10 12 0
CONGIGMZ 28.0 1.1e-07 2.2e-07 33 37 0
CSFI1 -49.0752 1.6e-11 1.2e-09 33 46 2

-49.0752 1.1e-09 1.0e-08 35 55 0
CSFI2 55.0176056 9.2e-12 1.6e-09 58 62 0
DEMYMALO -2.9999999 1.1e-09 3.5e-09 13 14 0
DIPIGRI 680.63006 9.0e-10 2.3e-09 9 13 1

680.63006 1.9e-09 5.1e-09 10 15 0
DISC2 1.5625 1.6e-14 1.6e-14 45 53 0
DUAL1 0.035012968 2.2e-16 1.7e-09 18 18 0
DUAL2 0.033733671 5.1e-16 1.7e-11 14 14 0
DUAL4 0.746090649 1.0e-16 1.1e-08 14 14 0
EXPFITA 0.0011366117 2.9e-14 1.3e-11 33 33 1

0.0011366117 3.7e-14 1.2e-11 33 33 0
FCCU 11.14910914 4.4e-15 4.2e-15 8 8 0
GIGOMEZ1 -3.0 2.4e-16 1.4e-15 17 19 0
HATFLDH -24.499999 2.9e-15 2.4e-07 12 12 1

-24.499999 2.3e-15 2.3e-07 12 12 0
HIMMELBI -1735.569545 1.1e-06 1.5e-05 26 26 0
HIMMELBK 0.0518143 3.9e-12 1.7e-10 25 28 0
HIMMELP2 -62.0538698 1.4e-08 2.1e-08 16 34 3

-62.0538698 1.4e-11 1.9e-11 19 32 0
HIMMELP3 -59.01312394 1.1e-09 3.3e-09 15 33 5

-59.01312394 1.8e-12 3.4e-10 15 25 0
HIMMELP4 -59.01312394 1.6e-10 1.6e-10 24 50 4

-59.01312391 1.4e-07 1.4e-07 21 42 0
HIMMELP5 -59.01312395 4.5e-12 4.5e-12 68 112 1

-59.01312395 4.4e-11 4.4e-11 57 80 0
HIMMELP6 -59.01312395 1.2e-12 1.2e-12 42 64 1

-59.01312395 3.7e-12 4.2e-12 35 44 0
HONG 22.57108736 5.5e-17 6.4e-13 7 7 0
HS10 -1.0 4.2e-14 6.6e-14 15 22 0
HS11 -8.49846422 1.3e-10 6.5e-10 7 8 0
HS12 -30.0 7.6e-14 7.7e-14 10 19 0
HS13 -- -- -- -- -- --
HS14 1.39346498 7.1e-15 1.7e-13 7 10 0
HS15 306.50 6.7e-14 2.2e-11 17 17 0
HS16 0.25 1.1e-16 1.1e-16 15 17 0

598 J.M. Moguerza, F.J. Prieto

Table 1. (cont.)

Prob. Obj. Const. KKT Iter. Eval. NC

HS17 1.0 5.4e-11 1.1e-08 16 16 0
HS18 4.999999 8.3e-13 8.4e-13 13 15 0
HS19 -6961.81388 7.8e-08 4.9e-05 17 17 0
HS20 40.19872981 1.2e-16 5.8e-14 8 9 0
HS21 -99.9599999 0 2.7e-13 5 5 0
HS21MOD -99.9599998 0 3.1e-07 12 12 0
HS22 1.0 3.3e-16 3.2e-15 6 6 0
HS23 2.0 3.5e-12 1.5e-10 9 10 0
HS24 -1.0 4.4e-16 4.6e-12 8 10 3

-1.0 9.1e-16 1.2e-12 6 6 0
HS29 -22.62741699 6.0e-10 6.1e-10 10 17 1

-22.62741699 6.0e-10 6.0e-10 10 16 0
HS30 1.0 5.1e-10 9.6e-10 6 7 0
HS31 5.999999 3.1e-12 1.5e-09 5 5 0
HS32 1.00000001 7.9e-13 7.0e-08 14 14 0
HS33 -4.58578643 3.0e-14 5.2e-14 9 10 1

-4.58578643 8.0e-13 2.2e-12 13 21 0
HS34 -0.83403244 4.6e-14 1.2e-13 9 9 0
HS35 0.11111111 1.1e-17 1.9e-10 7 7 0
HS36 -3299.9999 3.5e-15 9.2e-12 8 8 1

-3299.9999 4.4e-26 1.2e-11 8 8 0
HS37 -3455.9999 3.5e-15 2.0e-06 7 8 0
HS41 1.92592592 0 1.3e-12 7 7 0
HS43 -44.0 7.7e-08 2.3e-07 14 23 0
HS44 -14.999999 1.8e-15 3.4e-12 9 9 3

-12.999999 1.4e-15 6.6e-15 9 9 0
HS44NEW -14.999999 1.8e-15 3.4e-15 9 9 3

-12.999999 1.4e-15 6.6e-15 9 9 0
HS53 4.0930232 1.8e-15 6.2e-14 4 4 0
HS57 0.030647619 6.0e-11 3.7e-10 22 49 12

0.030647619 1.7e-09 3.1e-09 27 50 0
HS59 -7.80278947 7.0e-11 7.2e-11 26 31 1

-7.80278947 4.0e-10 8.6e-10 25 30 0
HS60 0.03256682 6.5e-12 1.8e-11 7 7 0
HS63 961.7151721 4.1e-11 1.2e-09 6 9 0
HS64 6299.84243 1.2e-16 2.5e-14 26 30 0
HS65 0.95352886 9.8e-32 1.4e-15 15 26 2

0.95352886 2.1e-08 2.8e-11 17 31 0
HS66 0.518163274 6.2e-14 8.1e-14 8 8 0
HS67 -1162.119226 1.0e-09 7.9e-08 11 19 0
HS68 -0.920425004 1.4e-17 1.1e-14 24 35 0
HS69 -956.7128869 4.4e-09 9.4e-06 9 9 0
HS70 0.1870436431 0 1.0e-08 24 27 0
HS71 17.0140173 2.2e-14 3.7e-14 8 8 0
HS72 727.67936 1.7e-18 7.3e-12 24 24 0
HS73 29.894378 8.0e-15 1.2e-13 16 16 0
HS74 5126.4981 1.4e-11 6.5e-09 8 8 0
HS75 5174.4127 2.5e-13 4.3e-10 9 9 0

An interior-point method using negative curvature 599

Table 1. (cont.)

Prob. Obj. Const. KKT Iter. Eval. NC

HS76 -4.681818181 1.3e-16 2.3e-10 7 7 0
HS80 0.0539498 9.3e-09 9.9e-09 9 9 0
HS81 0.0539498 1.5e-10 1.6e-10 9 9 0
HS83 -30665.539 3.4e-09 1.2e-12 19 19 0
HS84 -5280335.13 1.0e-08 1.8e-07 36 43 0
HS86 -32.348679 1.0e-14 1.0e-08 14 14 0
HS88 1.362656815 1.7e-17 1.1e-12 25 33 0
HS91 1.36265681 1.4e-13 4.9e-09 14 18 6

1.36265681 3.2e-17 7.8e-13 19 34 0
HS92 1.36265681 4.6e-15 2.9e-09 21 27 6

1.36265681 1.3e-14 8.3e-09 28 42 0
HS93 135.075963 3.2e-15 1.5e-07 9 9 0
HS95 0.0156195 6.9e-12 2.7e-10 11 11 0
HS96 0.0156195 2.6e-11 8.3e-10 11 11 0
HS97 4.0712463 6.2e-12 2.0e-09 13 13 0
HS98 4.0712463 9.7e-15 1.2e-12 16 19 1

4.0712463 1.0e-10 2.0e-08 16 17 0
HS99 -8.3108e+08 4.4e-11 0.49945913 6 6 0
HS100 680.630057 9.0e-10 2.3e-09 9 13 1

680.630057 1.9e-09 5.1e-09 10 15 0
HS104 3.9511634 1.5e-13 1.0e-12 12 12 0
HS105 1044.611692 2.6e-18 4.0e-09 17 21 2

1044.611692 4.3e-18 9.4e-12 17 19 0
HS106 7049.24802 4.1e-11 4.1e-11 13 14 0
HS107 4797.98185 5.2e-14 7.5e-09 9 13 0
HS108 -0.8660254 3.2e-10 5.3e-10 19 24 0
HS109 -- -- -- -- -- --
HS110 -45.7784697 -- 4.8e-13 5 5 0
HS111 -47.7610917 5.0e-08 9.0e-08 12 18 0
HS112 -47.7610908 2.5e-06 1.8e-08 12 18 0
HS113 24.306209 1.4e-11 2.3e-11 18 25 3

24.306209 5.1e-09 5.8e-08 41 54 0
HS114 -1768.80696 3.1e-11 1.0e-10 17 18 0
HS116 97.5875096 2.9e-13 8.4e-11 32 36 0
HS117 32.3486790 1.2e-10 5.7e-10 23 27 0
HS118 664.820450 2.0e-14 3.1e-10 14 14 0
HS119 244.899697 2.2e-16 2.9e-08 12 12 0
HS268 2.5e-9 5.6e-15 5.0e-09 18 19 0
HUBFIT 0.016893495 2.9e-17 2.8e-09 7 7 0
KIWCRESC -3.0e-15 9.0e-15 1.2e-14 10 15 0
LAUNCH 9.004903149 8.5e-11 1.9e-08 36 70 3

9.004903149 5.9e-11 1.5e-08 37 69 0
LIN -0.0175775 3.9e-17 4.1e-16 8 9 1

-0.0175775 6.2e-17 5.6e-10 8 9 0
LOADBAL 0.4528510391 3.1e-12 4.8e-10 13 13 0
MADSEN 0.6164324355 1.1e-11 1.5e-11 11 12 0
MAKELA1 -1.414213564 2.0e-09 3.1e-09 12 12 0
MAKELA2 7.1999999 2.3e-11 8.8e-11 7 7 0

600 J.M. Moguerza, F.J. Prieto

Table 1. (cont.)

MAKELA3 -1.2e-25 3.1e-14 3.2e-14 16 21 0
MATRIX2 1.1e-18 1.2e-17 3.8e-13 33 33 2

8.5e-23 2.6e-24 6.1e-15 56 56 0
MIFFLIN1 -1.0 2.2e-15 5.9e-15 6 6 0
MIFFLIN2 -1.0 3.5e-15 4.0e-15 23 27 0
MINMAXBD 115.7064397 4.2e-09 4.3e-09 27 50 0
MINMAXRB 3.49e-16 2.5e-10 2.5e-10 8 10 0
MISTAKE -1.0 2.7e-14 2.8e-14 11 11 3

-1.0 4.7e-09 1.2e-08 10 10 0
ODFITS -2380.026775 4.0e-14 1.2e-05 7 7 0
POLAK1 2.718281833 2.3e-08 3.1e-08 7 7 0
POLAK2 54.59815003 1.7e-09 4.0e-09 14 30 0
POLAK3 5.933003353 2.5e-08 3.0e-08 22 29 0
POLAK4 -3.8e-18 2.2e-18 3.4e-13 69 95 2

-1.7e-18 3.0e-16 6.9e-13 115 153 0
POLAK6 -44.0 3.1e-10 3.3e-10 20 34 0
PRODPL0 58.79010 2.4e-13 3.5e-10 13 13 0
PRODPL1 35.73896744 2.3e-14 2.1e-11 16 16 1

35.73896744 2.0e-13 5.2e-11 19 20 0
RK23 0.083333335 6.8e-10 2.6e-09 7 7 0
ROSENMMX -44.0 6.2e-09 1.9e-08 33 53 1

-44.0 8.2e-10 5.3e-09 147 205 0
S268 2.5e-09 5.6e-15 5.0e-09 18 19 0
TAME 0 0 1.9e-15 5 37 0
TENBARS4 368.4931619 2.8e-10 3.9e-10 34 43 0
TRUSPYR1 11.22874087 1.7e-12 1.5e-11 9 9 0
TRUSPYR2 11.22874090 1.9e-09 4.3e-08 10 11 0
TRY-B 1.8e-27 3.2e-14 8.1e-14 10 10 0
TWOBARS 1.508652417 3.8e-10 2.3e-09 6 6 0
WOMFLET 1.6e-14 2.6e-12 2.7e-12 15 159 1

3.0e-14 4.1e-12 4.1e-12 16 135 0
ZECEVIC2 -4.125 4.6e-16 1.4e-11 8 8 0
ZECEVIC3 97.30945002 1.8e-08 2.5e-07 9 12 1

97.30945014 5.9e-11 1.0e-09 11 15 0
ZECEVIC4 7.557507769 8.3e-13 9.6e-10 10 11 0
ZY2 2.0 3.2e-09 3.6e-09 6 6 0

Table 2 compares the results from the proposed algorithm (with and without negative
curvature) to those of other codes reported in the literature, in particular those from [28],
[16] and [32], on a set of 22 HS problems (all the problems that were reported in all of
the references). The columns in the table correspond to the number of iterations (matrix
factorizations) required by:

– CS: the proposed algorithm, using negative curvature.
– CS-nc: the proposed algorithm, when negative curvature was disabled.
– VS: iteration counts for LoQo, as reported in [28].
– Y: iteration counts reported in [32].
– GOW: iteration counts reported in [16].

From these results the proposed algorithm works better on the average, particularly when
negative curvature is used, than any of the other three codes. Note that none of the three
algorithms uses negative curvature explicitly. All initial points for the algorithms are

An interior-point method using negative curvature 601

Table 2. Iteration counts for different nonlinear interior point codes

Prob. CS CS-nc VS Y GOW

HS64 26 26 28 29 --
HS65 15 17 14 15 10
HS71 8 8 12 8 15
HS72 24 24 21 43 --
HS73 16 16 20 12 11
HS83 19 19 15 16 16
HS84 36 36 18 21 25
HS93 9 9 10 29 17
HS95 11 11 18 13 26
HS96 11 11 22 12 27
HS97 13 13 18 22 31
HS98 16 16 19 20 27
HS100 9 10 11 16 10
HS104 12 12 14 19 12
HS106 13 13 33 39 45
HS108 19 19 23 62 13
HS109 -- -- 49 21 32
HS113 18 41 16 25 13
HS114 17 17 31 47 15
HS116 32 32 33 82 --
HS117 23 23 22 36 33
HS118 14 14 17 34 17

Average 17.19 17.95 21.09 28.23 20.79

Table 3. Iterations and function evaluations with and without negative curvature

Iterations Function evals.
Prob. CS CS-nc CS CS-nc

Average 20.94 27.38 34.29 40.91

those indicated in [22]. For the GOW algorithm, only those results corresponding to
these starting points are shown.

Regarding the impact of the use of negative curvature on the whole set of 145 test
problems, Table 3 shows the average iteration counts and function evaluations required
by the proposed algorithm for the 34 problems where negative curvature was detect-
ed, both when using negative curvature directions (CS) and when these directions were
disabled (CS-nc). The average reductions in the number of iterations and function eval-
uations, whenever negative curvature was detected, is approximately equal to 24% for
the iteration numbers and 16% for the function evaluations.

Table 4 presents a brief summary of the results. The table includes the total num-
ber of problems in the test set, the number of problems in which negative curvature
was used, and the number of problems in which the use of negative curvature implied
a decrease/no change/increase in the number of iterations and the number of function
evaluations.

From the results in Table 4, negative curvature was used in 23% of the cases. Al-
though in some cases (18%) there was an increase in the iteration count, in more than
half of the cases (53%) there was a reduction in the number of iterations. Regarding the

602 J.M. Moguerza, F.J. Prieto

Table 4. Impact of negative curvature

of problems 145
with neg. curv. 34
Better 18

Its. Same 10
Worse 6
Better 15

Eval Same 6
Worse 13

number of function evaluations the results were less satisfactory, although an overall
decrease was still observed. In fact, the reductions in iterations and function evaluations
were far more marked than the increases. The largest deterioration in the number of
iterations amounted to 9 iterations (20%) for problem HIMMELP5, while the largest im-
provement was 114 iterations in problem ROSENMMX (80%). For those problems where
negative curvature was used, a (geometric) average improvement of 15% in the number
of iterations and 12% in the number of function evaluations was observed. As a con-
sequence, using negative curvature seems to provide significant advantages, although
from the observation of the different behavior in the numbers of iterations and function
evaluations, special care should be taken in the procedure to compute the step length
in the search to reduce the number of function evaluations when negative curvature is
used.

9. Conclusions

In this paper we have described an efficient procedure that makes use of negative
curvature directions to compute local solutions for nonconvex problems. The proce-
dure is based on a primal-dual interior point method to define the search directions,
and a curvilinear search to combine them. Particular care has been taken to intro-
duce conditions that restrict in an appropriate manner the use of negative curvature.
For example, whenever the constraints or the complementarity conditions are far from
being satisfied any negative curvature information that may be available is ignored,
and the effort is devoted to attaining feasibility or to satisfying the complementa-
rity conditions. From a practical point of view, these restrictions on the use of
negative curvature play a very significant role to ensure the efficiency of the
procedure.

The implemented version of the algorithm has been run on a set of test problems.
The results show that the procedure works quite well on these problems. The use of
vector penalty and barrier parameters is in part responsible for this good behavior. The
impact of the negative curvature is not very significant on these small problems (it is
used in only 23% of them), but it can be quite important in some of the cases when it
is used. Given the limited cost of computing a direction of negative curvature when-
ever an appropriate factorization is used to obtain the movement directions, it would
seem that reasonable algorithms should incorporate the use of this second-order infor-
mation.

An interior-point method using negative curvature 603

A. Appendix

In this Appendix we include the detailed proofs for the theoretical results described in
Section 6.

A.1. Proof of Lemma 1

The mechanism of the algorithm and the properties of the linesearch guarantee that for
all k,

LA(x
k+1, λk+1; ρk+1, µk+1) ≤ LA(x

k, λk; ρk+1, µk+1). (62)

Define the set J = {1, . . . , n}\I. From Assumption A.3 there exists x̄i > 1 such that
for all i and all k, xki ≤ x̄i . From Assumption A.4 and the definition of I, there exists an
index r ≥ 0 such that ρk = ρr and µki = µri for all k ≥ r and all i ∈ I. For all such k,
the definition of the merit function (3) implies

LA(x
k, λk; ρk+1, µk+1) = LA(x

k, λk; ρk, µk)−∑
i∈J (µ

k+1
i − µki) log xki

≤ LA(x
k, λk; ρk, µk)−∑

i∈J (µ
k+1
i − µki) log x̄i . (63)

Define
∑
i∈J µri log x̄i ≡ K . Iterating (63) and using (62) it holds for all k ≥ r ,

LA(x
k, λk; ρk, µk) = L(xk, λk)−∑

i∈Iµ
r
i log xri −∑

j∈Jµ
k
j log xkj

+ 1
2

∑m
l=1ρ

r
l c

2
l (x

k)

≤ LA(x
r , λr ; ρr, µr)−∑

i∈J (µ
k
i − µri) log x̄i

≤ LA(x
r , λr ; ρr, µr)+K. (64)

From Assumptions A.1 and A.3, there exists a constant δ ∈ R such that for all k ≥ r ,
L(xk, λk) ≥ δ. The nonnegativity of the penalty parameter ρ implies

∑
l ρ

r
l c

2
l (x

k) ≥ 0.
From (57) we have µkj → 0 for all j ∈ J and from Assumption A.3 there exists ε > 0

such that −∑j∈J µkj log xkj ≥ −ε for all k ≥ r .
Inequality (64) and the above thus combine to yield

−∑i∈Iµ
r
i log xri ≤ LA(x

r , λr ; ρr, µr)+K − δ + ε, (65)

for all k ≥ r . Let µ+ = max{µri , i ∈ I} and µ− = min{µri , i ∈ I}. Also, for a given
iteration k, let Ik+ be the set of indices in I such that log xki is positive and Ik− = I\Ik+.
FromAssumption A.3 we have −∑i∈Ik+ log xki ≥ −∑i∈Ik+ log x̄i ≡ −K+. Using these
definitions we can write

−∑i∈I µri log xki = −∑i∈Ik+ µ
r
i log xki −∑

i∈Ik− µ
r
i log xki

≥ −µ+
∑
i∈Ik+ log xki − µ−

∑
i∈Ik− log xki

= −µ−
∑
i∈I log xki − (µ+ − µ−)

∑
i∈Ik+ log xki

≥ −µ−
∑
i∈I log xki − (µ+ − µ−)K+. (66)

604 J.M. Moguerza, F.J. Prieto

Combining (64), (65) and (66) we obtain

−∑i∈I log xki ≤ µ−1
− (LA(x

r , λr ; ρr, µr)+K − δ + ε + (µ+ − µ−)K+)

⇒ ∏
i∈I xki ≥ exp

(
−µ−1

− (LA(x
r , λr ; ρr, µr)+K − δ + ε + (µ+ − µ−)K+)

)

⇒ xki ≥ exp
(
−µ−1

− (LA(x
r , λr ; ρr, µr)+ K̂)

)
x̄i/

∏
j∈I x̄j ,

for all i ∈ I and all k ≥ r , where x̄i denotes an upper bound on xki implied byAssumption

A.3 and K̂ ≡ K − δ + ε + (µ+ − µ−)K+.
�

A.2. Proof of Lemma 2

Consider a component µki , i ∈ J , of the barrier parameter µ and let Ki denote the
(infinite) subsequence of iterations where it is updated. From (57), µk+1

i < βµµ
k
i for

k ∈ Ki , implying µki → 0. Also from (57), µki > δkµ̂k for k ∈ Ki , implying either
µ̂k → 0 or δk → 0 along the subsequence Ki . Consider both cases:

– If δk → 0 for k ∈ Ki , from (58) it follows min
(
0.25, exp(−1/θkµ)

) → 0 ⇒ θkµ → 0
for k ∈ Ki . From (52) and (53) it follows that

xkj z
k
j → 0, (67)

for k ∈ Ki and all j .
– If µ̂k → 0 for k ∈ Ki , from (56) and xk ≥ 0, zk ≥ 0 the result in (67) follows also

for this case.

Thus, (67) holds for k ∈ K ≡ ∪i∈J Ki and all j .
Assume now that I = {1, . . . , n}\J is nonempty; from the definition of I there

exists µ̄ > 0 such that µkl ≥ µ̄ for all k and all l ∈ I. Let γ̄ ≡ min(0.005, µ̄); from the
update of the dual variables (40)–(42), the definition of δk , (37), and ᾱkd ≥ αkd , for any
iteration k and any l ∈ I,

zk+1
l = zkl + αkd(d

k
z)l ≥ zkl + αkd min(0, (dkz)l)

≥ zkl + ᾱkd min(0, (dkz)l) ≥ (1 − δk)zkl ≥ γ̄ zkl . (68)

The definition of the search direction dkx from (17), the modifications in the coef-
ficient matrix (18) and Assumption A.3 imply the existence of a constant x̄ such that
xki ≤ x̄ and |(dkx)i | ≤ x̄ for all i and all k. Define γz ≡ min(µ̄/(4x̄),minl z0

l /2). For any
iteration k and any l ∈ I such that zkl < γz, the definition of the dual search direction
dkz in (10) and the preceding bounds imply

xkl (d
k
z)l = µkl − (xkl + (dkx)l)z

k
l ≥ µ̄− 2x̄zkl ≥ 1

2 µ̄ > 0 ⇒ (dkz)l > 0

⇒ zk+1
l > zkl . (69)

An interior-point method using negative curvature 605

We now show that xkl z
k
l is bounded away from zero for l ∈ I. Consider the first iteration

index m (if it exists) such that zml < γ̄ γz, and zm−1
l ≥ γ̄ γz. From (68), zml ≥ γ̄ zm−1

l ⇒
zm−1
l < γz but then (69) implies zml > zm−1

l ≥ γ̄ γz, a contradiction implying no such
iteration index m exists and zkl ≥ γ̄ γz for all k and all l ∈ I. This bound and Lemma 1
yield

xki z
k
i ≥ γ̄x γ̄ γz > 0 (70)

for all iterations k and all i ∈ I. But (70) contradicts (67), as a consequence I = ∅
whenever J is nonempty.

Assume J is nonempty, then J = {1, . . . , n} and limk→∞ µkl = 0 for all l. From
(67) it holds that yk = Xkzk → 0 for k ∈ K. Also, (57), (58) and (55) imply

µki > δk(µ∗
i)
k = θkµ min(0.25, exp(−(1/θkµ)))

yki + βy‖yk‖
‖yk‖2

≥ βyθ
k
µ min(0.25, exp(−(1/θkµ)))/‖yk‖, (71)

for all k ∈ Ki and any i. From Assumption A.3 there exists a value K such that ‖yk‖ =
‖Xkzk‖ ≤ K for all k. Replacing this bound in (71) we have

µki >
βy

K
θkµ min(0.25, exp(−(1/θkµ))),

for all i and all iterations k ∈ Ki . From this bound, θkµ ≥ 0 and limk→∞ µki = 0 it
follows that limk∈K θkµ = 0.

�

A.3. Proof of Lemma 3

If J = ∅, from Assumption A.4 there exists an iteration index r such that ρk = ρr and
µki = µri for all k ≥ r and all i. Adding conditions (32) and (33) over all iterations from
r to any k > r it holds that

LA(x
k+1, λk+1; ρk+1, µk+1)− LA(x

r , λr ; ρr, µr) ≤ γ

2

∑k
l=r (α

l
p)

2(φl)′′(0). (72)

FromAssumptions A.1 and A.3,LA(xk+1, λk+1; ρk+1, µk+1) ≥ γ̂ for all k and some
constant γ̂ . Replacing this bound in (72), it follows that

−∑k
l=r (α

l
p)

2(φl)′′(0) ≤ 2

γ

(
LA(x

r , λr ; ρr, µr)− γ̂
)
. (73)

But for all k from (46) it holds that (φk)′′(0) < 0 and αkp > 0. Then, (73) implies

lim
k→∞

(αkp)
2(φk)′′(0) = 0. (74)

We now show that (αkp)
2 is bounded away from zero. From the definition of dkx , (17),

the conditions satisfied by dkn , (22), the definition of dkλρ (29) and Assumptions A.1 and

606 J.M. Moguerza, F.J. Prieto

A.4, there exists a constant γd such that ‖dkx‖ ≤ γd , ‖dkn‖ ≤ γd and ‖dkλρ‖ ≤ γd . From
the definition of ᾱi in (35) and Lemma 1,

xki + (dkn)i ᾱ
k
i + (dkx)i(ᾱ

k
i)

2 = 0 ⇒ xki − |(dkn)i |ᾱki − |(dkx)i |(ᾱki)2 ≤ 0

⇒ xki −
(
|(dkn)i | + |(dkx)i |

)
min(1, ᾱki) ≤ 0 ⇒ ᾱki ≥ xki

|(dkn)i | + |(dkx)i |
≥ γ̄x

2γd
.

This bound, together with (36) and (37), implies for all k,

αkmax ≥ δkγ̄x

2γd
≥ 0.995γ̄x

2γd
> 0. (75)

The search procedure either defines α̃k to be equal to αkmax or from (33) α̃k satisfies

φk(2α̃k) > φk(0)+ 2γ (α̃k)2(φk)′′(0).

Replacing a Taylor series expansion for φk(2α̃k) around 0 in the preceding condition
and using (φk)′(0) ≤ 0 from (43) and (26) and (φk)′′(0) ≤ 0 for all k,

φk(0)+ 2α̃k(φk)′(0)+ 2(α̃k)2(φk)′′(0)+ 4
3 (α̃

k)3(φk)′′′(ξk)

> φk(0)+ 2γ (α̃k)2(φk)′′(0)
⇒ − (1 − γ)(α̃k)2(φk)′′(0) > 2

3 (α̃
k)3(φk)′′′(ξk)

⇒ α̃k > −3(1 − γ)

2

(φk)′′(0)
(φk)′′′(ξk)

, (76)

where ξk ∈ [0, 2α̃k]. Consider the third derivative term (φk)′′′(ξk); from Assumptions
A.1, A.3 and A.4, the bounds on the search directions, the expressions for the first, sec-
ond and third derivatives of the merit function in terms of the functions f and c, and
Lemma 1, implying that the matrices (Xk)−s for s = 1, 2, 3 remain bounded, there exits
a constant γ1 such that (φk)′′′(ξk) ≤ γ1. Replacing this bound in (76) and using (75) it
follows that

α̃k ≥ min

(
0.995γ̄x

2γd
,−(φk)′′(0)3(1 − γ)

2γ1

)
. (77)

The last step in the computation of αkp is based on the satisfaction of condition (38).
Define ψk(α) ≡ ‖c(xk(α))‖. If ψk(α̃k) ≤ βc, then αkp = α̃k and (77) holds for αkp.
Otherwise, consider two cases:

– If ψk(0) = ‖c(xk)‖ < 1
2βc holds. Define αkc as the largest value such that ψk(α) ≤

βc for all α ∈ [0, αkc]. From the Taylor series expansion of ψk around zero,

βc = ψk(αkc) = ψk(0)+ α(ψk)′(ζ k),

for ζ k ∈ [0, αkc]. Assumptions A.1 and A.3 and the boundedness of the search di-
rections imply the existence of a constant γc1 such that (ψk)′(ζ k) = (2ζ kdkx +
dkn)

T∇c(xk(ζ k))T c(xk(ζ k))/‖c(xk(ζ k))‖ ≤ γc1, and it holds that

αkc = ψk(αkc)− ψk(0)

(ψk)′(ζ k)
≥ βc

2γc1
. (78)

An interior-point method using negative curvature 607

– If ψk(0) ≥ 1
2βc, from βc > 2βv it holds that dkn = 0 (see Section 3.4). It follows

that (ψk)′(0) = c(xk)T∇c(xk)dkn/‖c(xk)‖ = 0 and from ∇c(xk)dkx = −c(xk), a
consequence of (17), and dkn = 0,

(ψk)′′(0) = (
(‖∇c(xk)dkn‖2 +∑

j cj (x
k)(dkn)

T∇2cj (x
k)dkn

+ 2c(xk)T∇c(xk)dkx)‖c(xk)‖ − (c(xk)T∇c(xk)dkn)2
)
/‖c(xk)‖2

= −2‖c(xk)‖ = −2ψk(0).

For the Taylor series expansion of ψ(αkc) around zero, using the preceding expressions
for the derivatives,

ψk(αkc) = ψk(0)+ αkc (ψ
k)′(0)+ 1

2 (α
k
c)

2(ψk)′′(0)+ 1
6 (α

k
c)

3(ψk)′′′(ζ k)

= ψk(0)− (αkc)
2ψk(0)+ 1

6 (α
k
c)

3(ψk)′′′(ζ k), (79)

where ζ k ∈ [0, α]. From Assumptions A.1 and A.3, there exists a constant γc3 such that
(ψk)′′′(ζ k) ≤ γc3. From (38) it holds thatψk(0) ≤ βc for all k, andψk(αkc)−ψk(0) ≥ 0.
Replacing these bounds in (79) we obtain,

1
2 (α

k
c)

2
(
−ψk(0)+ 1

3α
k
c (ψ

k)′′′(ζ k)
)

≥ 0 ⇒ αkc ≥ 3ψk(0)

(ψk)′′′(ζ k)
≥ 3βc

2γc3
. (80)

From the backtracking procedure used to compute αkp from α̃k , (77), (78) and (80),

αkp ≥ min
(

1
2α

k
c , α̃

k
)

≥ min

(
βc

4γc
,

0.995γ̄x
2γd

,−(φk)′′(0)3(1 − γ)

2γ1

)
, (81)

for all k, where γc = max(γc1, γc3). Replacing this bound in (74) we obtain

lim
k→∞

(φk)′′(0) = 0. (82)

From Assumption A.5 and (46) we have (φk)′′(0) ≤ −‖c(xk)‖2 and (82) implies
limk→∞ c(xk) = 0. The definition (45) and the equalities in (17) yield

θkρ = −(dkx)T Ḡkρdkx − 2c(xk)T dkλ + c(xk)T Rkc(xk). (83)

To proceed with the analysis, we write dkx as the direct sum of a component in the null-
space of ∇c(xk), dk1 , and another component in the orthogonal subspace, dk2 , as dkx =
Wk
Ad

k
1 + ∇c(xk)T dk2 . From (17) and Assumption A.5, ∇c(xk)∇c(xk)T dk2 = −c(xk);

this equality and c(xk) → 0 imply limk→∞ ‖dk2‖ = 0. Then, (83) can be written as

θkρ + (dk1)
T (Wk

A)
T ḠkρW

k
Ad

k
1 = −2(dk1)

T (Wk
A)
T Ḡkρ∇c(xk)T dk2

− (dk2)
T∇c(xk)Ḡkρ∇c(xk)T dk2 − 2c(xk)T dkλ + c(xk)T Rkc(xk).

From Assumptions A.1, A.3, limk→∞ ‖c(xk)‖ = 0 and limk→∞ ‖dk2‖ = 0, the right-
hand side of the preceding expression converges to zero, and

lim
k→∞

(
θkρ + (dk1)

T (Wk
A)
T ḠkρW

k
Ad

k
1

)
= 0. (84)

608 J.M. Moguerza, F.J. Prieto

As (46) and (82) imply limk→∞ min(θkρ , 0) = 0, using this result in (84) it follows

lim
k→∞

(
max(θkρ , 0)+ (dk1)

T (Wk
A)
T ḠkρW

k
Ad

k
1

)
= 0

⇒ lim
k→∞

(dk1)
T (Wk

A)
T ḠkρW

k
Ad

k
1 = 0 ⇒ lim

k→∞
‖dk1‖ = 0,

where the last implication follows from the positive definiteness of (Wk
A)
T ḠkρW

k
A. Thus,

for the sequence of search directions, limk→∞ ‖dkx‖ = 0, and from (17),

Ḡkρd
k
x = −∇f (xk)+ (Xk)−1µk + ∇c(xk)T (λk + dkλ)

⇒ lim
k→∞

‖∇f (xk)− (Xk)−1µk − ∇c(xk)T (λk + dkλ)‖ = 0.

This result, together with limk→∞ ‖c(xk)‖ = 0, implies that the limit points of the
sequence generated by the algorithm are first-order KKT points for problem (2).

�

A.4. Proof of Lemma 4

From (82) in Lemma 3, (44) and (27), it follows that if J is empty then limk→∞ ‖dkn‖ = 0
and limk→∞ ‖xk+1 − xk‖ = 0. Also, there exists a value µ̄ > 0 such that µk ≥ µ̄ for
all k.

Consider the sequence {λ̂k}, defined from λ̂k+1 = λk + dkλρ = λk + dkλ − Rkc(xk).
From Taylor series expansions and Assumptions A.1 and A.3

∇f (xk) = ∇f (xk−1)+O(‖xk − xk−1‖)
∇c(xk) = ∇c(xk−1)+O(‖xk − xk−1‖),

and using Lemma 1, implying the boundedness of (Xk)−1, and the convergence of {µk},
(Xk)−1µk = (Xk−1)−1µk−1 + (Xk)−1(µk − µk−1)

− (Xk −Xk−1)(XkXk−1)−1µk−1 = (Xk−1)−1µk−1 + o(1).

Combining these results, it holds that

∇f (xk)− (Xk)−1µk − ∇c(xk)T λ̂k = ∇f (xk−1)− (Xk−1)−1µk−1

− ∇c(xk−1)T (λk−1 + dk−1
λ − Rk−1c(xk−1))+ o(1).

From Assumption A.4 and Lemma 3 we have that Rkc(xk) → 0 and

lim
k→∞

‖∇f (xk)− (Xk)−1µk − ∇c(xk)T λ̂k‖ = 0.

Consider now the sequence {zk}. From (40) we have

‖µk+1 −Xk+1zk+1‖ ≤ ‖µk+1 − µk‖ + ‖Xk+1 −Xk‖‖zk+1‖ + ‖µk −Xkzk+1‖
≤ ‖µk+1 − µk‖ + ‖Xk+1 −Xk‖‖zk+1‖

+ (1 − αkd)‖µk −Xkzk‖ + αkd‖µk −Xk(zk + dkz)‖
≤ tk + (1 − αkd)‖µk −Xkzk‖, (85)

An interior-point method using negative curvature 609

where tk ≡ ‖µk+1 −µk‖+‖Xk+1 −Xk‖‖zk+1‖+αkd‖µk−Xk(zk+dkz)‖. From (10) it
holds that µk −Xk(zk + dkz) = Zkdkx and from Lemma 3, ‖dkx‖ → 0; then Assumption
A.3 implies limk→∞ tk = 0. To simplify the notation, let uk ≡ ‖µk +Xkzk‖; from As-
sumption A.3 there exists a constant γu such that uk ≤ γu and tk ≤ γu for all iterations
k. Also, let ωjk ≡ ∏k−1

i=j (1 − αid).

From (10), Lemma 1 and ‖dkx‖ → 0 in Lemma 3, if (dkz)i < 0 it holds that zki >
µki /(x

k
i + (dkx)i) ≥ µ̄i/(2x̄i) for some iteration s and all k ≥ s, where x̄i is an upper

bound on xki from Assumption A.3. Again from (10), as z̄i satisfies from Assumption
A.3 zki ≤ z̄i for some constant z̄i ,

|(dkz)i | = |µki − zki (x
k
i + (dkx)i)|
xki

≤ µ̄i + 2z̄i x̄i
γ̄x

,

and from (41) and (37) it follows that ᾱkd ≥ 0.995µ̄i γ̄x/(2x̄i (µ̄i + 2z̄i x̄i)) ≡ γ̄z. From
(42) it then follows that αkd ≥ βzγ̄z > 0 for all k ≥ s. As zki > 0 implies αkd > 0 for all
k and all i, define γ̃z ≡ min(min0≤k≤s αkd, βzγ̄z) > 0 and it holds that αkd ≥ γ̃z for all k.

Iterating on (85) and using the bound on αkd we obtain the inequality

uk ≤
k−1∑

j=0

ωj+1,ktj + ω0ku0 ≤
k−1∑

j=0

(1 − γ̃z)
k−j−1tj + (1 − γ̃z)

ku0. (86)

For any ε > 0, from limk→∞ tk = 0 there exists an iteration index K such that
tj ≤ εγ̃z/2. Consider iterations k such that k ≥ K + �log(εγ̃z/(2γu))/ log(1 − γ̃z)�.
From 1 − βz < 1 and (86),

uk ≤
k−1∑

j=K
(1 − γ̃z)

k−j−1tj +
K−1∑

j=0

(1 − γ̃z)
k−j−1tj + (1 − γ̃z)

ku0

≤ 1
2εγ̃z

k−1∑

j=K
(1 − γ̃z)

k−j−1 + γu

K∑

j=0

(1 − γ̃z)
k−j

≤ 1
2εγ̃z

∞∑

j=0

(1 − γ̃z)
j + γu(1 − γ̃z)

k−K 1 − (1 − γ̃z)
K+1

γ̃z

≤ 1
2ε + γu(1 − γ̃z)

k−K

γ̃z
≤ 1

2ε + 1
2ε = ε,

implying limk→∞ uk = 0, or equivalently limk→∞ ‖Xkzk − µk‖ = 0.
�

A.5. Proof of Theorem 2

Assume that the barrier parameter is updated a finite number of times. Then, there exists
an iteration index r such that µk = µr for all k ≥ r . From Lemmas 3 and 4 it holds in

610 J.M. Moguerza, F.J. Prieto

this case

limk→∞ ‖∇f (xk)− zk − ∇c(xk)T λ̂k‖ = 0

limk→∞ ‖c(xk)‖ = 0, limk→∞Xkzk = µr.
(87)

These results imply limk→∞ yk = limk→∞Xkzk = µr and limk→∞ ‖(Xk)−1µr −
zk‖ = 0. From (52), (53) and (87),

lim
k→∞

θkµ =
{ ‖µr‖2 if ‖µr‖ < 1

‖µr‖ otherwise.

From (55),

lim
k→∞

(µ∗)k =
{
µr + βy‖µr‖e if ‖µr‖ < 1
µr/‖µr‖ + βye otherwise.

Finally, from (56) we have limk→∞ µ̂k = ∑
i µ

r
i /n.

Let l ∈ arg maxi µri and note that µrl ≥ ‖µr‖/√n and µrl + βy‖µr‖ ≤ 2µrl . From
the preceding limits there exists an iteration index K > r such that (µ∗

l)
k ≤ 3µrl and

µ̂k ≤ 3
∑
i µ

r
i /n ≤ 3µrl for all k ≥ K . Also, from (58) it holds that δk ≤ 0.25 implying

δk max
(
(µ∗
l)
k, µ̂k

)
≤ 3

4µ
r
l < µrl = µkl ,

for all k ≥ K . From (57) the update condition is satisfied for µk+1 and µk+1
l =

βµδ
k max

(
(µ∗
l)
k, µ̂k

) ≤ 3
4βµµ

r
l < µrl = µk+1

l , a contradiction. As a consequence, µk

must be updated an infinite number of times and Lemma 2 applies, implying limk→∞
µk = 0 and the existence of an infinite sequence K such that θkµ → 0 for k ∈ K. From
the definition of θµ, (53), it holds that

lim
k∈K

‖∇f (xk)− ∇c(xk)T λ̂k − zk‖ = 0 , lim
k∈K

‖c(xk)‖ = 0. (88)

For the third set of components in θµ it holds that limk∈K(1 −βm)xki zki +βm(zki +µki −
µki /x

k
i) = 0 for all i. For any ε > 0 and any i there exists an iteration index K̄ such that

for all k ∈ K, k ≥ K̄ ,
∣∣∣∣∣
1 − βm

βm
xki z

k
i + zki − µki

xki

∣∣∣∣∣ ≤ ε. (89)

Define γ2 ≡ εβm/((1 − βm)γ̄z, where from Assumption A.3 γ̄z > 0 is a constant such
that zki ≤ γ̄z for all k and all i. From limk→∞ µk = 0 there exists another iteration index

K̂ such that µki ≤ εγ2(βm + 2γ2(1 − βm))/(2βm + γ2(1 − βm)) for all k ≥ K̂ and all

i; let K = max(K̄, K̂).
For any k ∈ K, k ≥ K , if xki ≤ γ1 from (89) it holds that

∣∣∣∣∣z
k
i − µki

xki

∣∣∣∣∣ ≤ ε + 1 − βm

βm
γ̄zγ2 = 2ε, (90)

An interior-point method using negative curvature 611

while if xki > γ1, using again (89),
∣∣∣∣∣
1 − βm

βm
xki z

k
i + zki − µki

xki

∣∣∣∣∣ ≥
(

1 − βm

βm
xki + 1

)
zki − µki

γ2

⇒
(

1 − βm

βm
xki + 1

)
zki ≤ ε + µki

γ2
⇒ zki ≤ ε + µki /γ2

1 + γ2(1 − βm)/βm

⇒
∣∣∣∣∣z
k
i − µki

xki

∣∣∣∣∣ ≤ ε + µki /γ2

1 + γ2(1 − βm)/βm
+ µki

γ2
≤ 2ε, (91)

and conditions (90) and (91), together with (89), imply

lim
k∈K

‖(Xk)−1µk − zk‖ = 0 , lim
k∈K

‖Xkzk‖ = 0. (92)

As the algorithm ensures that xk ≥ 0 and zk ≥ 0 for all k, (88) and (92) establish that
along the sequence K all limit points are first-order KKT points of problem (1).

We now show that these limit points are also second-order KKT points of (1). In par-
ticular, we show that if this is not the case, then the merit function (3) must be unbounded
below, against Assumptions A.1 and A.3. Consider an infinite subsequence K̂ ⊂ K such
that lim

k∈K̂ x
k = x∗, lim

k∈K̂ λ̂
k = λ∗ and lim

k∈K̂ z
k = z∗. The existence of this subse-

quence is a consequence of Assumption A.3. From (88) and (92) these values satisfy

‖∇f (x∗)− z∗ − ∇c(x∗)T λ∗‖ = 0 , ‖c(x∗)‖ = 0 ,
‖X∗z∗‖ = 0 , x∗ ≥ 0 , z∗ ≥ 0.

(93)

Assume that λmin
(
(W ∗

J)
T∇xxL(x∗, λ∗)W ∗

J

) ≡ γλ < 0 for W ∗
J defined as in Theorem

1, implying that x∗ is not a second-order KKT point of problem (1).
Under this condition, from Assumption A.2, Theorem 1, (92) and (25) there exists

an iteration index r1 such that for all k ≥ r1, k ∈ K̂, it holds that

(dkn)
T Gkρd

k
n ≤ − 1

2c1γ
2
λ . (94)

From (93), implying lim
k∈K̂ ‖dkx‖ = 0, Assumptions A.1 and A.3, there exists another

iteration index r2 such that

|2(dkx)T (∇f (xk)− (Xk)−1µk − ∇c(xk)T (λk − Rkc(xk)))− 2(dkλρ)
T c(xk)|

≤ 1
8c1γ

2
λ , (95)

for all k ≥ r2, k ∈ K̂. Again from (93),

|(dkn)T (Mk(Xk)−2 − (Xk)−1Zk)dkn | ≤ 1
8c1γ

2
λ , (96)

for some iteration index r3 and k ≥ r3, k ∈ K̂. Select r4 large enough that from Assump-
tion A.4 it holds ρk = ρr for all k ≥ r4, and let r ≡ max(r1, r2, r3, r4). Replacing (94),
(95) and (96) in (44) yields

(φk)′′(0) ≤ − 1
4c1γ

2
λ , (97)

for all k ≥ r and k ∈ K̂.

612 J.M. Moguerza, F.J. Prieto

The change in the merit function for iterations larger than r is due to the modification
of the variables in the search and the update of the barrier parameters. From (33), for
k ≥ r it holds that

LA(x
k+1, λk+1; ρk+1, µk+1) ≤ LA(x

k, λk; ρk, µk)+ 1
2γ (α

k
p)

2(φk)′′(0)

+∑n
i=1(µ

k
i − µk+1

i) log xk+1
i .

From Assumption A.3 there exists x̄i > 1 such that xki ≤ x̄i for all k and all i. Replacing
this bound in the preceding inequality, we have

LA(x
k+1, λk+1; ρk+1, µk+1) ≤ LA(x

k, λk; ρk, µk)+ 1
2γ (α

k
p)

2(φk)′′(0)

+∑n
i=1(µ

k
i − µk+1

i) log x̄i .

Adding these bounds from r to k, taking into account that log x̄i > 0 and (φj)′′(0) < 0,
and using (97),

LA(x
k+1, λk+1; ρk+1, µk+1) ≤ LA(x

r , λr ; ρr, µr)+ 1
2γ
∑k
j=r (α

j
p)

2(φj)′′(0)

+∑n
i=1(µ

r
i − µk+1

i) log x̄i

≤ LA(x
r , λr ; ρr, µr)+ 1

2γ
∑
j∈K̂:j≤k(α

j
p)

2(φj)′′(0)

+∑n
i=1µ

r
i log x̄i

≤ LA(x
r , λr ; ρr, µr)− 1

8γ c1γ
2
λ

∑
j∈K̂:j≤k(α

j
p)

2

+∑n
i=1µ

r
i log x̄i ,

for any k ≥ r . FromAssumptions A.1, A.3 and −∑i µ
k
i log xki ≥ −∑i µ

0
i log x̄i , where

x̄i is an upper bound on xki from Assumption A.3, there exists a constant γL such that
LA(x

k, λk; ρk, µk) ≥ γL for all k. As a consequence, if (97) holds then

1
8γ c1γ

2
λ

∑
j∈K̂:j≤k(α

j
p)

2 ≤ −γL + LA(x
r , λr ; ρr, µr)+∑n

i=1µ
r
i log x̄i , (98)

for any k ≥ r . From (98) it should hold that lim
k∈K̂ α

k
p = 0.

To complete the proof of convergence to second-order KKT points we now show
that αkp is bounded away from zero along the sequence K̂, which contradicts (98) and
as a consequence implies that (97) cannot hold. The computation of αkp is carried out
in three stages: it must satisfy the condition (38) on the constraints, but the bound is
in this case identical to the ones obtained in Lemma 3, (78) and (80), as the arguments
were independent of µ. It must also preserve the positivity of the primal variables and
produce sufficient descent on the merit function; in both of these cases, the arguments in
the proof of Lemma 3 are no longer valid, as they depended on the boundedness of the
barrier parameter, and the corresponding bound away from zero on the primal variables.
Nowµk → 0 and the term −∑i µi log xi has unbounded higher derivatives asµk → 0.

We derive a bound for the step to ensure sufficient descent on the merit function,
condition (33). Let φk(α) = ζ k(α) − ∑

i µ
k
i log xki (α), where ζ k(α) ≡ f (xk(α)) −

λk(α)T c(xk(α)) + 0.5
∑
j ρ

k
j c

2
j (x

k(α)) has continuous and uniformly bounded deriv-
atives from Assumption A.1. We show that sufficient descent on ζ implies sufficient

An interior-point method using negative curvature 613

descent on φ, and as a consequence that the corresponding step is bounded away from
zero. The definition of ζ and (44) imply

(φk)′′(0) = (ζ k)′′(0)+ (dkn)
TMk(Xk)−2dkn − 2dkx (X

k)−1µk. (99)

From (93), Assumption A.1 and (17) it follows that lim
k∈K̂ ‖dkx‖ = 0 and there exists

an iteration index r̂ ≥ r̄ such that, from (92),

(dkn)
TMk(Xk)−2dkn − 2dkx (X

k)−1µk =
n∑

i=1

µki

xki

(
(dkn)

2
i

xki

− (dkx)i

)
≥ − 1

16c1γ
2
λ

⇒ (ζ k)′′(0) ≤ (φk)′′(0)+ 1
16c1γ

2
λ ≤ 3

4 (φ
k)′′(0) ≤ − 3

16c1γ
2
λ , (100)

for all k ≥ r̂ and k ∈ K̂, where the last inequality follows from (97) and (99). The
arguments used in the proof of Lemma 3 to derive the bound in (81) can be applied to
the function ζ k . It holds that

ζ k(αk) ≤ ζ k(0)+ αk(ζ k)′(0)+ γ (αk)2(ζ k)′′(0), (101)

for all αk ∈ (0, α̂k], where α̂k satisfies

ζ k(α̂k) = ζ k(0)+ α̂k(ζ k)′(0)+ γ (α̂k)2(ζ k)′′(0)

⇒ γ (α̂k)2(ζ k)′′(0) = 1
2 (α̂

k)2(ζ k)′′(0)+ 1
6 (α̂

k)3(ζ k)′′(ξk)

⇒ α̂k = −(ζ k)′′(0) 3 − 6γ

(ζ k)′′′(ξk)
≥ c1γ

2
λ

9 − 18γ

16γ1a
,

where the bound follows from the use of Taylor series expansions for ζ k around zero,
and γ1a denotes a bound on (ζ k)′′′(ξk) for ξk ∈ [0, α̂k].

We show that the preceding value α̂ also provides a bound for the steplength in the
search on the full merit function φk . Let �k ≡ −∑i µ

k
i (log xki (α)− log xki); from the

definition of ζ k and (101), for α ∈ [0, α̂k] and k ∈ K̂ we have

φk(α) = ζ k(α)−∑
iµ
k
i log xki (α) ≤ ζ k(0)+ α(ζ k)′(0)+ γα2(ζ k)′′(0)

−∑
iµ
k
i log xki (α)

≤ ζ k(0)−∑
iµ
k
i log xki + γ (αk)2(ζ k)′′(0)+�k + α(ζ k)′(0)

≤ φk(0)+ γα2(ζ k)′′(0)+�k + α(ζ k)′(0)
≤ φk(0)+ 3

4γα
2(φk)′′(0)+�k + α(ζ k)′(0), (102)

where the last inequality follows from (100).
We now prove that (102) implies the satisfaction of (33). Consider the term �k;

from the definition of ᾱi in Section 4 it holds that xki + (ᾱki)
2(dkx)i + ᾱki (d

k
n)i = 0 and

2ᾱki (d
k
x)i + (dkn)i ≤ 0, as ᾱi is the smallest positive root of Pi(α) and Pi(0) > 0. For i

614 J.M. Moguerza, F.J. Prieto

such that ᾱi < ∞, from (36), (37) and the preceding conditions we also have

xki (α) ≥ xki + (αkp)
2(dkx)i + αkp(d

k
n)i ≥ xki + (αkmax)

2(dkx)i + αkmax(d
k
n)i

≥ xki + (δk)2(ᾱki)
2(dkx)i + δkᾱki (d

k
n)i

≥ (1 + (δk)2 − 2δk)xki + 2(ᾱki)
2((δk)2 − δk)(dkx)i + ᾱki ((δ

k)2 − δk)(dkn)i

≥ (1 + (δk)2 − 2δk)xki − ᾱki δ
k(1 − δk)

(
2ᾱki (d

k
x)i + (dkn)i

)

≥ (1 + (δk)2 − 2δk)xki

≥
(

1 + (1 − ‖µk‖)2 − 2(1 − ‖µk‖)
)
xki = ‖µk‖2xki .

As a consequence,

�k = −
∑

i

µki (log xki (α)− log xki) ≤ 2
∑

i

µki log ‖µk‖ ⇒ lim
k→∞

�k = 0. (103)

Consider now (ζ k)′(0) = (dkn)
T (Xk)−1µk . From (97) and the definition ofGρ it follows

that

(dkn)
T Gkρd

k
n ≤ − 1

2c1γ
2
λ

⇒ (dkn)
T (Xk)−1Zkdkn ≤ − 1

2c1γ
2
λ − (dkn)

T∇xxL(xk, λ̂k − Rkc(xk))dkn ≤ K,

where the last bound follows from Assumptions A.1, A.3 and A.4 and the boundedness
of dkn from condition (25). These bounds, Assumption A.2 and (93) imply that, if z∗i > 0

then x∗
i = 0 and (dkn)i → 0 for k ∈ K̂. Then, (92) yields

lim
k∈K̂

(dkn)
T (Xk)−1µk = lim

k∈K̂
(dkn)

T zk = 0. (104)

From (103) and (104) there exists an iteration index r̃ ≥ r̂ such that for all k ≥ r̃ ,
k ∈ K̂

�k ≤ 1
128γ c

3
1γ

6
λ ((9 − 18γ)/(16γ1a))

2 ≤ − 1
8γ (α̂

k/2)2(φk)′′(0)

(ζ k)′(0) ≤ 1
128γ c

2
1γ

4
λ (9 − 18γ)/(16γ1a) ≤ − 1

8γ (α̂
k/4)(φk)′′(0)

implying from (102) for all α ∈ [α̂k/2, α̂k],

φk(α) ≤ φk(0)+ 1
2γ (α

k)2(φk)′′(0),

and the satisfaction of (33) for all k ≥ r̃ and k ∈ K̂ for a bounded value

α̂k/2 ≥ c1γ
2
λ

9 − 18γ

32γ1a
> 0. (105)

Consider now the steplength to ensure that the primal variables remain positive,
αkmax. From the definition of ᾱki as the smallest positive root of (35), it holds that 0 =
1+(ᾱki)2((dkx)i/xki)+ᾱki ((dkn)i/xki) if ᾱki is finite. From (17) and Ḡkρ = H̄ k+(Xk)−1Zk ,

(H̄ k + (Xk)−1Zk)dkx = −∇f (xk)+ ∇c(xk)T (λk + dkλ)+ (Xk)−1µk,

An interior-point method using negative curvature 615

and the boundedness by construction of H̄ k , Assumptions A.1, A.2 and A.3, (92) and (93)
imply that there exists a constant γdx such that |(dkx)i |/xki ≤ γdx for all k and all i. Re-
garding the direction of negative curvature dkn , condition (28) implies |(dkn)i |/xki ≤ βdn.
From these bounds it holds that if ᾱki is finite, either ᾱki ≥ 1 or

0 = 1 + (ᾱki)
2((dkx)i/x

k
i)+ ᾱki ((d

k
n)i/x

k
i) ≥ 1 − (ᾱki)

2γdx − ᾱki βdn

≥ 1 − ᾱki γdx − ᾱki βdn ⇒ ᾱki ≥ 1

γdx + βdn
,

and as a consequence of (36), αkmax ≥ 1/(γdx + βdn) and from this bound, (78), (80)
and (105), αkp is bounded away from zero along the sequence K̂.

But if αkp is bounded, (98) cannot hold, and the algorithm must converge to second-

order KKT points of problem (1) along the sequence K̂.
�

Acknowledgements. We wish to thank A. Forsgren, M.H. Wright and two anonymous referees for their helpful
comments and suggestions.

References

1. Auslender, A.: Penalty methods for computing points that satisfy second-order necessary conditions.
Math. Program. 17(2), 229–238 (1979)

2. Bannert, T.: A trust-region algorithm for nonsmooth optimization. Math. Program. 67, 247–264 (1994)
3. Bertsekas, D.P.: Constrained Optimization and Lagrange Multiplier Methods.Academic Press, NewYork,

1982
4. Bongartz, I., Conn, A.R., Gould, N.I.M., Toint, Ph.L.: CUTE: Constrained and unconstrained testing

environment. Trans. ACM Math. Software 21(1), 123–160 (1995)
5. Bonnans, J.F., Launay, G.: Sequential quadratic programming with penalization of the displacement.

SIAM J. Optim. 5(4), 782–812 (1995)
6. Bunch, J.R., Parlett, B.N.: Direct methods for solving symmetric indefinite systems of linear equations.

SIAM J. Numer. Anal. 8, 639–655 (1971)
7. Bunch, J.R., Kaufman, L., Parlett, B.N.: Decomposition of a symmetric matrix. Numer. Math. 27, 95–109

(1976)
8. Byrd, R.H., Schanbel, R.B., Schultz, G.A.: Approximate solution of the trust region problem by minimi-

zation over two-dimensional subspaces. Math. Program. 40, 247–263 (1988)
9. Conn, A.R., Gould, N.I.M., Toint, Ph.L.: Trust-region Methods. SIAM, Philadelphia, 2000

10. El-Bakry, A.S., Tapia, R.A., Tsuchiya, T., Zhang, Y.: On the formulation and theory of the Newton inte-
rior-point method for nonlinear programming. J. Optim. Theory Appl. 89, 507–541 (1996)

11. Eldersveld, S.K.: Large-scale Sequential Quadratic Programming Algorithms. Technical Report SOL
92-4. Stanford University, 1992

12. Fiacco, A.V., McCormick, G.P.: Nonlinear programming: Sequential unconstrained minimization tech-
niques. Society for Industrial and Applied Mathematics, Philadelphia, 1990 (Originally published by
Research Analysis Corporation, McLean, Virginia)

13. Forsgren, A., Murray, W.: Newton methods for large-scale linear equality-constrained minimization. SI-
AM J. Matrix Anal. Appl. 14, 560–587 (1993)

14. Gajulapalli, R.S.: INTOPT: An interior point algorithm for large scale nonlinear optimization. Ph. D.
Thesis. The University of Texas at Austin, 1995

15. Gay, D.M.:A trust-region approach to linearly constrained optimization. In: D.F. Griffiths (ed.), Numerical
Analysis Proceedings, Dundee 1983, Lecture Notes in Mathematics, 1066, pp. 72–105, Springer-Verlag,
Heidelberg, 1984

16. Gay, D.M., Overton, M.L., Wright, M.H.: A primal-dual interior method for nonconvex nonlinear pro-
gramming. In: Y. Yuan (ed.), Advances in Nonlinear Programming, pp. 31–56. Kluwer Academic Pub-
lishers, Dordrecht, The Netherlands, 1998

616 J.M.Moguerza, F.J. Prieto: An interior-point method using negative curvature

17. Gill, P.E., Murray, W., Saunders, M.A., Wright, M.H.: User’s guide for NPSOL (version 4.0): A FORTRAN
package for nonlinear programming. Technical Report SOL 86-2. Stanford University, 1986

18. Gill, P.E., Murray, W., Wright, M.H.: Practical Optimization. Academic Press, London/New York, 1981
19. Gould, N.I.M.: On practical conditions for the existence and uniqueness of solutions to the general equality

quadratic-programming problem. Math. Program. 32, 90–99 (1985)
20. Gould, N.I.M., Toint, Ph.L.: A note on the second-order convergence of optimization algorithms using

barrier functions. Math. Program. 85, 433–438 (1999)
21. Gould, N.I.M., Orban, D., Sartenaer, A., Toint, Ph.L.: Superlinear convergence of primal-dual interior

point algorithms for nonlinear programming. SIAM J. Optim. 11(4), 974–1002 (2001)
22. Hock, W., Schittkowski, K.: Test Examples for Nonlinear Programming Codes. Springer Verlag. Berlin,

1981
23. McCormick, G.: A modification of Armijo’s step-size rule for negative curvature. Math. Program. 13,

111–115 (1977)
24. Mehrotra, S.: On the implementation of a primal-dual interior point method. SIAM J. Optim. 2, 575–601

(1992)
25. Moré, J.J., Sorensen, D.C.: On the use of directions of negative curvature in a modified Newton method.

Math. Program. 16, 1–20 (1979)
26. Murray, W., Prieto, F.J.: A Sequential quadratic programming algorithm using an incomplete solution of

the subproblem. SIAM J. Optim. 5, 590–640 (1995)
27. Stewart, G.W., Sun, J.: Matrix Perturbation Theory. Academic Press, Boston, 1990
28. Vanderbei, R.J., Shanno, D.F.: An interior-point algorithm for nonconvex nonlinear programming. Com-

put. Optim. Appl. 13, 231–252 (1999)
29. Wright, M.H.: Ill-conditioning and computational error in primal-dual methods for nonlinear program-

ming. SIAM J. Optim. 9, 84–111 (1998)
30. Wright, M.H.: Some properties of the Hessian of the logarithmic barrier fuction. Math. Program. 67,

265–295 (1994)
31. Wright, S.J.: Effects of finite-precision arithmetic on interior-point methods for nonlinear programming.

Preprint ANL/MCS-P705-0198. Mathematics and Computer Science Division, Argonne National Labo-
ratory, 1998

32. Yamashita, H.: A globally convergent primal-dual interior point method for constrained optimization.
Optim. Meth. Software 10, 443–469 (1998)

33. Yamashita, H.,Yabe, H.: Superlinear and quadratic convergence of some primal-dual interior point meth-
ods for constrained optimization. Math. Program. 75, 377–397 (1996)

