
Math. Program., Ser. B 95: 407–430 (2003)

Digital Object Identifier (DOI) 10.1007/s10107-002-0355-5

H.D. Mittelmann

An independent benchmarking of SDP and SOCP solvers

Received: March 27, 2001 / Accepted: April 5, 2002
Published online: October 9, 2002 – c© Springer-Verlag 2002

Abstract. This work reports the results of evaluating all computer codes submitted to the Seventh DIMACS
Implementation Challenge on Semidefinite and Related Optimization Problems. The codes were run on a
standard platform and on all the benchmark problems provided by the organizers of the challenge. A total of
ten codes were tested on fifty problems in twelve categories. For each code the most important information is
summarized. Together with the tabulated and commented benchmarking results this provides an overview of
the state of the art in this field.

Key words. semidefinite programming – second order cone programming – optimization software –
performance evaluation

1. Introduction

1.1. The problems solved

The primal and dual pair of conic optimization problems over a self-dual cone are defined
as

min 〈c, x〉 max bT y

(P) s.t. x ∈ K s.t. z ∈ K (D)

Ax = b A∗y + z = c

where

– K is a closed, convex cone in a euclidean space X.
– A : X → R

m is a linear operator, and A∗ is its adjoint.
– b ∈ R

m, and c ∈ X.

In the case of a semidefinite-quadratic-linear program these are defined as follows:

– The space X: x ∈ X ⇔ x = (xs
1, . . . , x

s
ns

, x
q
1 , . . . , x

q
nq

, x�), where
– xs

1, . . . , x
s
ns

are symmetric matrices (possibly of various sizes).
– x

q
1 , . . . , x

q
nq

are vectors (again, possibly of various sizes).
– x� is a vector.

H.D. Mittelmann: Department of Mathematics and Statistics, Arizona State University, Box 871804, Tempe,
AZ 85287-1804, e-mail: mittelmann@asu.edu

This work is supported in part by grant NSF-CISE-9981984

Used Distiller 5.0.x Job Options
This report was created automatically with help of the Adobe Acrobat Distiller addition "Distiller Secrets v1.0.5" from IMPRESSED GmbH.
You can download this startup file for Distiller versions 4.0.5 and 5.0.x for free from http://www.impressed.de.

GENERAL --
File Options:
 Compatibility: PDF 1.2
 Optimize For Fast Web View: Yes
 Embed Thumbnails: Yes
 Auto-Rotate Pages: No
 Distill From Page: 1
 Distill To Page: All Pages
 Binding: Left
 Resolution: [600 600] dpi
 Paper Size: [595 842] Point

COMPRESSION --
Color Images:
 Downsampling: Yes
 Downsample Type: Bicubic Downsampling
 Downsample Resolution: 150 dpi
 Downsampling For Images Above: 225 dpi
 Compression: Yes
 Automatic Selection of Compression Type: Yes
 JPEG Quality: Medium
 Bits Per Pixel: As Original Bit
Grayscale Images:
 Downsampling: Yes
 Downsample Type: Bicubic Downsampling
 Downsample Resolution: 150 dpi
 Downsampling For Images Above: 225 dpi
 Compression: Yes
 Automatic Selection of Compression Type: Yes
 JPEG Quality: Medium
 Bits Per Pixel: As Original Bit
Monochrome Images:
 Downsampling: Yes
 Downsample Type: Bicubic Downsampling
 Downsample Resolution: 600 dpi
 Downsampling For Images Above: 900 dpi
 Compression: Yes
 Compression Type: CCITT
 CCITT Group: 4
 Anti-Alias To Gray: No

 Compress Text and Line Art: Yes

FONTS --
 Embed All Fonts: Yes
 Subset Embedded Fonts: No
 When Embedding Fails: Warn and Continue
Embedding:
 Always Embed: []
 Never Embed: []

COLOR --
Color Management Policies:
 Color Conversion Strategy: Convert All Colors to sRGB
 Intent: Default
Working Spaces:
 Grayscale ICC Profile:
 RGB ICC Profile: sRGB IEC61966-2.1
 CMYK ICC Profile: U.S. Web Coated (SWOP) v2
Device-Dependent Data:
 Preserve Overprint Settings: Yes
 Preserve Under Color Removal and Black Generation: Yes
 Transfer Functions: Apply
 Preserve Halftone Information: Yes

ADVANCED --
Options:
 Use Prologue.ps and Epilogue.ps: No
 Allow PostScript File To Override Job Options: Yes
 Preserve Level 2 copypage Semantics: Yes
 Save Portable Job Ticket Inside PDF File: No
 Illustrator Overprint Mode: Yes
 Convert Gradients To Smooth Shades: No
 ASCII Format: No
Document Structuring Conventions (DSC):
 Process DSC Comments: No

OTHERS --
 Distiller Core Version: 5000
 Use ZIP Compression: Yes
 Deactivate Optimization: No
 Image Memory: 524288 Byte
 Anti-Alias Color Images: No
 Anti-Alias Grayscale Images: No
 Convert Images (< 257 Colors) To Indexed Color Space: Yes
 sRGB ICC Profile: sRGB IEC61966-2.1

END OF REPORT --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Job Option File
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments false
 /DoThumbnails true
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize true
 /ParseDSCCommentsForDocInfo false
 /EmitDSCWarnings false
 /CalGrayProfile ()
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue false
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.2
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends false
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo false
 /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /sRGB
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 150
 /EndPage -1
 /AutoPositionEPSFiles false
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 600
 /AutoFilterGrayImages true
 /AlwaysEmbed []
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 150
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [576.0 792.0]
 /HWResolution [600 600]
>> setpagedevice

408 H.D. Mittelmann

– The cone K: x ∈ K ⇔ xs
j � 0 ∀j, x

q
k ≥q 0 ∀k, x� ≥ 0, where

– u � 0 means that the symmetric matrix u is positive semidefinite.
– v ≥q 0 means that the vector v is in a quadratic cone (also known as the sec-

ond-order cone, Lorentz cone or ice cream cone) of appropriate size. That is, if
v ∈ R

k , then v ≥q 0 ⇔ v1 ≥ ||v2:k||2.
– w ≥ 0 means that the vector w is componentwise nonnegative.

– The inner product 〈., .〉: For x, z ∈ K

〈x, z〉 =
ns∑

j=1

xs
j • zs

j +
nq∑

k=1

x
q
k ∗ z

q
k + x� ∗ z�,

where
– For matrices a and b, a • b = trace aT b = ∑

i,j aij bij .

– For vectors a and b, a ∗ b = aT b = ∑
i aibi .

Thus (P) and (D) become

min
∑ns

j=1 cs
j • xs

j + ∑nq

k=1 c
q
k ∗ x

q
k + c� ∗ x�

s.t.
∑ns

j=1 as
ij • xs

j + ∑nq

k=1 a
q
ik ∗ x

q
k + a�

i ∗ x� = bi ∀i

xs
j � 0 ∀j x

q
k ≥q 0 ∀k x� ≥ 0

(SQLP − P)

and

max
∑m

i=1 biyi

s.t.
∑m

i=1 as
ij yi + zs

j = cs
j ∀j∑m

i=1 a
q
ij yi + z

q
k = c

q
j ∀k∑m

i=1 a�
i yi + z� = c�

zs
j � 0 z

q
k ≥q 0 z� ≥ 0

(SQLP − D)

Thus the feasible set is a product of semidefinite, quadratic and nonnegative orthant
cones, intersected with an affine subspace. It is possible that one or more of the three
parts of the problem is absent, i.e., any of ns , nq , or the length of x� may be zero.

The rotated quadratic cone is defined as

{v ∈ R
k | v1v2 ≥ ||v3:k||}.

It is simply a rotation of the usual quadratic cone, but for the purpose of modeling qua-
dratic inequalities, it is more convenient to use, thus several participating codes support
this cone.

1.2. Computing errors

Suppose that we are given approximate optimal solutions of (SQLP −P) and (SQLP −
D), respectively. To compute how far they are from an exact solution pair, we define a
norm on X, and a minimum eigenvalue w.r.t. the cone K . Precisely, if x ∈ X, then

||x|| =
ns∑

j=1

||xs
j ||F +

nq∑

k=1

||xq
k ||2 + ||x�||2,

An independent benchmarking of SDP and SOCP solvers 409

where for a matrix a, ||a||F is the Frobenius norm of a. Also,

λmin,K(x) = min

{
min

j=1,...,ns

λmin(x
s
j), min

k=1,...,nq

λmin,q(x
q
k), min

h
x�
h

}

where

– for a symmetric matrix a, λmin(a) is the usual smallest eigenvalue of a.
– for a vector a, λmin,q(a) = a1 − ||a2:k||2.

Also, we denote by ||a||1 the absolute value of the largest component of a, for an arbitrary
a ∈ X.

Then, for approximate optimal solutionsx of (SQLP−P) and (y, z)of (SQLP−D),
we define

err1(x, y, z) = ||Ax − b||
1 + ||b||1

err2(x, y, z) = max

{
0,

−λmin,K(x)

1 + ||b||1

}

err3(x, y, z) = ||A∗y + z − c||
1 + ||c||1

err4(x, y, z) = max

{
0,

−λmin,K(z)

1 + ||c||1

}

err5(x, y, z) = 〈c, x〉 − bT y

1 + |〈c, x〉| + |bT y|

Furthermore, when x and z are both in K , that is err2(x, y, z) = err4(x, y, z) = 0, we
also define

err6(x, y, z) = 〈x, z〉
1 + |〈c, x〉| + |bT y|

A few remarks are in order.

– If x and z are both feasible, then in exact arithmetic err5(x, y, z) = err6(x, y, z).
– As x and z are approximate optimal solutions only, we may have err5(x, y, z) < 0.

It is possible that all other error measures being the same, if err5(x, y, z) = −δ with
δ > 0 corresponds to a solution that is “worse”, than as if err5(x, y, z) was δ. Thus,
we decided to report err5(x, y, z), not merely the maximum of err5(x, y, z) and 0
(as it is done in several papers), so as not to suppress any information.

– Several codes do not explicitly maintain z; in this case, one should set

z = c − A∗y

Of course, then err3(x, y, z) will be zero (depending on the accuracy achieved by
the computer).

410 H.D. Mittelmann

In the error tables below err1 and err5 are always listed. err2 is only given when
nonzero and err6 only when in the digits shown different from err5. err6 is not available
for SDPA.

From the time the benchmark problems for the Challenge were published until the
time the papers for this volume were due we have performed an evaluation of the codes
on all the benchmark problems each code could solve. In most cases we had the latest
version of the codes which the authors themselves used and on which their contributions
to the volume are based. An exception is the code SDPA. Its authors are reporting about
work done after release of their software and which is not yet available in coded form.
The codes BMPR and BMZ were released once and not updated. All remaining codes
were updated at least once, several at the time of the workshop or thereafter. Substantial
changes were done with DSDP which evolved from a special code for discrete graph
problems to a general purpose SDP solver accepting also standard sparse SDPA input
format. Further quite remarkable improvements were applied to SDPT3, BUNDLE, and
CSDP.

These benchmark results are meant to yield a rough overview of how the tested
codes performed on the same, standard platform, a Sun Ultra 60 with Solaris 8, 2 GB
of memory, and a 450 MHz processor. Paging was avoided. In the following section
first basic information is given on each participating code. Then, as provided by the
authors, a short description follows of the code itself, the stopping criteria used, and
the perceived strengths and weaknesses. In the third section the test problems are listed
followed by some remarks regarding the performance of the codes. Appended are tables
with problem statistics and the benchmark results.

2. The codes

The submitted codes fall naturally into two major groups and several subgroups:

– The first major group is that of primal-dual interior point methods designed for small
to medium sized problems.

– In the first subgroup are the codes SeDuMi, and SDPT3. These codes handle all
3 types of cones. SDPT3 was enabled to handle second order cones during the
course of the Challenge.

– In the second subgroup are SDPA, and CSDP, which are limited to SDP.
– In the third subgroup are codes not designed for SDP problems but for convex

(MOSEK) and nonconvex as well as convex (LOQO) nonlinear optimization. In
fact, late in the Challenge an SDP interface for LOQO was provided but it did
not solve satisfactorily any of the Challenge problems and these results were not
included below. LOQO did solve some smaller SDPLIB problems.

– The second group is that of large-scale SDP codes designed to provide approximate
solutions for large scale problems: BMPR, BMZ, BUNDLE and DSDP. The first
three of these do not make use of second order derivative information, while DSDP
is a dual interior point code.

In the following the codes will be listed in the above order.
The input formats are:

An independent benchmarking of SDP and SOCP solvers 411

graph: Graph format as provided by the organizers.
Matlab: SeDuMi format in Matlab binary form as provided by organizers.
QPS: extended MPS format as explained in the MOSEK user’s guide [21]; this was
generated from the Matlab format with a converter provided by E. Andersen.
SDPA: the sparse SDPA format as explained in the SDPA user’s guide; problems
not provided in this format were converted from Matlab format to SDP formulation
with the help of a program provided by B. Borchers.

2.1. SDPA

Authors: Fujisawa, Kojima, Nakata
Version 5.02, 9/2000; Available: yes; the software manual and the SDPA source codes
can be found at http://www.is.titech.ac.jp/ yamashi9/sdpa/index.html
Key paper: [12]. For implementation and numerical results – [10].
Features: primal-dual method, tested version uses Meschach library
Language, Input format: C++; SDPA
Error computations: yes
Solves: SDP

The SDPA (SemiDefinite Programming Algorithm) is based on a Mehrotra-type
predictor-corrector infeasible primal-dual interior-point method [18, 10], and is imple-
mented in the C++ language utilizing the Meschach [24] library for matrix computations.
The main features are: it is available in a callable library, three types of search directions
can be used (H..K..M, NT and AHO), block diagonal and sparse data matrix structures
are exploited, and information on infeasibility is provided. SDPA uses a set of parameters
which the user can adjust to cope with numerically difficult semidefinite programs.

Stopping criteria:

– min{‖Ax − b‖∞, ‖A∗y + z − c‖∞} ≤ ε′ and

– |〈c,x〉−bT y|
max{(|〈c,x〉|+|bT y|)|/2.0,1.0} ≤ ε∗

Typical values of the parameters ε′ and ε∗ are 10−6 ∼ 10−8. See [10, 12] for more
details.

2.2. SeDuMi

Author: Sturm
Version: 1.04, 9/2000;
Available: yes, from http://fewcal.kub.nl/sturm/software/sedumi.html
Key papers: [25, 26]
Features: self-dual embedding, dense column handling
Language, Input format: Matlab+C; Matlab, SDPA, SDPpack
Error computations: yes
Solves: SDP/SOCP

The primal-dual interior point algorithm implemented in SeDuMi [25] is described
in [26]. The algorithm has an O(

√
n log ε) worst case bound, and treats initialization

412 H.D. Mittelmann

issues by means of the self-dual embedding technique of [29]. The iterative solutions are
updated in a product form, which makes it possible to provide highly accurate solutions.

The algorithm terminates successfully if the norm of the residuals in the optimal-
ity conditions, or the Farkas system with bT y = 1 or 〈c, x〉 = −1, are less than the
parameter pars.eps. The default value for pars.eps is 1E-9.

Remarks:
– SeDuMi exploits sparsity in solving the normal equations; this results in a bene-

fit for problems with a large number of small order matrix variables, such as the
copositivity-problems in the Dimacs set.

– However, for problems that involve a huge matrix variable (without a block diag-
onal structure), the implementation is slow and consumes an excessive amount of
memory.

2.3. CSDP

Author: Borchers
Version 3.2, 12/15/2000;
Available: yes, from http://www.nmt.edu/ borchers/csdp.html
Key paper: [3]
Features: infeasible predictor-corrector variant of a primal dual method based on the
H..K..M direction
Language, Input format: C; SDPA
Error computations: yes
Solves: SDP

CSDP consists of a callable library and standalone solver for SDP problems. It is
not applicable to problems with second order cone constraints. The code uses a pre-
dictor–corrector variant of the primal–dual method of Helmberg, Rendl, Vanderbei, and
Wolkowicz [15] and Kojima, Shindoh, and Hara [18]. CSDP is suited to the solution
of small and medium size SDPs with general structure. The algorithm supports matri-
ces with block diagonal structure as well as linear programming variables which are
expressed as a diagonal block within the SDP problem.

CSDP is written in portable ANSI C with calls to subroutines from either the Lin-
pack or LAPACK libraries. The required Linpack routines are supplied with the code.
However, improved performance can be obtained by using BLAS and LAPACK libraries
that have been optimized for a particular computer.

The stopping criteria are:

– |〈c,x〉−bT y|
1+|bT y| < 10−7 and

– ‖Ax−b‖2
1+‖b‖2

< 10−7 and

– ‖A∗y−c+z‖2
1+‖c‖2

< 10−7.

In addition, CSDP maintains positive definite X and Z matrices at all times. CSDP
checks this by computing the Cholesky factorizations of X and Z.

An independent benchmarking of SDP and SOCP solvers 413

2.4. DSDP

Authors: S. Benson, Ye
Version: 3.2, 11/2000;
Available: yes, from http://www-unix.mcs.anl.gov/ benson/
Key paper: [2]
Features: Dual scaling potential reduction method, rank-1 constraints, Matlab interface,
MPI parallel
Language, Input format: C; SDPA
Error computations: yes
Solves: SDP

The DSDP software package is an implementation of the dual scaling algorithm
for SDP. Unlike primal-dual interior point methods, this algorithm uses only the dual
solution to generate a step direction. It can generate feasible primal solutions as well,
but it saves time and memory if this feature is not used. Many large problems have
well structured constraints in the form of low rank matrices or sparse matrices. DSDP
explicity accounts for these features by using sparse data structures for the dual matrix
and the eigenvalue/eigenvector decomposition of the data matrices. Theoretical conver-
gence results exist for feasible starting points, and strong computational results have
been achieved using feasible and infeasible starting points. DSDP initially solves the
Schur complement equations using the conjugate residual method, and then it switches
to the Cholesky method when the conditioning of the matrix worsens.
Stopping criteria:

|〈c, x〉 − bT y| /(|bT y| + 1) ≤ 10−3 and

‖A∗y + z − c‖∞ ≤ 10−8

or

|bT y| ≥ 108 (unbounded dual)

or

stepsizes less than 10−3 for more than 10 iterations (dual infeasibility)

2.5. SDPT3

Authors: Toh, Todd, Tütüncü
Version: 3.0, 7/2001;
Available: yes, from http://www.math.nus.edu.sg/ mattohkc/sdpt3.html
Key paper: [27]
Features: primal-dual method, infeasible primal-dual and homogeneous self-dual for-
mulations, Lanczos steplength computation
Language, Input format: Matlab+C or Fortran; SDPA
Error computations: yes
Solves: SDP and SOCP

414 H.D. Mittelmann

This code is designed to solve conic programming problems whose constraint cone is
a product of semidefinite cones, second-order cones, and/or nonnegative orthants. It em-
ploys a predictor-corrector primal-dual path-following method, with either the H..K..M
or the NT search direction. The basic code is written in Matlab, but key subroutines in
Fortran and C are incorporated via Mex files. Routines are provided to read in problems
in either SeDuMi or SDPA format. Sparsity and block diagonal structure are exploited,
but the latter needs to be given explicitly.

The algorithm is stopped if:

– primal infeasibility is suggested because bT y/‖A∗y + z‖ > 108; or
– dual infeasibility is suggested because −〈c, x〉/‖Ax‖ > 108; or
– sufficiently accurate solutions have been obtained:

rel gap := 〈x, z〉
max{1, (〈c, x〉 + bT y)/2}

and

infeas meas := max

[‖Ax − b‖
max{1, ‖b‖} ,

‖A∗y + z − c‖
max{1, ‖c‖}

]

are both below 10−8; or
– slow progress is detected, measured by a rather complicated set of tests including

〈x, z〉/n < 10−4 and rel gap < 5 ∗ infeas meas;
or

– numerical problems are encountered, such as the iterates not being positive definite,
the Schur complement matrix not being positive definite, or the step sizes falling
below 10−6.

Remarks:
– SDPT3 is a general-purpose code based on a polynomial-time interior-point method.
– It should obtain reasonably accurate solutions to problems of small and medium size

(for problems with semidefinite constraints, up to around a thousand constraints in-
volving matrices of order up to around a thousand, and for sparse problems with only
second-order/linear cones, up to around 20,000 constraints and 50,000 variables),
and can solve some larger problems.

– Because it uses a primal-dual strategy, forms the Schur complement matrix for the
Newton equations, and employs direct methods, it is unlikely to compete favorably
with alternative methods on large-scale problems.

2.6. MOSEK

Author: E. Andersen
Version: pre-2.0, 2/9/2001;
Available: yes, from http://www.mosek.com/
Key paper: [1]
Features: special SOCP algorithm, OpenMP parallel on Sun, threaded on Linux/WinNT,

An independent benchmarking of SDP and SOCP solvers 415

Matlab interface
Language, Input format: C; QPS (extended MPS), AMPL
Error computations: no
Solves: SOCP

The conic quadratic optimizer implemented in the prerelease version of MOSEK
2 employs the NT search direction. The other main features of the implementation are
that it is based on a homogeneous and self-dual model, handles the rotated quadratic
cone directly, employs a Mehrotra type predictor-corrector extension and sparse linear
algebra to improve the computational efficiency.

For stopping criteria one may consult the author’s contribution in this volume.
MOSEK version 2 is fairly similar to SeDuMi except MOSEK

– Is 100% C code for speed, but is callable from MATLAB.
– Has an extensive presolve facility to reduce problem size.
– Exploits special structure in rotated quadratic cones.
– Exploits fixed and upper bounded variables.
– Has better linear algebra for solving the normal equation system.
– MOSEK does not handle the semidefinite cone.

2.7. LOQO

Authors: H. Y. Benson, Vanderbei
Version: 5.04, 8/2000;
Available: yes, from http://orfe.princeton.edu/ loqo/
Key paper: [28]
Features: NLP approach
Language, Input format: C; SDPA, Matlab, AMPL
Error computations: no
Solves: SOCP (SDP)

loqo is a software package for solving general (smooth) nonlinear optimization
problems of the form

minimize f (x)

subject to gi(x) = 0, i ∈ E
hi(x) ≥ 0, i ∈ I,

where x ∈ R
n, f : R

n → R, E is the set of equalities, I is the set of inequalities,
g : R

n → R
|E |, and h : R

n → R
|I|. It implements an infeasible-primal-dual path-

following method and requires that the problem be smooth, that is f and h be twice
differentiable, and g be an affine function. Even though loqo can handle nonconvex
problems in general, it performs better with convex problems, where f is convex, g are
affine, and h are concave functions.

Stopping criteria

‖Ax − b‖2 ≤ 10−7

‖A∗y + z − c‖2 ≤ 10−8

log10

(|〈c, x〉 − bT y|
|〈c, x〉| + 1

)
≤ −8

416 H.D. Mittelmann

– LOQO can handle other types of nonlinear constraints in the problem.
– A weakness results from the use of the Cholesky factorization. LOQO works best

with a sparse problem, and it does not exploit the special structure of an SOCP.
– Its SDP approach leads to dense problems.

2.8. BMPR

Authors: Burer, Monteiro
Version: 6/2000;
Available: no; Key paper: [4]
Features: Augmented Lagrangian algorithm applied to an NLP formulation of an SDP
arising by replacing the primal variable by a low-rank factorization.
Language, Input format: C; graph
Error computations: none
Solves: maxcut, bisection, theta

The code BMPR is an infeasible, nonlinear programming method for solving any
standard form primal SDP. So far, BMPR has been tested on the maximum cut SDP
relaxation, the bisection SDP relaxation, and the Lovász theta SDP.

The main idea of BMPR is to eliminate the primal positive semidefiniteness con-
straint X � 0 by employing an implicit factorization X = RRT that is valid for at least
one optimal solution (but not necessarily for all feasible solutions). Using a theorem
of Pataki, R is chosen to be an n × r matrix, where r is the smallest integer satisfying
r(r + 1)/2 ≥ m and m is the number of primal constraints (aside from the constraint
X � 0). A stationary point R̄ of the new nonlinear problem is then found using a first-
order augmented Lagrangian method, and in practice, such a stationary point reliably
gives an optimal SDP solution X̄ = R̄R̄T .

The stopping criterion for BMPR is problem dependent. For maxcut, BMPR can be
easily altered to a primal feasible method that is terminated once the norm of the gradi-
ent is less than 10−5. For bisection and theta, however, BMPR is an infeasible method
that is terminated once the norm of the primal infeasibility has been reduced to a value
of 10−6, which, in accordance with the augmented Lagrangian algorithm, indicates an
approximate stationary point.

– The main strength of BMPR is that it is a first-order algorithm and hence can attack
large-scale SDPs; this property is also shared by BUNDLE and BMZ.

– The infeasible nature of BMPR is a strong disadvantage.
– BMPR does not have a formal convergence proof, while both BMZ and BUNDLE

do.
– BMPR performs better on all problem classes that it shares with BMZ and BUNDLE.

For theta, the Hamming problems are not representative of the generic performance
of BUNDLE; see the above technical report.

– BMPR works with density of the dual matrix S (an advantage over BMZ) and more-
over works with a small number of columns r (an advantage over BUNDLE). As a
result, the iterations of BMPR are extremely fast.

An independent benchmarking of SDP and SOCP solvers 417

2.9. BMZ

Authors: Burer, Monteiro, Zhang
Version: 5/2000;
Available: no;
Key paper: [5]
Features: special transformation of the dual SDP to an NLP
Language, Input format: C; graph
Error computations: no
Solves: maxcut, FAP, bisection, theta

The code BMZ is a dual feasible descent method to solve SDP problems for which all
primal feasible solutions X have the same diagonal. The maximum cut SDP relaxation,
the Lovász theta SDP, and the frequency assignment SDP relaxation are examples of
problems that can be solved by BMZ.

The main idea of BMZ is to convert the dual SDP into a nonlinear optimization
problem over feasible sets of the form R

n++ × R
N , where n is the size of the primal

matrix variable X and N a suitable integer, see [5]. The resulting objective function is
nonconvex but can be computed in time and space proportional to the time and space
required to perform the Cholesky factorization of a dual feasible slack matrix S, which is
typically efficient for large, sparse SDPs. The function’s gradient can also be computed
efficiently. By employing ideas from interior-point methods, it is possible to optimize
the nonconvex function over its open feasible set by following a “central path” towards
optimality. Computationally, a first-order nonlinear optimization algorithm is used to
fully exploit problem structure while still achieving a reasonable amount of accuracy.

The stopping criterion for BMZ is to terminate once the barrier parameter µ has
passed below a specified threshold. For each of the three examples above, the thresholds
are as follows: maxcut, 10−3; theta, 10−3; FAP, 10−4.

– The main strength of BMZ is that it is a first-order algorithm and hence can attack
large-scale SDPs; this property is also shared by BUNDLE and BMPR.

– That BMZ is a feasible method is a distinct advantage over BMPR, though BUNDLE
is also a dual feasible method.

– In our opinion, an advantage of BMZ over BUNDLE is that BMZ seems to handle
a large number of constraints more effectively. The current DIMACS results don’t
exactly show this, but the more recent results in [6] give a different viewpoint.

– A distinct disadvantage of BMZ to both BUNDLE and BMPR is that BMZ works
with the Cholesky factor L of S, that is, BMZ must deal with the fill-in of the Chole-
sky factorization, whereas both BMPR and BUNDLE work only with the density
of S itself. There are several instances in which S fills in dramatically, causing a
slow-down for BMZ.

2.10. BUNDLE

Authors: Helmberg [Kiwiel, Rendl]
Version: SBmethod1.1.1, 11/2000;
Available: yes, from http://www.mathematik.uni-kl.de/ helmberg/SBmethod/

418 H.D. Mittelmann

Key papers: [13, 14, 16, 17]
Features: eigenvalue optimization
Language, Input format: C++; graph
Error computations: norm of subgradient only
Solves: maxcut, FAP, bisection, theta

SBmethod, Version 1.1.1, is an implementation of the spectral bundle method [16,
14] for eigenvalue optimization problems of the form

min
y∈Rm

a λmax(C −
m∑

i=1

Aiyi) + bT y. (1)

The design variables yi may be sign constrained, C and the Ai are given real symmetric
matrices, b ∈ R

m allows to specify a linear cost term, and a > 0 is a constant multi-
plier for the maximum eigenvalue function λmax(·). The code is intended for large scale
problems and allows to exploit structural properties of the matrices such as sparsity and
low rank structure (see the manual [13]). Problem (1) is equivalent to the dual of semi-
definite programs max{〈C, X〉 : X � 0, 〈Ai, X〉 = bi for i = 1, . . . m} with constant
trace, trX = a.

The code is a subgradient method in the style of the proximal bundle method of
[17]. Function values and subgradients of the nonsmooth convex function f (y) :=
a λmax(C −∑m

i=1 Aiyi)+bT y are determined via computing the maximum eigenvalue
and a corresponding eigenvector by the Lanczos method. Starting from a given point
ŷ = y0, the algorithm generates the next candidate y+ := argminyf̂ (·) + u

2 ‖ · −ŷ‖2,

where f̂ is an accumulated semidefinite cutting model minorizing f and the dynam-
ically updated weight u > 0 keeps y+ near ŷ. A descent step ŷ+ = y+ occurs if
f (ŷ) − f (y+) ≥ κ[f (ŷ) − f̂ (y+)], where κ ∈ (0, 1). Otherwise a null step ŷ+ = ŷ is
made but the next model is improved with the new eigenvector computed at y+.

The algorithm stops, when f (ŷ)−f̂ (y+) ≤ εterm(|f (ŷ)|+1.) for a given termination
parameter εterm > 0 which is 10−5 by default.

– The code never factorizes the matrix C − ∑m
i=1 Aiyi but uses matrix vector multi-

plications exclusively. Thus, there is no danger of increasing memory requirements
or computational work by additional fill-in.

– Experimentally, the method seems to exhibit fast convergence if the semidefinite
subcone that is used to generate the semidefinite cutting surface model, spans the
optimal solution of the corresponding primal problem.

– If the subcone, however, is too small, the typical tailing off effect of subgradient
methods is observed.

3. The problems, input formats, and the performance of the codes

There are 50 Challenge benchmark problems in 12 groups. For details, see the appendix
and the preliminary report [8] available at [9].

– The torus set: Max cut problems from the Ising model of spin glasses.
– The bisection set: Min bisection problems from circuit partitioning.

An independent benchmarking of SDP and SOCP solvers 419

– The fap set: Min k-uncut problems from frequency assignment.
– The nql set: Quadratic problems to compute plastic collapse states: plane strain

models.
– The qssp set: Quadratic problems to compute plastic collapse states: supported plate

models.
– The filter set: Mixed SDP/SOCP problems from PAM (pulse amplitude modulation)

filter design.
– The hinf set: LMI (Linear Matrix Inequality) problems.
– The truss set: Truss topology design problems.
– The antenna set: Antenna array design problems.
– The copos set: Checking a sufficient condition for copositivity of a matrix.
– The hamming set: Instances computing the theta function of Hamming graphs for

which the exact value is known.
– The sched set: Quadratic relaxations of scheduling problems.

In each set there are about four instances; from routinely solvable ones to those at or
beyond the capabilities of current solvers. The problem statistics are in Tables 1 and 2.
The explanation of the entries is as follows:

– An entry [7; 3x5, 3, 4, 2x6] in the “SDP” column means that the problem has 7 SDP
blocks whose sizes are 5,5,5,3,4,6,6 in this order. The meaning of the entries in the
“QUADR” column is analogous.

– If an entry in the “opt. value” column has is not accompanied by a mark, or remark,
then it has been computed by a primal-dual interior point code. Currently these codes
provide the most accurate solutions. Still, these values are approximate, and which
solver furnishes the most accurate solution can be told only after looking at the tables
with the error measures, namely Tables 5, 10 and 11.

– If an entry is accompanied by the mark ‘*’, then it has been computed by a code
designed to obtain approximate solutions to large scale problems (such as BMPR,
BMZ, BUNDLE, and DSDP).

– If in addition to the ‘*’ mark, there is a ‘lb, not opt’ remark, this means that a low-
er bound on the objective value was computed by BMZ, or BUNDLE. These codes
work with fully feasible dual solutions, whose value serves as a reliable lower bound,
even when the termination criteria of the codes are not satisfied.

– Having a ‘(?)’ mark means that the listed value is the currently known most accurate
one; nevertheless, its accuracy is still not satisfactory, and the true value may be quite
different.

As the later tables show, there are numerous examples of the first category but also
some practically unsolvable ones, notably copo68, fap25, fap36. A problem
which is solvable by just two codes is industry2. In the case of the hinf12 and
hinf13 instances the results obtained by the various codes are so different, that we
cannot be sure whether these problems have in fact ever been solved, hence the “?” in
the objective column. All these problems are SDPs. The situation with the SOCPs is
completely different: there is one specialized code which very efficiently solves all the
Challenge problems. This code is MOSEK, with SeDuMi being a close second.

420 H.D. Mittelmann

3.1. SOCP problems

The results are contained in Tables 3, 4 and 5. For all codes the primal objective values
are listed. The fastest code in this category is MOSEK, with SeDuMi a close second.
MOSEK uses its own input format: extended QPS, which is an extension of the QPS
format for quadratic programs which in turn is an extension of the well-known MPS
format. All other SOCP problems were given in SeDuMi format, and converted to QPS
for input to MOSEK with the help of a converter provided by its author. SeDuMi is a
close second on the SOCP problems. Only its memory usage kept it from solving all
instances.

LOQO which grew out of a LP/QP code to a general NLP solver, has an AMPL
interface and accepts QPS input but only for QP’s. More recently, it was equipped with
a Matlab-based interface to read SOCP problems and even with an interface to input and
solve SDP problems in sparse SDPA format. The SOCP results for LOQO in the tables
were obtained with the Matlab interface. If a run was not successful because not all of
LOQO’s convergence criteria were satisfied, this problem was also solved utilizing the
AMPL interface and the QPS to AMPL converted files provided by us per anonymous
ftp. These results are in parentheses. The LOQO option ‘convex’ was used and the
maximum iteration number increased. It should be noted that LOQO is in continuous
development and while here version 5.04 was used in the mean time a filter-based version
6.0 is available.

3.2. SDP problems

The results are contained in Tables 6, 7, 9, 10, and 11. For all codes, except for BMZ,
BUNDLE and DSDP the primal objective values are listed. On the SDP side eight codes
are competing and the collection of the test problems is naturally more diverse. Three of
the codes – BMPR, BMZ, and BUNDLE – do not make use of second order information,
and are therefore successful mostly on large-scale combinatorial SDPs.

The important difference between BMPR and the two other codes, BMZ and BUN-
DLE are as follows. BMPR is a primal method, that works with primal infeasible solu-
tions, attaining feasibility in the limit only: its objective value is therefore mathematically
less reliable, but it produces primal approximations very efficiently. BMZ and BUNDLE
are both dual methods, that work with dual feasible solutions, hence any objective val-
ue they furnish is a mathematically reliable lower bound on the objective value, even
before their termination criteria have been met. The difference in the approaches –
primal vs. dual – explains the differences in the reported objective values in Table 6. We
remark that some kind of error computation is possible for these codes as well, but this
was not incorporated into our testing, and we refer to the authors’ contributions in this
volume.

One can draw cautiously the following conclusions concerning the first three codes.
BUNDLE outperforms BMZ in the maxcut and bisection classes, generates excellent
starting guesses in the class of theta problems and seems consequently very efficient
there. However, in the FAP class BMZ is clearly superior to BUNDLE. This becomes

An independent benchmarking of SDP and SOCP solvers 421

evident from the smallest instance while a further comparison was hampered by the large
jump in size to the two larger instances in this class. Taking into account that BUNDLE
is applicable to a wider class of SDP problems but that BMZ due to its general approach
may still be generalized [7], both methods have their advantages and disadvantages, no
“winner” can be declared.

A remark is in order on the results for the FAP problems in Table 7 and the codes
BMZ and BUNDLE. Both codes finished with the given times and function values on the
two smaller problems. On FAP36 BMZ reached the maximum function value of 63.780
after 1.2 × 107 seconds, then the value dropped slightly to 63.775 and after the given
endtime the code crashed, putting out NaN’s. BUNDLE, on the other hand, reached the
given function value after the given time when the machine crashed and the code was
not restarted.

The code BMPR, written by a subset of the BMZ authors, competes very well in
the maxcut, bisection, and theta classes. While it does not have a convergence theory, it
appears to be the most efficient code for the problems that are part of the Challenge in
these classes. BUNDLE’s performance in the theta class is largely due to the choice of
starting values. It can without doubt be stated that these three first order methods have
proven their value for larger instances in certain classes and that further generalizations
and improvements may be expected.

It remains to assess the performance of the remaining codes, especially on the SDP
problems. Among these, DSDP is the only code employing a dual approach. Of the
others, SDPA, SDPT3, and CSDP were run with HKM or XZ directions although the
first two allow alternative choices, while SeDuMi utilizes the NT direction or scaling.
SDPA is the most traditional code. It has not been updated since 1999 but it performs in
a robust way, satisfying all the basic expectations a user would have in the primal-dual
approach it is based on. SeDuMi from the start was designed to solve SQL (semidefinite,
quadratic, linear) problems while SDPT3 only recently was extended to this class. SeD-
uMi was slightly upgraded from the currently still distributed version 1.03 to the version
1.04 used for our tests. It employs a number of measures assuring a high numerical
robustness while maintaining good efficiency except when the SDP problem involves
large matrix variables without block-diagonal structure. Before SDPT3’s extension, SeD-
uMi may have been considered the best broadly, to both SDP and SOCP classes, appli-
cable program.

DSDP is the only dual code which has both advantages and disadvantages. It can
exploit certain problem features to reduce storage and increase efficiency. This does not
show very much with the limited selection of Challenge problems; in fact, on the larger
SDPs DSDP has a comparable performance to CSDP, which is a primal-dual code, but is
especially good at handling one large matrix variable. More information about DSDP’s
performance can be found in [2].

CSDP in its previous version did not have the robustness of the other methods but
was stabilized in version 3.2. In several of the cases listed as failed it came close to
satisfying the termination criteria. Its memory requirements limit it somewhat but the
fact that it is entirely in C or f77 makes it still very economical in that respect and also
allows to compile it in 64-bit mode on appropriate platforms. CSDP solved, for example,

422 H.D. Mittelmann

the maxcut problems in about the time of DSDP and only 2–4 times slower than the
more specialized BMZ.

The code SDPT3 underwent the largest changes except possibly for DSDP during
the course of the Challenge. While version 2.1 was comparable to SDPA, it was mod-
ified in a minor way for the currently available version 2.2 and in a major way for the
version 3.0 the authors asked us to consider. SDPT3-3.0 is a contender in both SDP and
SOCP classes and in both smaller and somewhat larger problem sizes. Still, its basic
primal-dual strategy and direct linear algebra and the use of Matlab set some limits on
problem size.

There were initial difficulties with running SDPT3 under Matlab 6 on a Solaris
platform. These lead us to provide additional benchmarking information, see the next
paragraph. However, in the mean time these problems seem to have been fixed. As far
as one can tell from the limited Challenge numbers, SDPT3-3.0 is comparable though
not necessarily faster than SeDuMi on small SDP/SOCP problems. But, it is able to
solve much larger cases limited mainly through the memory allocation of Matlab and
to do this quite efficiently. This can partly be seen from the results below but was also
confirmed through other computations we did.

For an additional comparison on large SDPs, we provide the following additional
benchmark result. The case neosfbr24, an SDP relaxation of the QAP Nug24, gener-
ated by the authors of [23] was solved by us on a single processor of a Sun HPC server
E6500 (24 processors, Ultra Sparc II, 400 MHz, 24 GB shared memory) in 6 days and 5
hours using CSDP and in 19 hours and 10 minutes using SDPT3. With default settings,
then SDPT3 had reduced the relative duality gap to 1E-9 while CSDP’s was 9E-8. For
the case neosfbr25 SDPT3 had memory allocation problems while CSDP solved it
in 10 days and 2 hours. Even the very large case neosfbr30 was solved by the 64-bit
version of CSDP; this, however, took nearly eight weeks. The datafiles just mentioned
were made available by us through anonymous ftp. The NEOS solvers for CSDP and
SDPT3 are currently installed on the E6500, while we have installed SDPA, SeDuMi,
and MOSEK (extended MPS input for LP/QP/SOCP problems) on another computer.
To complete the list of the codes considered here, DSDP and LOQO are also installed
at NEOS([22]).

In summary it can be said that the Challenge and this benchmarking effort have pro-
vided a good overview of the state of the art in the solution of SDP and SOCP problems.
All participating codes proved to be valuable in their own right. Many are successful or
even excel in solving a subclass of the problems considered here, others in the solution
of classes that extend beyond those. The ‘general’ SDP respectively SQL codes SDPA
and SeDuMi are both reliable and fairly efficient for small to medium problem sizes but
both have not been updated, while the codes CSDP and SDPT3 have undergone changes
which allow them to solve relatively large SDP respectively SQL cases. We have reason
to believe that these as well as several of the other codes will soon be further enhanced
and generalized.

Acknowledgements. The work of Gabor Pataki and the referees is gratefully acknowledged. They greatly
helped us to present the results in this form. In particular, Tables 1 and 2 and part of the description of the
problem class in the introduction were taken from reference [8] with the authors’ permission.

An independent benchmarking of SDP and SOCP solvers 423

4. Appendix:Problem statistics and computational results

Table 1. Problem Statistics: Pure SDPs

NAME ROWS SDP LIN OPT VALUE

toruspm3-8-50 512 [1; 512] – 527.808663
toruspm3-15-50 3,375 [1; 3,375] – 3474.7939
torusg3-8 512 [1; 512] – 457.358179
torusg3-15 3,375 [1; 3,375] – 3134.5683

bm1 883 [1; 882] – 23.43982
biomedP 6,515 [1; 6,514] – 33.6 *
industry2 12,638 [1; 12,637] – 65.6 *

fap09 15,225 [1; 174] 14,025 10.8 *
fap25 2,244,021 [1; 2,118] 2,232,141 12.5 * (lb, not opt)
fap36 8,448,105 [1; 4,110] 8,405,931 63.7 * (lb, not opt)

fap-sup-25 322,924 [1; 2,118] 311,044 12.5 * (lb, not opt)
fap-sup-36 1,154,467 [1; 4,110] 1,112,293 63.7 * (lb, not opt)

hamming 9 8 2,305 [1; 512] – 224
hamming 10 2 23,041 [1; 1,024] – 102.4
hamming 11 2 56,321 [1; 2,048] – 170 2/3
hamming 7 5 6 1,793 [1; 128] – 42 2/3
hamming 8 3 4 16,129 [1; 256] – 25.6
hamming 9 5 6 53,761 [1; 256] – 85 1/3

copo14 1,275 [14; 14 × 14] 364 0
copo23 5,820 [23; 23 × 23] 1771 0
copo68 154,905 [68; 68 × 68] 50,116 0

truss5 208 [34; 33 × 10, 1] – 132.6356779
truss8 496 [34; 33 × 19, 1] – 133.1145891

hinf12 43 [3; 6, 6, 12] – −0.0398 (?)
hinf13 57 [3; 7, 9, 14] – −45.476 (?)

Table 2. Problem Statistics: Mixed and Pure SOCPs

NAME ROWS SDP/QUADR LIN OPT VALUE

filter48 969 [1; 48]/[1; 49] 931 1.416129
filtinf1 983 [1; 49]/[1; 49] 945 primal inf.
minphase 48 [1; 48]/− – 5.980989

nql30 3,680 −/[900; 900 × 3] 3,602 −0.946028
nql60 14,560 −/[3600; 3600 × 3] 14,402 −0.935423
nql180 130,080 −/[32400; 32400 × 3] 129,602 −0.927717

qssp30 3,691 −/[1891; 1891 × 4] 2 −6.496675
qssp60 14,581 −/[7381; 7381 × 4] 2 −6.562696
qssp180 130,141 −/[65341; 65341 × 4] 2 −6.639527

sched 50 50 orig 2527 −/[2; 2474, 3] 2,502 26,673
sched 100 50 orig 4844 −/[2; 4741, 3] 5,002 181,889
sched 100 100 orig 8338 −/[2; 8235, 3] 10,002 717,367
sched 200 100 orig 18087 −/[2; 17884, 3] 20,002 141,360
sched 50 50 scaled 2526 −/2475 2,502 7.852038
sched 100 50 scaled 4843 −/4742 5,002 67.16628
sched 100 100 scaled 8337 −/8236 10,002 27.33145
sched 200 100 scaled 18086 −/17885 20,002 51.81247

424 H.D. Mittelmann

Table 2. Continued.

NAME ROWS SDP/QUADR LIN OPT VALUE

nb 123 −/[793; 793 × 3] 4 −0.050703
nb L1 915 −/[793; 793 × 3] 797 −13.01227
nb L2 123 −/[839; 1 × 1677, 838 × 3] 4 −1.628972
nb L2 bessel 123 −/[839; 1 × 123, 838 × 3] 4 −0.102571

Table 3. CPU times in seconds, SOCP problems; MM: memory exceeded, TT: more than 35 hrs., parentheses:
AMPL input

PROBLEM LOQO MOSEK SDPT3 SeDuMi

nb 56 17 42 31
nb L1 (65) 20 79 38
nb L2 61 39 83 44

nb L2 Bessel 28 18 46 22

nql30 (114) 3 12 6
nql60 (1978) 20 66 33

nql180 (TT) 344 MM MM

qssp30 15 5 24 8
qssp60 151 31 180 109

qssp180 (TT) 531 MM MM

sched 50 50 orig 23 3 25 11
sched 100 50 orig 52 7 85 31

sched 100 100 orig 378 16 105 62
sched 200 100 orig 459 49 404 272

sched 50 50 scaled 29 3 17 9
sched 100 50 scaled 34 7 41 40

sched 100 100 scaled 138 16 73 239
sched 200 100 scaled 372 49 245 409

Table 4. Optimal values, SOCP problems

PROBLEM LOQO MOSEK SDPT3 SeDuMi

nb −.050703 −.050703 −.050679 −.050703
nb L1 −13.0123 −13.0123 −13.0123 −13.0123
nb L2 −1.6290 −1.6290 −1.6290 −1.6290

nb L2 Bessel −.10257 −.10257 −.10257 −.10257

nql30 .94603 .94603 .94605 .94604
nql60 .93505 .93505 .93512 .9351

nql180 – .9277 – –

qssp30 6.4967 6.4967 6.4967 6.4967
qssp60 6.5627 6.5627 6.5627 6.5627

qssp180 – 6.6395 – –

sched 50 50 orig 26673 26673 26671 26673
sched 100 50 orig 181890 181890 181831 181890

sched 100 100 orig 717368 717368 702797 717368
sched 200 100 orig 141360 141360 140863 141360

sched 50 50 scaled 7.85204 7.85204 7.85306 7.85204
sched 100 50 scaled 67.1650 67.1663 67.1736 67.1650

sched 100 100 scaled 27.3308 27.3315 26.9810 27.3308
sched 200 100 scaled 51.8120 51.8125 51.7538 51.8120

An independent benchmarking of SDP and SOCP solvers 425

Table 5. Error Measures, SOCP problems

PROB/ERROR SDPT3 SeDu.. PROB/ERROR SDPT3 SeDu..

nb/1 .18e-4 .86e-12 nb L1/1 .69e-4 .83e-12
nb/3 .10e-7 0 nb L1/3 .40e-8 0
nb/4 0 .14e-14 nb L1/4 0 .57e-13
nb/5 .21e-3 .53e-15 nb L1/5 .14e-4 .82e-11
nb/6 .22e-3 .88e-13 nb L1/6 .14e-4 .77e-11

nb L2/1 .68e-8 .85e-12 nb L2 Bessel/1 .77e-8 .39e-13
nb L2/3 .15e-9 0 nb L2 Bessel/3 .23e-10 0
nb L2/4 0 .12e-12 nb L2 Bessel/4 0 .28e-13
nb L2/5 .11e-7 .26e-10 nb L2 Bessel/5 .88e-7 .82e-11

nql30/1 .57e-7 .97e-12 nql60/1 .40e-6 .30e-12
nql30/3 .48e-8 0 nql60/3 .10e-7 0
nql30/4 0 .11e-12 nql60/4 0 .14e-13
nql30/5 .17e-4 −.13e-11 nql60/5 .43e-7 −.67e-13
nql30/6 .37e-4 .57e-13 nql60/6 .10e-4 .70e-14

qssp30/1 .72e-7 .70e-12 qssp60/1 .46e-4 .12e-11
qssp30/3 .11e-8 0 qssp60/3 .22e-8 0
qssp30/4 0 .28e-14 qssp60/4 0 .42e-14
qssp30/5 .71e-6 −.51e-13 qssp60/5 .62e-4 .16e-12
qssp30/6 .76e-6 .47e-14 qssp60/6 .20e-4 .10e-13

sched 50 50 orig/1 .67e-3 .51e-6 sched 50 50 scaled/1 .12e-3 .93e-8
sched 50 50 orig/3 .27e-8 0 sched 50 50 scaled/3 .41e-14 0
sched 50 50 orig/4 0 0 sched 50 50 scaled/4 0 .43e-15
sched 50 50 orig/5 −.87e-4 .13e-11 sched 50 50 scaled/5 .16e-4 −.17e-12
sched 50 50 orig/6 .61e-5 .86e-11 sched 50 50 scaled/6 .30e-4 .13e-12

sched 100 50 orig/1 .62e-3 .94e-5 sched 100 50 scaled/1 .83e-3 .37e-7
sched 100 50 orig/2 0 .57e-10 sched 100 50 scaled/2 0 .68e-13
sched 100 50 orig/3 .31e-10 0 sched 100 50 scaled/3 .90e-12 0
sched 100 50 orig/4 0 .57e-10 sched 100 50 scaled/4 0 .21e-13
sched 100 50 orig/5 −.80e-3 −.11e-9 sched 100 50 scaled/5 .12e-3 .67e-11
sched 100 50 orig/6 .19e-5 −.10e-10 sched 100 50 scaled/6 .11e-3 −.10e-12

sched 100 100 orig/1 .52e-1 .15e1 sched 100 100 scaled/1 .44e-1 .11e-5
sched 100 100 orig/3 .11e-9 0 sched 100 100 scaled/3 .21e-13 0
sched 100 100 orig/4 0 .28e-8 sched 100 100 scaled/4 0 .67e-14
sched 100 100 orig/5 −.19e-1 .19e-10 sched 100 100 scaled/5 −.42e-2 .12e-10
sched 100 100 orig/6 .47e-6 .13e-6 sched 100 100 scaled/6 .14e-1 .47e-11

sched 200 100 orig/1 .61e-1 .34e-4 sched 200 100 scaled/1 .28e-2 .12e-6
sched 200 100 orig/2 0 .36e-10 sched 200 100 scaled/2 0 .15e-12
sched 200 100 orig/3 .32e-8 0 sched 200 100 scaled/3 .58e-8 0
sched 200 100 orig/4 0 .41e-10 sched 200 100 scaled/4 0 .80e-13
sched 200 100 orig/5 −.44e-2 −.78e-10 sched 200 100 scaled/5 −.84e-3 .98e-11
sched 200 100 orig/6 .32e-5 −.82e-10 sched 200 100 scaled/6 .72e-3 −.10e-12

426 H.D. Mittelmann

Table 6. CPU times in seconds, small and medium SDP problems; S semidefinite, Q quadratic, L linear; MM:
memory exceeded; NA: not applicable

PROB/TYPE BMP BMZ BDL CSD DSD SDA SD3 SeD

toruspm3-8-50/S 6 40 15 99 42 435 80 955
torusg3-8/S 12 47 15 106 43 650 82 1311

bm1/S 53 142 110 fail 1282 6532 749 30661

filter48 socp/SQL NA NA NA 504 fail 2348 53 12
filtinf1/SQL NA NA NA fail fail 2008 fail 12
minphase/S NA NA NA fail 25 2 6 5

truss5/S NA NA NA 4 17 4 7 4
truss8/S NA NA NA 23 222 45 35 27

hinf12/S NA NA NA fail 1 1 5 1
hinf13/S NA NA NA fail 1 1 4 1

copo14/SL NA NA NA 54 1004 226 33 30
copo23/SL NA NA NA 3607 fail 38894 1575 5651
copo68/SL NA NA NA MM MM MM MM MM

hamming 7 5 6/S 4 360 1 89 115 495 52 365
hamming 9 8/S 15 383 1 328 999 fail 183 1482

Table 7. CPU times in seconds, large SDP problems; S semidefinite, L linear; MM: memory exceeded; *: see
fourth paragraph in subsection 3.2

PROB/TYPE BMPR BMZ BUNDLE CSDP DSDP

toruspm3-15-50/S 172 4182 462 15857 16450
torusg3-15/S 144 5043 701 16006 17897

fap09/SL NA 1424 14972 fail MM
fap25/SL NA 9.97e5 1.38e6 MM MM
fap36/SL NA 1.53e7* 7.33e6* MM MM

biomedP/S 5407 fail 17470 MM MM
industry2/S 9515 MM 101074 MM MM

hamming 8 3 4/S 139 3207 16 MM MM
hamming 9 5 6/S 569 63744 8 MM MM
hamming 10 2/S 616 7580 116 MM MM
hamming 11 2/S 1423 57541 243 MM MM

Table 8. Typical Memory Requirements in MB

PROBLEM BP BZ BD CS DS LO MS SA ST Se

torusg3–8 – – – 31 9.4 – – 82 44 113
torusg3-15 22 44.6 19 1450 205 – – – – –

fap09 – 5 10 – – – – – – –
bm1 4 3.1 8.7 99 21 – – 245 263 271

nql30 – – – 939 – 259 3 – – 43
qssp60 – – – – – 1136 35 – – 295

nb – – – 276 841 43 14 >335 188 47
copo14 – – – 16 26 – – 18 47 48

ham 7 5 6 1.5 1.8 3.4 28 40 – – 31 70 201
ham 9 8 3.6 3.4 5 70 103 – – 118 156 364

An independent benchmarking of SDP and SOCP solvers 427

Table 9. Optimal values, SDP problems; inf: infeasible

PROB BMP BMZ BDL CSD DSD SDA SD3 SeD

to.3-8-50 527.65 527.85 527.81 527.81 527.82 527.81 527.81 527.81
to.-15-50 3475.1 3475.3 3475.1 3474.8 3474.8 – – –

to.g3-8 457.34 457.38 457.36 457.36 457.36 457.36 457.36 457.36
to.g3-15 3134.6 3134.7 3134.6 3134.6 3134.6 – – –

fap09 – 10.642 10.797 – – – – –
fap25 – 11.682 12.538 – – – – –
fap36 – 63.775 63.767 – – – – –

bm1 23.440 23.425 23.438 – 23.421 23.46 23.440 23.439
biomedP 33.601 – 33.600 – – – – –
industr.2 65.644 – 65.603 – – – – –

filt. socp – – – 1.4161 – 1.4161 1.4161 1.4161
filtinf1 – – – – – inf inf inf

mi.phase – – – – 5.59 5.98 5.98 5.98

truss5 – – – 132.64 132.55 132.64 132.64 132.64
truss8 – – – 133.11 133.00 133.15 133.11 133.11

hinf12 – – – – −.98e-6 −2.98e-1 −7.86e-1 −2.31e-2
hinf13 – – – – −44.34 −47.28 −46.64 −44.38

copo14 – – – −3.5e-9 −7.9e-8 1.e-8 1.e-10 −3.e-11
copo23 – – – −2.e-8 – 8.e-9 −1.e-8 −2.e-10

h. 7 5 6 42.663 42.676 42.667 42.667 42.67 42.667 42.667 42.667
h. 8 3 4 25.60 25.64 25.60 – – – – –
ha. 9 8 224 224.03 224 224 224.01 – 224 224

h. 9 5 6 85.334 85.351 256/3 – – – – –
ha. 10 2 102.3 102.67 102.4 – – – – –
ha. 11 2 170.67 171.86 512/3 – – – – –

Table 10. Error Measures (SDP problems); na: not available; –: does not exist

PROB/ERROR CSDP DSDP SDPA SDPT3 SeDuMi

toruspm3-8-50/1 .45e-13 .24e-11 .50e-13 .24e-10 .12e-11
toruspm3-8-50/3 .77e-15 0 .53e-15 .61e-15 0
toruspm3-8-50/4 0 0 0 0 .14e-12
toruspm3-8-50/5 .29e-7 .30e-3 .19e-7 .22e-8 .86e-15
toruspm3-8-50/6 – – na – −.19e-15

toruspm3-15-50/1 .64e-13 .14e-10 – – –
toruspm3-15-50/3 .20e-14 0 – – –
toruspm3-15-50/4 0 0 – – –
toruspm3-15-50/5 .29e-7 .28e-3 – – –

torusg3-8/1 .48e-13 .29e-11 .17e-8 .22e-10 .10e-11
torusg3-8/3 .87e-15 0 .56e-15 .74e-15 0
torusg3-8/4 0 0 0 0 .77e-12
torusg3-8/5 .35e-7 .30e-3 .43e-7 .33e-9 .17e-13
torusg3-8/6 – – na – .19e-13

torusg3-15/1 .21e-12 .14e-10 – – –
torusg3-15/3 .20e-14 0 – – –
torusg3-15/4 0 0 – – –
torusg3-15/5 .24e-7 .28e-3 – – –

428 H.D. Mittelmann

Table 10. Continued.

PROB/ERROR CSDP DSDP SDPA SDPT3 SeDuMi

bm1/1 .26e-4 .17e5 .81e-3 .40e-6 .12e-5
bm1/3 .83e-10 0 .30e-12 .82e-11 0
bm1/4 0 .44e-5 0 0 .47e-10
bm1/5 .60e-3 .10e1 .83e-3 .86e-6 .20e-7
bm1/6 .61e-3 .17e-3 na .88e-6 .98e-7

Table 11. Error Measures (SDP problems), continued

PROB/ERROR CSDP DSDP SDPA SDPT3 SeDuMi

filter48 socp/1 – – .35e-6 .12e-5 .80e-7
filter48 socp/3 – – .15e-10 .81e-13 0
filter48 socp/4 – – 0 0 .90e-10
filter48 socp/5 – – .16e-5 .10e-4 .10e-9
filter48 socp/6 – – na .12e-5 .51e-7

hinf12/1 .36e-11 .45e-10 .28e-7 .22e-7 .21e-9
hinf12/3 .35e-6 0 .38e-9 .31e-9 0
hinf12/4 0 0 0 0 0
hinf12/5 −.14e-2 −.96e-6 −.16e0 −.23 −.27e-2
hinf12/6 .46e-3 .90e-7 na .10e-7 .52e-1

hinf13/1 .20e-5 .28e2 .56e-3 .90e-4 .82e-7
hinf13/2 0 .23e-12 0 0 0
hinf13/3 .32e-9 0 .35e-6 .89e-12 0
hinf13/4 0 0 0 0 0
hinf13/5 −.51e-5 .99e-2 −.16e-1 −.18e-1 −.19e-2
hinf13/6 .57e-3 .20e-3 na .29e-4 .47e-1

minphase/1 .68e-7 .16e0 .98e-7 .81e-8 .47e-7
minphase/3 .37e-8 0 0 .57e-12 0
minphase/4 0 0 0 0 0
minphase/5 .25e-4 .14 −.68e-3 −.21e-3 −.74e-4
minphase/6 .63e-4 .15 na .19e-7 ,54e-3

truss5/1 .13e-9 .20e-8 .86e-10 .37e-6 .21e-10
truss5/3 .90e-14 0 .22e-13 .88e-14 0
truss5/4 0 0 0 0 .22e-12
truss5/5 .30e-7 .49e-3 .17e-7 −.25e-9 −.33e-13
truss5/6 – – na .13e-6 .10e-10

truss8/1 .14e-8 .20e-8 .16e-9 .31e-5 .49e-11
truss8/3 .93e-14 0 .46e-8 .92e-14 0
truss8/4 0 0 0 0 .43e-14
truss8/5 .24e-7 .44e-3 .67e-8 −.27e-5 −.14e-14
truss8/6 – – na .12e-6 .17e-11

copo14/1 .11e-13 .25e-8 .63e-10 .10e-9 .73e-11
copo14/3 .42e-14 0 .99e-13 .50e-14 0
copo14/4 0 0 0 0 0
copo14/5 .96e-8 .95e-7 .20e-7 −.13e-8 .14e-10
copo14/6 – .99e-7 na .77e-9 .53e-10

copo23/1 .21e-13 – .21e-9 .15e-8 .29e-10
copo23/3 .96e-14 – .22e-12 .11e-13 0
copo23/4 0 – 0 0 0
copo23/5 .51e-7 – .11e-7 .76e-7 .57e-10
copo23/6 – – na .54e-9 .33e-9

An independent benchmarking of SDP and SOCP solvers 429

Table 11. Continued

PROB/ERROR CSDP DSDP SDPA SDPT3 SeDuMi

hamming 7 5 6/1 .17e-15 .39e-12 .52e-11 .18e-14 .10e-9
hamming 7 5 6/3 0 0 0 0 0
hamming 7 5 6/4 0 0 0 0 .35e-10
hamming 7 5 6/5 .33e-7 .41e-3 .36e-7 .85e-10 −.33e-9
hamming 7 5 6/6 – – na – .85e-8

hamming 9 8/1 .11e-15 .14e-11 .17e-9 .66e-14 .27e-10
hamming 9 8/2 0 0 .71e-3 0 0
hamming 9 8/3 0 0 0 .81e-13 0
hamming 9 8/4 0 0 0 0 .19e-10
hamming 9 8/5 .62e-8 .49e-13 .10 .37e-8 −.15e-9
hamming 9 8/6 – – na – .12e-7

References

1. Andersen, E.D., Roos, C., Terlaky, T. (2000): A primal-dual interior-point method for conic quadratic
optimization. this volume

2. Benson, S.J,Ye,Y. (2001): DSDP3: Dual scaling algorithm for general positive semidefinite programming.
Preprint ANL/MCS-P851-1000, Argonne National Labs

3. Borchers, B. (1999): CSDP, A C library for semidefinite programming. Optimization Methods and Soft-
ware 11, 613–623

4. Burer, S., Monteiro, R.D.C. (2001): A nonlinear programming algorithm for solving semidefinite pro-
grams via low-rank factorization. this volume

5. Burer, S., Monteiro, R.D.C., Zhang, Y. (2001): Solving a class of semidefinite programs via nonlinear
programming. Computational and Applied Mathematics, Rice University, Houston, Revised December
1999 and May 2001, submitted to Mathematical Programming

6. Burer, S., Monteiro, R.D.C., Zhang, Y. (2001): A computational study of a gradient-based log-barrier
algorithm for a class of large-scale SDPs. this volume

7. Burer, S., Monteiro, R.D.C., Zhang, Y. (2001): Interior–point algorithms for semidefinite programming
based on a nonlinear formulation. Department of Industrial and Systems Engineering, Georgia Institute
of Technology, Atlanta, submitted to Computational Optimization and Applications

8. Pataki, G. and Schmieta, S., The DIMACS library of semidefinite-quadratic-linear programs, Computa-
tional Optimization Research Center, Columbia University, New York, NY, USA, 1999.

9. DIMACS 7th Challenge website, http://dimacs.rutgers.edu/Challenges/Seventh/
10. Fujisawa, K., Fukuda, M., Kojima, M., Nakata, K. (1999): Numerical evaluation of SDPA (SemiDefinite

Programming Algorithm). High Performance Optimization, Kluwer Academic Publishers, 267–301
11. Fujisawa, K., Kojima, M., Nakata, K. (1997): Exploiting sparsity in primal-dual interior-point methods

for semidefinite programming. Mathematical Programming 79, 235–253
12. Fujisawa, K., Kojima, M., Nakata, K. (2000): SDPA (Semidefinite Programming Algorithm) – User’s

Manual. Technical Report B-308, Tokyo Institute of Technology, http://is-mj.archi.kyoto-u.ac.jp/˜fujisa-
wa/sdpa doc.pdf

13. Helmberg, C. (2000): SBmethod — a C++ implementation of the spectral bundle method. Manual to Ver-
sion 1.1, ZIB-Report ZR 00-35, Konrad-Zuse-Zentrum für Informationstechnik Berlin, http://www.math
ematik.uni-kl.de/ helmberg/SBmethod/

14. Helmberg, C., Kiwiel, K.C. (1999): A spectral bundle method with bounds. ZIB Preprint SC-99-37,
Konrad-Zuse-Zentrum für Informationstechnik Berlin, to appear in Mathematical Programming

15. Helmberg, C., Rendl, F.,Vanderbei, R.J., Wolkowicz, H. (1996):An interior-point method for semidefinite
programming, SIAM Journal on Optimization 6, 342–361

16. Helmberg, C., Rendl, F. (2000): A spectral bundle method for semidefinite programming. SIAM Journal
on Optimization 10, 673–696

17. Kiwiel, K.C. (1990): Proximity control in bundle methods for convex nondifferentiable minimization.
Mathematical Programming 46, 105–122

18. Kojima, M., Shindoh, S., Hara, S. (1997): Interior-point methods for the monotone semidefinite linear
complementarity problems. SIAM Journal on Optimization 7, 86–125

430 H.D. Mittelmann: An independent benchmarking of SDP and SOCP solvers

19. Mittelmann, H.D. (2002): Decision Tree for Optimization Software. http://plato.la.asu.edu/guide.html
20. Mittelmann, H.D. (2002): Benchmarks for Optimization Software. http://plato.la.asu.edu/bench.html
21. Andersen, E. (2002): MOSEK User’s Guide: The MPS file format. http://www.mosek.com/down

load/doc/html/2/tools/manual/node15.html
22. NEOS Server for Optimization. http://www-neos.mcs.anl.gov/neos/
23. Rendl, F., Sotirov, R., Wolkowicz, H. (2001): Exploiting sparsity in interior point methods: Applications

to SDP and QAP. Department of Combinatorics and Optimization, University of Waterloo, Waterloo,
Canada, in progress

24. Stewart, D.E., Leyk, Z. (1994): Meschach: Matrix Computation in C. Proceedings of the Center for
Mathematics and Its Applications, The Australian National University, Volume 32

25. Sturm, J.F. (1999): Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones.
Optimization Methods and Software 11, 625–653

26. Sturm, J.F. (2000): Central region method, in High Performance Optimization, J.B.G. Frenk, C. Roos,
T. Terlaky, S. Zhang (eds.), Kluwer Academic Publishers, 157–194

27. Tütüncü, R.H., Toh, K.C., Todd, (2002): Solving semidefinite-quadratic-linear programs using SDPT3.
this volume

28. Benson, H.Y., Vanderbei, R.J. (2002): Solving Problems with Semidefinite and Related Constraints Using
Interior-Point Methods for Nonlinear Programming. this volume

29. Ye,Y., Todd, M.J., Mizuno, S. (1994): An O(
√

nL)-iteration homogeneous and self–dual linear program-
ming algorithm. Mathematics of Operations Research 19, 53–67

