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Abstract. We consider stochastic programming problems with probabilistic constraints involving random
variables with discrete distributions. They can be reformulated as large scale mixed integer programming prob-
lems with knapsack constraints. Using specific properties of stochastic programming problems and bounds on
the probability of the union of events we develop new valid inequalities for these mixed integer programming
problems. We also develop methods for lifting these inequalities. These procedures are used in a general iter-
ative algorithm for solving probabilistically constrained problems. The results are illustrated with a numerical
example.
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1. Introduction

Reliability and risk are key issues in models arising in insurance, finance, telecommuni-
cation and many other areas. One way to incorporate them into optimization problems
are probabilistic constraints.

Stochastic programming problems with probabilistic constraints can be introduced
as follows. We have a probability space (�,B,P) and the space X of measurable map-
pings x : �→ R

n. Next, we are given a functional f : X → R, a measurable constraint
function g : R

n × R
s → R

m, a random vector ξ : � → R
s , and a set X ⊂ X . The

problem is to find

min f (x)

subject to P{g(x(ω), ξ(ω)) ≥ 0} ≥ 1− α,

x ∈ X,

(1)

where the symbol P denotes probability and α ∈ (0, 1) is some prescribed level.
The simplest case is the here–and–now problem in which the decision x is not al-

lowed to depend on the random vector ξ , that is, X ⊆ R
n.

A more involved situation occurs in the two-stage case, in which x has two subvec-
tors, x = (x1, x2), the first of which has to be determined without the knowledge of the
random outcome, while the second one, x2, can be decided upon after ξ(ω) is known.
Then X can contain only decision rules of the form x(ω) = (x1, x2(ω)). In a more
involved multistage model we have x = (x1, . . . , xT ), where T is the number of stages,
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and each part xt of the decision vector may use some partial information available at
stage t . The reader is referred to the book of Birge and Louveaux[4] for an extensive
treatment of different information structures in stochastic programming models.

Programming under probabilistic constraints has a long history. Charnes, Cooper
and Symonds in [7] formulated probabilistic constraints individually for each stochastic
constraint. Joint probabilistic constraints for independent random variables were used
first by Miller and Wagner in [15]. The general case was first studied by Prékopa in [18].

Much is known about problem (1) in the case when the decisions x are deterministic
vectors in R

n, f is linear in x, and

g(x, ξ) = T x − ξ, (2)

with some random vector ξ and a deterministic matrix T . In particular, if ξ has a con-
tinuous distribution, [20] is an excellent reference. Much less is known in the case of
a discrete distribution of ξ (see [8, 10, 21]). When the dependence of g on ξ is more
involved, for example the matrix T in (2) is random, too, significant difficulties arise.
We should mention here the works [13] and [12] on stochastic routing problems, where
inequalities eliminating infeasible routes have been developed.

We shall focus our efforts on the case when there are only finitely many realizations
ξ1, . . . , ξN of the random vector ξ , occurring with probabilities p1, . . . , pN . We shall
call them scenarios. As a result, only finitely many solution realizations xi = x(ξ i) may
occur, i = 1, . . . , N . To facilitate formulation of probabilistic constraints in this case,
let us introduce the indicator function χ : R

m → {0, 1}:

χ(u) =
{

1 if u ≥ 0,
0 otherwise.

Problem (1) can be then written in a more explicit form:

min f (x)

subject to
N∑
i=1

piχ(g(x
i, ξ i)) ≥ 1− α,

x ∈ X.

(3)

Let us keep in mind that the set X in the above formulation takes care of the information
restrictions on x. For example, in the here-and-now problem, the set X contains only de-
cisions x such that x1 = · · · = xN . In this case, of course, there is no need to distinguish
the scenario solutions xi in (1) and the entire problem can be written in terms of just one
vector x, common for all scenarios. In the two-stage case, where the decision vector has
two parts x = (x1, x2), the set X contains only decisions x such that x1

1 = · · · = xN1 .
The second part of the decision vector, x2, may still depend on the scenario.

Discrete distributions arise frequently in applications, either directly, or as empirical
approximations of the underlying distribution P. In the latter case ξ i are independent
observations of ξ , and pi = 1/N for i = 1, . . . , N . If more than one observation have
identical outcomes we may still formally treat them as different scenarios.
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Throughout, we assume that the functions f (·) and g(·, ξ i), i = 1, . . . , N , are con-
tinuous and the set X is compact. Thus, if (3) has a nonempty feasible set, an optimal
solution exists.

The main observation around which we plan to focus our research is that in many
cases one can define a partial order � on the set of scenarios: for some pairs of scenarios
i and j we shall be able to say that i is ‘not harder’ than j . In the case when

g(x, ξ) = t (x)− ξ

for some function t : R
n → R

m (and with s = m) the order � is defined as the
component-wise inequality between the right hand side realizations:

i � j ⇔ ξ i ≤ ξj .

This has been extensively exploited in our recent works with D. Dentcheva and
A. Prékopa [8–10] where we show that only a limited number of scenarios play a role
in the problem. These are (1− α)-efficient points defined as the minimal points (in the
sense of the partial order ≤) of the set of realizations ξ i for which

P{ξ ≤ ξ i} ≥ 1− α.

In [8] we developed an algorithm that iteratively updates the set of relevant (1 − α)-
efficient points to generate tight lower and upper bounds for probabilistically constrained
problems. The algorithm has been extended to general convex programming with prob-
abilistic constraints in [9]. In [2, 3] we discuss methods based on partial or complete
enumeration of efficient points for stochastic integer programming problems.

In section 2 we introduce a more general definition of a consistent order and we
show that it can be defined for many classes of probabilistically constrained problems.
This will be exploited in section 3 to formulate deterministic equivalents of probabilisti-
cally constrained problems with the use of precedence constrained knapsack polyhedra:
a particular structure of combinatorial optimization problems, which will be defined
and analyzed there. We shall discuss valid inequalities for probabilistic constraints and
we shall formulate auxiliary separation problems to find valid inequalities of interest.
Section 4 is devoted to specialized lifting procedures for these inequalities. In section 5
we shall construct a method for solving probabilistically constrained problems that uses
valid inequalities developed in the preceding sections. Finally, in section 6 we shall have
a numerical illustration.

We shall use the symbol� to denote a partial order relation in a set I ; the strict rela-
tion i ≺ j will be understood in a usual way (i � j and i �= j ). The sets of minimal and
maximal elements of I under the order� will be denoted M(I ) and S(I ), respectively.

2. Consistent orders of scenarios

We start from the definition of an ‘easier’ scenario.

Definition 1. A partial order� on {1, . . . , N} is consistent with problem (3) if for every
x ∈ X there exists x̄ ∈ X such that
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(i) f (x̄) ≤ f (x);

(ii)
N∑
i=1

piχ(g(x̄
i , ξ i)) ≥

N∑
i=1

piχ(g(x
i, ξ i)) ; and

(iii) for all i, j ∈ {1, . . . , N} one has

(i ≺ j) ∧ (g(x̄j , ξ j ) ≥ 0)⇒ (g(x̄i , ξ i) ≥ 0).

The order � is strongly consistent if condition (iii) holds for x̄ = x.

Let us consider two practically important cases of probabilistically constrained sto-
chastic programming problems when a consistent order can easily be defined.

We start from the linear problem with joint probabilistic constraints:

min cT x

subject to
N∑
i=1

piχ(T
ix − hi) ≥ 1− α,

x ∈ X,

(4)

with scenarios i = 1, . . . , N characterized by realizations (T i, hi) of an m× n random
matrix T and a random vector h ∈ R

m. The convex closed polyhedron X ⊆ R
n, the

cost vector c ∈ R
n and the probability level α ∈ (0, 1) are given. From Definition 1 we

obtain the following result.

Lemma 1. The partial order � defined on {1, . . . , N} as follows

i � j ⇔ hi − T ix ≤ hj − T jx for all x ∈ X

is strongly consistent with problem (4).

In a special case, if X = R
n+ we have

i � j ⇔ T i ≥ T j and hi ≤ hj .

When only the right hand side h is random, the order � is identical to the component-
wise inequality ≤ in the space of realizations of h, whose implications for our problem
are thoroughly analyzed in [8].

Our second example is the linear two-stage problem with probabilistic constraints. It
has two groups of decision variables: first stage decisions x ∈ R

n and second stage de-
cisions yi ∈ R

l associated with each scenario i = 1, . . . , N . The problem is formulated
as follows:

min cT x +
N∑
i=1

pi〈q, yi〉

subject to
N∑
i=1

piχ(T
ix +Wyi − hi) ≥ 1− α,

x ∈ X,

yi ∈ Y, i = 1, . . . , N.

(5)
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In addition to the notation explained at (4), Y ⊆ R
l is a convex closed polyhedron, and

qi ∈ R
l is a given second stage cost vector associated with scenario i = 1, . . . , N . The

probabilities of scenarios are denoted p1, . . . , pN .

Lemma 2. The partial order � defined on {1, . . . , N} as follows

(i � j) ⇔ (pi = pj ) ∧ (hi − T ix ≤ hj − T jx) ∀ x ∈ X

is consistent with problem (5).

Proof. Let x ∈ X and yi ∈ Y , i = 1, . . . , N . Suppose that condition (iii) of Definition 1
is violated, that is, there exist two scenarios, k and l, such that k ≺ l, T kx +Wyk ≥ hk

but T lx + Wyl �≥ hl . Let us consider the set of scenarios at which the probabilistic
constraint is violated,

I = {i : T ix +Wyi �≥ hi}, (6)

the set of its minimal elements, M(I ), and the set of scenarios dominated by the minimal
elements,

A =
⋃

m∈M(I )

{j : m � j}. (7)

Since k ∈ I , there must exist m ∈ M(I ) such that m ≺ k ≺ l. Define a new second
stage solution ỹ by switching in ŷ the values of ym and yl .

By the definition of � we have

T mx +Wỹm ≥ hm. (8)

The point (x, ỹ) is equally good as (x, y) and

N∑
i=1

piχ(T
ix +Wỹi − hi) ≥

N∑
i=1

piχ(T
ix +Wyi − hi).

Let I ′ and A′ be the sets (6) and (7) calculated at the new point (x, ỹ). Since m was a
minimal element of I , relation (8) implies that m �∈ A′. On the other hand l �∈ M(I ), so
A′ ⊂ A.

Consequently, we were able to modify the solution, without increasing the objec-
tive or the probability of violating the probabilistic constraint, in such a way that the
cardinality of the set A decreased. Therefore, by carrying out the above transformation
finitely many times we can construct a solution (x, ȳ) at which the order � satisfies
Definition 1. ��

In section 6 we shall use an example of a two-stage problem with probabilistic
constraints to illustrate our results.
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3. Mixed integer formulation and induced covers

Let us reformulate problem (3) as a mixed integer program. To this end we find for each
i = 1, . . . , N a vector di ∈ R

m such that

g(xi, ξ i)+ di ≥ 0, for all x ∈ X.

Such a vector exists, because g(·, ξ i) is continuous and X compact.
This allows us to transform (3) into a mixed integer program:

min f (x) (9)

subject to g(xi, ξ i)+ dizi ≥ 0, i = 1, . . . , N, (10)
N∑
i=1

pizi ≤ α, (11)

x ∈ X, (12)

zi ∈ {0, 1}, i = 1, . . . , N. (13)

If f is convex and g(·, ξ i) concave for all ξ i , the above problem is a mixed inte-
ger convex program; its relaxation (with the integrality restriction (13) ignored) can be
solved by convex programming methods. However, the full mixed integer programming
problem appears to be very difficult, since the number of scenariosN may be very large.
To reduce its complexity we shall use the partial order � associated with (3). From
Definition 1 we obtain the following observation.

Lemma 3. If � is a consistent order for (9)–(13), then there exists an optimal solution
(x̂, ẑ) of (9)–(13) such that for all i, j ∈ {1, . . . , N}

(i � j)⇒ (zi ≤ zj ).

Therefore, adding to (9)–(13) the constraints

zi ≤ zj for all i, j ∈ {1, . . . , N} such that i � j (14)

does not cut off all optimal solutions.
Inequalities (11) and (14), together with the integrality restriction (13), define a pre-

cedence constrained knapsack polyhedron (PCKP), extensively studied in combinatorial
optimization [6, 17, 14]. We shall adapt and develop some of the ideas introduced for
PCKPs in order to gain more insight into problem (9)–(14) and to create specialized
methods for its solution.

Let us define the sets

Ai = {j ∈ {1, . . . , N} : i � j}, i = 1, . . . , N.

Germane to our research is the concept of the induced cover, which generalizes the
classical notion of a cover for knapsack constraints (see [16, 22] and the references
therein).
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Definition 2. A set C ⊆ {1, . . . , N} is called an induced cover if

P

{ ⋃
i∈C

Ai

}
> α. (15)

An induced cover C is proper, if for every j ∈ C

P

{ ⋃
i∈C\{j}

Ai

}
≤ α (16)

and minimal if for every j ∈ C

P

{ ⋃
i∈C

Ai \ {j}
}
≤ α. (17)

For any induced cover C we have a valid inequality:∑
i∈C

zi ≤ |C| − 1. (18)

Indeed, if zi = 1 for all i ∈ C then (14) and the definition of Ai imply that zk = 1 for
k ∈ ⋃

i∈C Ai . Consequently, (15) contradicts (11).
To illustrate the notion of an induced cover let us consider the realizations ξ1, . . . , ξ20

of a random variable ξ = (ξ1, ξ2), displayed in Figure 1 (for simplicity we number only
8 of them). Let us assume that the consistent order � is defined as follows:

(i � j) ⇔ (ξ i ≤ ξj ),

where the inequality between the realizations is understood componentwise. Suppose
that all the realizations are equally probable, pi = 0.05, for all i, and that α = 0.25. We
have

1

2

3

4

5

6

7

8

ξ1

ξ 2

Fig. 1. The sets A1, A2 and A3
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A1 = {1, 4, 5, 6},
A2 = {2, 5, 6, 7},
A3 = {3, 6, 7, 8}, etc..

The set C = {1, 2} is an induced cover, because P{A1 ∪ A2} = 0.3. It is proper and
minimal. There are many other induced covers, for example, {1, 2, 3}, {1, 3}, {2, 3},
{4, 2, 8} etc.

The notion of a minimal induced cover for PCKP has been introduced in [6] and
analyzed in [14, 17]. Van de Leensel, van Hoesel and van de Klundert prove in [14] that
inequalities (18) generated by minimal induced covers are facet defining for subsets of
PCKP and they use the general lifting algorithm of Balas [1] to obtain facet defining
inequalities for the entire PCKP.

In the context of probabilistic programming, though, the application of these results
encounters difficulties due to the large numberN of possible scenarios. The enumeration
of all proper induced covers is practically impossible. Lifting of the covers, as shown in
[14], requires the solution of very many knapsack subproblems, each of them NP-hard.
We shall therefore concentrate on two issues: finding cover inequalities that cut-off a
given fractional solution (the separation problem), and determining their lifting. Our
main objective is to incorporate these techniques into a specialized method for solving
probabilistically constrained problems of form (3).

The first question we are interested in is the following: given a set I ⊆ {1, . . . , N}
and a fractional point z̃ ∈ [0, 1]N find an induced cover C ⊆ I such that the inequality
(18) cuts-off z̃, that is,

∑
i∈C

z̃i > |C| − 1. (19)

Of course, the only interesting case is I being an induced cover itself. To find a cover
C for which the difference between the two sides of (19) is the largest, we introduce
binary variables vi , i ∈ I , to decide whether scenario i will be included in C or not, and
we formulate the optimization problem:

min
∑
i∈I

(1− z̃i )vi (20)

subject to P

{ ⋃
i : vi=1

Ai

}
> α, (21)

vi ∈ {0, 1}, i ∈ I. (22)

From Definition 2 we deduce the following result.

Lemma 4. Assume that I is an induced cover. If the optimal value of (20)–(22) is small-
er than 1, the set C = {i ∈ I : vi = 1} defines an induced cover for which inequality
(19) is satisfied. If the optimal value is greater or equal than 1, there is no induced cover
C ⊆ I such that inequality (19) holds.
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Problem (20)–(22) is still a difficult combinatorial optimization problem, especially
due to the implicit constraint (21). We shall derive two restrictions of this problem in
form of linear programs. They both use the classical Boole–Bonferroni inequality (see,
e.g., [5, 19] and the references therein)

P

{ ⋃
i∈C

Ai

}
≥

∑
i∈C

P{Ai} −
∑
i,j∈C
i<j

P{Ai ∩ Aj }. (23)

Our first approximation applies this inequality directly to constraint (21). For the ex-
ample illustrated in Figure 1 the Boole–Bonferroni inequality yields P{A1∪A2∪A3} ≥
0.35, so its application will allow {1, 2, 3} as a cover, if α = 0, 25. However, if α = 0.35,
we shall miss it, although P{A1 ∪ A2 ∪ A3} = 0.4.

To approximate the separation problem (20)–(22) by a mixed integer linear program-
ming problem using the Boole–Bonferroni inequality, we introduce additional decision
variables yij , i, j ∈ I , i < j , representing the decision that both scenarios, i and j , are
in the cover. We obtain the formulation:

min
∑
i∈I

(1− z̃i )vi (24)

subject to
∑
i∈I

viP{Ai} −
∑
i,j∈I
i<j

yijP{Ai ∩ Aj } ≥ α + ε, (25)

yij ≥ vi + vj − 1, yij ≥ 0, i, j ∈ I, i < j, (26)

vi ∈ {0, 1}, i ∈ I, (27)

with 0 < ε < min1≤i≤N pi . The role of ε is to allow replacing the strong inequality (21)
by the weak inequality (25).

Proposition 1. If problem (24)–(27) has a solution, the set C = {i ∈ I : vi = 1} is an
induced cover. Moreover, if the optimal value is smaller than 1, then inequality (19) is
satisfied.

Proof. Let (v̂, ŷ) be the optimal solution of (24)–(27). With no loss of feasibility we
may assume that ŷij = v̂i ∧ v̂j . Then (25) takes on the form

∑
i∈C

P{Ai} −
∑
i,j∈C
i<j

P{Ai ∩ Aj } ≥ α + ε.

Recalling the Boole–Bonferroni inequality (23) we conclude that (15) holds, that is,C is
an induced cover. By assumption, the value of (24) is smaller than 1, so

∑
i∈C(1−z̃i ) < 1

which is identical to (19). ��

The Boole–Bonferroni inequality is not sharp, but problem (24)–(27) can be refined
by clustering the sets Ai .
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Definition 3. A collection Jk ⊆ I , k ∈ K is called a proper partition of I , if
(i)

⋃
k∈K

Jk = I ;

(ii) Bk =
⋂
i∈Jk

Ai �= ∅, k ∈ K; and

(iii) Bk ∩ Ai = ∅ for all k ∈ K , i ∈ Jl , l �= k.

For a proper partition we must have Jk∩Jl = ∅ if k �= l. Indeed, suppose that i ∈ Jk∩Jl .
By (ii), Bk ⊆ Ai is nonempty. Since i ∈ Jl , condition (iii) implies Bk ∩ Ai = ∅, a con-
tradiction.

A proper partition can be found by the following greedy algorithm. We find J1 as the
largest subset of I for which B1 =

⋂
i∈J1

Ai �= ∅. Then B1 ∩Aj = ∅ for all j ∈ I \ J1.
After replacing I by I \ J1 we repeat this operation, etc. For the example illustrated in
Figure 1, a proper partition of I = {1, 2, 3} has only one cluster, J1 = I .

We shall use proper partitions to sharpen the bound provided by the Boole–Bonfer-
roni inequality. Let k(i) be such that i ∈ Jk(i) for all i ∈ I .

Lemma 5. If Jk , k ∈ K , is a proper partition of I , then

P

{ ⋃
i∈I

Ai

}
≥

∑
k∈K

P{Bk} +
∑
i∈I

(P{Ai} − P{Bk(i)})

−
∑
k∈K

∑
i,j∈Jk
i<j

(
P{Ai ∩ Aj } − P{Bk}

)
−

∑
i,j∈I,i<j
k(i)�=k(j)

P{Ai ∩ Aj }. (28)

Proof. We have

⋃
i∈I

Ai =
⋃
k∈K

Bk ∪
⋃
i∈I

(Ai \ Bk(i)).

Applying the Boole–Bonferroni inequality to the union on the right hand side and noting
that Definition 3(iii) implies

P{(Ai \ Bk(i)) ∩ (Aj \ Bk(j))} =
{

P{Ai ∩ Aj } − P{Bk(i)} if k(i) = k(j),

P{Ai ∩ Aj } if k(i) �= k(j),

we obtain the required result. ��

Inequality (28) is stronger than (23) by the quantity

∑
k∈K

|Jk|(|Jk| − 2)P{Bk}.

For the set I = {1, 2, 3} in Figure 1, it provides the perfect estimate P{A1 ∪A2 ∪A3} ≥
0.35.
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We shall use Lemma 5 to refine problem (24)–(27). Let us denote for brevity, µi =
P{Ai}, µij = P{Ai ∩ Aj }, ρk = P{Bk} and consider the linear programming problem

min
∑
i∈I

(1− z̃i )vi (29)

subject to
∑
k∈K

ρkλk +
∑
i∈I

vi(µi − ρk(i))

−
∑
k∈K

∑
i,j∈Jk
i<j

yij

(
µij − ρk

)
−

∑
i,j∈I,i<j
k(i)�=k(j)

yijµij ≥ α + ε, (30)

yij ≥ vi + vj − 1, yij ≥ 0, i, j ∈ I, i < j, (31)

λk ≤
∑
i∈Jk

vi, λk ≤ 1, k ∈ K, (32)

vi ∈ {0, 1}, i ∈ I. (33)

Proposition 2. If problem (29)–(32) has a solution, then the set C = {i ∈ I : vi = 1}
is an induced cover. Moreover, if the optimal value is smaller than one, then inequality
(19) is satisfied.

Proof. Let us observe that with no loss of feasibility we may set yij = vi ∧ vj and
λk =

∨
i∈Jk vi . Define

J̃k = Jk ∩ C, K̃ = {k ∈ K : J̃k �= ∅}.
The sets J̃k , k ∈ K̃ , define a proper partition of C. Using Lemma 5 and the inclusion

B̃k =
⋂
i∈J̃k

Ai ⊇ Bk, k ∈ K̃,

we conclude that (30) implies (15). The remaining part of the proof is identical with the
proof of Proposition 1. ��

4. Lifting

Let us now consider the issue of lifting a cover inequality (see [1, 16]). We are not nec-
essarily interested in the optimal lifting, which is known to be a very difficult problem,
but rather in a lifting that can be accomplished relatively easy, by linear programming.

Suppose that we have an induced β-cover: a set C such that∑
i∈C

zi ≤ β (34)

is a valid inequality, where β ≤ |C| − 1. For a scenario s �∈ C we want to find (γs, βs)
such that the inequality ∑

i∈C
zi + γszs ≤ βs (35)
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is valid for the PCKP. Of course, we want to construct a stronger inequality than (34) so
such solutions like γs = 1, βs = β + 1 are of no interest.

For the example illustrated in Figure 1, where all realizations are equally likely and
α = 0.25, the set C = {1, 2} is an induced cover, because P{A1 ∪ A2} = 0.3. We thus
have the valid inequality z1 + z2 ≤ 1. But also {1, 3} and {2, 3} are induced covers, so
we may lift this inequality to z1 + z2 + z3 ≤ 1. Our aim is to find a lifting algorithm
using this idea.

Let us first consider the case when

s �∈
⋃
i∈C

Ai.

We shall search for a lifting in a form of a β-cover inequality, assuming βs = β and
checking whether we can set γs = 1 in (35). This can be decided by solving the following
combinatorial problem

max
∑
i∈C

vi (36)

subject to P

{
As ∪

⋃
i : vi=1

Ai

}
≤ α, (37)

vi ∈ {0, 1}, i ∈ C. (38)

If the optimal value of this problem is smaller than β we can set γs = 1; otherwise
γs = 0 (lifting is unsuccessful). After that, we can process the next candidate variable,
etc.

Problem (36)–(38) is a difficult combinatorial optimization problem. It was con-
sidered in [14] (with a different notation) and proved to be NP-hard. In our setting, in
view of a very large number of scenarios, solving it in its pure form appears to be very
difficult, especially because it has to be carried out for every candidate variable to be
included in the valid inequality.

We shall develop relaxations of problem (36)–(38) which will be easier to solve and
which will generate valid liftings, although (possibly) missing some lifting opportuni-
ties. To this end, we shall replace the left hand side of (37) by a lower bound which is
easier to compute. One way to do it is to use the Boole–Bonferroni inequality (23), as in
the previous section. To illustrate another class of bounds that can be used here, and to
improve the quality of the bounds, we shall adapt and modify the probability bounding
approach based on binomial moments (see [5, 19]).

For random events Ai , i ∈ I , we define pm to be the probability that exactly m out
of n = |I | events happen. The probabilities pm, m = 1, . . . , n, satisfy the binomial
moment equations

n∑
m=r

(
m

r

)
pm =

∑
i1<i2<···<ir

P{Ai1 ∩ Ai2 ∩ · · · ∩ Air }, r = 1, . . . , n. (39)

The probability that at least one of these events happens equals

P

{ ⋃
i∈I

Ai

}
=

n∑
m=1

pm. (40)
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Using these relations, we construct the following linear programming problem

max
∑
i∈I

vi (41)

subject to
n∑

m=1

pm ≤ α, (42)

n∑
m=1

mpm =
∑
i∈I

viP{Ai}, (43)

n∑
m=2

(
m

2

)
pm =

∑
i<j

yijP{Ai ∩ Aj }, (44)

yij ≥ vi + vj − 1, 0 ≤ yij ≤ min(vi, vj ), i, j ∈ I, i < j, (45)

vi ∈ {0, 1}, i ∈ I. (46)

pm ≥ 0, m = 1, . . . , n. (47)

Proposition 3. Let β̄ be the optimal value of problem (41)–(47). Then
∑

i∈I zi ≤ β̄ is
a valid inequality.

Proof. Suppose that the assertion is not true. Then there exists a set J ⊆ I of cardinality
|J | > β̄ such that

P

{ ⋃
i∈J

Ai

}
≤ α.

Define vi = 1 if i ∈ J , and yij = vi ∧ vj . Also, let pm be the probability that exactly m
events out of the collection Ai , i ∈ J , happen. Then (39)–(40) imply that the constraints
(42)–(44) are satisfied. The other constraints (45)–(47) are satisfied by construction.
Thus |J | = ∑

i∈I vi ≤ β̄, a contradiction. ��

To lift the cover C in (34) we apply the above result with I = C ∪ {s} and we enforce
vs = 1 (we already have a valid inequality without s). If the optimal value β̄ does not
exceed β, we can add zs to the inequality; that is, replace C with C ∪ {s} in (34). For
the example of Figure 1 with C = {1, 2} and s = 3 problem (41)–(47) has the optimal
value of 1, so {1, 2, 3} is a 1-cover, too.

In (43)–(44) we use only two first binomial moment constraints, rather than all of
them, and therefore constraint (42) is a relaxation of (37). We could have included high-
er order binomial moment constraints to improve the quality of this relaxation, but in
the context of stochastic programming it would be highly unrealistic, due to the large
number of combinations of events Ai to be considered. Instead of that, we shall try to
refine problem (41)–(47) by using the information that is readily available.

First, it is easy to calculate for each Ai the probability

δi = P

{
Ai \

⋃
j∈I\{i}

Aj

}
.
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Then we must have p1 ≥
∑

i∈I δivi; inequality is needed here because C is a subset
of I .

Second, a substantial refinement can be gained by employing clustering. Let, again
Jk , k ∈ K , be a proper partition of I . As before, we denote µi = P{Ai}, µij =
P{Ai ∩ Aj }, ρk = P{Bk}. Consider the problem

max
∑
i∈I

vi (48)

subject to
n∑

m=1

pm +
∑
k∈K

ρkλk ≤ α (49)

n∑
m=1

mpm =
∑
i∈I

(µi − ρk(i))vi, (50)

n∑
m=2

(
m

2

)
pm =

∑
k∈K

∑
i,j∈Jk
i<j

yij

(
µij − ρk

)
+

∑
i,j∈I,i<j
k(i)�=k(j)

yijµij , (51)

yij ≥ vi + vj − 1, 0 ≤ yij ≤ min(vi, vj ), i, j ∈ I, i < j, (52)∑
i∈Jk

vi ≤ |Jk|λk, k ∈ K, (53)

vi ∈ {0, 1}, i ∈ I, (54)

λk ∈ {0, 1}, k ∈ K, (55)

p1 ≥
∑
i∈I

δivi, (56)

pm ≥ 0, m = 2, . . . , n. (57)

The role of inequality (53) is to enforce λk = 1 whenever some of the sets in the cluster
Jk are selected, so ρk has to be added to the left hand side of (49).

Similarly to Proposition 3, using the observations from the proof of Proposition 2
we obtain the following result.

Proposition 4. Let β̄ be the optimal value of problem (48)–(57). Then
∑

i∈I zi ≤ β̄ is
a valid inequality.

Although (48)–(57) appears rather complicated, it is a mixed integer linear programming
problem. It is much easier to solve than the ‘compact’ formulation (36)–(38), which in-
volves a nonlinear probabilistic constraint. Furthermore, the number of integer variables
in (48)–(57) is equal to the size of the cover I plus the number of clusters in I , and these
are typically small numbers, as compared to the total number of scenarios.

Let us now consider lifting with respect to scenarios

s ∈
⋃
i∈C

Ai. (58)

The case when C is a minimal induced cover is well studied in [14] and the ideas em-
ployed there are readily applicable to our problem. To illustrate them in our context, we
can formulate the following result.
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Lemma 6. Let C be an induced cover, Jk , k ∈ K , be a proper partition of C, and let
jk ∈

⋂
i∈Jk Ai . Then the inequality∑

i∈C
zi +

∑
k∈K

(|Jk| − 1)(1− zjk ) ≤ |C| − 1 (59)

is a valid inequality for the PCKP.

Proof. The assertion follows from the observation that zjk = 0 implies zi = 0 for all
i ∈ Jk . ��

Unfortunately, the practical relevance of the cover inequalities lifted with respect
to the scenarios s satisfying (58) is rather limited. Indeed, consider the continuous re-
laxation of problem (9)–(14) (obtained by ignoring (13)) and suppose that (x̃, z̃) is its
optimal solution. Define V = {i : z̃i > 0}. Clearly, we need valid inequalities only if∑

i∈V pi > α; otherwise the current solution is optimal for (9)–(14).
Let C ⊂ V be an induced cover satisfying the assumptions of lemma 6. If the lifted

inequality (59) can be satisfied by setting zjk = 1 for all clusters k, we shall obtain a new
optimal solution of the relaxed problem. At this solution, the values of decision variables
x, the set V and the objective value are exactly the same as before. On the other hand,
if making zjk = 1 does not restore feasibility, the same effect can be obtained from the
basic cover inequality (18), to which (59) reduces in this case.

For these reasons we shall not explore the lifting with respect to scenarios satisfy-
ing (58).

5. Cut and branch method for probabilistic constraints

Let us now turn to ways of solving the mixed integer formulation (9)–(14) with the
application of valid inequalities developed in sections 3 and 4. Define the sets

S0 = {z ∈ R
N :

N∑
i=1

pizi ≤ α, zi ≤ zj for all i, j ∈ {1, . . . , N} such that i � j},

B0 = {z ∈ R
N : 0 ≤ zi ≤ 1, i = 1, . . . , N},

L0 ⊆ {1, . . . , N}.
We shall construct sequences of sets Sk , Bk and Lk , k = 1, 2, . . . , by adding valid in-
equalities to the definition of Sk , restricting to {0, 1} some variables in Bk , and selecting
subsets of relevant scenarios to be included into Lk .

Step 0 Set k = 0.
Step 1 Solve the master problem

min f (x) (60)

subject to g(xi, ξ i)+ dizi ≥ 0, i ∈ Lk, (61)

x ∈ X, (62)

z ∈ Sk ∩ Bk. (63)

Let (x̂k, ẑk)denote the solutions found, with scenario solutios (x̂ki , ẑki ), i = 1, . . . , N .
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Step 2 Define the sets

Hk = {i ∈ {1, . . . , N} : g(x̂ki , ξ i) ≥ 0},
Ik = {1, . . . , N} \Hk.

If
∑

i∈Ik pi ≤ α then stop; otherwise continue.
Step 3 Find an induced cover Ck ⊆ M(Ik) (recall that M(Ik) is the set of minimal

elements in Ik).
Step 4 For each s ∈ M(Ik) \ Ck lift the cover Ck to obtain a |Ck|-cover Ĉk ⊆ M(Ik).
Step 5 Set

Sk+1 = Sk ∩
{
z ∈ R

N :
∑
i∈Ĉk

zi ≤ |Ck| − 1
}
.

Step 6 If M(Ik) ⊆ Lk and ẑk ∈ Sk+1, choose bk ∈ M(Ik) such that zkbk ∈ (0, 1) and
set Bk+1 = {z ∈ Bk : zbk ∈ {0, 1}}; otherwise set Bk+1 = Bk .

Step 7 Choose Lk+1 ⊇ Lk ∪M(Ik) increase k by one and go to Step 1.

Theorem 1. After finitely many iterations the algorithm stops at a point (x̂k, ẑk) such
that x̂k is optimal for (3).

Proof. Let us show that if the algorithm does not stop at iteration k, Steps 3–6 can be
executed. Since

∑
i∈Ik pi > α, the set M(Ik) is an induced cover, so Step 3 can be

carried out. The induced cover Ck is a legitimate outcome of Step 4, too. Step 5 defines
a nonempty set Sk+1, because it always contains 0. It remains to analyze Step 6.

Suppose that M(Ik) ⊆ Lk . By (61), ẑki > 0 for all i ∈ M(Ik). Then, by the defini-
tion of S0, ẑki > 0 for all i ∈ Ik . If a fractional component ẑkbk cannot be found, we must

have ẑki = 1 for all i ∈ Ik . But then ẑk violates the cover inequality
∑

i∈Ĉk
zi ≤ |Ck|−1,

so ẑk �∈ Sk+1. Consequently, if ẑk ∈ Sk+1, a fractional coordinate ẑkbk exists.
The above argument shows that the algorithm is well defined. If it does not stop, then

Sk+1 ⊆ Sk , Bk+1 ⊆ Bk , and Lk+1 ⊇ Lk , and at least one of these inclusions is strict.
There are finitely many covers possible, so finitely many different sets Sk may occur.

The number of possible sets Bk and Lk is finite, too. Therefore, the algorithm must stop
at Step 2 at some iteration k∗.

Problem (60)–(63) is a relaxation of (9)–(14). By setting zi = 1 if ẑk
∗
i > 0, and

zi = 0 otherwise, we can satisfy all constraints of (9)–(14) without changing the objec-
tive value. Therefore the solution x̂k

∗
is optimal for (3). ��

6. Numerical illustration

Let us consider a stochastic multicommodity network flow problem with the node set V
and arc set A ⊂ V×V . For each pair of nodes (k, l) ∈ V×V there is a random quantity
dkl to be shipped from k to l. Our objective is to find arc capacities x(a), a ∈ A, such
that the network can carry the flows with a sufficiently large probability 1 − α and the
capacity expansion cost 〈c, x〉 is minimized.
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Denote the demand scenarios by dikl , i = 1, . . . , N , and their probabilities by pi .
Introducing the variables yikl(a) to denote the flow from k to l passing arc a in scenario i,
we can formulate the problem as follows:

min
∑
a∈A

c(a)x(a) (64)

subject to
∑

a∈A+(ν)
yikl(a)−

∑
a∈A−(ν)

yikl(a) =


−dikl if ν = k

dikl if ν = l

0 otherwise,
(65)

ν, k, l ∈ V, i = 1, . . . , N,

N∑
i=1

pi χ
(
x −

∑
k,l∈V

yikl

)
≥ 1− α, (66)

x ≥ 0, y ≥ 0. (67)

In the flow balance equations (65) we use A−(ν) and A+(ν) to denote the sets of arcs
going out of node ν and coming into node ν, respectively.

As an illustration, consider the network shown in Figure 2. We assume that the
demand is symmetric, that is, dkl = dlk for all pairs (k, l). For k < l we set:

dkl = 0.1D + ξkl,

where D (the total traffic) has a normal distribution with the expected value 30 and
standard deviation 5, and ξkl are independent normal variables with zero expectation
and standard deviation 0.25.

The expansion costs are symmetric, too. Table 1 gives their values for k < l.
Our original formulation, with normal distributions, is extremely difficult to solve.

Therefore, we used sample-based optimization. To find an approximate solution of the
problem we randomly generated a sample of sizeN from the demand distribution. These
were our scenarios. Two versions of the problem have been solved: with 100 and with
200 scenarios. In both cases we set α = 0.1. These problems are not easy from the point
of view of mixed integer programming; for example, the 200-scenario version has 28000
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Fig. 2. The graph of the stochastic multicommodity network flow example
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Table 1. Expansion costs

From To Cost

A B 310
A C 230
B C 250
B D 180
B E 350
C D 400
D E 270

continuous variables, 200 binary variables, and 20001 constraints. They are already too
difficult for the standard MIP solver CPLEX. We have to admit here that the choice
of the number of scenarios incorporated into the model was fairly arbitrary here. The
statistical analysis of the approximation error involved is far beyond the scope of this
paper.

The analysis of the sets Ai for the purpose of cover generation, clustering and lift-
ing has been implemented in a rather straightforward way as follows. By carrying out
pairwise comparisons of scenarios we defined a binary matrix Q with
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Fig. 3. The objective value of the master problem
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Fig. 4. The probability that no feasible flow exists

Qij =
{

1 if i � j ,
0 otherwise.

No more than N(N − 1) such comparisons are necessary. In fact, the required number
is smaller due to the transitivity of the order: if i � j and Aj is already known, then
i � k for all k ∈ Aj . Once the matrix Q has been calculated, all other operations are
straightforward. For example, µij = P{Ai ∩Aj } is the scalar product of the i-th and the
j -th row of Q. Clearly, for a larger problem a more advanced implementation, based on
the representation of the partial order by an acyclic graph, would be advisable.

We have implemented the cut and branch method of Section 5 in the modeling lan-
guage AMPL [11]. CPLEX was used as the MIP solver for the master problem at Step 1.
It had much fewer binary variables than the full formulation, and could be solved rather
effectively.

Figure 3 shows the master objective value in successive iterations for both cases.
In Figure 4 we give the probability that the demand cannot be carried by the capacities
equal to the current master’s solution. Finally, Figure 5 shows the number of variables
that are restricted to be binary at the current master’s solution.

We see that the method converges rapidly in this example, and the number of binary
variables remains moderate. This is due to the fact that the method tries to identify the
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Fig. 5. The number of variables which are restricted to be binary

Table 2. Optimal arc capacities

From To Capacity
100 Scenarios 200 Scenarios

1 2 11.25 10.86
1 3 3.63 3.89
2 3 7.37 7.11
2 4 7.54 7.22
2 5 11.08 10.53
3 4 3.76 3.97
4 5 3.84 4.35

key scenarios which are located on the boundary of the set of manageable demand real-
izations. It is worth mentioning that our lifting procedure generated 8 successful liftings
in the 100 scenario example, and 10 successful liftings in the 200 scenario example.

The solutions obtained are similar, as can be seen from Table 2 (by symmetry, we
give only the capacities x(i, j) for i < j ).
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3. P. Beraldi and A. Ruszczyński, A branch and bound method for stochastic integer problems under prob-

abilistic constraints, Optimization Methods and Software, in press.
4. J.R. Birge and F. Louveaux, Introduction to Stochastic Programming, Springer-Verlag, New York, NY,

1997.
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