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Abstract. In an unpublished paper, Araque, Hall and Magnanti considered polyhedra associated with the
Capacitated Vehicle Routing Problem (CVRP) in the special case of unit demands. Among the valid and
facet-inducing inequalities presented in that paper were the so-called multistar and partial multistar inequal-
ities, each of which came in several versions. Some related inequalities for the case of general demands have
appeared subsequently and the result is a rather bewildering array of apparently different classes of inequalities.

The main goal of the present paper is to present two relatively simple procedures that can be used to
show the validity of all known (and some new) multistar and partial multistar inequalities, in both the unit and
general demand cases. The procedures provide a unifying explanation of the inequalities and, perhaps more
importantly, ideas that can be exploited in a cutting plane algorithm for the CVRP.

Computational results show that the new inequalities can be useful as cutting planes for certain CVRP
instances.
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1. Introduction

This paper is concerned with the well-known (and NP-hard) Capacitated Vehicle Rout-
ing Problem (CVRP), which can be formally defined as follows [5, 8, 14, 18, 23]. A
complete undirected graph G = (V ,E) is given, with V = {0, . . . , n}. Vertex {0} rep-
resents the depot, the other vertices represent customers. The cost of travel between
vertices i and j is denoted by cij , and we assume that costs are symmetric, i.e., that
cij = cji . An unlimited fleet of identical vehicles, each of capacity Q > 0, is available.
Each customer i has an integer demand qi , with 0 < qi ≤ Q. Each customer must be
served by a single vehicle and no vehicle can serve a set of customers whose demand
exceeds its capacity. The task is to find a set of vehicle routes of minimum cost, where
each vehicle used leaves from and returns to the depot.

The most successful algorithms to date for solving the CVRP (or minor variations
of it) are based on the two-index integer programming formulation [3, 5, 13, 15, 23]. In
this formulation, xij represents the number of times a vehicle travels between vertices
i and j . (Because the problem is undirected, xij and xji represent the same variable.)
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In order to present this formulation, we will need some further definitions and notation.
Given a set of customers S ⊆ V \ {0}, q(S) will denote

∑
i∈S qi , δ(S) will denote the

set of edges in G with exactly one end-vertex in S, E(S) will denote the set of edges
in G with both end-vertices in S and k(S) will denote the minimum number of vehicles
required to serve the customers in S. Note that calculating k(S) exactly is an (NP-Hard)
Bin Packing Problem. Finally, given an arbitrary F ⊆ E, x(F ) will denote

∑
e∈F xe.

The integer programming formulation is then:

Minimize
∑

e∈E cexe

Subject to:
x(δ({i})) = 2 (i = 1, . . . , n) (1)

x(δ(S)) ≥ 2k(S) (S ⊆ {1, . . . , n}, |S| ≥ 2) (2)

xij ∈ {0, 1} (1 ≤ i < j ≤ n) (3)

xij ∈ {0, 1, 2} (i = 0, j = 1, . . . , n). (4)

The degree equations (1) ensure that customers are visited exactly once. The ca-
pacity inequalities (2) impose the vehicle capacity restrictions and also ensure that the
routes are connected. Note that the formulation remains valid if one replaces k(S) on
the right-hand side with the obvious lower bound �q(S)/Q�. Note also that the capacity
inequalities can be re-written using the degree equations to take the form

x(E(S)) ≤ |S| − k(S). (5)

Finally, constraints (3) and (4) are the integrality conditions. Note that the xij are
permitted to take the value 2 when i = 0, to allow routes in which a vehicle serves a
single customer.

Some other variants of the CVRP can be easily incorporated into this framework.
If there is an upper bound K on the number of vehicles to be used, then the inequality
x(δ({0})) ≤ 2K can be added. If hiring a vehicle incurs a costC, thenC/2 can be added
to the objective function coefficient of each edge incident on the depot. If exactly K
vehicles must be used, then the equation x(δ({0})) = 2K can be added. Finally, if routes
containing only one customer are forbidden, then all variables can be made binary. The
results in this paper remain valid for these other variants.

We are interested in the integer polytope associated with the above formulation,
viz., the convex hull in R

|E| of incidence vectors x satisfying (1)–(4) (see [25]). Several
papers in the literature present valid inequalities for this polytope or related polyhedra
[1, 5, 11, 13, 15, 19]. Successful optimization algorithms based upon valid inequalities
can be found in [5, 13, 18, 23]. In [2–4, 10], attention is given to the unit demand case,
i.e., the special case where qi = 1 for i = 1, . . . , n. We will denote this special case by
CVRPUD.

This paper is concerned with valid inequalities known as multistar and partial multi-
star inequalities, which we define formally in Section 2. These inequalities first appeared
in [3], in the context of the CVRPUD. In that paper, three distinct classes of multistar
inequalities and four distinct classes of partial multistar inequalities were defined, and
conditions were given for the resulting inequalities to induce facets.
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In more recent papers [1, 13, 15], some more classes of inequalities of multistar type
have appeared for the general demand case. The result is a rather bewildering array of
apparently different classes of inequalities.

The main goal of the present paper is to present two relatively simple procedures
that can be used to show the validity of all known (and some new) multistar and partial
multistar inequalities, in both the unit and general demand cases. The procedures provide
a unifying explanation of the inequalities and, perhaps more importantly, ideas that can
be exploited in a cutting plane algorithm for the CVRP.

The outline of the remainder of the paper is as follows. In Section 2, the terms
multistar and partial multistar are defined and previous work on multistar and partial
multistar inequalities is reviewed. An important distinction will be made between what
we call homogeneous and inhomogeneous inequalities. In Section 3, the homogeneous
case is examined in detail. A simple procedure is given that can be used to generate all
known homogeneous inequalities in the literature, along with some new ones. In Section
4, the inhomogeneous case is examined. A connection between the CVRP and the knap-
sack problem is used to define new classes of inhomogeneous multistar inequalities that
generalize all previously known ones. In Section 5, we describe a cutting plane algo-
rithm based on capacity and (partial) multistar inequalities and give some computational
results. Concluding comments are made in Section 6.

2. Previous work

The seminal paper on multistar and partial multistar inequalities is that ofAraque, Hall &
Magnanti [3]. In our opinion, this is an excellent paper, yet to date it remains unpublished.
For this reason, we begin this section by reviewing [3] in some detail.

2.1. The work of Araque, Hall and Magnanti

Given a non-empty set S ⊆ V \ {0} of customer vertices, let S̄ denote the ‘complemen-
tary’ set of customer vertices V \ (S ∪ {0}). Also, given two disjoint vertex sets S1, S2,
let E(S1 : S2) denote the set of edges ‘crossing’ from S1 to S2. That is, E(S1 : S2) =
δ(S1) ∩ δ(S2).

A multistar is a subgraph ofGwith two sets of vertices, a nucleusN ⊂ V \{0} and a
set of satellites S ⊆ N̄ . The multistar contains the edge-set E(N)∪E(N : S). Figure 1
shows a multistar with |N | = |S| = 3.

Araque, Hall & Magnanti [3] call any valid inequality of the form:

λx(E(N))+ x(E(N : S)) ≤ µ, (N ⊂ V \ {0}, S ⊆ N̄) (6)

a multistar inequality. Here, λ and µ are constants that depend on N and S. Moreover,
there may be more than one such inequality even for a given N and S. Note that the
edges whose variables have a non-zero coefficient in the inequality induce a multistar
in G.

It is sometimes more useful to write multistar inequalities in a slightly different form:

x(δ(N)) ≥ ρ + σx(E(N : S)), (7)
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Fig. 1. A Multistar

where, again, ρ and σ are constants that depend onN and S. These two forms are easily
shown to be equivalent using the degree equations.

In [3], three classes of multistar inequalities are given for the CVRPUD. The large
multistar (LM) inequalities, valid for all N , are:

Qx(E(N))+ x(E(N : N̄)) ≤ (Q− 1)|N |. (8)

The intermediate multistar (IM) inequalities are valid only for sets N satisfying cer-
tain conditions. For a given N , define b = 2 + |N | mod (Q − 2). Then, provided that
3 ≤ b < 2�|N |/(Q− 2)�, the IM inequality is valid and takes the form

bx(E(N))+ x(E(N : N̄)) ≤ b|N | − (b − 2)�|N |/(Q− 2)�. (9)

Finally, the small multistar (SM) inequalities are valid for sets N and S satisfying cer-
tain conditions. For a given N and a given S ⊆ N̄ , define d = |N ∪ S| mod Q. Then,
provided that |N ∪ S| > Q and 2 ≤ d < |S|, the SM inequality is valid and takes the
form:

dx(E(N))+ x(E(N : S)) ≤ d(|N | − k(N ∪ S))+ |S|. (10)

The proofs of validity for the LM, IM and SM inequalities, and the conditions un-
der which they induce facets of the associated integer polytope, are subtle and rather
complex [3]. We will not go into details here. The important point is that a fractional
vector x∗ that satisfies all degree equations and capacity inequalities may violate a mul-
tistar inequality. Figure 2 gives an example of such a fractional point for a CVRPUD
instance with Q = 4 and n = 6. The solid lines indicate edges whose variables have
value 1, the dotted lines indicate edges whose variables have value 1/2. The depot and
the edges incident on the depot have been omitted for clarity. Letting N be the three
central vertices and S be the three surrounding vertices, we obtain the SM inequality
2x(E(N)) + x(E(N : S)) ≤ 5. This is violated because the left hand side is currently
(2×2)+ 3

2 = 5.5. Similar examples can be constructed for the LM and IM inequalities.
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Fig. 2. Fractional point violating an SM inequality
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Fig. 3. A Partial Multistar

Araque, Hall & Magnanti also introduced the partial multistar inequalities. A partial
multistar is like a multistar except that only some of the nucleus vertices (called con-
nector vertices) are connected to the satellites. Figure 3 shows a partial multistar with
|N | = |S| = 3 and one connector vertex. A general partial multistar inequality will take
the form:

λx(E(N))+ x(E(C : S)) ≤ µ, (11)

where C ⊂ N is the set of connector vertices and, again, λ and µ are constants that
depend upon N , S, C and the type of partial multistar.

The partial multistar inequalities come in four ‘flavours’ as follows. Inequalities of
the first kind are defined only when Q ≥ 3, |N | is a multiple of Q and |C| = 1. They
take the form:

2x(E(N))+ x(E(C : N̄)) ≤ 2(|N | − k(N)). (12)

Inequalities of the second kind are defined only when Q ≥ 4, |N | mod Q = 1 and
|C| = 2. They take the form:

2x(E(N))+ x(E(C : N̄)) ≤ 2(|N | − k(N)+ 1). (13)
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Fig. 4. Fractional point violating a partial multistar inequality

Inequalities of the third and fourth kinds are defined only whenQ ≥ 4, |N | is a multiple
of Q and |C| = 3. They take the form:

3x(E(N))+ x(E(C : N̄)) ≤ 3(|N | − k(N)) (14)

and

2x(E(N))+ x(E(C : N̄)) ≤ 2(|N | − k(N))+ 1. (15)

respectively.
Figure 4 shows a fractional point for a CVRPUD instance with Q = 3 and n = 6.

Again, the bold line indicates a variable with value 1 and the dotted lines indicate vari-
ables with value 1/2, and edges incident on the depot have been omitted. LettingN be the
three vertices at the bottom, S = N̄ be the three vertices at the top, and C be the single
vertex in the nucleus that is x∗-adjacent to the satellites, we obtain a partial multistar
inequality of the first kind, 2x(E(N))+ x(E(C : N̄)) ≤ 4. This is violated because the
left hand side is currently (2 × 3

2 )+ 3
2 = 4.5. Similar examples can be constructed for

the other kinds of partial multistar inequalities.

2.2. Subsequent work on multistar inequalities

The multistar and partial multistar inequalities were originally defined in the context
of the CVRPUD. A natural question is whether they have a simple generalization to
the general CVRP. To our knowledge, no one has attempted to generalize the partial
multistar inequalities in this way. (We do this in Section 3.) However, several classes of
multistar inequalities have appeared in the literature for the general CVRP.

The LM inequalities have a natural generalization for the general demand case,
namely, the inequalities

Qx(E(S))+
∑
j∈S̄

qj x(E(S : {j})) ≤ |S|−q(S)/Q (∀S ⊂ V \{0} : |S| ≥ 2), (16)
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or, equivalently,

x(δ(S)) ≥ 2

Q


q(S)+

∑
j∈S̄

qj x(E(S : {j}))

 (∀S ⊂ V \ {0} : |S| ≥ 2). (17)

We will call these generalized large multistar (GLM) inequalities. Note that the GLM
inequalities are rather different from the other inequalities mentioned so far, in that the
coefficients of the edges in E(N : S) vary depending on the satellite vertex involved.
We will say that such inequalities are inhomogeneous.

The GLM inequalities have been discovered by several authors independently [1,
13, 15], and the proof of validity is fairly straightforward. The authors of [1] attempted
to generalize the IM and SM inequalities in a similar way. However, this was not entirely
successful and, for the sake of brevity, we do not go into details here.

Some homogeneous multistar inequalities for the general demand case are also pre-
sented in [1]. For a given N and S ⊆ N̄ such that k(N ∪ S) > k(N), let 1 ≤ p ≤ |S| be
the smallest integer such that k(N ∪W) > k(N) for all subsets W ⊆ S with |W | = p.
Then the inequality

(|S| − p + 1)x(E(N))+ x(E(N : S)) ≤ (|S| − p + 1)(|N | − k(N))+ (p − 1) (18)

is valid. Moreover, if p − 1 ≤ 2k(N), then the inequality

(2k(N)−p+3)x(E(N))−x(E(N : S)) ≤ (2k(N)−p+3)(|N |−k(N))+(p−1) (19)

is also valid and dominates (18) when |S| ≥ 2k(N)+ 3.
The inequalities (18) and (19) collectively dominate and generalize some inequalities

introduced in [13]. However, we wish to point out that, in the unit demand case, (18) and
(19) are themselves dominated by the LM, IM and SM inequalities. This is summarized
in the following two propositions, which we state without proof for the sake of brevity.

Proposition 1. In the case of unit demands, the inequality (18) is:

• dominated by the capacity inequality on N and the LM inequality on N if p ≤
|S| −Q+ 1,

• dominated by the SM inequality on N and S if |S| −Q+ 1 < p ≤ |S| − 1,
• dominated by the capacity inequality on N ∪ S if p = |S|.

Proposition 2. In the case of unit demands, the inequality (19) is:

• dominated by the capacity inequality on N and the LM inequality on N if p ≤
2k(N)−Q+ 3,

• dominated by the IM inequality on N if 2k(N)−Q+ 3 < p ≤ 2k(N)+ 1.

3. Generating homogeneous inequalities

In this section, we present a procedure for deriving homogeneous multistar and partial
multistar inequalities for the CVRP. The procedure is fairly simple and intuitive, yet,
as we will show, it yields all of the homogeneous inequalities mentioned in Section 2,
and some new ones besides. It also provides ideas that can be used in a cutting plane
algorithm, as shown in Section 5.
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For brevity, from now on we will view a multistar inequality as a special kind of
partial multistar inequality; namely, as one in which C = N .

For a fixedN , S andC, the set of all valid homogeneous partial multistar inequalities
could in theory be found by projecting the CVRP polyhedron onto a planar subspace
having x(E(N)) and x(E(C : S)) as axes. Of course, computing this projection is NP-
hard. Fortunately, however, it is not difficult to compute a good approximation to this
projection. This is the main task of this section.

We begin by computing an upper bound on the value of x(E(C : S)).

Lemma 1. All feasible CVRP solutions satisfy:

x(E(C : S)) ≤ min{2|C|, 2|S|, |C| + |S| − k(C ∪ S)}. (20)

Proof. The degree equations imply x(E(C : S)) ≤ min{2|C|, 2|S|} and the capacity
inequality for C ∪ S (in the form (5)) implies that x(E(C : S)) ≤ |C| + |S| − k(C ∪ S).

For CVRPUD instances in which Q is even, it is possible to produce a slightly
stronger upper bound:

Lemma 2. All feasible CVRPUD solutions with Q even satisfy:

x(E(C : S)) ≤ min

{
2|C|, 2|S|, |C| + |S| −

⌈
2 max{|C|, |S|}

Q

⌉}
. (21)

Proof. In any feasible CVRPUD solution x∗, consider the graph with vertex set C ∪ S

and an edge for each e ∈ E(C : S) with x∗
e = 1. This graph is a simple kind of forest

in which each connected component is either a path or a single vertex. Each connected
component contains at mostQ/2 vertices in C and at mostQ/2 vertices in S. Therefore

the number of connected components is at least
⌈

2 max{|C|,|S|}
Q

⌉
. The result follows from

the well-known fact that a forest with p nodes and q connected components contains
p − q edges.

Let us denote by UBCS the upper bound resulting from an application of these two
lemmas. Our next step will be to compute, for α = 0, 1, . . . , UBCS , an upper bound
UB(α) on the value of x(E(N)) for any feasible CVRP solution with x(E(C : S)) = α.

Lemma 3. All feasible CVRP solutions with x(E(C : S)) = α satisfy

x(E(N)) ≤ |N | − �α/2�. (22)

Proof. Obviously, x(δ(N)) ≥ x(E(C : S)). Since x(δ(N)) must be even, we have
x(δ(N)) ≥ 2�x(E(C : S))/2�. The result then follows from the degree equations on N .

Lemma 4. Sort the vertices in S in order of non-decreasing demand and let sj for
j = 1, . . . , |S| be the index of the j th vertex in the sorted list. Then the following are
valid upper bounds on x(E(N)) for various values of α = x(E(C : S)):

• When α = 0, x(E(N)) ≤ |N | − k(N),
• When 1 ≤ α ≤ |S|, x(E(N)) ≤ |N | − k(N ∪ {s1, . . . , sα}),
• When α > |S|, x(E(N)) ≤ |N ∪ S| − k(N ∪ S)− α.
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Proof. The first inequality is the capacity inequality onN (in the form (5)) and the third
inequality follows from the capacity inequality on N ∪ S. To show the validity of the
second inequality, consider a feasible CVRP solution with 1 ≤ x(E(C : S)) ≤ |S|. For
i = 1, 2, let Si := {v ∈ S : x(E(C : {v})) = i in the feasible solution}. Then, we have
that

x(E(N)) ≤ x(E(N ∪ S1 ∪ S2))− |S1| − 2|S2|
≤ |N ∪ S1 ∪ S2| − k(N ∪ S1 ∪ S2)− |S1| − 2|S2|,

= |N | − k(N ∪ S1 ∪ S2)− |S2|,
≤ |N | − k(N ∪ s1 ∪ · · · ∪ s|S1|+2|S2|),
≤ |N | − k(N ∪ {s1, . . . , sα}),

where the second inequality follows from the capacity inequality onN ∪S1 ∪S2 (in the
form (5)).

When |S| > |C|, the following upper bounds also may be useful.

Lemma 5. Sort the vertices in S in order of non-decreasing demand and let sj for
j = 1, . . . , |S| be the index of the j th vertex in the sorted list. Similarly, let cj for
j = 1, . . . , |C| be the index of the j th smallest vertex in C. Then the following is
also a valid upper bound on x(E(N)) for a fixed value of α = x(E(C : S)) when
|C| ≤ α ≤ 2|C|:
x(E(N)) ≤ |N | −α+ |C| − k((N \C)∪ {c1, . . . , c2|C|−α} ∪ {s1, . . . , s2|C|−α}). (23)

Proof. By contradiction. Suppose that (23) is violated by a feasible CVRP solution vec-
tor x∗ for a given N , C, S and α = x∗(C : S). If α > |C|, then there must be at least
one vertex j ∈ C such that x∗(E({j} : S)) = 2. In this case, we can obtain another
inequality of the form (23), which is violated by at least as much, by:

• Setting N := N \ {j},
• Setting C := C \ {j} and
• Reducing α by two.

To see this, note that x∗(E(N)), |N | − α+ |C| and N \C all remain unchanged. More-
over, 2|C| − α, and therefore {s1, . . . , s2|C|−α}, remain unchanged also. The only pos-
sible change is that one of the demands in {c1, . . . , c2|C|−α} has increased.

Each time this argument is applied, |C| drops by one and α drops by two. Eventually
we cannot repeat the procedure because α = |C|. But the inequality (23) cannot be
violated when α = |C|, because it reduces to

x(E(N)) ≤ |N | − k(N ∪ {s1, . . . , sα}), (24)

which is valid by Lemma 4.

These lemmas provide a way of generating homogeneous partial multistar inequalities
for a fixed N , C and S. For α = 0, 1, . . . , UBCS , compute an upper bound UB(α) on
the value of x(E(N)) given that x(E(C : S)) = α. Once these have been calculated,
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the desired inequalities can easily be found in O(n log n) time by computing the convex
hull of a polygon in (α,UB(α))-space.

Figure 5 illustrates the procedure for the first example given in Section 2 (shown
in Figures 1 and 2). Because |N | = |S| = 3 and k(N ∪ S) = 2, we have UB(N :
S) = 4. Apart from the trivial inequalities x(E(N : S)) ≥ 0 and x(E(N)) ≥ 0, we
obtain three other inequalities: x(E(N)) ≤ 2, which is the capacity inequality on N ;
2x(E(N) + x(E(N : S)) ≤ 5, which is the SM inequality mentioned in Section 2;
and x(E(N)+ x(E(N : S)) ≤ 4, which is redundant, being dominated by the capacity
inequality on N ∪ S.

Figure 6 illustrates the procedure for the second example given in Section 2 (shown
in Figures 3 and 4). Because |C| = 1 and |S| = 3 we have UB(C : S) = 2. Apart from
the trivial inequalities, we obtain one inequality, 2x(E(N))+ x(E(C : S)) ≤ 4, which
is the partial multistar inequality of the first kind mentioned in Section 2.

Let us call the entire procedure for generating homogeneous multistar and partial
multistar inequalities the polygon procedure. Providing necessary and sufficient condi-
tions for the polygon procedure to yield facets of the CVRP polytope seems to be an
extremely difficult task, even for the CVRPUD. However, it turns out that the procedure
generates all known homogeneous multistar and partial multistar inequalities, in both
the general demand and unit demand cases. This is summarized in the following five
theorems. The proof of each theorem involves a consideration of the possible values of
x(E(C : S)) in a feasible CVRPUD solution.

Theorem 1. LM inequalities are generated by the polygon procedure.
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Fig. 5. Generating multistar inequalities
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Fig. 6. Generating a partial multistar inequality
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Proof. LM inequalities are defined only for the CVRPUD and only when S = N̄ and
C = N . We consider two cases:

• Case 1: 0 ≤ x(E(N : N̄)) ≤ |N̄ |. In this case, Lemma 4 implies that x(E(N)) ≤
|N |−�(N+x(E(N : N̄)))/Q�. If we weaken this by removing the integer rounding,
and rearrange, we get the LM inequality.

• Case 2: x(E(N : N̄)) > |N̄ |. In this case, Lemma 4 implies that x(E(N)) ≤
|N | + |N̄ | − �(|N | + |N̄ |)/Q� − x(E(N : N̄)). If we weaken this by removing
the integer rounding, and rearrange, we get the inequality Qx(E(N))+Qx(E(N :
N̄)) ≤ (Q−1)|N |+(Q−1)|N̄ |, which dominates the LM inequality when x(E(N :
N̄)) > |N̄ |.

Theorem 2. IM inequalities are generated by the polygon procedure.

Proof. Throughout this proof we let φ denote �|N |/(Q− 2)� for the sake of brevity.
By Theorem 1, all integer points in the polygon satisfy the LM inequality, and there-

fore satisfy the inequality:

x(E(N)) ≤ |N | − �(|N | + x(E(N : N̄)))/Q�. (25)

On the other hand, the IM inequality can be written as:

x(E(N)) ≤ |N | − φ + (2φ − x(E(N : N̄)))/b. (26)

Hence, we have that all integer points in the polygon such that

�(|N | + x(E(N : N̄)))/Q� ≥ (x(E(N : N̄))− 2φ)/b + φ (27)

satisfy the IM inequality. Since, by definition, b = 2 + |N | mod (Q− 2) = Q+ |N | −
(Q− 2)φ, we can rewrite (27) as:

�(b − 2φ + x(E(N : N̄)))/Q� − 1 ≥ (x(E(N : N̄))− 2φ)/b. (28)

This holds provided x(E(N : N̄)) ≤ 2φ. (Indeed, if 0 ≤ 2φ − x(E(N : N̄)) < b, the
left hand side of (28) is zero and the right hand side is negative. On the other hand, if
2φ − x(E(N : N̄)) ≥ b, then (28) holds even without integer rounding on the left.)

It remains to be shown that the integer points in the polygon such that x(E(N :
N̄)) > 2φ also satisfy the IM inequality. But this is easy to show by comparing the IM
inequality (26) with the inequality (22) and noting that b > 2.

Theorem 3. SM inequalities are generated by the polygon procedure.

Proof. As in the proof of Theorem 2, we have that all integer points in the polygon
satisfy (25). On the other hand, the SM inequality (10) can be re-written as:

x(E(N)) ≤ |N | − k(N ∪ S)+ (|S| − x(E(N : S)))/d. (29)

Hence, we have that all integer points in the polygon such that

�(|N | + x(S))/Q� ≥ k(N ∪ S)+ (x(E(N : S))− |S|)/d (30)
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satisfy the SM inequality. From the definition of d and the assumption that d > 0, we
have d = |N ∪S|+Q−Qk(N ∪S), or, equivalently, |N | = d−|S|−Q+Qk(N ∪S).
Hence, the condition (30) can be re-written as:

−1 + �(d − |S| + x(E(N : S)))/Q� ≥ (x(E(N : S))− |S|)/d. (31)

This holds provided x(E(N : S)) ≤ |S|. (Indeed, if 0 ≤ |S| − x(E(N : S)) < d, the
left hand side of (31) is zero and the right hand side is negative. On the other hand, if
|S| − x(E(N : S)) ≥ d , then (31) holds even without integer rounding on the left.)

It remains to be shown that the integer points in the polygon such that x(E(N :
S)) ≥ |S| also satisfy the SM inequality. But this is easy to show by comparing the
SM inequality (29) with the third inequality in Lemma 4 and noting that d ≥ 2 in the
definition of SM inequalities.

Theorem 4. All four kinds of PM inequalities are generated by the polygon procedure.

Proof (Sketch): For a PM inequality of the first kind, x(E(C : N̄)) ∈ {0, 1, 2}. For each
of these three values, the PM inequality is implied by Lemma 4.

Similarly, for a PM inequality of the second kind, x(E(C : N̄)) ∈ {0, . . . , 4}. For
x(E(C : N̄)) ∈ {0, 1, 2} the PM inequality is implied by the capacity inequality on N ,
whereas for x(E(C : N̄)) ∈ {3, 4} it is implied by Lemma 5.

Finally, for PM inequalities of the third and fourth kinds, x(E(C : N̄)) ∈ {0, . . . , 6}.
Both of these inequalities are implied by Lemma 4 when x(E(C : N̄)) ∈ {0, . . . , 3} and
by Lemma 5 when x(E(C : N̄)) ∈ {4, 5, 6}.

Theorem 5. The inequalities (18) and (19) are dominated by the inequalities generated
by the polygon procedure, and this dominance may be strict, even in the case of the
CVRPUD.

Proof (Sketch): The inequality (18) is implied by the first two inequalities in Lemma 4
when x(E(N : S)) ≤ |S|, and by the third inequality in Lemma 4 when x(E(N : S)) >
|S|.

The inequality (19) is implied by the first two inequalities in Lemma 4 when x(E(N :
S)) ≤ 2k(N)+ 1, and by the inequality (22) when x(E(N : S)) ≥ 2k(N)+ 2.

The possibility of strict dominance is seen by comparing Propositions 1 and 2 with
Theorems 1, 2 and 3.

We finish this section by showing that, even for the CVRPUD, the polygon pro-
cedure can generate facet-inducing inequalities that are not equivalent to any of those
in the literature. Consider a CVRPUD instance with Q = 4 and n = 8, and a mul-
tistar with |N | = 3 and |S| = 5. Since Q is even, Lemma 2 applies and we have
x(E(N : S)) ≤ 5. The associated polygon is shown in Figure 7. The non-trivial inequal-
ities defining the polygon are the capacity inequality x(E(N)) ≤ 2, the IM inequality
3x(E(N)) + x(E(N : S)) ≤ 7, and the new inequality x(E(N)) + x(E(N : S)) ≤ 5.
This new inequality can be shown to be facet-inducing using standard techniques, such
as enumerating affinely independent solutions to the CVRPUD instance.
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Fig. 7. Generating a new multistar inequality

4. New inhomogeneous inequalities

In the previous section we explored the homogeneous multistar and partial multistar
inequalities in great detail. In this section we move on to consider multistar inequalities
that are not necessarily homogeneous.

Consider the following polytope, which we denote by K(q,Q):

Definition 1. K(q,Q) := conv
(
y ∈ {0, 1}n :

∑n
i=1 qiyi ≤ Q

)
.

This is a 0-1 knapsack polytope (see, e.g., [7, 30]), the extreme points of which repre-
sent feasible allocations of customers to a single (arbitrary) vehicle. Now suppose also
that we allow VRP instances in which one or more customers have qi = 0. (This does
not affect the formulation (1)–(4), except that it is necessary to define k(S) = 1 when
q(S) = 0). Then we have the following lemma:

Lemma 6. Let
∑n

i=1 γiyi ≤ * be a valid inequality for K(q,Q), with * > 0 and
integer, and γi ≥ 0 and integer for all i. Then any feasible CVRP solution must also be
feasible for a modified CVRP instance in which (q,Q) has been replaced by (γ, *).

Proof. Call γi the pseudo-demand of customer i and call * the pseudo-capacity. By
the definition of K(q,Q), no vehicle can serve a set of customers whose collective
pseudo-demand exceeds the pseudo-capacity. Thus, any single vehicle route obeying
the capacity constraint for the original CVRP instance also obeys the capacity constraint
for the modified CVRP instance.

The important implication of Lemma 6 for our purposes is that any class of inequal-
ities whose coefficients are expressed in terms of the qi and Q can be generalized. In
particular, we obtain the following result.

Theorem 6. If
∑n

i=1 γiyi ≤ *, with * > 0 and γi ≥ 0 for all i, is valid for K(q,Q),
then, for any S, the knapsack large multistar (KLM) inequality

x(δ(S)) ≥ 2

*


∑
i∈S

γi +
∑
j∈S̄

γj x(E(S : {j}))

 (19) (32)

is valid for the CVRP.



34 A.N. Letchford et al.

Proof. Follows from Lemma 6, since (32) is the GLM inequality for the modified CVRP
instance.

The inequalities (32) were first presented in Letchford & Eglese [20], though Hall
[17] independently discovered some similar inequalities for the Capacitated Minimum
Spanning Tree Problem. It is obvious that the KLM inequalities generalize GLM in-
equalities, since we can always set γi = qi and * = Q. It is also easy to show that the
KLM inequalities for which

∑n
i=1 γiyi ≤ * induces a facet of K(q,Q) dominate all

other KLM inequalities.
We could produce a number of other Theorems from Lemma 6, yielding, for exam-

ple, knapsack versions of the Generalized IM and SM inequalities [1]. However, we do
not examine this issue further for the sake of brevity.

Note that the KLM inequalities yield nothing new in the case of unit demands, as
they reduce to either LM inequalities (when the knapsack inequality is

∑n
i=1 yi ≤ Q)

or weakened capacity inequalities (when the knapsack inequality is yi ≤ 1 for some
i). However, it is not difficult to find examples of facet-inducing KLM inequalities for
certain instances of the CVRP with general-demands. Details are omitted for the sake
of brevity.

5. Computational experiments

The authors have implemented a linear programming-based cutting-plane algorithm [4,
5, 25] that uses capacity, multistar and partial multistar inequalities to produce lower
bounds for CVRP instances. The initial LP relaxation consists of the degree equations
(1) and the bounds on the variables implied by (3), (4) and is solved by the primal
simplex method. Separation algorithms [16, 25] are then invoked to generate violated
inequalities. Any violated inequalities found are added to the LP as cutting planes and
the LP is reoptimized using the dual simplex method. This process is repeated until no
more violated inequalities can be found.

For capacity separation, we use heuristics that are very similar to ones found in [4–
6]. They are based on the computation of connected components and maximum flows
in suitable graphs, along with a greedy search procedure. The trivial bin packing lower
bound (see Section 1) is used to estimate k(S) when computing the right-hand sides. A
full description is given in [21].

Our separation heuristic for Homogeneous Multistar (HM) inequalities is as follows.
We use a greedy heuristic to find a number of ‘candidates’ for the nucleus, N . For each
such candidate, we use a greedy heuristic to find a number of ‘candidates’ for the satellite
set, S. For each pairN , S generated in this way we run the polygon procedure and check
the resulting HM inequalities for violation.

To be more precise, we store the nucleus candidates in an array called NUCLEI,
which is constructed as follows. (Here, x∗ denotes the current LP vector to be cut off.)

• 1. Set NUCLEI := ∅ and set i = 1.
• 2. Set N := {i}.
• 3. Let W := {j ∈ N̄ : x∗(E(N : {j})) > 0, N ∪ {j} /∈ NUCLEI}. If W is emp-

ty, go to 6. Otherwise, among all vertices j ∈ W , choose the one that maximizes
x∗(E(N : {j}))− x∗

0j and set N := N ∪ {j}.
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• 4. If N = V \ {0}, go to 6.
• 5. Add N to NUCLEI and return to 3.
• 6. Set i = i + 1. If i > n, stop. Otherwise, return to 2.

For a given nucleus candidate N , we use the following simple procedure to generate
candidate satellite sets S. Initially S is set to {i ∈ N̄ : x∗(E({i} : N)) > 0}. Then we
iteratively remove, one at a time, the satellite i with minimum value of x∗(E({i} : N)).

In fact we also experimented with the following variant of the HM separation heu-
ristic. In step 3 of the procedure for constructing NUCLEI, instead of adding the vertex
that maximizes x∗(E(N : {j}))− x∗

0j , we added the vertex that reduced the slack of the
GLM inequality associated withN by the most. It did not lead to better bounds by itself,
but we found that it is worthwhile calling this second version when the original version
fails. This is what we did in the experiments reported below.

Next, we describe our heuristic separation procedure for homogeneous partial mul-
tistar (HPM) inequalities. In some limited experiments, we found that the majority of
HPM inequalities that actually led to improved bounds were either ‘mere’ HM inequal-
ities (with C = N ), or had 2 ≤ |C| ≤ 4. So, given that we already had a satisfactory
separation heuristic for HM inequalities, it seemed worthwhile to tailor the HPM sep-
aration algorithm to this latter case. So, if HM separation fails, we take the same set
NUCLEI as before, and, for each set N in NUCLEI, we do the following:

• 1. Let p = min(4, |N | − 1).
• 2. If p < 2 stop.
• 3. Let C contain the p nodes in N with biggest values of x∗(E({j} : N̄)).
• 4. Let S contain those customers in N̄ that are x∗-connected to C.
• 5. Use the polygon procedure to check for violated HPM inequalities for the given
N,C, S.

• 6. If |S| ≥ 2, drop one customer from S (the one with smallest x∗(E({j} : C))) and
return to 5.

• 7. Set p := p − 1 and return to 2.

Finally, we describe our separation heuristic for KLM inequalities. This is based on
the following result:

Theorem 7. Let x∗ satisfy all degree equations and non-negativity inequalities and as-
sume that x∗

ij = 0 if qi + qj > Q. For a fixed knapsack inequality
∑n

i=1 γiyi ≤ *, the
separation problem for KLM inequalities is solvable in polynomial time.

Proof. First, note that the lhs of (32) is equivalent to x(E({0} : S))+ x(E(S : S̄)). Sec-
ond, note that, by the degree equations, the first term on the rhs of (32) can be rewritten
as

∑
i∈S γi(x0i + x(E({i} : S))+ x(E({i} : S̄)))/*.

Therefore, (32) can be written as:

∑
i∈S


x0i (1 − γi/*)−

∑
j∈V \{0,i}

γjxij /*


 +

∑
i∈S,j∈S̄

xij (1 − (γi + γj )/*) ≥ 0. (33)
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Now, for each i ∈ V \ {0} let us define a new 0-1 variable ti that takes the value 1 if
i ∈ N , 0 otherwise. Then (33) can be re-written as:

∑
i∈N


x0i (1 − γi/*)−

∑
j∈V \{0,i}

γjxij /*


 ti

+
∑

{i,j}⊂N
ti(1 − tj )

(
xij (1 − (γi + γj )/*

) ≥ 0. (34)

The assumption that x∗
ij = 0 if qi + qj > Q implies that x∗

ij = 0 if γi + γj > *. This
means that the separation problem for (34) reduces to the minimization of a quadratic
function of t in which all quadratic terms are negative. Using a standard construction [27]
this can be reduced to a max-flow/min-cut problem and therefore solved in polynomial
time.

Given Theorem 7, the question then arises as to which knapsack inequalities to use.
Initially, we experimented with lifted cover (LC) inequalities (see, e.g., [7, 25, 30].
However, we were unable to find any violated KLM inequalities at all for any of our test
instances when we used LC inequalities, even though we tried several ways of generat-
ing them. Instead, we found that much better results were obtained by the naı̈ve option
of merely setting γ = q and * = Q. (That is, just separating GLM inequalities). We
discuss this phenomenon in the next section.

We ran the cutting plane algorithm on eleven instances taken from the literature [6,
13, 28]. Statistics for these problems are shown in Table 1. The first three headings are
self-explanatory. The column headed ‘K’ shows the number of vehicles (which is fixed
in these problems at the minimum possible); the loading is the total demand divided by
KQ; and the column ‘UB’ shows the best known upper bounds at the time of writing,
taken from [5, 6, 24, 29], with a * if the upper bound is known to be optimal. The reason
for choosing these instances is that they cannot be solved to optimality using capaci-
ty inequalities alone. Moreover, all have been solved to optimality except eilA76 and
eilB76 [5, 6, 24, 29].

Table 2 displays various lower bounds for each instance. The first column labelled
‘CAP’gives the best bound obtained using capacity separation heuristics only according
to Augerat et al. [5, 6]. (The figure is missing for eilB76 because it does not appear in
those papers.) Next, ‘ALL’ is the bound obtained by Augerat et al. [5, 24] when several
sophisticated separation heuristics are invoked for various inequalities (generalized
capacity, comb, hypotour, etc.). Then we have various columns that report lower bounds
obtained by our cutting plane algorithm: ‘CAP’ is the bound obtained by our capacity
separation heuristics; ‘GLM’ is the bound obtained when GLM separation is called after
capacity separation fails; ‘HM’ gives the lower bound obtained by calling HM separa-
tion after capacity separation fails; ‘HPM’ gives the bound obtained by calling HPM
separation after both capacity and HM separation fail. Finally, ‘ALL’ gives the lower
bound obtained by calling GLM separation after capacity, HM and HPM separation fail.
A * means that a lower bound is optimal.

The results here are interesting. Very good bounds are obtained with the HM inequal-
ities for the 76 node instances — which are widely recognized as the hardest instances
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Table 1. Eleven CVRP instances

Name n Q K Loading UB

eil30 29 4500 3 .94 534*
eil33 32 8000 4 .92 835*
eil51 50 160 5 .97 521*

eilA76 75 140 10 .97 832
eilB76 75 100 14 .97 1032
eilC76 75 180 8 .95 735*
eilD76 75 220 7 .89 682*
eilA101 100 200 8 .91 815*
cmt12 100 200 10 .91 820*

fisher72 71 30000 4 .96 237*
fisher135 134 2210 7 .95 1162*

Table 2. Lower bounds for CVRP instances

Augerat et al. Our cutting plane algorithm
Name CAP ALL CAP GLM HM HPM ALL

eil30 508.5 534* 508.5 508.5 508.5 508.5 508.5
eil33 833.5 835* 833.5 833.5 833.5 833.8 833.8
eil51 514.524 517.142 514.524 514.524 514.556 514.556 514.556

eilA76 789.416 793.384 789.441 793.008 795.58 796.386 796.674
eilB76 — 953.794 947.952 961.827 963.627 964.15 966.511
eilC76 711.17 713.746 711.201 712.441 714.279 714.327 714.327
eilD76 661.299 664.355 661.36 661.36 663.241 663.248 663.248
eilA101 796.314 799.656 796.405 796.405 798.728 798.771 798.771
cmt12 819.5 820* 819.5 819.5 819.5 820* 820*

fisher72 232.5 235 232.5 232.5 232.5 232.5 232.5
fisher135 1158.25 1159.06 1158.25 1158.304 1159.645 1159.65 1159.65

to solve. Also cmt12 can be solved to optimality using capacity, HM and HPM in-
equalities alone (without branching). On the other hand, the multistar inequalities make
no difference at all for eil30 and fisher72 and little difference for eil33 and eil51. For
these instances, cutting planes of a different kind appear to be necessary. For eil30 and
fisher72, for example, the so-called generalized capacity inequalities work very well
(see [5]).

Table 3 reports the time taken to compute the CAP, HM and HPM bounds. The hard-
ware used was a 350 MHz PC Pentium II with 64MB of RAM running under Microsoft
Windows 95. We used the ILOG CPLEX 6.0 callable library and the Watcom C/C++
compiler V. 11.0.

We also ran the cutting plane algorithm on some unit demand instances, taken from
[4], all of which have been solved to optimality. For these instances, the HM and HPM
separation heuristics could be improved somewhat. First, we could use the improved
bound on x(E(C : S)) given by Lemma 2. Second, we wrote a dynamic programming
code that enables us, for a given Q, n and N , to eliminate various possible values of S
and C from consideration on the basis of dominance arguments.

Table 4 contains some information on these unit demand instances. Here, the number
of vehicles is not fixed and therefore we just report �n/Q� — the minimum number of
vehicles necessary — for interest. (Note: the optimal solution to AKMP13 is 688, rather
than 689 as reported in [4].)
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Table 3. Running times (in seconds) for CVRP instances

Name CAP GLM HM HPM ALL

eil30 3 3 3 3 3
eil33 7 8 8 11 11
eil51 7 7 8 8 8

eilA76 29 62 121 215 318
eilB76 39 177 262 313 862
eilC76 16 28 55 80 80
eilD76 13 13 29 36 36
eilA101 19 19 74 88 88
cmt12 44 44 44 49 49

fisher72 6 6 6 6 6
fisher135 76 77 256 266 266

Table 4. Ten unit demand instances from Araque et al.

Name n Q �n/Q� OPT

AKMP1 40 10 4 647
AKMP7 50 8 7 875
AKMP8 50 15 4 678

AKMP13 60 30 2 688
AKMP15 21 3 7 530
AKMP16 21 7 3 341
AKMP17 29 4 8 832
AKMP18 29 6 5 639
AKMP19 32 5 7 627
AKMP20 32 8 4 497

Table 5. Lower bounds for unit demand instances

Name AKMP CAP GLM HM HPM

AKMP1 638 640.667 640.667 641 642.123
AKMP7 857.38 858.75 859.381 862.858 864.291
AKMP8 669.62 672.333 672.333 672.818 672.818

AKMP13 678.25 682.75 682.75 682.75 682.75
AKMP15 530* 530* 530* 530* 530*
AKMP16 341* 340.5 341* 341* 341*
AKMP17 830.8 832* 832* 832* 832*
AKMP18 639* 639* 639* 639* 639*
AKMP19 625.27 625.833 626.037 627* 627*
AKMP20 497* 497* 497* 497* 497*

Table 5 shows various lower bounds: ‘AKMP’ represents the bound obtained by
Araque et al. [4] using separation heuristics for capacity, LM, IM and SM inequalities;
the remaining four columns show bounds obtained with our algorithm, with the same
headings as before. (There is no ‘ALL’ column because running GLM separation after
HPM separation led to no increase in the bounds.)

It should be noted that our capacity separation heuristic on its own (column ‘CAP’)
generally gives better bounds than those in column ‘AKMP’. Together with our HM and
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Table 6. Running times (in seconds) for unit demand instances

Name CAP GLM HM HPM

AKMP1 6 6 7 11
AKMP7 9 12 15 22
AKMP8 5 5 6 6
AKMP13 4 4 4 4
AKMP15 5 5 5 5
AKMP16 5 6 5 5
AKMP17 7 7 7 7
AKMP18 7 7 7 7
AKMP19 7 9 9 9
AKMP20 5 5 5 5

HPM separation heuristics, we are able to solve many of the instances to optimality with
no branching. (Table 6 gives the running times.)

6. Conclusion

The inequalities generated by the ‘polygon’ procedure, together with the KLM inequali-
ties, generalize all other known multistar and partial multistar inequalities in the literature
and are therefore interesting from a theoretical point of view. They also appear to be
promising as cutting planes, especially the homogeneous ones. In our view, there are
three areas of interest for further research:

• Finding better ways of choosing (γ, *) for KLM separation.
• Integrating the HM, HPM and KLM separation algorithms in a branch-and-cut solver

for the CVRP.
• Deriving multistar (and perhaps partial multistar) inequalities for problems with

more complex constraints, such as time windows (see, e.g., [12]).

The second and third of these issues are addressed in [21] and [22], respectively. We
close this section with a discussion of the first issue, namely, the reason why the naı̈ve
method of choosing (γ, *) gave better results than using lifted cover (LC) inequalities.
A partial explanation for this is as follows. With any given (γ, *) pair we can associate
a measure of strength,

∑n
i=1 γi/*. We would expect a (γ, *) pair with large strength

to yield better KLM inequalities, on average, than a pair with small strength. We found
that using LC inequalities to generate (γ, *) invariably gave a measure of strength that
was at least 30% smaller than the strength obtained under the naı̈ve option.

To see why this might be the case, we computed a strongest possible (γ, *) for 8
out of the 10 problem instances, by optimizing over the 1-polar of K(q,Q) using the
algorithm of [9]. (For the two Fisher instances, this was not possible, because Q was
too large). For 7 out of the 8 problems, it is optimal to set (q,Q) = (γ, *). The only
instance where there is some scope for increasing the strength is eil33: there is a demand
of 40 that can be increased to 50 and a demand of 80 that can be increased to 100.

This suggests that, if one wishes to generate good facets of K(q,Q) for KLM sep-
aration, one should not use LC inequalities.
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