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Abstract. The 0/1 primal separation problem is: Given an extreme point x̄ of a 0/1 polytope P and some
point x∗, find an inequality which is tight at x̄, violated by x∗ and valid for P or assert that no such inequality
exists. It is known that this separation variant can be reduced to the standard separation problem for P .

We show that 0/1 optimization and 0/1 primal separation are polynomial time equivalent. This implies
that the problems 0/1 optimization, 0/1 standard separation, 0/1 augmentation, and 0/1 primal separation are
polynomial time equivalent.

Then we provide polynomial time primal separation procedures for matching, stable set, maximum cut,
and maximum bipartite graph problems, giving evidence that these algorithms are conceptually simpler and
easier to implement than their corresponding counterparts for standard separation. In particular, for perfect
matching we present an algorithm for primal separation that rests only on simple max-flow computations.
In contrast, the known standard separation method relies on an explicit minimum odd cut algorithm. Conse-
quently, we obtain a very simple proof that a maximum weight perfect matching of a graph can be computed
in polynomial time.

1. Introduction

The polynomial time equivalence of separation and optimization [16, 28, 20] provides a
powerful tool to prove that certain combinatorial optimization problems can be solved
in polynomial time, such as finding shortest paths, submodular function minimization
or computing maximum stable sets in perfect graphs among many others.

Perhaps one of the most stunning applications of this equivalence is the proof of
Padberg and Rao [29] that maximum weight matchings can be computed in polynomial
time. Padberg and Rao used the inequality description of the convex hull of characteris-
tic vectors of perfect matchings [7] and the equivalence of separation and optimization
to reduce the maximum weighted perfect matching problem to the problem of find-
ing a minimum odd cut of a graph. Their separation algorithm is much simpler than
Edmonds’s blossom shrink algorithm, which solves the maximum weighted matching
problem directly.

In this paper we consider the following variant of the separation problem, called
primal separation. Here, given an extreme point x̄ of an integral polyhedron P and
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Fig. 1. A primal cutting plane of x̄ separating x∗ from P . Notice that y∗ cannot be separated from P by a
primal cutting plane of x̄.

some point x∗, one has to compute an inequality aT x ≤ β, which is valid for P , tight
at x̄ (i.e., aT x̄ = β) and not valid for x∗ or assert that no such inequality exists. An
inequality aT x ≤ β meeting these conditions is called a primal cutting plane. If one
does not require tightness aT x̄ = β of the valid inequality, we speak about the standard
separation problem and a standard cutting plane. Notice that if x∗ is not in P , then there
is always a standard cutting plane separating x∗ from P whereas this does not hold in
the primal case, see Figure 1.

Primal separation appeared first in the context of an integer programming algorithm
based on simplex-like pivoting [34]. By linear programming duality, primal separation
is the method of choice to prove optimality of an integer point x̄. Padberg and Hong [27]
investigated the potential of this observation to prove optimality of traveling salesman
tours. In contrast to Young, they used inequalities defining facets of the traveling sales-
man polytope as primal cutting planes.

Padberg and Hong’s approach for the traveling salesman problem, like many algo-
rithms for polynomially solvable combinatorial problems, is of primal flavor. It starts
from an integral feasible solution and then either proves that such a solution is opti-
mal, or provides a current linear programming relaxation to the problem with enough
inequalities, generated by separation, to perform a pivot that produces a better integral
feasible solution. The use of separation in this “primal” environment, where all the
generated inequalities must satisfy the current solution at equality, motivates the term
“primal separation” that has been used in the above definition and is now commonly
used terminology.

If we exclude very few exceptions (see, e.g., [5]), the primal approach of Padberg
and Hong had a very limited follow-up. Indeed, all the polyhedral-based cutting plane
algorithms for NP-hard integer programming or combinatorial optimization problems
are based on a dual approach: a sequence of infeasible solutions is generated; each of
them is the optimum of the current linear programming relaxation of the problem. Each
solution of the sequence is in turn separated from the integral feasible solutions by an in-
equality produced by standard separation. Optimality is reached as soon as the optimum
of the current relaxation is integral.
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Recently, the primal approach and primal cutting planes are reconsidered again,
also due to their close connection to augmentation algorithms, see [10]. Letchford and
Lodi [21] use modern integer programming techniques to improve Young’s [34]
algorithm. Letchford and Lodi [22] present a polynomial time algorithm for the pri-
mal separation of Chvátal comb inequalities for the traveling salesman problem. A
polynomial standard separation algorithm for Chvátal combs is presented in [23].

Primal separation can be reduced to standard separation [26]. An important question
is thus whether polynomial time equivalence of the two problems holds.

The solutions to combinatorial optimization problems are often subsets of a
given ground set. These solutions can thus be described by their characteristic vectors
χ ∈ {0, 1}n. With a combinatorial optimization problem of this type, one can associate
the 0/1 polytope, which is the convex hull of the characteristic vectors of the solutions.
In light of the above question, 0/1 polytopes are of particular importance.

We prove the following result.

Theorem 1. 0/1 primal separation and 0/1 optimization are polynomial time equivalent.

As a byproduct, we have that the classical problems: 0/1 optimization, 0/1 augmen-
tation, 0/1 separation and the problem 0/1 primal separation are all polynomial time
equivalent.

In the second part of our paper we consider primal separation for classes of valid
inequalities of several combinatorial optimization problems, whose standard version is
known to be polynomial. In particular we consider inequalities for matching, stable set,
maximum cut, and maximum bipartite subgraph polytopes. Although we do not provide
cases where the asymptotic complexities of primal and standard separation differ, we
give evidence that in all these cases primal separation is conceptually simpler and easier
to implement as opposed to the corresponding standard separation. For example, we
show that primal separation for the perfect b-matching polytope is easier than the corre-
sponding standard separation variant. More precisely, our primal separation algorithm
does not require an explicit minimum odd cut algorithm as it is the case for the standard
separation algorithm of Padberg and Rao [29]. Together with the above equivalence, this
yields an even simpler proof that maximum weight perfect matchings and other variants
of maximum matching can be computed in polynomial time.

2. Preliminaries and notation

A rational polyhedron P ⊆ R
n is a set of points satisfying a finite system of inequalities

Ax ≤ b, where A ∈ Q
m×n and b ∈ Q

m have rational components. If P is bounded, then
P is called a rational polytope. A point x ∈ P is called an extreme point, if it is not a
convex combination of two distinct points of P , i.e., if x = αy + βz with α, β > 0,
α + β = 1 and y, z ∈ P implies that y = z = x. A 0/1 polytope is a rational polytope
P whose extreme points have 0/1 components. In the context of a 0/1 polytope P , the
variable n denotes the dimension such that P ⊆ R

n holds. For more on 0/1 polytopes
see, e.g., [35].

An inequality aT x ≤ β is valid for a polyhedron P , if P ⊆ {x | aT x ≤ β}. An
inequality aT x ≤ β is tight or active at a given point x̄ ∈ P , if it is valid for P and
aT x̄ = β.
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A graph G = (V , E) consists of a finite set V of vertices and of a set E of 2-element
subsets of the vertices, called edges, i.e., E ⊆ {{u, v} | u, v ∈ V, u �= v}. An edge
{u, v} is also denoted by e. The nodes u and v are called its end nodes. For U ⊆ V , the
cut δ(U) is the set of edges e ∈ E with |e ∩ U | = 1. Let s and t be nodes of G. An
(s, t)-cut of G is a cut δ(U) with |U ∩ {s, t}| = 1. A graph G = (V , E) is bipartite, if
there exists a cut δ(U) of G with E = δ(U).

In this paper we consider families of 0/1 polytopes P . Notice that we do not specify
how the members P ∈ P of the family are encoded. For example, P could be the family
of perfect matching polytopes PG, where G = (V , E) is an undirected graph and PG is
the convex hull of the characteristic vectors of perfect matchings of G. Another family
P could be the 0/1 polytopes Pφ associated with propositional formulas φ. A polytope
Pφ is then the convex hull of the truth assignments of φ.

Since the facet and vertex complexity [31, p. 121] of a 0/1 polytope P ⊆ R
n is

polynomial in n, it follows from the fundamental result of Frank and Tardos [11] that
the 0/1 optimization problem for a family P is strongly polynomial if and only if it is
polynomial. Clearly, this also holds for 0/1 separation. Therefore, every statement in
the following sections involving the term “polynomial time equivalent” can as well be
rephrased as “strongly polynomial time equivalent”.

3. Optimization, separation, and augmentation

We now introduce four problems which are all connected to optimizing a linear function
over a 0/1 polytope. We review classical equivalence and implication results concerning
these problems. In this section it will become clear that the establishment of one more
implication settles the equivalence of the four problems. For the rest of the paper, let P
denote a family of 0/1 polytopes and let P ∈ P .

First we define the 0/1 optimization problem. It is NP-hard to find an initial 0/1 point
for P . However, the nature of the primal algorithms considered here, requires that we
provide an initial solution.

0/1 Optimization (0/1-opt)
Given a 0/1 point x̄ ∈ P and a vector c ∈ Z

n, find a 0/1 point x̃ ∈ P

which maximizes cT x.

We now formulate a variant of the standard separation problem for 0/1 polytopes.
Again, we provide an initial solution as a parameter.

0/1 Separation (0/1-sep)
Given a 0/1 point x̄ ∈ P and a point x∗ ∈ R

n, find a valid inequality of
P which separates x∗ from P or assert that no such inequality exists.

The equivalence of the problems 0/1-sep and 0/1-opt follows from the more general
result of Grötschel et al. [16], Padberg and Rao [28] and Karp and Papadimitriou [20].
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Fig. 2. The implication diagram

Theorem 2. The problems 0/1-sep and 0/1-opt are polynomial time equivalent.

Many algorithms in combinatorial optimization, such as Ford and Fulkerson’s algo-
rithm for maximum flow, Edmonds’s algorithm for maximum matching or the greedy
algorithm, are primal algorithms which rely on augmentation. Here one has a feasible
integral point x̄ and has to find an augmenting solution x̃, i.e., one with better objective
value, or assert that x̄ is optimal.

0/1 Augmentation (0/1-aug)
Given a 0/1 point x̄ ∈ P and a vector c ∈ Z

n, find a 0/1 point x̃ ∈ P with
cT x̃ > cT x̄ or assert that x̄ maximizes cT x, x ∈ P .

Schulz, Weismantel and Zielger [32] and Grötschel and Lovász [15] have shown that
0/1 augmentation and 0/1 optimization are polynomial time equivalent.

Theorem 3. The problems 0/1-opt and 0/1-aug are polynomial time equivalent.

We finally describe the 0/1 primal separation problem.

0/1 Primal Separation (0/1-psep)
Given a 0/1 point x̄ ∈ P and a point x∗ ∈ R

n, find a valid inequality of
P which is tight at x̄ and not valid for x∗ or assert that no such inequality
exists.

The implication given in the following theorem can be found as an exercise in [26].

Theorem 4. If 0/1-sep can be solved in polynomial time, then 0/1-psep can be solved in
polynomial time.

The missing implication which settles the polynomial time equivalence of the above
problems is that 0/1-psep implies 0/1-aug, see Figure 2. There is an arrow from one
problem A to another problem B, if B can be solved by a polynomial number of calls
to an algorithm solving A and some extra polynomial time computation. The dashed
implication is proved in the next section.
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4. Reducing augmentation to primal separation

First we prove that the existence of a polynomial time algorithm for primal separation
implies the existence of a polynomial time algorithm which allows us to test whether
the 0/1 solution x̄ is optimal in a face of the n-dimensional 0/1 cube intersected with
P . Then we present an algorithm which, based on such an optimality test, constructs an
augmenting solution x̃.

Let x̄ ∈ P ∩ {0, 1}n and J ⊆ {1, . . . , n}. The polytope F x̄
J (P ) is the face of P

obtained by fixing the variables xj , j ∈ J to the corresponding value of x̄, i.e.,

F x̄
J (P ) = P ∩ {x ∈ R

n | xj = x̄j , j ∈ J }.
We consider the decision problem where one has to find out whether x̄ is optimal in

the 0/1 polytope F x̄
J (P ) for some index set J ⊆ {1, . . . , n}.

Test Facial Optimality (0/1-testopt )
Given a 0/1 point x̄ ∈ P ∩ {0, 1}n, a vector c ∈ Z

n and an index set J ⊆
{1, . . . , n}, determine whether x̄ maximizes cT x over the face F x̄

J (P ).

The next lemma states that a 0/1-psep algorithm can be used to test facial optimality.

Lemma 1. If 0/1-psep can be solved in polynomial time, then 0/1-testopt can be solved
in polynomial time.

Proof. Let T be the polyhedron defined by the constraints of F x̄
J (P ) which are tight at

x̄. By complementary slackness, x̄ maximizes cT x over F x̄
J (P ) if and only if x̄ opti-

mizes cT x over T . Notice that a 0/1-psep algorithm for x̄ and P is a standard separation
algorithm for T . Thus the lemma follows by the equivalence of standard separation and
optimization. ��
Lemma 2. Given a 0/1-point x̄ ∈ P , and a vector c ∈ Z

n, 0/1-aug can be solved by
n + 1 calls to a 0/1-testopt algorithm.

Proof. We iteratively construct an augmenting 0/1 solution x̃ of x̄.After the i-th step, we
will have constructed the first i components x̃1, . . . , x̃i of x̃ and a subset J i ⊆ {1, . . . , i}
such that the following invariant holds.

There exists an augmenting 0/1 solution x̃ of x̄ contained in F x̄
J i (P ) and all

0/1 augmenting solutions contained in F x̄
J i (P ) of x̄ have first i components

x̃1, . . . , x̃i .

We begin with a first call to a 0/1-testopt algorithm to find out whether x̄ is optimal.
If the answer is yes, then there exists no augmenting solution. Otherwise, the invariant
is satisfied for i = 0 and J = ∅.

After step i we proceed as follows. With a call to a 0/1-testopt algorithm we find out
whether x̄ is optimal in the face F x̄

J i∪{i+1}(P ). If the answer is yes, then each augmenting

0/1 solution in the face F x̄
J i (P ) has the first i + 1 components x̃1, . . . , x̃i , 1 − x̄i+1. By

setting J i+1 = J i we ensure the invariant for i + 1.
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If the answer is no, then there exists an augmenting 0/1 solution in the face F x̄
J i∪{i+1}

(P ) and each augmenting solution in F x̄
J i∪{i+1}(P ) has first i+1-st components x̃1, . . . ,

x̃i , x̄i+1. By setting J i+1 = J i ∪ {i + 1} the invariant also holds in this case.
��

The next theorem is the missing implication from Section 3.

Theorem 5. If 0/1-psep can be solved in polynomial time, then 0/1-aug can be solved
in polynomial time.

Proof. Lemma 2 implies that in order to solve the augmentation problem, one needs
only n + 1 queries to a 0/1-testopt algorithm. The 0/1-testopt problem in turn can be
solved in polynomial time by Lemma 1.

��
We can now conclude that all of the problems defined in Section 3 are polynomial

time equivalent.

Theorem 6. The problems 0/1-opt, 0/1-sep, 0/1-aug, and 0/1-psep are polynomial time
equivalent.

5. Primal separation for matching polytopes

Let G = (V , E) be a graph and a, b ∈ Z
V+ be two vectors indexed by the nodes of G. A

general simple matching of G is a subset M of the edge set E satisfying the following
condition:

au ≤ |M ∩ δ(u)| ≤ bu for all u ∈ V. (1)

If we are given a vector of edge weights c ∈ Z
E , then the general simple matching prob-

lem is to find a general simple matching of G with maximum total weight
∑

e∈M ce.
There are several special versions of a general simple matching. When a is the zero

vector, we call M a simple b-matching; when a = b we call M a perfect simple b-
matching. In case b is a vector of all 1’s, we use the terminology simple matching and
perfect matching respectively. Observe that in order to have a nonempty set of perfect
(b-)matchings of G, the sum

∑

u∈V bu must be even1.
With a general simple matching M we associate a characteristic vector χM ∈ R

E ,
whose component χM

e is equal to 1 if e ∈ M and 0 otherwise.
An integral vector x ∈ R

E satisfies the following system of inequalities

au ≤ ∑

e∈δ(u) xe ≤ bu for all u ∈ V

0 ≤ xe ≤ 1 for all e ∈ E
(2)

if and only if it is a characteristic vector of a general simple matching of G.

1 Sometimes in the literature, as well as in the introduction of this paper, the name “matching problem”
refers to the special case when c is a vector of 1’s, while what we call “matching problem” is denoted by
“weighted matching problem”.
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Fig. 3. An odd cut triggered by x̄. The edges drawn are those of M .

5.1. Perfect matchings

Let us first consider the perfect matching problem. In this case the system (2) becomes

∑

e∈δ(u)

xe = 1 for all u ∈ V

x ≥ 0.

(3)

The characteristic vector of a perfect matching of G is an extreme point of the polytope
defined by (3). However, unless G is bipartite, it has also non integral extreme points.
Edmonds [8] showed that following system of inequalities

∑

e∈δ(U)

xe ≥ 1 for all U ⊂ V, |U | odd, (4)

is satisfied by the characteristic vector of a perfect matching of G. Moreover, he proved
that the inequalities (3)–(4) describe a 0/1 polytope. This means that the perfect match-
ing problem can be solved by maximizing a linear function over the polytope defined
by (3)–(4).

Padberg and Rao [29] showed that, given x∗ ∈ R
E , the separation problem for the

inequalities (4) can be solved by finding a minimum weight odd cut δ(U) of G with
edge weights x∗. An odd cut δ(U) of G is a cut such that |U | is odd. Padberg and Rao
described an algorithm that computes an odd cut of minimum weight by constructing
a Gomory-Hu tree of the graph G. Their algorithm has polynomial time complexity.
Therefore, by Theorem 2, it follows that maximum weighted perfect matchings can be
computed in polynomial time.

By Theorem 4 it follows that one can solve the primal separation problem using a
standard separation algorithm.We now provide a primal separation algorithm which does
not make use of the standard counterpart and is even conceptually simpler. Therefore
we have a simpler proof for the polynomial time complexity of the maximum perfect
matching problem than the one in [29].

Let M be a perfect matching of G and x∗ ∈ R
E be a point satisfying the inequalities

(3). We want to solve the primal separation problem for the inequalities (4) with respect
to the points x̄ = χM and x∗. To do so, we have to find a minimum weight odd cut, with
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respect to the edge weights given by x∗, among those that intersect M in exactly one
edge (see Figure 3). The minimum x∗-weight odd cut among those that contain only the
edge {s, t} of M is computed by finding a minimum weight (s, t)-cut in the graph G{s,t}
obtained from G by contracting the end nodes of all edges e ∈ M \ {s, t}. These edges
e ∈ M \ {s, t} cannot belong to the odd cut we are looking for. Such a cut induces, in the
obvious way, an odd cut of G that intersects M only in {s, t}. As the minimum weight
(s, t)-cut can be solved with a max-flow algorithm, primal separation can thus be solved
with |V |/2 max-flow computations. The candidates for the edge {s, t} are, one at the
time, all the edges of the perfect matching M .

Proposition 1. The primal separation problem for the perfect matching polytope of a
graph G = (V , E) can be solved with |V |/2 max-flow computations.

With Theorem 1 this yields a very simple proof that the perfect matching problem can
be solved in polynomial time. Notice that we can add edges with very small weight to G

to make it complete without changing the optimal solution. An initial solution x̄ is then
easily found. At this point we would like to stress that our primal separation algorithm
does not require an explicit minimum odd cut algorithm. Although there exist simpler
minimum weight odd cut algorithms than the original one of Padberg and Rao [29],
see [17] for an algorithm based on an inductive argument and [19] for an algorithm
based on a simple implementation of Gomory-Hu cut trees, these algorithms rely on
nontrivial observations, whereas the primal separation variant of the odd cut inequalities
is elementary.

Corollary 1. The maximum weighted perfect matching problem can be solved in poly-
nomial time.

5.2. General matchings

If we remove the upper bound on the variables in (2), we obtain the system

au ≤
∑

e∈δ(u)

xe ≤ bu for all u ∈ V

xe ≥ 0 for all e ∈ E.

(5)

An integral solution of this system is called a general matching of G, or a general
perfect b-matching of G when a = b. Given a vector of edge weights c ∈ Z

E , the
general matching (perfect b-matching) problem is to find a general matching (perfect
b-matching) x ∈ Z

E of maximum weight cT x.
Tutte [33], see also [13], gave a polynomial time reduction from the general simple

matching problem to the general perfect b-matching problem. Therefore, from now on,
we will only consider the latter problem.

The system that defines a general perfect b-matching, i.e.,
∑

e∈δ(u)

xe = bu for all u ∈ V

xe ≥ 0 for all e ∈ E,

(6)

defines a polytope whose extreme points are in general not all integral.
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Fig. 4. The connected components of J ′ \ {s, t} are contracted into a single node.

A multiset F of edges of a graph G = (V , E) is a collection of the edges of G con-
taining an arbitrary number of copies of each element of E. The characteristic vector of a
multiset F is the vector χF ∈ R

E where χF
e is the number of times that e is contained in

F . By δF (u), where u ∈ V , we denote the multiset of all the elements of F that contain
node u. A multiset of edges B is called Eulerian if |δB(u)| is even for all u ∈ V .

Let T ⊆ V be a subset of the nodes of G with |T | even. A T -join J is a multiset of
the edges of G such that |δJ (u)| is odd if u ∈ T and even otherwise. A T -join is simple if
its characteristic vector has 0/1 components and is minimal if does not properly contain
another T -join.

A perfect matching is a V -join of minimum cardinality, while a perfect b-matching is
a T -join where T is the set of nodes u with bu odd that satisfy the additional constraints
given by (6).

The T -join polyhedron is the set of points that can be expressed as a convex combi-
nation of the characteristic vectors of a finite set of T -joins. Edmonds and Johnson [9]
showed that the T -join polyhedron is described by the system

∑

e∈δ(U) xe ≥ 1 for all U ⊆ V, |U ∩ T | odd,

xe ≥ 0 for all e ∈ E.
(7)

The general perfect b-matching polytope, is defined by (6)–(7) with T = {u ∈ V |
buodd}. Generalizing a result of Edmonds [7], Pulleyblank [30] showed that the general
perfect b-matching polytope is integral.

In conclusion, we can solve the primal separation problem for the general perfect
b-matching polytope as long as we can solve the primal separation problem for the
T -join polyhedron.

A T -cut is a cut δ(U) of G with |U ∩ T | odd. An odd cut is simply a V -cut. The
standard separation problem of the inequalities (7) is solved by computing a minimum
weight T -cut. An algorithm for this task was given by Padberg and Rao. This algorithm
is again based on Gomory-Hu tree computation.

Let J be a T -join of G and x∗ ∈ R
E be a nonnegative point. We want to solve the

primal separation problem for the inequalities (7) with respect to the points x̄ = χJ

and x∗. To do so, we have to find a minimum weight T -cut, with respect to the edge
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weights given by x∗, among those that intersect J in exactly one edge. The T -join J is
the union of a Eulerian multigraph B and of a minimum T -join J ′. Since the intersection
of each connected component of B with a cut has even cardinality, we can contract all
nodes of each connected component of B into a single node. Recall that these compo-
nents can be detected with breadth-first-search [1]. The T -join J ′ is simple and does
not contain circuits. Therefore, it is a forest, thus |J ′| < |V |. Furthermore, |J ′| ≤ 1

2B,
where B = ∑

u∈V bu. For each edge {s, t} of J ′ we do the following. We contract all
the nodes of each connected component of the forest obtained from J ′ by removing the
edge {s, t} (see Figure 4). Let G′ be the resulting graph and let s′ and t ′ the nodes of
G′ into which s and t have been contracted, respectively. Finally we find the minimum
weight (s′, t ′)-cut in G′.

Such a cut induces, in the obvious way, a cut δ(U) of G that intersects J ′ only in
{s, t}. We now argue that |U ∩ T | is odd. This follows since

|U ∩ T | ≡
∑

u∈U

δJ ′(u) (mod 2)

≡ 2 |{{u, v} ∈ J ′ | u, v ∈ U}| + 1 (mod 2).

Primal separation can thus be solved with |J ′| many max-flow computations.

Proposition 2. Let G = (V , E) be a graph and T ⊆ V with |T | even. The primal
separation problem for the T -join polyhedron can be reduced to |V | − 1 maximum flow
computations.

Observation 1. In the case of the general perfect b-matching problem, the number of
nonzero entries of x̄ is at most 1

2

∑

u∈V bu. Thus, in this case, the primal separation
problem can be solved by min{|V | − 1, 1

2

∑

u∈V bu} maximum flow computations.

If the reduction of Tutte [33] is applied to a general simple matching problem, then
the intersection of the solution set of the corresponding two systems (6) and (7) is a
0/1 polytope. Together with the equivalence described in Section 4 the above result
yields another proof that optimal general simple matchings can be computed in polyno-
mial time. As a consequence, we obtain the following result that, in contrast to previous
methods, is here obtained without explicit odd-cut algorithms.

Corollary 2. The maximum weight general simple matching problem can be solved in
polynomial time.

If ab = bb = 2, then one has the perfect 2-matching problem, whose associate
separation problem is used to find violated 2-matching and some comb inequalities of
the traveling salesman problem, see [24, 25].

6. Primal separation for stable set, cut, and bipartite subgraph polytopes

In this section we study primal separation variants of valid inequalities for the stable set,
cut, and bipartite subgraph polytopes. All variants rely, like their standard counterpart,
on the computation of shortest paths. The primal separation variants here are however
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simpler and operate on smaller auxiliary graphs. The cut polytope, in particular, appears
to fit very well into the primal separation framework since this polytope is closed un-
der the switching operation. This means that the primal separation problem for the cut
polytope can be understood as the standard separation problem for the cut cone.

6.1. The stable set polytope

A stable set of a graph G = (V , E) is a subset S of V that does not contain any edge.
Given a weight vector c ∈ Z

V , the maximum weighted stable set problem is to find a
stable set of G of maximum weight

∑

u∈S cu.
An integral vector x̄ ∈ R

V satisfies the following system of inequalities

xu + xv ≤ 1 for all {u, v} ∈ E,

xv ≥ 0 for all v ∈ V,
(8)

if and only if it is the characteristic vector χS of a stable set S of G. The convex hull of
the characteristic vectors of stable sets of G is the stable set polytope of G. The polytope
defined by (8) has integral extreme points if and only if G is bipartite.

A cycle of G is a minimal Eulerian set of at least three edges. A cycle is odd if it has
an odd number of elements. By V (C) we denote the union of the elements of a cycle C.

The following is the system of the odd cycle inequalities:

∑

v∈V (C)

xv ≤
⌊

1

2
|V (C)|

⌋

for all odd cycles C of G. (9)

Such a system is satisfied by the incidence vectors of all stable sets of G. Moreover, there
are extreme points of the polytope defined by (8) that are violated by a cycle inequality.

Gerards and Schrijver [14] gave a polynomial time algorithm to solve the separation
problem for the odd cycle inequalities. To separate a fractional point x∗ one has to find
a minimum weight odd cycle of G, where the weight of each edge {u, v} is given by
1−x∗

u −x∗
v . For this one finds shortest paths in a graph obtained by making two identical

copies of G suitably connected. Such a graph has twice as many nodes and twice as many
edges as G.

6.1.1. Primal separation of odd cycle inequalities Here, we describe the primal sep-
aration variant of this algorithm. The advantage in this case is that one does not have to
operate on a graph larger than G.

Let x̄ = χS , where S is a stable set of G and let x∗ satisfy (8). We want to find an
odd cycle C, such that

∑

v∈V (C)

x∗
v >

⌊
1

2
|V (C)|

⌋

and
∑

v∈V (C)

x̄v =
⌊

1

2
|V (C)|

⌋

. (10)

Let Z = {{u, v} | x̄u = x̄v = 0}. The second condition of (10) implies that the odd
cycle we want to find is one that contains one and only one edge {u, v} ∈ Z. Define
Ḡ = (V , E − Z) and choose {u, v} ∈ Z. Observe that each path from u to v in Ḡ is
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an even path, since it must be an alternating sequence of nodes with value 0 and 1 with
respect to x̄. This means that, in Ḡ + {u, v}, each cycle using the edge {u, v} is an odd
cycle. To each edge {u, v} of Ḡ we give the weight 1−x∗

u −x∗
v as in the Gerards-Schrijver

algorithm. Then a violated cycle can be found by computing the shortest path for such a
pair of nodes in Ḡ (which amounts to running |V | times a shortest path algorithm) and
then making a check for each edge of Z.

In conclusion, we have the following proposition.

Proposition 3. Let G = (V , E) be a graph, x̄ be a characteristic vector of a stable set
of G and let x∗ ∈ R

E satisfy (8). The primal separation problem for odd cycle inequal-
ities (9) with respect to x∗ and x̄ can be solved with |V | shortest path computations on
a graph Ḡ which results from G by deleting edges.

An undirected graph G = (V , E) is t-perfect if the the polytope defined by (8) and
(9) has integral extreme points [4]. Theorem 6 and Proposition 3 provide an alternative
simple proof of the following assertion.

Corollary 3. The maximum weighted stable set problem for t-perfect graphs is solvable
in polynomial time.

6.2. The cut polytope

Given a graph G = (V , E) and a vector of edge weights c ∈ Z
E , the maximum cut

problem is to find a cut δ(U) of G with maximum total weight
∑

e∈δ(U) ce. The convex
hull of characteristic vectors of cuts of G is the cut polytope Pcut(G) of G. Equivalent-
ly, the cut polytope is the convex hull of the 0/1 vectors which satisfy the following
inequalities:

∑

e∈F

xe −
∑

e∈C−F

xe ≤ |F | − 1 for all cycles C of G and F ⊆ C, |F | odd,

xe ≤ 1 for all e ∈ E,

xe ≥ 0 for all e ∈ E.

(11)

The first set of inequalities in (11) are called the cycle inequalities. Barahona and
Mahjoub [3] gave a polynomial time standard separation algorithm for cycle inequali-
ties. Given G = (V , E) and a fractional point x∗ ∈ R

E with 0 ≤ x∗ ≤ 1 they form a
new graph G∗ by duplicating the graph G and by adding additional edges. The graph G∗
has twice as many nodes and four times as many edges as G. The standard separation
problem is then solved by |V | single-source shortest path computations on the graph
G∗.

The maximum cut problem is one of the best suited problems for primal separation.
Let B ⊆ E be a subset of the edges of G. For a vector x ∈ R

E , let xB be defined as

xB
e =

{

−xe if e ∈ B

xe otherwise.

The switching mapping is the function rB(x) = xB +χB , where χB is the characteristic
vector of B. The symmetric difference of two cuts is again a cut. This means that if B is
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a cut of G, then the switching mapping rB(x) is a bijection of the characteristic vectors
of cuts of G. In other words one has rB(Pcut(G)) = Pcut(G) for any cut B = δ(U) of G.
Let S ⊆ R

E be a set of points in the space and let B ⊆ E. The inequality aT x ≤ β is
valid for S if and only if (aB)T x ≤ β − aT χB is valid for rB(S).

Moreover, if B is a cut of G and aT x ≤ β defines a facet of Pcut(G), then also
(aB)T x ≤ β − aT χB defines a facet of Pcut(G). As a consequence, if we know a de-
scription of the cut cone of G, the conical hull of all the 0/1 solutions of (11), then,
by switching, we can derive a description of the inequalities defining all the facets of
Pcut(G).

Let B be a cut of G and x∗ ∈ R
E . We want to solve the primal separation problem

for the cut polytope with respect to the points x̄ = χB and x∗. Following De Simone
and Rinaldi [5], we solve the standard separation problem for the cut cone of G with
respect to the point rB(x∗), producing a valid inequality aT x ≤ 0. Then the inequality
(aB)T x ≤ −aT χB is violated by x∗ and is tight at x̄.

Thus primal separation for the cut polytope is equivalent to standard separation re-
stricted to the homogeneous inequalities or, equivalently, to standard separation for the
cut cone.

6.2.1. Primal separation for cycle inequalities Primal separation can also be solved
with |V | single source shortest paths computations. But in contrast to the known standard
separation algorithm, one can again operate on the original graph. The cycle inequalities,
as defined in (11), are closed under the switching operation. Therefore, primal separation
amounts to restricting standard separation to homogeneous cycle inequalities, which are
those whose corresponding odd set F is a singleton set F = {f }. The point x∗ violates
such a cycle inequality if and only if

∑

e∈C\{f }
x∗
e < x∗

f . (12)

This means that there exists a violated homogeneous cycle inequality if and only if there
exists an edge f = {u, v} ∈ E such that the length of a shortest path between u and v in
G with edge weights x∗ is strictly less than x∗

{u,v}. It is therefore enough to solve the all
pairs shortest path problem for G with edge weights x∗ and to compare the shortest path
length between u and v with the value x∗

{u,v}. Remember that the all pairs shortest path
problem on a graph with nonnegative edge weights can be solved with |V | single-source
shortest path computations, see e.g., [2].

Proposition 4. Let G = (V , E) be a graph, x̄ be the characteristic vector of a cut of
G and let x∗ ∈ R

E with 0 ≤ x∗ ≤ 1. The primal separation problem for the odd cycle
inequalities (11) with respect to x∗ and x̄ can be solved with |V | single-source shortest
path computations on G.

Barahona and Mahjoub [3] showed that the polytope defined by (11) has integral
extreme points if and only if G is not contractible to K5, i.e., if it cannot be reduced to a
complete graph with 5 nodes with a series of contractions of the end nodes of its edges.
Theorem 6 and Proposition 4 provide an alternative proof of the following assertion.
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Corollary 4. The maximum cut problem for graphs not contractible to K5 is solvable
in polynomial time.

There are not many other valid inequalities for the cut polytope for which stan-
dard polynomial time separation algorithms are known. Gerards [12] gave a polynomial
time standard separation algorithm for the bicycle wheel inequalities that define facets
of Pcut(G). These inequalities are not homogeneous and, unfortunately, are not closed
under the switching operation. Thus Gerards’ algorithm cannot be used directly for pri-
mal separation. A variation of this algorithm for the homogeneous inequalities obtained
from the bicycle wheel inequalities by switching on a particular cut can be found in [6,
p. 481–482].

6.3. The bipartite subgraph polytope

The maximum bipartite subgraph problem is: Given a graph G = (V , E) and edge
weights c ∈ Z

E , find a subset B ⊆ E such that GB = (V , B) is bipartite and such that
�e∈Bce is maximal. The bipartite subgraph polytope is the convex hull of characteristic
vectors of such edge sets B. Recall that a graph is bipartite if and only if it does not
contain odd cycles. The bipartite subgraph polytope of G is thus the convex hull of the
0/1 points satisfying the following set of inequalities

∑

e∈C xe ≤ |C| − 1 for all odd cycles C,

xe ≥ 0 for all e ∈ E,

xe ≤ 1 for all e ∈ E.

(13)

In general, the polytope defined by the system (13) has nonintegral extreme points.
The graphs for which the polytope defined by the system (13) is a 0/1 polytope are
called weakly bipartite. Planar graphs for example are weakly bipartite. Grötschel and
Pulleyblank [18] presented a polynomial time standard separation algorithm for the in-
equalities (13), thus showing that the maximum bipartite subgraph problem for weakly
bipartite graphs can be solved in polynomial time. Their algorithm is based on match-
ing. To separate the inequalities (13) one can also use a specialized version of the above
mentioned procedure for cycle inequalities for the max-cut problem by Barahona and
Mahjoub [3]. In this case this algorithm requires |V | single-source shortest path com-
putations on a graph G∗ with twice as many nodes and edges than G.

6.3.1. Primal separation for odd cycle inequalities Let x̄ ∈ {0, 1}E be a characteristic
vector of a bipartite subgraph GB = (V , B) of G and let x∗ ∈ R

E with 0 ≤ x∗ ≤ 1. An
odd cycle inequality (13) is tight at x̄ if and only if the edges of the corresponding odd
cycle C that belong to B form a path P of length |C| − 1. Let f = {u, v} be the edge
in C \ B. Recall that V can be partitioned into two subsets U and W which are stable
in GB . Notice now that both end nodes of f are either in U or W . The point x∗ violates
the odd cycle inequality if and only if

∑

e∈P

(1 − x∗
e ) < x∗

f . (14)
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This means that the shortest path between u and v in the bipartite graph GB weighted
with 1 − x∗ is less that x∗

{u,v}. We can thus solve the primal separation problem with an
all pairs shortest path algorithm on GB with edge weights 1 − x∗ and by comparing, for
each edge f = {u, v} having both end nodes either in U or in W , the distance between
u and v in GB with x∗

f .

Proposition 5. Let G = (V , E) be a graph, x̄ ∈ {0, 1}E the characteristic vector of a a
bipartite subgraph GB = (V , B) of G and x∗ ∈ R

E with 0 ≤ x∗ ≤ 1. The primal sepa-
ration problem of the odd cycle inequalities (13) with respect to x̄ and x∗ can be solved
with |V | single-source shortest path computations in GB with edge weights 1 − x∗.

With Theorem 1 we have thus another proof of the following assertion.

Corollary 5. The maximum bipartite subgraph problem for weakly bipartite graphs can
be solved in polynomial time.
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