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Abstract. We study the exclusive rare decay B — Kll. We calculate the relevant
form factors within a relativistic constituent quark model, for the first time without
employing the impulse approximation. The calculated form factors are used to eval-
uate differential decay rates and polarization observables. We present results on the
q*-dependence of a set of observables with and without long-distance contributions.
A similar analysis is done for the exclusive rare decays B. — D(D*)ll with special
emphasis on the cascade decay B. — D*(— Dn)ll. We derive a four-fold angular de-
cay distribution for this process in terms of helicity amplitudes including lepton mass
effects. The four-fold angular decay distribution allows to define a number of physical
observables which are amenable to measurement. We compare our results with the
results of other studies.

PACS: 12.15.Hh, 12.39.Ki, 13.20.He, 14.40.Nd

1 Introduction

The flavor-changing neutral current transitions B - K+ X and B, — D(D*)+X
with X = «,1T1~, v are of special interest because they proceed at the loop level
in the Standard Model (SM) involving also the top quark. They may therefore
be used for a determination of the Cabibbo-Kobayashi-Maskawa (CKM) ma-
trix elements Vi, (¢ = d,s,b). The available experimental measurements of the
branching ratio of the inclusive radiative B-meson decay

(3.11 4 0.80(stat) + 0.72(syst)) x 10~* ALEPH [1]
Br(B — X,v) =4 (3.36 £0.53(stat) £ 0.42(syst) ") (th)) x 107 BELLE [2]

(3.21 + 0.43(stat) £ 0.27(syst) 7015 (th)) x 10~* CLEO [3]

are consistent with the next-to-leading order prediction of the standard model
(see, e.g. 4] and references therein):

Br(B — X,y)sm = (3.354+0.30) x 1074, (1)
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The decay B — K171~ (I = e, ) has been observed by the BELLE Collabora-
tion [5] with a branching ratio of

Br (B — KI1T17) = (0.75703; £0.09) x 107°. (2)

The recent observation of the bottom-charm B, meson by the CDF Collaboration
at Tevatron in Fermilab [0] raises hopes that one may also explore the rare decays
of the bottom-charm meson in the future.

The theoretical study of the exclusive rare decays proceeds in two steps. First,
the effective Hamiltonian for such transitions is derived by calculating the leading
and next-to-leading loop diagrams in the SM and by using the operator product
expansion and renormalization group techniques. The modern status of this part
of the calculation is described in the review [7] (and references therein). Second,
one needs to evaluate the matrix elements of the effective Hamiltonian between
hadronic states. This part of the calculation is model dependent since it involves
nonperturbative QCD. There are many papers on this subject. The decay rates,
dilepton invariant mass spectra and the forward-backforward asymmetry in the
decays B — K I%1™ (I = e, u, 7) have been investigated in the SM and its super-
symmetric extensions by using improved form factors from light-cone QCD sum
rules [8]. An updated analysis of these decays has been done in [4] by including
explicit O(a;) and Agep/me corrections. The invariant dilepton mass spectrum
and the Dalitz plot for the decay B — K [*]~ have been studied in [9] by using
quark model form factors. The B — K[t~ decay form factors were studied
via QCD sum rules in [10] and within the lattice-constrained dispersion quark
model in [11]. Various aspects of these decays were discussed in numerous papers
by Aliev et al. [12]. The exclusive semileptonic rare decays B — K [T~ were
analyzed in supersymmetric theories in [13]. The angular distribution and CP
asymmetries in the decays B — Kmete™ were investigated in [14]. The lepton
polarization for the inclusive decay B — X I1T1~ was discussed in [15] and [16].
The rare decays of B. — D(D*)I*l~ were studied in [17] by using the form
factors evaluated in the light front and constituent quark models.

In this paper we study the exclusive rare decays B — KIl. We employ a
relativistic quark model [18] [19] to calculate the decay form factors. This model
is based on an effective Lagrangian which describes the coupling of hadrons H
to their constituent quarks. The coupling strength is determined by the compos-
iteness condition Zy = 0 [20] 2T] where Zp is the wave function renormalization
constant of the hadron H. One starts with an effective Lagrangian written down
in terms of quark and hadron fields. Then, by using Feynman rules, the S-matrix
elements describing the hadronic interactions are given in terms of a set of quark
diagrams. In particular, the compositeness condition enables one to avoid a dou-
ble counting of hadronic degrees of freedom. The approach is self-consistent and
universally applicable. All calculations of physical observables are straightfor-
ward. The model has only a small set of adjustable parameters given by the
values of the constituent quark masses and the scale parameters that define the
size of the distribution of the constituent quarks inside a given hadron. The
values of the fit parameters are within the window of expectations.

The shape of the vertex functions and the quark propagators can in principle
be found from an analysis of the Bethe-Salpeter and Dyson-Schwinger equations
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as was done e.g. in [22]. In this paper, however, we choose a phenomenological
approach where the vertex functions are modelled by a Gaussian form, the size
parameter of which is determined by a fit to the leptonic and radiative decays of
the lowest lying charm and bottom mesons. For the quark propagators we use the
local representation. In the present calculations we do not employ the so-called
impulse approximation used previously [19]. The numerical results obtained with
and without the impulse approximation are close to each other for light-to-
light and heavy-to-heavy transitions but differ considerably from one another
for heavy-to-light transitions as e.g. in the B — 7 transitions.

We calculate the form factors of the transition B — K and use them to
evaluate differential decay rates and polarization observables. We give the ¢2-
dependence of a set of observables with and without long-distance contributions
which include the lower-lying charmonium states according to [23]. We extend
our analysis to the exclusive rare decay B, — D(D*)ll. We derive a four-fold
angular decay distribution for the cascade B, — D*(— D)l process in the
helicity frame including lepton mass effects following the method outlined in [24].
The four-fold angular decay distribution allows one to define a number of physical
observables which are amenable to measurement. We compare our results with
the ones of other studies.

We should remark that our approach is developed mainly for the hadrons
(mesons and baryons) which satisfy to the so-called ”threshold inequality”: the
hadron mass should be smaller the sum of their constituents, i.e. the sum of
the constituent quark masses. In this vein, our model was successfully developed
for the study of light hadrons (e.g., pion, kaon, baryon octet, A-resonance),
heavy-light hadrons (e.g., D, Dy, B and Bs-mesons, Ag, Xg, Z¢ and {2g-
baryons) and double heavy hadrons (e.g, J/¥, Y and B.-mesons, g and {290
baryons) [18|,[19]. To extend our approach to other hadrons we had to introduce
extra model parameters or do some approximations, like, e.g., to introduce the
cutoff parameter for external hadron momenta to guarantee the fulfilment of
the mentioned above ”threshold inequality”. Therefore, at the present stage we
can not apply our approach for the study of rare decays involving K* mesons.
Probably, it will be a subject of our future investigations.

The layout of the paper is as follows. In Sect. II we discuss the effective Hamil-
tonian. We use the analytical expressions for the Wilson coefficients from [7]
and the input parameters from [8]. Sect. III is devoted to the description of the
B(B.) — K(D, D*)ll decays in terms of helicity amplitudes. We derive the four-
fold angular decay distribution for the cascade B, — D*(— D)ll process in the
helicity system and define a number of physical observables from the angular
decay distribution. Our analysis goes beyond the results on the four-fold decay
distribution presented in [25], 26] in that we include lepton mass effects appro-
priated for the treatment of the channel with 7-leptons in the final state. We
also present results on the longitudinal polarization of the leptons in the 1I-CM
frame. This analysis differs from the analysis in [25] [26] where the polarization
of the leptons were calculated in the initial meson rest system. We also include
lepton mass effects in the polarization calculation. In Sect. IV we briefly discuss
our relativistic quark model and demonstrate the difference between the exact
calculation and the approximate calculation using the impulse approximation
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taking as an example the B — 7 form factor. We calculate matrix elements and
form factors for the decay B — Kl and compare their behavior with those cal-
culated in [8]. In Sect. V we present our numerical results for branching ratios
and asymmetry parameters. We plot the ¢?>-dependence of the differential de-
cay rate and the longitudinal polarization of the leptons with and without long
distance contributions.

2 Effective Hamiltonian

The starting point of the description of the rare exclusive decays is the effec-
tive Hamiltonian obtained from the SM-diagrams by using the operator product
expansion and renormalization group techniques. It allows one to separate the
short-distance contributions and isolate them in the Wilson coefficients which
can be studied systematically within perturbative QCD. The long-distance con-
tributions are contained in the matrix elements of local operators. Contrary to
the short-distance contributions the calculation of such matrix elements requires
nonperturbative methods and is therefore model dependent.

We will follow Refs.[7] in writing down the analytical expressions for the
effective Hamiltonian and paper [§] in using the numerical values of the input
parameters characterizing the short-distance contributions. At the quark level,
the rare semileptonic decay b — s(d)ITI~ can be described in terms of the
effective Hamiltonian:

Gr

Heg = _ﬁ)\tgci(/‘)@i(ﬂ) - (3)

where \; = V;]; () Vip is the product of CKM elements. For example, the standard
set [7] of local operators for b — sl*[~ transition is written as

Q1 = (3icj)v—a, (Cibi)v—a, Q2 = (3¢)v—a(cb)v—a,

Qs = (8b)v—a>_,(qq)v-a, Q1= (8ibj)v—a>_,(7a:)v-a,

Qs = (8b)v—a>_,(qq)v+a, Qs = (5ibj)v— Zq(qqu)V+A7 (4)
- (J- + 75)b)F,uVa Q8 = 8% (510—# ((]- + 75)szb )G;wv

Qr = 8%7%(50’“’
Qo = g=(3b)y_a(ll)v, Q10 = g==(5b)v—a(ll) a

where G, and F},, are the gluon and photon field strengths, respectively; T;
are the generators of the SU(3) color group; ¢ and j denote color indices (they
are omitted in the color-singlet currents). Labels (V 4 A) stand for 4#(1 £ ~+°).
Q1,2 are current-current operators, Q3_¢ are QCD penguin operators, Q)7 g are
"magnetic penguin” operators, and ()9 10 are semileptonic electroweak penguin
operators. Explicit formulae for the Wilson coefficients C; (1) obtained in leading
logarithmic order are written down in Appendix A.

The effective Hamiltonian leads to the free quark b — si*1~-decay amplitude:

GFOz

2/2rm

=BGt (5i0m (14 4%) ¢ D) (zz)v}.

M(b— stte)

N {CET (3b)y_y (1), + Cro (3b)y s (1), (5)

g
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where C$ff = C7 — C5/3 — Cs.

The Wilson coefficient C§T effectively takes into account, first, the contribu-
tions from the four-quark operators Q; (i = 1,...,6) and, second, the nonper-
turbative effects coming from the cé-resonance contributions which are as usual
parametrized by a Breit-Wigner ansatz [23]:

. 3 r'\V,—=1tl")my
Cgff = Cg + C() h(mc, S) + ) R Z m (2 5 Z’H)’L }2
Vimp(t) s VitV
1
— ih(L s) (403 +4Cy 4+ 3C5 + Cg) (6)

1 2
— §h(0, S) (03 + 304) + 9 (303 +Cy+3C5+Cs) .

where Cy = 3C1 + Cy + 3C3 + Cy + 3C5 + Cg. Here

4
h(e,s) = *gln%fglnmc+%+§x
In @’—iﬂ') for z = 47 <1
2 ( Vi—z—1 ) S
- 6(2+x)|1—x|1/2
~ 2
2 arctan \/%) fOI' T = 4”% > 17
4 4
h(0,s) = %—glnﬁ—gln s—|—§i7r.

where 7. = m./mp, s = ¢>/m% and k = 1/Cy.
The relation between the M.S b-quark mass my, = myp(p) at a scale p and its
pole mass mp pole is given by

N G I

where
2
A 5 Inln #
T 1 CD
Bo In 0 In—4H——
A5ep Adep

and where fy = 23/3 and 8; = 116/3, as is appropriate for five flavors. We
will use a scale pt = mp pole throughout this paper. The numerical values of the
input parameters are taken from [§] and the corresponding values of the Wilson
coefficients used in the numerical calculations are listed in Table [Il

3 B — Kll and B, — D(D*)ll-decays

3.1 Form factors and differential decay distributions

We specify our choice of the momenta as p; = pa+k1+ko with p? = m?, p3 = m3

and k? = k2 = p? where k1 and ky are the [T and [~ momenta, and m1, ma, 4
are the masses of initial meson H;y,, final meson H; and lepton, respectively.
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Table 1. Central values of the input parameters and the corresponding values
of the Wilson coefficients used in the numerical calculations

mw 80.41 GeV || Ci1 | -0.248
mz 91.1867 GeV || Cs 1.107
sin? Ow 0.2233 Cs 0.011
Me 1.4 GeV Cy | -0.026
me 173.8 GeV || Cs 0.007
M, pole 4.8 GeV Cs | -0.031
w Mp, pole csf 1 .0.313
Agep 0.220 GeV Cy 4.344
a ! 129 Cio | -4.669
as(mz) 0.119 Co 0.362
V! Vi 0.0385
[V, Vi 0.008
[V Visl/[Ves| 1

The matrix elements of the exclusive transitions B — Kl and B, — D(D*)ll
are defined by

_ G A _
M(Hy, — Hyll) = 7; : % A{CST < Hy|50"b| Hyy > Iy" 9)
+ Cip < Hf|§0#b|Hm > Z’Y“VBZ
me e

e S < Hy|5i0"™ (14++°)¢"b| Hin > ny“l} .

where H;, = B or B., Hf = K, D or D*.
We define dimensionless form factors by

< K(D)(p2) | 5(d) 3 b | BB (1) >= Py (6*)Pu + P (a*)as (10)
< K(D)(p2) |5d) i b BB (1) >= ~—— Bq? Pr(e?),
i < D" (2, 2) |0 b| Bolpr) 5= ———— el

mi + mo
${ =g Pg Ao(¢®) + PuPy Ay (6°) + 4Py A (@°) + igasP " V(d?)}

i < D*(p2,€2) | Jiawq”(l +95)b| Be(p1) >=

= e’ { g Paao(¢®) = Py Py ai(¢®) —icuwasPd” 9(a*)}
where P = py +pa, ¢ = p1 — p2, Py = Pu— q,Pa/¢®, i = Gy — 4/ 4%,
and €} is the polarization four-vector of the D*. Since we want to compare our

calculations with those in [8] and [17], it is useful to relate our form factors to
those used in [8] and [T7]. The relations read

_ Ali _ 2Geng
Fy = fMi=FS

http://link.springer.de/link/service/journals/10105/index.htm



EPJdirect C, 4, C18, 1-33 (2002) Springer-Verlag 7

2 2
my —m; Ali Geng
Fooo= ————=(f+—fo)"" =FC
Fro= p = Ege
mi + mo :
AO [ L) Ai&h _ 7A0Gcng
my —m2
Al = AR = Afeme
2mo(mq + meo :
A= ( q? (As — Ag)™i = AGene
VvV = VAli — _ VGcng
ap = TP= afms
¢ Ali G
a = TQ+7T3 '=—a ene
+ ( nﬁ-—7n§ ) +
g = TlAli — gGeng

The matrix element in Eq (@) is written as

« GF Oé)\t - -
M (B(Bc) — K(D )ll) = ﬁ "om {T{‘ (Iyul) + T (Z’Y“’)/g;l)} (11)
where the quantities 7/ are expressed through the form factors and the Wilson
coefficients in the following manner:

(a) B(B.) — K(D)ll-decay:

T = B FOg (i=1,2), (12)
2my,
]:(1) _ CeffF —I—CQHF ,
+ 9 + 7 Tm1+m2
2 P
FO = ot r ot T

mi + ma ?’
./T:(tz) - ClOF:I:~

(b) B. — D*ll-decay:

T, (=12, (13
1 i i i . i
T = ————{~Pqg" AP + P*P" AD + ¢ P* AV +ien P Poqy v}
my + ms
o o 2mp(my + ma2)
v = CgﬂV+C7ﬂgq—2,
1) off offt  2mp(my +ma)
AO = 09 A0+O7 aoq—Q,

http://link.springer.de/link/service/journals/10105/index.htm
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/ /

Fig. 1. Definition of angles #, #* and y in the cascade decay B, — D*(— D)l

o o 2mp(my +m
Ag_l) = AL+t b(qlzg)’
2 P
AV cgﬁA7+c$ﬁ<ao—a+)qu§7
V(Q) = CpV, A(()Q) = C19 Ap s A(Q) =CiAx.

Let us first consider the polar angle decay distribution differential in the
momentum transfer squared ¢2. The polar angle is defined by the angle between
q=p; — p2 and kg (ITI™ rest frame) as shown in Fig. [l One has

d21“ _ |p2|”l) Z| _ G2 (Oé|)\t|>2|p2|"l) (14)

dq?d cos 6 (27)3 4m3 27 8m?

X S{H{‘f e[y (K1 — ) v (2 + )]
+  Hy - trlyuys (B — 1) vy (K2 + )]

+  Hiy -ty (B — 1) s (K2 + )]

+  HY - trfyuys (B —p) v (Ko + u)]}

http://link.springer.de/link/service/journals/10105/index.htm
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G% (aln\Ip2lv 1 R
(2m)3 ( 27 8m? ) L() (Hiy + Hyy)

@) (g2 H <q2—4u2>H5;>+L§3~<H{$+H§f)}

where |pz| = A/2(m3,m3, ¢*)/2m; is the momentum of the K (D*)-meson and
= /1 —4u2/q? is the lepton velocity both given in the B(B.)-rest frame. We
have introduced lepton and hadron tensors as

L/(le) - klykZV + kZMklu 3 LEFV) =Guv LELSV) - iEuuaﬁk?kg y
(15)
uyo n oty
Hij = T Tj .

3.2 Helicity amplitudes and two-fold distributions

The Lorentz contractions in Eq. ([4) can be evaluated in terms of helicity ampli-
tudes as described in [24]. First, we define an orthonormal and complete helicity
basis e(m) with the three spin 1 components orthogonal to the momentum
transfer ¢, i.e. e“( )gu = 0 for m = =+,0, and the spin 0 (time)-component

=t with e*(t) = ¢*//¢?

The orthonormahty and completeness properties read

EL(m)e“(n) = dmn (m, n =t, :l:, 0)7
(16)
€u (m)el (n)gmn = Guv
with g, = diag(+, —, —, —). We include the time component polarization

vector e*(t) in the set because we want to discuss lepton mass effects in the
following.

Using the completeness property we rewrite the contraction of the lepton and
hadron tensors in Eq. (I4]) according to

’

LM, = L, (m)e (m') g €™ ()" () g H}J,

= LW (m7 n)gmm’gnn’Hij (m/, n/) (17)

where we have introduced the lepton and hadron tensors in the space of the
helicity components

L®) (m,n) = e“(m)eT”(n)Lﬂfj), HY(m,n) = eT“(m)e”(n)HZ{, . (18)

The point is that the two tensors can be evaluated in two different Lorentz
systems. The lepton tensors L*) (m,n) will be evaluated in the [[-CM system
whereas the hadron tensors H% (m, n) will be evaluated in the B(B,.) rest system.

http://link.springer.de/link/service/journals/10105/index.htm
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In the B(B,) rest frame one has

plf = (mla 0) 07 0)7
pg = (F2, 0,0, —|p2|), (19)
q“ = (QO705 05 |p2|)a

where Ey = (m2+m3—q?)/2m; and qo = (m? —m2+¢?)/2m;. In the B(B,)-rest
frame the polarization vectors of the effective current read

() = \/1(]—2((]070707p2),
(d) = %(o,m,—i,oy (20)
#(0) = ——(Ipal, 0,0, q0).

/¢
Using this basis one can express the components of the hadronic tensors through
the invariant form factors defined in Eq. ([I0).

(a) B(B.) — K(D) transition:
HY (m,n) = (¢ (m)T?) - (" (n)T9)" = H (m) H () (21)

The helicity form factors H¢(m) are given in terms of the invariant form factors.
One has

. 1 . .
H'(t) = —=(PqFi+¢F),
N
H'(+) = 0, (22)
Hio) = 2milpel g

\/(72

(b) B. — D* transition:

H(mn) = e (m)e’ () H, = ¥ (m)e ()T}, (g%p;ﬁ?) 0y
2
_  tu v i _fa B IF}
= M) ()Tl ()5 ()6, T (23)

= ) ()T () ()T, ) 80 = H )T (),

From angular momentum conservation one has r = m and s = n for m,n = £,0
and r, s = 0 for m,n = t. For further evaluation one needs to specify the helicity
components ez(m) (m = =£,0) of the polarization vector of the D*. They read

1 .
Eg(i) = ﬁ(oﬂ :l:la -, O)a
(24)
1
65(0) = m72(‘p2‘7 0,0, _EQ)'

http://link.springer.de/link/service/journals/10105/index.htm
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They satisfy the orthonormality and completeness properties:

eg“(r)ew(s) = —0bps,
(25)
DP2uP2v
62M(T)€£V(3)5rs = —Guv + = 7
my
Finally one obtains the non-zero components of the hadron tensors
. . 1 mq |p2‘ . . .
Hit) = €r@e*or, = Pq(—A + AL) + ¢?AY ),
O = POEOT = P Py A+ 40 + AL
, , 1 . .
7 _ ta 7 o 1 1
H (:l:) — GTM(:E)62 (:l:)T;La = m (_Pq A() + 2m1 |p2| V ) s (26)
H'(0) = " (0)e}™(0)T,
1 1

= —Pg(m?4+m2 —¢®) AL +4m? |p2|? AY) .
m1+m22m2\/q>2( ( 1 2 ) 0 1|2‘ +)

The lepton tensors L) (m, n) are evaluated in the [[-CM system k; +ky = 0.
One has (see Fig. [1])

¢ = (V¢*,0,0,0),
k' = (Ey, |ki|sinfcosx, |[ki|sinfsiny, |ki|cos), (27)
Kk (E1, —|ki|sinfcosy, —|ki|sinfsiny, —|kqi|cosf),

with By = 1/¢2/2 and |ky| = v/¢% — 442/2. The longitudinal and time com-
ponent polarization vectors in the Il rest frame can be read off from Eq. (20)
and are given by €*(0) = (0,0,0,1) and €(t) = (1,0,0,0) whereas the transverse
parts remain unchanged from Eq. (20)

The differential (g2, cos ) distribution finally reads

dI(Hgpn, — Hyll) ) drpt  dr#?
= -(1 0) - - 28
dg?d(cos ) 8 (14 cos™6) 2\ dqg? + dg? (28)
3 .5, 1/drtt dr#
2 9. =
+ 1 sin 5 < dq? + g
dFlQ
- v- % cos @ - dqz
3 . ,, ldi}t 3 o Al
+ ZSIH 9§dq2 —§(1+COS H)qu
3 o, 1dl}t 3 ., dIP  1dIE
+ 5 cos 0- 34 4 sin“ @ - e 14
Integrating over cos 6 one obtains
dl(Hin — Hyll) 1 (dlyt  dlg?  dr't | dIg? (20)
dg? 2\ d¢? dg? dg? dg?

Ldrpt  drz?  1dr}pt dry? 14z

2 dg? dg® ' 2 dg? dgz2 2 dg®

http://link.springer.de/link/service/journals/10105/index.htm
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where the partial helicity rates dl”;g/dq2 and cll;;(j/dq2 (X =U,L,P,S;i,j =
1,2) are defined as

dl'x,, _ G% <O‘)‘t|)2 Ip2| ¢ v 17
dq? (2m)3 \ 27 12m3 X7
(30)
dl'x,, 2u? dI'y
d> @ dg?

The relevant bilinear combinations of the helicity amplitudes are defined in Ta-
ble

To check our calculation we give the corresponding expression for the differ-
ential decay rate used in [8] and [17]:

dr (B — KI+17) G2\ |2mBa? 1

2 2t
& = ool (147 e 12m] 00

with s = ¢?/m? and t = p?/m? and the expressions of ¢y, a;, Bi, 6 (i=1,2,3)
and § are given in Appendix B. We find complete agreement with the decay
distributions given in [§] and [17].

3.3 The four-fold angle distribution in the cascade decay
B. — D*(— Dm)ll.

The lepton-hadron correlation function L, H"" Eeveals even more structure
when one uses the cascade decay B. — D*(— Dm)ll to analyze the polarization
of the D*. The hadron tensor now reads

n%

ij i j 3 * aa’ !
Hp, = Tﬁa(Tgﬁ)TmBr(K — K7)psapsp S™ (p2)S77 (p2)  (32)

where S (p2) = fg“a/ erg‘pg‘//m% is the standard spin 1 tensor, ps = p3 + pa4,

p3 = m2, p3 = m2, and p3 and p; are the momenta of the D and the T,
respectively. The relative configuration of the (D, 7)- and (I[)-planes is shown in
Fig.
In the rest frame of the D* one has

py = (mp-,0), (33)

py = (Ep, |ps|sinf*, 0, —|ps| cosf*),

py = (FEx, —|ps|sinf*, 0, |ps| cos6*),

Ips| = AY*(mb.,mip,m2)/(2mp-).

Without loss of generality we set the azimuthal angle x* of the (D, r)-plane to
zero. According to Eq. (24) the rest frame polarization vectors of the D* are
given by

® _ L —q
6Z(i) \/5(07 :t7 70)7 (34)
h(0) = (0,0,0, —1).
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Table 2. Bilinear combinations of the helicity amplitudes that enter in the four-
fold decay distribution Eq. (34)

Definition Property Title

Hy =Re (H{H’) +Re (HLH!Y) Hj =Hy | Unpolarized-
transverse

HE, =T (HLHLY) 4 Im (HE HDY) Hyy, = —Hiy

HY =Re (HLH) — Re (HLH!) HY = HY Parity-odd

Hi, = Tm (HLHL) — Tm (B HT9) Hip = —Hip

HZTJ — Re ( H. Hij) Transverse-
interference

Hy =1Tm (HLH')

H} =Re (HyH{?) HY = H}' Longitudinal

Hp) =1Im (HiHY) Hy, = —HJ,

HY = 3Re (H;H]) H{ = Hy | Scalar

H, = 3Tm (H{H{?) His = —H{

HY, =Re (Hngj) Scalar-
Longitudinal-
interference

Hilsy =Im (HZng)

HY =1 [Re (Hngj) +Re (HiH(‘;j)] transverse-
longitudinal-
Interference

Hpp =% [Im (HLH}?) +Im (HLH}7) ]

HY =% [Re (H{H}?) — Re (H.LH}7)] parity-
Asymmetric

HYy =1 [Im (HLH}?) —Im (HLH])]|

Hilp = [Re (L HD) + Re (1110 Sealr
Transverse-
interference

Hiy =% [Im (HLH]?) +Im (HLH]7)]

HY, =1 [Re(HLH]?) —Re (HLH]7)] Scalar-
Asymmetric-
interference

= 4 i (L) — I (1211

The spin 1 tensor S (p,) is then written as

’
jot
2

(e}
§99 (pg) = —go’ 4 P2L
my

2= 5 g m)ek (m).

m==,0
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Following basically the same trick as in Eq. ([[7) the contraction of the lepton
and hadron tensors may be written through helicity components as

e (m)e™ (n)LE, g G € (m)e” (') H 3,

a 1 v a i f
LX) g g (9 (m Vel (T ) (2 el (5)T )

L®m i (36)

;
p3ea(r) - p3ed(s
3€2(r) - p3€s(s) > pal

3Br(D* — D)
2 \P3\

m,n==%,0

n==,0

m=

+,0

3Br(D* — D)

(Lk(t,t)|Hij(t)2 - (p3€h(0))?
S LF(m,n)H (m)HY () - psea(m) - psch(n)

LE(t, n)H (t)H () - p3es(0) - psel(n)

L, OH () () - paea(m) - pacl(0))

Using these results one obtains the full four-fold angular decay distribution

dI'(B. — D*(— Dm)ll)
dq? dcos 0 d(x/2m) d cos 6*

3 3
n 29). 2
x{8( + cos” 0) 15

= Br(D* — D)

1 /dlM
<2 % U
1n9-2<dq2+

(37)

ar#
dq?

)

3 .9, 3 o, 1lgar}t ar#
—i—zsm t9~2cos9-2<dq2 +dq2
3 3 1 /drt  dr#
~1 sin? 6 - cos 2 - 1 sin? 0% - (dq dqg)
9 . dryt  drz
+T6 sin 20 - cos x - sin 20 ( e i
dFIZ
+v f% cos @ - 1 sin? 6% - qu;
iz I’21
f% sinf - cos x - sin 260* - — <dq )
dFlQ F21
+% sin - sin y - sin 26" - ( qu H)}
55 Sin20 -sinx - sin
9 dF11 dF22
+— sin? 6 - sin 2y - sin? 0" - IT IT
32
1 dript dr22
+Z sin® 6 - Z sin? 6% - 3 qu 3 (1 + cos? 6) - Z sin? 6* - dqg
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3 3 1 arit 3 3 arz?
+§COSZH-§COSQQ*~§- quQ —zsin29-500529*-$

3 3 dryt  drz?
+1 sin? @ - cos 2 - 1 sin? 9" - < qu2 + dqg )

9 . oo 1 faryt dr\ 3, . 14l
-3 sin 20 - cos x - sin 20 .2<dq2 + T —|—§cos 0 1 de

9
+ﬁ sin 26 - sin x - sin 26 -

drty
( dg?
dri

dg?

dr#
dg? )
i dl’?%) }
dg?

Integrating Eq. (37) over cos@* and x one recovers the two-fold (q2,cos @) dis-
tribution of Eq. (28)). Note that a similar four-fold distribution has also been
obtained in Refs.([14],[25]-[28]) using, however, the zero lepton mass approxima-
tion. If there are sufficient data one can attempt to fit them to the full four-fold
decay distribution and thereby extract the values of the coefficient functions
dI'x /dqg? and, in the case | = 7 the coefficient functions dI'x /dg?. Instead of
considering the full four-fold decay distribution one can analyze single angle dis-
tributions by integrating out two of the remaining angles as e.g. discussed in

Sect. 3.2 Observables related to single angle distributions will be discussed in
the next subsection.

9
T sin? @ - sin 2y - sin” 6 - (

3.4 Physical observables

The four-fold distribution Eq. (31) allows one to define a number of physical ob-
servables which can be measured experimentally. An asymmetry parameter cg-
is defined from the angular distribution W (cos? 6*) = 1+ - cos? 6*. Integrating
Eq. B7) over cosf and x one finds

—(U“ + U22) + 2(L11 + L22) _ U1 00?2 + 2@11 _ 2i22) + 9§22

ae* = = =
Uil + U?22 + Uil —9Uu22

(38)
By integrating over cos#* and x one can define two asymmetry parameters ay
and ap according to the angular distribution W (cos? §) = 1+aj, cos 6+ ag cos® 6.
One has

o —4v P12 (39)
¢ Ul U224 2(L11 + L22) + 2([}11 22 — 9[22 + (2/3)522) ’

Ull + U22 _ 2(L11 + L22) _ 2(0‘11 + 022> + 4(I~/11 + E22)

Qg = = = = = .(40)
Ul + U22 + 2(L11 + L22) + 2(U11 —U22 _9J22 + (2/3)522)

An azimuthal asymmetry parameter 3 can be defined from the x-distribution
W(x) = 1+ Bcos2x. The azimuthal x-distribution is obtained by integrating
over cos f and cos#*. One has

_(Tll +T22) +2(T11 +T22)
Ul U224 11 4122 il _9p22 4 [11 _9f22 4 G22°

p= (41)
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A second strategy is to define suitable asymmetry ratios that project out the
partial rates from Eq. (37). Let us consider the following four asymmetry ratios
which project out the contributions of the parity conserving partial rates I and
I'y and the parity violating partial decay rates I'p and I'4. One has

dI'(x) —dI'(x +7/2) +dI'(x +7) —dI'(x + 37/2)

It Ar = dF(X)+dF(X+7T/2)+dF(X+7T)+dF(X+37T/2)

(42)

where —7/4 < x < /4.

FA: A[:N]/D[, (43)

Ny = dI'(0,60%,x) —dI(0,0%,x + )
dr@,m—0*,x)+dlr 0,7 — 0", x +m)

— dI'(m—0,0",x) +dI'(m —0,0", x + )

+ dl(m—0,7—0",x)—dl'(m —0,m— 6", x +7),

3

<9< —2<x<Z.

0<0* <
- 2 2

Sk
w\a

The denominator Dy is given by the same expression with plus signs everywhere.

Fp: AFB:

(
I'y: A =
A oA dr(0*,x) + dl (0%, x +7) + dl(x — 0%, x) +dl (7 — 0, x + )’
o<9*<g, —ggxgg. (45)

We have used a notation where the angles that do not appear in the arguments of
the differential rates dI” have been integrated out over their physical ranges (0 <
0(6*) < m, 0 < x < 2r). Integrating over the remaining variables (numerator
and denominator separately!) we finally obtain

g —(1/2)(T11 —|—T22)+T11 _|_T22

<Ar> = - T , (46)
<A > = %(1/2)(111+ij)—i11—f22’ (47)
<App> = 34U P;Q , (48)
<A > =f¥éf%ﬁi. (49)
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3.5 Longitudinal polarization of the lepton in B — Kli-decay.

Our aim is to study lepton polarization effects in B — Kli-decay. The longitu-
dinal polarization of the final lepton (= (k2) is defined by

PO — dI'(s3)/dq? — dI"(—s2)/dg?
dI(s3)/dg® + dI'(—s3) /dg?

(50)

where the longitudinal component of the rest frame polarization vector of the

17 (ko) is given by
k2>
so= (0,2 . 51
= (0 oy

Contrary to previous studies of the longitudinal polarization of the lepton, where
the longitudinal polarization was studied in the B rest frame, we will calculate
this quantity in the [[-CM frame. The longitudinal polarization vector s, is
boosted to the moving frame by a Lorentz transformation. One obtains

|k2| Es ko )

SoomMm=|—" —7 | . (52)
( poop kel

The quantity dI'(s2)/dq¢? in Eq. (50) may be obtained from Eq. (I4) by the

replacement

(Ko + 1) = (1475 #2) (o + 1),

Integrating the numerator and denominator in Eq. (B0) over cosf, one finds

v (dU'2 + dI'2)

PO —
dr

(53)

where we have adopted a short hand notation U := Iy, U := I, ete.. Because
of CP-invariance and because the longitudinal polarization is a pseudoscalar
quantity, the longitudinal polarization of the antilepton is equal and opposite to
the longitudinal polarization of the lepton, i.e. P4 (I1*) = —P®(17).

4 Model form factors

We will employ the relativistic constituent quark model [I8] 19] to calculate the
form factors relevant to the decays B — Kll and B, — D(D*)ll. This model
is based on an effective interaction Lagrangian which describes the coupling
between hadrons and their constituent quarks.

For example, the coupling of the meson H to its constituent quarks ¢; and
G2 is given by the Lagrangian

Lint(z) = gy H(x) /dxl/dngH(amxl,xg)(j(xl)FH)\Hq(xg). (54)

Here, Ay and I'y are Gell-Mann and Dirac matrices which entail the flavor and
spin quantum numbers of the meson field H(z). The function Fp is related
to the scalar part of the Bethe-Salpeter amplitude and characterizes the finite
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size of the meson. The function @y must be invariant under the translation
Fy(z+a,21 +a,22+a) = Fy(x,x1,22).

In our previous papers we have used the so-called impulse approximation for
the evaluation of the Feynman diagrams. In the impulse approximation one omits
a possible dependence of the vertex functions on external momenta. The impulse
approximation therefore entails a certain dependence on how loop momenta are
routed through the diagram at hand. This problem no longer exists in the present
full treatment where the impulse approximation is no longer used. In the present
calculation we will use a particular form of the vertex function given by

mi1Z1 + Moo

Fy(z,z1,10) = 5<x >@H((x1 —x9)?). (55)

mi + mo
where m; and mso are the constituent quark masses. The vertex function Fyg
evidently satisfies the above translational invariance condition. As mentioned
before we no longer use the impulse approximation in the present calculation.
The coupling constants gy in Eq. (B4) are determined by the so called com-
positeness condition proposed in [20] and extensively used in [21]. The compos-
iteness condition means that the renormalization constant of the meson field is
set equal to zero
39%
472
where IT 17 is the derivative of the meson mass operator. For the pseudoscalar
and vector mesons treated in this paper one has

Zy=1-"2H]1(m%) =0 (56)

~ 1 . d d*k -
HED(PQ) = @P dp7 /md%(*m)
X tr |y Stk + war B)Y°S2 (K — wia ﬁ)}
- 1 ptp”] 1 d d*k -
/! 2 v o 2 2
1L (p7) = 3 g - 2 }QPQP dp /m@\/(*k )
X tr |y S1(J 4 w21 P)vSa(f — wie 15)]

where w;; = m;/(m; +m;), ®u(—k?) is the Fourier-transform of the correlation
function @ ((z1 — 22)?) and S;(K) is the quark propagator. The leptonic decay
constant fp is calculated from

3gP d4k ~ 2 5
o méﬁp(—k )tr [O”Sl(%-i-wzl #)7° Sa(§ — w12 .75)} =fpp".  (57)

The transition form factors P(p1) — P(p2),V(p2) can be calculated from the
Feynman integral corresponding to the diagram of Fig.

39pgp(v) /d4k ~

Fald 2\ F 2
A" (p1,p2) 12 47722.@P(*(k+w13p1) )@ pr vy (—(k + waz p2)”)

X

ir [52(%+ §o) T 51 (i mﬁsa(%)nut} (58)
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k+ p1 k+po
D @ IH 7 P2
B(B.) a3 K(D,D*)
k

Fig. 2. Diagram describing the form factors of the decay B(B.) — K (D, D*)ll

where I'* = A, yH45, ighVq,, or iohVq,y® and I'pry =5, 7,¢€b.
We use the local quark propagators

Si(¥) = —, (59)

where m; is the constituent quark mass. We do not introduce a new notation for
constituent quark masses in order to distinguish them from the current quark
masses used in the effective Hamiltonian and Wilson coefficients as described in
Sect. II because it should always be clear from the context which set of masses
is being referred to. As discussed in [I8] [19], we assume that

mg < mi+ mo (60)

in order to avoid the appearance of imaginary parts in the physical amplitudes.
The fit values for the constituent quark masses are taken from our papers

[I8, 19] and are given in Eq. (61I).

en ms mc my

0.235 0.333 1.67 5.06 GeV

(61)

It is readily seen that the constraint Eq. (6) holds true for the low-lying flavored
pseudoscalar mesons but is no longer true for the vector mesons. In the case of
the heavy mesons D* and B* we will employ identical masses for the vector
mesons and the pseudoscalar mesons for the calculation of matrix elements in
Egs. (B6),ET) and (B8). It is a quite reliable approximation because of (mp« —
mp)/mp ~ 7% and (mp~ —mp)/mp ~ 1%.

We employ a Gaussian for the vertex function @ (k%/A%) = exp(—k%/A%)
where kg is the Euclidean momentum and determine the size parameters Ay by
a fit to the experimental data, when available, or to lattice simulations for the
leptonic decay constants. The quality of the fit can be seen from Table Bl The
branching ratios of the semileptonic decays are shown in Table @l The numerical
values for Ay are A, =1 GeV, Ax = 1.6 GeV, Ap =2 GeV and A = 2.25
GeV for all K, D and B partners, respectively.
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Table 3. Leptonic decay constants fi (MeV) used in the least-square fit. The
values are taken either from PDG [30] or from the Lattice [31]: quenched (upper
line) and unquenched (lower line)

Meson | This model | Expt/Lattice
T 131 130.7 £ 0.1+ 0.36
KT 161 159.8 £ 1.4 + 0.44
DF 211 203+ 14
226+ 15
DT 222 230+ 14
250+ 30
BT 180 173+ 23
198+ 30
B 196 200+ 20
230+ 30
BT 398

Table 4. Semileptonic decay branching ratios

Meson This model | Expt.

Y AR 1.03-10~% | (1.025+0.034) - 10~ ®
KT 70Ty [ 4.62-1077 | (4.8240.06) 107
BT = DTy ]240-107% | (2.15£0.22) - 1072
BT = D*%lTy [ 560-107% | (5.34£0.8) 102

BF - DTy |205-107°
Bf - D%y | 360-10°°

We are now in a position to present our results for the B — K form factors.
We have used the technique outlined in our previous papers [18, [19] for the
numerical evaluation of the Feynman integrals in Eq. (B8). The results of our
numerical calculations are well represented by the parametrization

F(0)

Fls)= ——)
(5) 1 — as -+ bs?

(62)
Using such a parametrization facilitates further integrations. The values of F(0),
a and b are listed in Tables[BH8. We plot our form factors in Fig.[Bland compare
them with those used in paper [8] in Fig.[d. The functional behavior of the curves
is similar to each other.

At the end of this section we would like to discuss the impulse approximation
used in our previous papers [18] [19]. It was simply assumed that the vertex
functions depend only on the loop momentum flowing through the vertex. The
explicit translational invariant vertex function in Eq. (53 allows one to check the
reliability of this approximation. We found that the results obtained with and
without the impulse approximation are rather close to each other except for the
heavy-to-light form factors. We consider the B — w-transition as an example to
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l,
a,c
0.5¢
0
b
-0.5
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Fig. 4. Comparison of our B — K form factors (solid line) with those used in
[8] (dashed line)
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Table 5. Parameter values for the approximated form factors F'(s) = F'(0)/(1—
as +bs?) (s =q¢*/m%) in the decays B — KlI

Fy,  F Fr
F(0) | 0.357 -0.275 0.337
a 1.011  1.050  1.031
b 0.042 0.067  0.051

Table 6. Parameter values for the approximated form factors F'(s) = F(0)/(1—
as +bs?) (s =q¢*/m%) in the decays B. — D(D*)ll

F+ F_ Fr Ao A+ A_ \%4 aop a g
F(0) | 0.186 -0.190 0.275 | 0.279 0.156 -0.321 0.290 | 0.178 0.178 0.179
a 2.48 2.44 2.40 1.30 2.16 2.41 2.40 1.21 2.14 2.51
b 1.62 1.54 1.49 0.149 1.15 1.51 1.49 0.125 1.14 1.67

illustrate this point. The calculated values of the F5™(¢?) form factor at ¢* = 0
are

0.27 exact
FP™(0) =
0.48 impulse approximation

One can see that the value of the form factor at ¢?> = 0 calculated without the
impulse approximation is considerably smaller than when calculated with the
impulse approximation. Its value is close to the value of QCD SR estimates, see,
for example, [29]:

0.25 asymptotic distribution
FP™(0) =
0.30 QCD SR distribution

5 Numerical results

In this section we collect and discuss our numerical results. We plot the normal-
ized differential distributions I';;} dI'/ds with I'oy = 1/75 (T = (Tgo+75+)/2 =
1.60ps) and s = ¢*>/m?% in Figs. G for the decay B — KII.
We have also included the B — Kwvvr modes. Their differential rates are
calculated according to
dI (Bt — Kov)  GEmYy |M|?a? D, (z) |2

ds 28 15 sin? Oy

P 6k, (63)

The functions D, (z;) and ¢y are given in Appendix B. The behavior of the
normalized differential distributions is shown in Fig. [l
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20

17.5¢

15+

12.5¢

10+

0 0.2 0.4 0.6 0.8
S

Fig. 5. Normalized differential distributions 107 Ft;tldf/ds for B— Kutu~.
The curves with resonant shapes represent long-distance contributions

0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8
S

Fig. 6. Normalized differential distributions 107 I'y,tdI'/ds for B — K 77~
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10r

Fig. 7. Normalized differential distributions 10® I',;ldI"/ds for B — K v

Table 7. Decay branching ratios without(with) long distance contributions

[Ref. | Br(B— Ku"p™) [ Br(B— K77 ) [ Br(B— Kw) |

E] 0.57-107° 1.3-1077

@ | (035+£0.12)-10°°

[1] 0.44-107° 1.0-1077 5.6-107°
32 05-10°° 1.3-107"7

our | 0.55(0.51)-10°° 1.01(0.87) - 107 4.19-107°

l ‘ our ‘ 17 ‘
Br(B. — Dgp ) | 0.44(0.38)-10°° [ 0.41(0.33)-10°°
Br(B. — D pTp™) | 0.71(0.58) -107% | 1.01(0.78) - 1078
Br(B. — DspuTp™) | 0.97(0.86) - 1077 | 1.36(1.12) - 1077
Br(B. — DI pTp™) | 1.76(1.41) - 1077 | 4.09(3.14) - 1077
Br(B. — Dg7 7 ) | 0.11(0.09)-10~% | 0.13(0.11) - 10~ %
Br(B. — D;7tr7) | 0.11(0.08)-107% | 0.18(0.13) - 1073
Br(B. — Ds7777) | 0.22(0.18) - 1077 | 0.34(0.27) - 10~"
Br(B. — D:7tr7) | 0.22(0.15)- 1077 | 0.51(0.34) - 1077

Br(B. — Dgov) 3.28-107°
Br(B. — D} ov) 5.78-1078
Br(B. — D, bv) 0.73-1076
Br(B. — D} vv) 1.42-107°

We list our numerical results for the branching ratios in Table [1. When
comparing the values of the branching ratios with those obtained in [8] one finds
that they almost agree with each other.
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1.5
C
1,
a
0.5¢
0
-0.5 b
-1t
0 0.1 0.2 0.3 0.4 0.5

Fig. 8. Form factors for the B, — Dy transition: (a) Fyy, (b) F—, (¢) Fr

Finally, we plot the dependence of the normalized differential distributions
s = ¢°/m%,_ in Figs. for the decay B. — D(D*)ll(7v). In the numer-
ical analysis we use the input parameters: mp, = 6.4 GeV, 75, = 0.46 ps
and |Vthtb\ = 0.008. The B. — Dg4(D})-transition form factors are plotted in
Figs. and the normalized differential distributions for B, — D(D*)u*pu~,
B. — D(D*)r" 7~ and B, — D(D*)vv are shown in Figs. [QITITZ, respectively.
The results for the branching ratios are also given in Table [7l They are to be
compared with the results of calculations performed in [I7] where the light front
and constituent quark models were employed.
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Fig.9. Form factors for the B, — D} transition. Upper panel: (a) V, (b) Ao,
(¢) Ay, (d) A_. Lower panel: (a) g, (b) ag, (¢)ay
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Fig. 10. Normalized differential distributions 107 I';;tdI"/ds for B, — D utu~
(upper panel) and B. — D* u* ™~ (lower panel)
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Fig. 11. Normalized differential distributions 107 I't, dI’/ds for B, — D7t7~
(upper panel) and B, — D* 777~ (lower panel)
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Fig. 12. Normalized differential distributions 10" Ft;tldf/ds for B. — Dov
(upper panel) and B, — D* bv (lower panel)
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Appendix A: Wilson Coefficients

In this paper we use the Wilson-coefficients C; calculated in the naive dimen-
sional regularization (NDR) scheme in the leading logarithmic approximation

[:

8
Ci(w) = > kjm™  (j=1,..6)
i=1

8

s 8 [ 1 1s @
Cr(p) = n#Cr(Mw)+ 5 (n2 *n%) Cs(Mw) + > hin™,
1=1
with
a(M 1 1
n= é(:;/)v Cr(Mw) = —5A(z), Cs(Mw) = —5 F(zy),

where z; = m? /M3, and A(x) and F(z) are defined below. The numbers a;, kj;
and h; are given in Table 8
The coefficient of @1 is given by

Y (x)

Cio(My) = ——5——

10(Mw) sin? O

with Y (z) given below. Since Q19 is not subject to renormalization under QCD,
its coefficient does not depend on p ~ O(my). The only renormalization scale
dependence enters through the definition of the top quark mass.

Finally, including leading as well as next-to-leading logarithms, one finds
Y (x)

Cg(ﬂ) = PO + 2 o 4Z($t) + PEE(xt)
sin” Oy

Table 8. Values of parameters in the formulae for the Wilson coefficients

L] 1] 2 | 3 | 4] 5 | 6 | 7] 8
ai 3 L = —2Z°7 04086 [ —0.4230 [ —0.8994 [ 0.1456
ki 0 0 : -1 0 0 0 0
ko 0 0 i 2 0 0 0 0
ksi 0 0 -5 | 0.0510 | —0.1403 | —0.0113 | 0.0054
ki 0 0 -4 —% | 0.0984 | 0.1214 | 0.0156 | 0.0026
ks 0 0 0 0 | —0.0397 | 0.0117 | —0.0025 | 0.0304
ki 0 0 0 0| 0.0335 | 0.0239 | —0.0462 | —0.0112
hi | 2.2996 | —1.0880 -3 - | —0.6494 | —0.0380 | —0.0185 | —0.0057
hi | 0.8623 0 0 0 | —0.9135 | 0.0873 | —0.0571 | 0.0209
i 0 0 - = | 00433 [ 0.1384 [ 0.1648 | —0.0073
T 0 0| 0.8966 | —0.1960 | —0.2011 | 0.1328 | —0.0292 | —0.1858
Si 0 0 | —0.2009 | —0.3579 | 0.0490 | —0.3616 | —0.3554 | 0.0072
@i 0 0 0 0| 00318 | 0.0918 | —0.2700 | 0.0059
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with
. 8 8
Py = ———(—0.1875+ Y pin® 1) +1.2468 + Y n[r; + sin)]
) 2 2.
8
Pp = 01405+ g™t
i=1
1
Y(z) = C(z)— B(z), Z(x)=C(z)+ ZD(x)
Here
r(8z2+5x—7)  2%(2-3x)
Alz) = : Inz,
() Re—17 @ 2@_1p 7
x x
B = 1
(2) =2 -1z "
x(r—6) x(3x+2)
C = 1
(@) 8(z—1)  8z—-12 "
10,3 2 2052 9o
D(z) = 192> 4 25z L7 (52° — 2z — 6) e — élnam
36(z — 1)3 18(z — 1)* 9
(18 — 11z — 2%)  22(15 — 162 + 422) 2
E(z) = nz— 21
() 20—27 | 6(1-a)F B S
2 _ ) 2
Flo) = z(z® — bx —2) n 3z .

Az — 1) 2z — 1)

The coefficients p;, 5, s;, and ¢; are given in Table [§

Appendix B: The functions in Egs. (31) and (63))

We list here a set of the functions appearing in Egs. (BIl) and (G3)) from [§] and

[7.
(1 —rH>2 —2s<1+rH> + 82,

2 3z —6
D,(z) = x( +I+ :v 21nx>

bu

8\z—1 (z-1)
2 ¢H 2
a1 = (1_M)QAO +mv
2
5 - (1_ﬁ)2A 2 5 2 ¢H‘A+
- Ar gy ol T+ ra)? +47~H(1+\/m)2
1(1-s \1—fm :
_ 2< — 1>%Re(A0A+),
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Qa2

2

as

B3

_|_

2

2 G Prl” |C1oF |2

1+./rg
s 1
‘Clo|2 |:<1 +7‘H - 2>|F+|2 + <1 T‘H>R6(F+Fi) + 2S|F_|2:| y

22:|
|
]

CST R, +

2my, C?ff (1 + \/TH) ap
S

2
CSHAO + + ‘010140

- v

¢H [ eff
ax vl Cs'V +
(1—r)? _CSHAO N 2y, O (1 + /7H) ao
drg S

2y, CST (1 4/ 2
my U7 (s TH) g +‘C10V

2
+ ‘CloAO
]

CroA4

2

2y, CSE (1 + /7H) g N

5 _
2 Ceffv
(1—|—,/7‘H)2 L 9 +
o [
4TH(1+«/TH)2
1(1—5 —1)1'FHReHC§HAo+ meC’$H(1+\/7rH)ao}
2\ ry 1+ ryg S
2, CST (1 + /1) ag
s

Cl()V

2

21, CST (1 + \/TH) ay N

S

Cet A,

]

[csf’ffu + } +|C1ol? Re(AoAL)} ,

|ClO|2 2 2 2
At ) —3(1 =
21+ /)’ 20w |VI* = 3(1 —rm)” |Agl
(0334
47“H

1 _
jf;m_ﬁ + WR@(— ApAl — ApAl + A+AT_> } :

{2(1 +7rH) — s} |A |2

where my, = my/mp.
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