
DOI 10.1007/s1010502c0018
EPJdirect C, 4, C18, 1–33 (2002) EPJdirect

electronic only
c© Springer-Verlag 2002

The exclusive rare decays B → Kl̄l and
Bc → D(D∗)l̄l in a relativistic quark model

Amand Faessler1, Th. Gutsche1, M.A. Ivanov2, J.G. Körner3, V.E. Lyubovitskij1

1 Institut für Theoretische Physik, Universität Tübingen,
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Abstract. We study the exclusive rare decay B → Kl̄l. We calculate the relevant
form factors within a relativistic constituent quark model, for the first time without
employing the impulse approximation. The calculated form factors are used to eval-
uate differential decay rates and polarization observables. We present results on the
q2-dependence of a set of observables with and without long-distance contributions.
A similar analysis is done for the exclusive rare decays Bc → D(D∗)l̄l with special
emphasis on the cascade decay Bc → D∗(→ Dπ)l̄l. We derive a four-fold angular de-
cay distribution for this process in terms of helicity amplitudes including lepton mass
effects. The four-fold angular decay distribution allows to define a number of physical
observables which are amenable to measurement. We compare our results with the
results of other studies.

PACS: 12.15.Hh, 12.39.Ki, 13.20.He, 14.40.Nd

1 Introduction

The flavor-changing neutral current transitions B → K+X and Bc → D(D∗)+X
with X = γ, l+l−, ν̄ν are of special interest because they proceed at the loop level
in the Standard Model (SM) involving also the top quark. They may therefore
be used for a determination of the Cabibbo-Kobayashi-Maskawa (CKM) ma-
trix elements Vtq (q = d, s, b). The available experimental measurements of the
branching ratio of the inclusive radiative B-meson decay

Br (B → Xsγ) =






(3.11 ± 0.80(stat) ± 0.72(syst)) × 10−4 ALEPH [1]

(
3.36 ± 0.53(stat) ± 0.42(syst)+0.50

−0.54(th)
)× 10−4 BELLE [2]

(
3.21 ± 0.43(stat) ± 0.27(syst)+0.18

−0.10(th)
)× 10−4 CLEO [3]

are consistent with the next-to-leading order prediction of the standard model
(see, e.g. [4] and references therein):

Br(B → Xsγ)SM = (3.35 ± 0.30) × 10−4 . (1)
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The decay B → K l+l− (l = e, µ) has been observed by the BELLE Collabora-
tion [5] with a branching ratio of

Br
(
B → K l+l−

)
= (0.75+0.25

−0.21 ± 0.09) × 10−6 . (2)

The recent observation of the bottom-charm Bc meson by the CDF Collaboration
at Tevatron in Fermilab [6] raises hopes that one may also explore the rare decays
of the bottom-charm meson in the future.

The theoretical study of the exclusive rare decays proceeds in two steps. First,
the effective Hamiltonian for such transitions is derived by calculating the leading
and next-to-leading loop diagrams in the SM and by using the operator product
expansion and renormalization group techniques. The modern status of this part
of the calculation is described in the review [7] (and references therein). Second,
one needs to evaluate the matrix elements of the effective Hamiltonian between
hadronic states. This part of the calculation is model dependent since it involves
nonperturbative QCD. There are many papers on this subject. The decay rates,
dilepton invariant mass spectra and the forward-backforward asymmetry in the
decays B → K l+l− (l = e, µ, τ) have been investigated in the SM and its super-
symmetric extensions by using improved form factors from light-cone QCD sum
rules [8]. An updated analysis of these decays has been done in [4] by including
explicit O(αs) and ΛQCD/mb corrections. The invariant dilepton mass spectrum
and the Dalitz plot for the decay B → K l+l− have been studied in [9] by using
quark model form factors. The B → K l+l− decay form factors were studied
via QCD sum rules in [10] and within the lattice-constrained dispersion quark
model in [11]. Various aspects of these decays were discussed in numerous papers
by Aliev et al. [12]. The exclusive semileptonic rare decays B → K l+l− were
analyzed in supersymmetric theories in [13]. The angular distribution and CP
asymmetries in the decays B → Kπe+e− were investigated in [14]. The lepton
polarization for the inclusive decay B → Xsl

+l− was discussed in [15] and [16].
The rare decays of Bc → D(D∗) l+l− were studied in [17] by using the form
factors evaluated in the light front and constituent quark models.

In this paper we study the exclusive rare decays B → Kl̄l. We employ a
relativistic quark model [18, 19] to calculate the decay form factors. This model
is based on an effective Lagrangian which describes the coupling of hadrons H
to their constituent quarks. The coupling strength is determined by the compos-
iteness condition ZH = 0 [20, 21] where ZH is the wave function renormalization
constant of the hadron H. One starts with an effective Lagrangian written down
in terms of quark and hadron fields. Then, by using Feynman rules, the S-matrix
elements describing the hadronic interactions are given in terms of a set of quark
diagrams. In particular, the compositeness condition enables one to avoid a dou-
ble counting of hadronic degrees of freedom. The approach is self-consistent and
universally applicable. All calculations of physical observables are straightfor-
ward. The model has only a small set of adjustable parameters given by the
values of the constituent quark masses and the scale parameters that define the
size of the distribution of the constituent quarks inside a given hadron. The
values of the fit parameters are within the window of expectations.

The shape of the vertex functions and the quark propagators can in principle
be found from an analysis of the Bethe-Salpeter and Dyson-Schwinger equations
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as was done e.g. in [22]. In this paper, however, we choose a phenomenological
approach where the vertex functions are modelled by a Gaussian form, the size
parameter of which is determined by a fit to the leptonic and radiative decays of
the lowest lying charm and bottom mesons. For the quark propagators we use the
local representation. In the present calculations we do not employ the so-called
impulse approximation used previously [19]. The numerical results obtained with
and without the impulse approximation are close to each other for light-to-
light and heavy-to-heavy transitions but differ considerably from one another
for heavy-to-light transitions as e.g. in the B → π transitions.

We calculate the form factors of the transition B → K and use them to
evaluate differential decay rates and polarization observables. We give the q2-
dependence of a set of observables with and without long-distance contributions
which include the lower-lying charmonium states according to [23]. We extend
our analysis to the exclusive rare decay Bc → D(D∗)l̄l. We derive a four-fold
angular decay distribution for the cascade Bc → D∗(→ Dπ)l̄l process in the
helicity frame including lepton mass effects following the method outlined in [24].
The four-fold angular decay distribution allows one to define a number of physical
observables which are amenable to measurement. We compare our results with
the ones of other studies.

We should remark that our approach is developed mainly for the hadrons
(mesons and baryons) which satisfy to the so-called ”threshold inequality”: the
hadron mass should be smaller the sum of their constituents, i.e. the sum of
the constituent quark masses. In this vein, our model was successfully developed
for the study of light hadrons (e.g., pion, kaon, baryon octet, ∆-resonance),
heavy-light hadrons (e.g., D, Ds, B and Bs-mesons, ΛQ, ΣQ, ΞQ and ΩQ-
baryons) and double heavy hadrons (e.g, J/Ψ , Υ and Bc-mesons, ΞQQ and ΩQQ

baryons) [18, 19]. To extend our approach to other hadrons we had to introduce
extra model parameters or do some approximations, like, e.g., to introduce the
cutoff parameter for external hadron momenta to guarantee the fulfilment of
the mentioned above ”threshold inequality”. Therefore, at the present stage we
can not apply our approach for the study of rare decays involving K∗ mesons.
Probably, it will be a subject of our future investigations.

The layout of the paper is as follows. In Sect. II we discuss the effective Hamil-
tonian. We use the analytical expressions for the Wilson coefficients from [7]
and the input parameters from [8]. Sect. III is devoted to the description of the
B(Bc) → K(D, D∗)l̄l decays in terms of helicity amplitudes. We derive the four-
fold angular decay distribution for the cascade Bc → D∗(→ Dπ)l̄l process in the
helicity system and define a number of physical observables from the angular
decay distribution. Our analysis goes beyond the results on the four-fold decay
distribution presented in [25, 26] in that we include lepton mass effects appro-
priated for the treatment of the channel with τ -leptons in the final state. We
also present results on the longitudinal polarization of the leptons in the l̄l-CM
frame. This analysis differs from the analysis in [25, 26] where the polarization
of the leptons were calculated in the initial meson rest system. We also include
lepton mass effects in the polarization calculation. In Sect. IV we briefly discuss
our relativistic quark model and demonstrate the difference between the exact
calculation and the approximate calculation using the impulse approximation
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taking as an example the B − π form factor. We calculate matrix elements and
form factors for the decay B → Kl̄l and compare their behavior with those cal-
culated in [8]. In Sect. V we present our numerical results for branching ratios
and asymmetry parameters. We plot the q2-dependence of the differential de-
cay rate and the longitudinal polarization of the leptons with and without long
distance contributions.

2 Effective Hamiltonian

The starting point of the description of the rare exclusive decays is the effec-
tive Hamiltonian obtained from the SM-diagrams by using the operator product
expansion and renormalization group techniques. It allows one to separate the
short-distance contributions and isolate them in the Wilson coefficients which
can be studied systematically within perturbative QCD. The long-distance con-
tributions are contained in the matrix elements of local operators. Contrary to
the short-distance contributions the calculation of such matrix elements requires
nonperturbative methods and is therefore model dependent.

We will follow Refs.[7] in writing down the analytical expressions for the
effective Hamiltonian and paper [8] in using the numerical values of the input
parameters characterizing the short-distance contributions. At the quark level,
the rare semileptonic decay b → s(d)l+l− can be described in terms of the
effective Hamiltonian:

Heff = −GF√
2

λt

10∑

i=1

Ci(µ)Qi(µ) . (3)

where λt ≡ V †
ts(d)Vtb is the product of CKM elements. For example, the standard

set [7] of local operators for b → sl+l− transition is written as

Q1 = (s̄icj)V−A, (c̄jbi)V−A, Q2 = (s̄c)V−A(c̄b)V−A,
Q3 = (s̄b)V−A

∑
q(q̄q)V−A, Q4 = (s̄ibj)V−A

∑
q(q̄jqi)V−A,

Q5 = (s̄b)V−A
∑
q(q̄q)V+A, Q6 = (s̄ibj)V−A

∑
q(q̄jqi)V+A,

Q7 = e
8π2 mb(s̄σµν(1 + γ5)b)Fµν , Q8 = g

8π2 mb(s̄iσµν(1 + γ5)Tijbj)Gµν ,
Q9 = e

8π2 (s̄b)V−A(l̄l)V , Q10 = e
8π2 (s̄b)V−A(l̄l)A

(4)

where Gµν and Fµν are the gluon and photon field strengths, respectively; Tij

are the generators of the SU(3) color group; i and j denote color indices (they
are omitted in the color-singlet currents). Labels (V ± A) stand for γµ(1 ± γ5).
Q1,2 are current-current operators, Q3−6 are QCD penguin operators, Q7,8 are
”magnetic penguin” operators, and Q9,10 are semileptonic electroweak penguin
operators. Explicit formulae for the Wilson coefficients Ci(µ) obtained in leading
logarithmic order are written down in Appendix A.

The effective Hamiltonian leads to the free quark b → sl+l−-decay amplitude:

M(b → s�+�−) =
GFα

2
√

2π
λt
{
Ceff

9 (s̄b)V−A
(
l̄l
)

V
+ C10 (s̄b)V−A

(
l̄l
)

A
(5)

− 2mb

q2 Ceff
7
(
s̄ iσµν (1 + γ5) qν b

) (
l̄l
)

V

}

.
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where Ceff
7 = C7 − C5/3 − C6.

The Wilson coefficient Ceff
9 effectively takes into account, first, the contribu-

tions from the four-quark operators Qi (i = 1, ..., 6) and, second, the nonper-
turbative effects coming from the cc̄-resonance contributions which are as usual
parametrized by a Breit-Wigner ansatz [23]:

Ceff
9 = C9 + C0





h(m̂c, s) +

3π

α2 κ
∑

Vi=ψ(1s),ψ(2s)

Γ (Vi → l+l−) mVi

mVi
2 − q2 − imViΓVi






− 1
2
h(1, s) (4C3 + 4C4 + 3C5 + C6) (6)

− 1
2
h(0, s) (C3 + 3C4) +

2
9

(3C3 + C4 + 3C5 + C6) .

where C0 ≡ 3C1 + C2 + 3C3 + C4 + 3C5 + C6. Here

h(m̂c, s) = −8
9

ln
mb

µ
− 8

9
ln m̂c +

8
27

+
4
9
x

− 2
9
(2 + x)|1 − x|1/2






(
ln
∣
∣
∣
√

1−x+1√
1−x−1

∣
∣
∣− iπ

)
, for x ≡ 4m̂2

c

s < 1

2 arctan 1√
x−1 , for x ≡ 4m̂2

c

s > 1,

h(0, s) =
8
27

− 8
9

ln
mb

µ
− 4

9
ln s +

4
9
iπ.

where m̂c = mc/mB , s = q2/m2
B and κ = 1/C0.

The relation between the MS b-quark mass mb ≡ mb(µ) at a scale µ and its
pole mass mb,pole is given by

mb(µ) = mb,pole

{

1 − 4
3

αs(µ)
π

[

1 − 3
4

ln
(

mb,pole

µ2

)]}

(7)

where

αs(µ) =
4π

β0 ln µ2

Λ2
QCD






1 − β1

β2
0

ln ln µ2

Λ2
QCD

ln µ2

Λ2
QCD






(8)

and where β0 = 23/3 and β1 = 116/3, as is appropriate for five flavors. We
will use a scale µ = mb,pole throughout this paper. The numerical values of the
input parameters are taken from [8] and the corresponding values of the Wilson
coefficients used in the numerical calculations are listed in Table 1.

3 B → Kl̄l and Bc → D(D∗)l̄l-decays

3.1 Form factors and differential decay distributions

We specify our choice of the momenta as p1 = p2+k1+k2 with p2
1 = m2

1, p2
2 = m2

2
and k2

1 = k2
2 = µ2 where k1 and k2 are the l+ and l− momenta, and m1, m2, µ

are the masses of initial meson Hin, final meson Hf and lepton, respectively.

http://link.springer.de/link/service/journals/10105/index.htm
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Table 1. Central values of the input parameters and the corresponding values
of the Wilson coefficients used in the numerical calculations

mW 80.41 GeV C1 -0.248
mZ 91.1867 GeV C2 1.107

sin2 θW 0.2233 C3 0.011
mc 1.4 GeV C4 -0.026
mt 173.8 GeV C5 0.007

mb,pole 4.8 GeV C6 -0.031
µ mb,pole Ceff

7 -0.313
ΛQCD 0.220 GeV C9 4.344
α−1 129 C10 -4.669

αs(mZ) 0.119 C0 0.362
|V †

tsVtb| 0.0385
|V †

tdVtb| 0.008
|V †

tsVtb|/|Vcb| 1

The matrix elements of the exclusive transitions B → Kl̄l and Bc → D(D∗)l̄l
are defined by

M(Hin → Hf l̄l) =
GF√

2
· αλt

2 π
· {Ceff

9 < Hf | s̄ Oµ b | Hin > l̄γµl (9)

+ C10 < Hf | s̄ Oµ b | Hin > l̄γµγ5l

− 2mb

q2 Ceff
7 < Hf | s̄ iσµν (1 + γ5) qν b | Hin > l̄γµl

}

.

where Hin = B or Bc, Hf = K, D or D∗.
We define dimensionless form factors by

< K(D)(p2) | s̄(d) γµ b |B(Bc)(p1) >= F+(q2)Pµ + F−(q2)qµ , (10)

< K(D)(p2) | s̄(d) iσµνq
ν b | B(Bc)(p1) >= − 1

m1 + m2
P⊥
µ q2 FT (q2) ,

i < D∗(p2, ε2) | d̄ Oµ b | Bc(p1) >=
1

m1 + m2
ε†ν
2

×{−gµν Pq A0(q2) + PµPν A+(q2) + qµPν A−(q2) + iεµναβP
αqβ V (q2)} ,

i < D∗(p2, ε2) | d̄ iσµνq
ν(1 + γ5) b | Bc(p1) >=

= ε†ν
2 { g⊥

µν Pq a0(q2) − P⊥
µ Pν a+(q2) − iεµναβP

αqβ g(q2)}
where P = p1 + p2, q = p1 − p2, P⊥

µ
.= Pµ − qµPq/q2, g⊥

µν
.= gµν − qµqν/q2,

and ε†
2 is the polarization four-vector of the D∗. Since we want to compare our

calculations with those in [8] and [17], it is useful to relate our form factors to
those used in [8] and [17]. The relations read

F+ = fAli
+ = FGeng

+

http://link.springer.de/link/service/journals/10105/index.htm
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F− = − m2
1 − m2

2

q2 (f+ − f0)Ali = FGeng
−

FT = fAli
T = − FGeng

T

A0 =
m1 + m2

m1 − m2
AAli

1 = − AGeng
0

A+ = AAli
2 = AGeng

+

A− =
2m2(m1 + m2

q2 (A3 − A0)Ali = AGeng
−

V = V Ali = − V Geng

a0 = TAli
2 = aGeng

0

a+ = (T2 +
q2

m2
1 − m2

2
T3)Ali = − aGeng

+

g = TAli
1 = gGeng

The matrix element in Eq (9) is written as

M
(
B(Bc) → K(D∗)l̄l

)
=

GF√
2

· αλt
2π

{
Tµ1 (l̄γµl) + Tµ2 (l̄γµγ5l)

}
(11)

where the quantities Tµi are expressed through the form factors and the Wilson
coefficients in the following manner:
(a) B(Bc) → K(D)l̄l-decay:

Tµi = F (i)
+ Pµ + F (i)

− qµ (i = 1, 2) , (12)

F (1)
+ = Ceff

9 F+ + Ceff
7 FT

2mb

m1 + m2
,

F (1)
− = Ceff

9 F− − Ceff
7 FT

2mb

m1 + m2

Pq

q2 ,

F (2)
± = C10 F± .

(b) Bc → D∗ l̄l-decay:

Tµi = Tµνi ε†
2ν , (i = 1, 2) , (13)

Tµνi =
1

m1 + m2
{−Pq gµν A

(i)
0 + PµP ν A

(i)
+ + qµP ν A

(i)
− + iεµναβPαqβ V (i)}

V (1) = Ceff
9 V + Ceff

7 g
2mb(m1 + m2)

q2 ,

A
(1)
0 = Ceff

9 A0 + Ceff
7 a0

2mb(m1 + m2)
q2 ,

http://link.springer.de/link/service/journals/10105/index.htm
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Fig. 1. Definition of angles θ, θ∗ and χ in the cascade decay Bc → D∗(→ Dπ)l̄l

A
(1)
+ = Ceff

9 A+ + Ceff
7 a+

2mb(m1 + m2)
q2 ,

A
(1)
− = Ceff

9 A− + Ceff
7 (a0 − a+)

2mb(m1 + m2)
q2

Pq

q2 ,

V (2) = C10 V , A
(2)
0 = C10 A0 , A

(2)
± = C10 A± .

Let us first consider the polar angle decay distribution differential in the
momentum transfer squared q2. The polar angle is defined by the angle between
q = p1 − p2 and k1 (l+l− rest frame) as shown in Fig. 1. One has

d2Γ

dq2d cos θ
=

|p2| v
(2π)3 4 m3

1
· 1
8

∑

pol

|M |2 =
G2
F

(2π)3

(
α|λt|
2 π

)2 |p2| v
8m2

1
(14)

× 1
8

{

Hµν
11 · tr[γµ (�k1 − µ) γν (�k2 + µ)]

+ Hµν
22 · tr[γµγ5 (�k1 − µ) γνγ5 (�k2 + µ)]

+ Hµν
12 · tr[γµ (�k1 − µ) γνγ5 (�k2 + µ)]

+ Hµν
21 · tr[γµγ5 (�k1 − µ) γν (�k2 + µ)]

}

http://link.springer.de/link/service/journals/10105/index.htm
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=
G2
F

(2π)3

(
α|λt|
2 π

)2 |p2| v
8m2

1
· 1
2

{

L(1)
µν · (Hµν

11 + Hµν
22 )

− 1
2

L(2)
µν · (q2 Hµν

11 + (q2 − 4µ2) Hµν
22 ) + L(3)

µν · (Hµν
12 + Hµν

21 )
}

where |p2| = λ1/2(m2
1, m

2
2, q

2)/2m1 is the momentum of the K(D∗)-meson and
v =

√
1 − 4µ2/q2 is the lepton velocity both given in the B(Bc)-rest frame. We

have introduced lepton and hadron tensors as

L(1)
µν = k1µk2ν + k2µk1ν , L(2)

µν = gµν , L(3)
µν = iεµναβk

α
1 kβ2 ,

(15)

Hµν
ij = Tµi T †ν

j .

3.2 Helicity amplitudes and two-fold distributions

The Lorentz contractions in Eq. (14) can be evaluated in terms of helicity ampli-
tudes as described in [24]. First, we define an orthonormal and complete helicity
basis εµ(m) with the three spin 1 components orthogonal to the momentum
transfer qµ, i.e. εµ(m)qµ = 0 for m = ±, 0, and the spin 0 (time)-component
m = t with εµ(t) = qµ/

√
q2.

The orthonormality and completeness properties read

ε†
µ(m)εµ(n) = gmn (m, n = t, ±, 0),

(16)
εµ(m)ε†

ν(n)gmn = gµν

with gmn = diag ( + , − , − , − ). We include the time component polarization
vector εµ(t) in the set because we want to discuss lepton mass effects in the
following.

Using the completeness property we rewrite the contraction of the lepton and
hadron tensors in Eq. (14) according to

L(k)µνHij
µν = L

(k)
µ′ν′ε

µ′
(m)ε†µ(m′)gmm′ε†ν′

(n)εν(n′)gnn′Hij
µν

= L(k)(m, n)gmm′gnn′Hij(m′, n′) (17)

where we have introduced the lepton and hadron tensors in the space of the
helicity components

L(k)(m, n) = εµ(m)ε†ν(n)L(k)
µν , Hij(m, n) = ε†µ(m)εν(n)Hij

µν . (18)

The point is that the two tensors can be evaluated in two different Lorentz
systems. The lepton tensors L(k)(m, n) will be evaluated in the l̄l-CM system
whereas the hadron tensors Hij(m, n) will be evaluated in the B(Bc) rest system.

http://link.springer.de/link/service/journals/10105/index.htm
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In the B(Bc) rest frame one has

pµ1 = ( m1 , 0, 0, 0 ) ,

pµ2 = ( E2 , 0 , 0 , −|p2| ) , (19)
qµ = ( q0 , 0 , 0 , |p2| ) ,

where E2 = (m2
1+m2

2−q2)/2m1 and q0 = (m2
1−m2

2+q2)/2m1. In the B(Bc)-rest
frame the polarization vectors of the effective current read

εµ(t) =
1
√

q2
( q0 , 0 , 0 , |p2| ) ,

εµ(±) =
1√
2
( 0 , ∓1 , −i , 0 ) , (20)

εµ(0) =
1
√

q2
( |p2| , 0 , 0 , q0 ) .

Using this basis one can express the components of the hadronic tensors through
the invariant form factors defined in Eq. (10).

(a) B(Bc) → K(D) transition:

Hij(m, n) =
(
ε†µ(m)T iµ

) · (ε†ν(n)T jν
)† ≡ Hi(m)H†j(n) (21)

The helicity form factors Hi(m) are given in terms of the invariant form factors.
One has

Hi(t) =
1
√

q2
(Pq F i

+ + q2 F i
−) ,

Hi(±) = 0 , (22)

Hi(0) =
2 m1 |p2|
√

q2
F i

+ .

(b) Bc → D∗ transition:

Hij(m, n) = ε†µ(m)εν(n)Hij
µν = ε†µ(m)εν(n)T iµα

(

−gαβ +
pα2 pβ2
m2

2

)

T †j
βν

= ε†µ(m)εν(n)T iµαε†α
2 (r)εβ2 (s)δrsT

†j
βν (23)

= ε†µ(m)ε†α
2 (r)T iµα ·

(
ε†ν(n)ε†β

2 (s)T jνβ
)†

δrs = Hi(m)H† j(n).

From angular momentum conservation one has r = m and s = n for m, n = ±, 0
and r, s = 0 for m, n = t. For further evaluation one needs to specify the helicity
components ε2(m) (m = ±, 0) of the polarization vector of the D∗. They read

εµ2 (±) =
1√
2
(0 , ±1 , −i , 0 ) ,

(24)

εµ2 (0) =
1

m2
(|p2| , 0 , 0 , −E2 ) .
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They satisfy the orthonormality and completeness properties:

ε†µ
2 (r)ε2µ(s) = −δrs,

(25)

ε2µ(r)ε
†
2ν(s)δrs = −gµν +

p2µp2ν

m2
2

.

Finally one obtains the non-zero components of the hadron tensors

Hi(t) = ε†µ(t)ε†α
2 (0)T iµα =

1
m1 + m2

m1 |p2|
m2
√

q2

(
Pq (−Ai

0 + Ai
+) + q2Ai

−
)
,

Hi(±) = ε†µ(±)ε†α
2 (±)T iµα =

1
m1 + m2

(−Pq Ai
0 ± 2 m1 |p2| V i

)
, (26)

Hi(0) = ε†µ(0)ε†α
2 (0)T iµα

=
1

m1 + m2

1

2 m2
√

q2

(−Pq (m2
1 + m2

2 − q2) Ai
0 + 4 m2

1 |p2|2 Ai
+
)
.

The lepton tensors L(k)(m, n) are evaluated in the l̄l-CM system k1+k2 = 0.
One has (see Fig. 1)

qµ = (
√

q2 , 0 , 0 , 0 ) ,

kµ1 = ( E1 , |k1| sin θ cos χ , |k1| sin θ sin χ , |k1| cos θ ) , (27)
kµ2 = ( E1 , −|k1| sin θ cos χ , −|k1| sin θ sin χ , −|k1| cos θ ) ,

with E1 =
√

q2/2 and |k1| =
√

q2 − 4µ2/2. The longitudinal and time com-
ponent polarization vectors in the l̄l rest frame can be read off from Eq. (20)
and are given by εµ(0) = (0, 0, 0, 1) and ε(t) = (1, 0, 0, 0) whereas the transverse
parts remain unchanged from Eq. (20).

The differential (q2, cos θ) distribution finally reads

dΓ (Hin → Hf l̄l)
dq2d(cos θ)

=
3
8

(1 + cos2 θ) · 1
2

(
dΓ 11

U

dq2 +
dΓ 22

U

dq2

)

(28)

+
3
4

sin2 θ · 1
2

(
dΓ 11

L

dq2 +
dΓ 22

L

dq2

)

− v · 3
4

cos θ · dΓ 12
P

dq2

+
3
4

sin2 θ · 1
2

dΓ̃ 11
U

dq2 − 3
8

(1 + cos2 θ) · dΓ̃ 22
U

dq2

+
3
2

cos2 θ · 1
2

dΓ̃ 11
L

dq2 − 3
4

sin2 θ · dΓ̃ 22
L

dq2 +
1
4

dΓ̃ 22
S

dq2 .

Integrating over cos θ one obtains

dΓ (Hin → Hf l̄l)
dq2 =

1
2

(
dΓ 11

U

dq2 +
dΓ 22

U

dq2 +
dΓ 11

L

dq2 +
dΓ 22

L

dq2

)

(29)

+
1
2

dΓ̃ 11
U

dq2 − dΓ̃ 22
U

dq2 +
1
2

dΓ̃ 11
L

dq2 − dΓ̃ 22
L

dq2 +
1
2

dΓ̃ 22
S

dq2 ,
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where the partial helicity rates dΓ ij
X /dq2 and dΓ̃ ij

X /dq2 (X = U, L, P, S; i, j =
1, 2) are defined as

dΓXij

dq2 =
G2
F

(2π)3

(
α|λt|
2π

)2 |p2| q2 v

12 m2
1

Hij
X ,

(30)

dΓ̃Xij

dq2 =
2 µ2

q2

dΓ ij
X

dq2 .

The relevant bilinear combinations of the helicity amplitudes are defined in Ta-
ble 2.

To check our calculation we give the corresponding expression for the differ-
ential decay rate used in [8] and [17]:

dΓ (B → Kl+l−)
ds

=
G2
F |λt|2m5

1α
2

3 · 29π5 vφ
1
2
H

[(

1 +
2t

s

)

φHα2 + 12tβ2

]

, (31)

with s = q2/m2
1 and t = µ2/m2

1 and the expressions of φH , αi, βi, δ (i=1,2,3)
and δ are given in Appendix B. We find complete agreement with the decay
distributions given in [8] and [17].

3.3 The four-fold angle distribution in the cascade decay
Bc → D∗(→ Dπ)l̄l.

The lepton-hadron correlation function LµνH
µν reveals even more structure

when one uses the cascade decay Bc → D∗(→ Dπ)l̄l to analyze the polarization
of the D∗. The hadron tensor now reads

Hij
µν = T iµα(T jνβ)

† 3
2 |p3|Br(K∗ → Kπ)p3α′p3β′Sαα

′
(p2)Sββ

′
(p2) (32)

where Sαα
′
(p2) = −gαα

′
+ pα2 pα

′
2 /m2

2 is the standard spin 1 tensor, p2 = p3 + p4,
p2
3 = m2

D, p2
4 = m2

π, and p3 and p4 are the momenta of the D and the π,
respectively. The relative configuration of the (D, π)- and (l̄l)-planes is shown in
Fig. 1.

In the rest frame of the D∗ one has

pµ2 = (mD∗ ,0), (33)
pµ3 = ( ED , |p3| sin θ∗ , 0 , −|p3| cos θ∗ ) ,

pµ4 = ( Eπ , −|p3| sin θ∗ , 0 , |p3| cos θ∗ ) ,

|p3| = λ1/2(m2
D∗ , m2

D, m2
π)/(2 mD∗) .

Without loss of generality we set the azimuthal angle χ∗ of the (D, π)-plane to
zero. According to Eq. (24) the rest frame polarization vectors of the D∗ are
given by

εµ2 (±) =
1√
2
( 0 , ± , −i , 0 ) , (34)

εµ2 (0) = ( 0 , 0 , 0 , −1) .
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Table 2. Bilinear combinations of the helicity amplitudes that enter in the four-
fold decay distribution Eq. (37)

Definition Property Title

Hij
U = Re

(
Hi

+H† j
+

)
+ Re

(
Hi

−H† j
−
)

Hij
U = Hji

U Unpolarized-
transverse

Hij
IU = Im

(
Hi

+H† j
+

)
+ Im

(
Hi

−H† j
−
)

Hij
IU = −Hji

IU

Hij
P = Re

(
Hi

+H† j
+

)
− Re

(
Hi

−H† j
−
)

Hij
P = Hji

P Parity-odd

Hij
IP = Im

(
Hi

+H† j
+

)
− Im

(
Hi

−H† j
−
)

Hij
IP = −Hji

IP

Hij
T = Re

(
Hi

+H† j
−
)

Transverse-
interference

Hij
IT = Im

(
Hi

+H† j
−
)

Hij
L = Re

(
Hi

0H
† j
0

)
Hij

L = Hji
L Longitudinal

Hij
IL = Im

(
Hi

0H
† j
0

)
Hij

IL = −Hji
IL

Hij
S = 3 Re

(
Hi

tH
† j
t

)
Hij

S = Hji
S Scalar

Hij
IS = 3 Im

(
Hi

tH
† j
t

)
Hij

IS = −Hji
IS

Hij
SL = Re

(
Hi

tH
† j
0

)
Scalar-
Longitudinal-
interference

Hij
ISL = Im

(
Hi

tH
† j
0

)

Hij
I = 1

2

[
Re
(
Hi

+H† j
0

)
+ Re

(
Hi

−H† j
0

)]
transverse-
longitudinal-
Interference

Hij
II = 1

2

[
Im
(
Hi

+H† j
0

)
+ Im

(
Hi

−H† j
0

)]

Hij
A = 1

2

[
Re
(
Hi

+H† j
0

)
− Re

(
Hi

−H† j
0

)]
parity-
Asymmetric

Hij
IA = 1

2

[
Im
(
Hi

+H† j
0

)
− Im

(
Hi

−H† j
0

)]

Hij
ST = 1

2

[
Re
(
Hi

+H† j
t

)
+ Re

(
Hi

−H† j
t

)]
Scalar-
Transverse-
interference

Hij
IST = 1

2

[
Im
(
Hi

+H† j
t

)
+ Im

(
Hi

−H† j
t

)]

Hij
SA = 1

2

[
Re
(
Hi

+H† j
t

)
− Re

(
Hi

−H† j
t

)]
Scalar-
Asymmetric-
interference

Hij
ISA = 1

2

[
Im
(
Hi

+H† j
t

)
− Im

(
Hi

−H† j
t

)]

The spin 1 tensor Sαα
′
(p2) is then written as

Sαα
′
(p2) = −gαα

′
+

pα2 pα
′

2

m2
2

=
∑

m=±,0
εα2 (m)ε†α′

2 (m) . (35)
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Following basically the same trick as in Eq. (17) the contraction of the lepton
and hadron tensors may be written through helicity components as

L(k)µνHij
µν = εµ

′
(m)ε†ν′

(n)Lkµ′ν′gmn′gnn′ε†µ(m′)εν(n′)Hij
µν (36)

= Lk(m, n)gmm′gnn′
(
ε†µ(m′)ε†α

2 (r)T iµα
)(

ε†ν(n′)ε†α
2 (s)T jνβ

)†

× p3ε2(r) · p3ε
†
2(s)

3 Br(D∗ → Dπ)
2 |p3|

=
3 Br(D∗ → Dπ)

2 |p3|
(

Lk(t, t)|Hij(t)|2 · (p3ε
†
2(0))2

+
∑

m,n=±,0
Lk(m, n)Hi(m)H†j(n) · p3ε2(m) · p3ε

†
2(n)

−
∑

n=±,0
Lk(t, n)Hi(t)H†j(n) · p3ε2(0) · p3ε

†
2(n)

−
∑

m=±,0
Lk(m, t)Hi(m)H†j(t) · p3ε2(m) · p3ε

†
2(0)

)

.

Using these results one obtains the full four-fold angular decay distribution

dΓ (Bc → D∗(→ Dπ)l̄l)
dq2 d cos θ d(χ/2π) d cos θ∗ = Br(D∗ → Dπ) (37)

×
{

3
8

(1 + cos2 θ) · 3
4

sin2 θ∗ · 1
2

(
dΓ 11

U

dq2 +
dΓ 22

U

dq2

)

+
3
4

sin2 θ · 3
2

cos2 θ∗ · 1
2

(
dΓ 11

L

dq2 +
dΓ 22

L

dq2

)

−3
4

sin2 θ · cos 2χ · 3
4

sin2 θ∗ · 1
2

(
dΓ 11

T

dq2 +
dΓ 22

T

dq2

)

+
9
16

sin 2θ · cos χ · sin 2θ∗ · 1
2

(
dΓ 11

I

dq2 +
dΓ 22

I

dq2

)

+v

[

−3
4

cos θ · 3
4

sin2 θ∗ · dΓ 12
P

dq2

−9
8

sin θ · cos χ · sin 2θ∗ · 1
2

(
dΓ 12

A

dq2 +
dΓ 21

A

dq2

)

+
9
16

sin θ · sin χ · sin 2θ∗ ·
(

dΓ 12
II

dq2 +
dΓ 21

II

dq2

)]

− 9
32

sin 2θ · sin χ · sin 2θ∗ ·
(

dΓ 11
IA

dq2 +
dΓ 22

IA

dq2

)

+
9
32

sin2 θ · sin 2χ · sin2 θ∗ ·
(

dΓ 11
IT

dq2 +
dΓ 22

IT

dq2

)

+
3
4

sin2 θ · 3
4

sin2 θ∗ · 1
2

· dΓ̃ 11
U

dq2 − 3
8

(1 + cos2 θ) · 3
4

sin2 θ∗ · dΓ̃ 22
U

dq2
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EPJdirect C, 4, C18, 1–33 (2002) Springer-Verlag 15

+
3
2

cos2 θ · 3
2

cos2 θ∗ · 1
2

· dΓ̃ 11
L

dq2 − 3
4

sin2 θ · 3
2

cos2 θ∗ · dΓ̃ 22
L

dq2

+
3
4

sin2 θ · cos 2χ · 3
4

sin2 θ∗ ·
(

dΓ̃ 11
T

dq2 +
dΓ̃ 22

T

dq2

)

−9
8

sin 2θ · cos χ · sin 2θ∗ · 1
2

(
dΓ̃ 11

I

dq2 +
dΓ̃ 22

I

dq2

)

+
3
2

cos2 θ∗ · 1
4

dΓ̃ 22
S

dq2

+
9
16

sin 2θ · sin χ · sin 2θ∗ ·
(

dΓ 11
IA

dq2 +
dΓ 22

IA

dq2

)

− 9
16

sin2 θ · sin 2χ · sin2 θ∗ ·
(

dΓ 11
IT

dq2 +
dΓ 22

IT

dq2

)}

Integrating Eq. (37) over cos θ∗ and χ one recovers the two-fold (q2, cos θ) dis-
tribution of Eq. (28). Note that a similar four-fold distribution has also been
obtained in Refs.([14],[25]-[28]) using, however, the zero lepton mass approxima-
tion. If there are sufficient data one can attempt to fit them to the full four-fold
decay distribution and thereby extract the values of the coefficient functions
dΓX/dq2 and, in the case l = τ the coefficient functions dΓ̃X/dq2. Instead of
considering the full four-fold decay distribution one can analyze single angle dis-
tributions by integrating out two of the remaining angles as e.g. discussed in
Sect. 3.2 Observables related to single angle distributions will be discussed in
the next subsection.

3.4 Physical observables

The four-fold distribution Eq. (37) allows one to define a number of physical ob-
servables which can be measured experimentally. An asymmetry parameter αθ∗

is defined from the angular distribution W (cos2 θ∗) = 1+αθ∗ cos2 θ∗. Integrating
Eq. (37) over cos θ and χ one finds

αθ∗ =
−(U11 + U22) + 2(L11 + L22) − Ũ11 + 2Ũ22 + 2(L̃11 − 2L̃22) + 2S̃22

U11 + U22 + Ũ11 − 2Ũ22

(38)
By integrating over cos θ∗ and χ one can define two asymmetry parameters α′

θ

and αθ according to the angular distribution W (cos2 θ) = 1+α′
θ cos θ+αθ cos2 θ.

One has

α′
θ =

−4 v P 12

U11 + U22 + 2(L11 + L22) + 2(Ũ11 − Ũ22 − 2L̃22 + (2/3)S̃22)
,(39)

αθ =
U11 + U22 − 2(L11 + L22) − 2(Ũ11 + Ũ22) + 4(L̃11 + L̃22)

U11 + U22 + 2(L11 + L22) + 2(Ũ11 − Ũ22 − 2L̃22 + (2/3)S̃22)
.(40)

An azimuthal asymmetry parameter β can be defined from the χ-distribution
W (χ) = 1 + β cos 2χ. The azimuthal χ-distribution is obtained by integrating
over cos θ and cos θ∗. One has

β =
−(T 11 + T 22) + 2(T̃ 11 + T̃ 22)

U11 + U22 + L11 + L22 + Ũ11 − 2Ũ22 + L̃11 − 2L̃22 + S̃22
. (41)
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A second strategy is to define suitable asymmetry ratios that project out the
partial rates from Eq. (37). Let us consider the following four asymmetry ratios
which project out the contributions of the parity conserving partial rates ΓT and
ΓI and the parity violating partial decay rates ΓP and ΓA. One has

ΓT : AT =
dΓ (χ) − dΓ (χ + π/2) + dΓ (χ + π) − dΓ (χ + 3π/2)
dΓ (χ) + dΓ (χ + π/2) + dΓ (χ + π) + dΓ (χ + 3π/2)

(42)

where −π/4 ≤ χ ≤ π/4.

ΓA : AI = NI/DI , (43)

NI = dΓ (θ, θ∗, χ) − dΓ (θ, θ∗, χ + π)
− dΓ (θ, π − θ∗, χ) + dΓ (θ, π − θ∗, χ + π)
− dΓ (π − θ, θ∗, χ) + dΓ (π − θ, θ∗, χ + π)
+ dΓ (π − θ, π − θ∗, χ) − dΓ (π − θ, π − θ∗, χ + π) ,

0 ≤ θ∗ ≤ π

2
,

π

2
≤ θ ≤ π , −π

2
≤ χ ≤ π

2
.

The denominator DI is given by the same expression with plus signs everywhere.

ΓP : AFB =
dΓ (θ) − dΓ (π − θ)
dΓ (θ) + dΓ (π − θ)

,
π

2
≤ θ ≤ π , (44)

ΓA : AA =
dΓ (θ∗, χ) − dΓ (θ∗, χ + π) − dΓ (π − θ∗, χ) + dΓ (π − θ∗, χ + π)
dΓ (θ∗, χ) + dΓ (θ∗, χ + π) + dΓ (π − θ∗, χ) + dΓ (π − θ∗, χ + π)

,

0 ≤ θ∗ ≤ π

2
, −π

2
≤ χ ≤ π

2
. (45)

We have used a notation where the angles that do not appear in the arguments of
the differential rates dΓ have been integrated out over their physical ranges (0 ≤
θ (θ∗) ≤ π, 0 ≤ χ ≤ 2π). Integrating over the remaining variables (numerator
and denominator separately!) we finally obtain

< AT > =
2
π

−(1/2)(T 11 + T 22) + T̃ 11 + T̃ 22

Γ
, (46)

< AI > =
2
π

(1/2)(I11 + I22) − Ĩ11 − Ĩ22

Γ
, (47)

< AFB > =
3 v

4
P 12

Γ
, (48)

< AA > =
3 v

4
A12 + A21

Γ
. (49)
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3.5 Longitudinal polarization of the lepton in B → Kl̄l-decay.

Our aim is to study lepton polarization effects in B → Kl̄l-decay. The longitu-
dinal polarization of the final lepton l−(k2) is defined by

P (l) =
dΓ (s2)/dq2 − dΓ (−s2)/dq2

dΓ (s2)/dq2 + dΓ (−s2)/dq2 (50)

where the longitudinal component of the rest frame polarization vector of the
l−(k2) is given by

s2 =
(

0,
k2

|k2|
)

. (51)

Contrary to previous studies of the longitudinal polarization of the lepton, where
the longitudinal polarization was studied in the B rest frame, we will calculate
this quantity in the l̄l-CM frame. The longitudinal polarization vector s2 is
boosted to the moving frame by a Lorentz transformation. One obtains

s2,CM =
( |k2|

µ
,

E2

µ

k2

|k2|
)

. (52)

The quantity dΓ (s2)/dq2 in Eq. (50) may be obtained from Eq. (14) by the
replacement

(�k2 + µ) → 1
2
(1 + γ5 �s2) (�k2 + µ) .

Integrating the numerator and denominator in Eq. (50) over cos θ, one finds

P (l) =
v
(
dU12 + dL12

)

dΓ
(53)

where we have adopted a short hand notation U := ΓU , Ũ := Γ̃U , etc.. Because
of CP-invariance and because the longitudinal polarization is a pseudoscalar
quantity, the longitudinal polarization of the antilepton is equal and opposite to
the longitudinal polarization of the lepton, i.e. P (l)(l+) = −P (l)(l−).

4 Model form factors

We will employ the relativistic constituent quark model [18, 19] to calculate the
form factors relevant to the decays B → Kl̄l and Bc → D(D∗)l̄l. This model
is based on an effective interaction Lagrangian which describes the coupling
between hadrons and their constituent quarks.

For example, the coupling of the meson H to its constituent quarks q1 and
q̄2 is given by the Lagrangian

Lint(x) = gHH(x)
∫

dx1

∫

dx2FH(x, x1, x2)q̄(x1)ΓHλHq(x2) . (54)

Here, λH and ΓH are Gell-Mann and Dirac matrices which entail the flavor and
spin quantum numbers of the meson field H(x). The function FH is related
to the scalar part of the Bethe-Salpeter amplitude and characterizes the finite
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size of the meson. The function ΦH must be invariant under the translation
FH(x + a, x1 + a, x2 + a) = FH(x, x1, x2).

In our previous papers we have used the so-called impulse approximation for
the evaluation of the Feynman diagrams. In the impulse approximation one omits
a possible dependence of the vertex functions on external momenta. The impulse
approximation therefore entails a certain dependence on how loop momenta are
routed through the diagram at hand. This problem no longer exists in the present
full treatment where the impulse approximation is no longer used. In the present
calculation we will use a particular form of the vertex function given by

FH(x, x1, x2) = δ

(

x − m1x1 + m2x2

m1 + m2

)

ΦH((x1 − x2)2). (55)

where m1 and m2 are the constituent quark masses. The vertex function FH
evidently satisfies the above translational invariance condition. As mentioned
before we no longer use the impulse approximation in the present calculation.

The coupling constants gH in Eq. (54) are determined by the so called com-
positeness condition proposed in [20] and extensively used in [21]. The compos-
iteness condition means that the renormalization constant of the meson field is
set equal to zero

ZH = 1 − 3g2
H

4π2 Π̃ ′
H(m2

H) = 0 (56)

where Π̃ ′
H is the derivative of the meson mass operator. For the pseudoscalar

and vector mesons treated in this paper one has

Π̃ ′
P (p2) =

1
2p2 pα

d

dpα

∫
d4k

4π2i
Φ̃2
P (−k2)

× tr
[

γ5S1(�k + w21 �p)γ5S2(�k − w12 �p)
]

Π̃ ′
V (p2) =

1
3

[

gµν − pµpν

p2

]
1

2p2 pα
d

dpα

∫
d4k

4π2i
Φ̃2
V (−k2)

× tr
[

γνS1(�k + w21 �p)γµS2(�k − w12 �p)
]

where wij = mj/(mi+mj), Φ̃H(−k2) is the Fourier-transform of the correlation
function ΦH((x1 − x2)2) and Si(�k) is the quark propagator. The leptonic decay
constant fP is calculated from

3gP
4π2

∫
d4k

4π2i
Φ̃P (−k2)tr

[

OµS1(�k + w21 �p)γ5S2(�k − w12 �p)
]

= fP pµ. (57)

The transition form factors P (p1) → P (p2), V (p2) can be calculated from the
Feynman integral corresponding to the diagram of Fig. 2:

ΛΓ
µ

(p1, p2) =
3gP gP ′(V )

4π2

∫
d4k

4π2i
Φ̃P (−(k + w13 p1)2) Φ̃P ′(V )(−(k + w23 p2)2)

× tr
[

S2(�k+ �p2)ΓµS1(�k+ �p1)γ5S3(�k)Γout

]

(58)
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Fig. 2. Diagram describing the form factors of the decay B(Bc) → K(D, D∗)l̄l

where Γµ = γµ, γµγ5, iσµνqν , or iσµνqνγ
5 and ΓP ′,V = γ5, γνε

ν
2 .

We use the local quark propagators

Si(�k) =
1

mi− �k , (59)

where mi is the constituent quark mass. We do not introduce a new notation for
constituent quark masses in order to distinguish them from the current quark
masses used in the effective Hamiltonian and Wilson coefficients as described in
Sect. II because it should always be clear from the context which set of masses
is being referred to. As discussed in [18, 19], we assume that

mH < m1 + m2 (60)

in order to avoid the appearance of imaginary parts in the physical amplitudes.
The fit values for the constituent quark masses are taken from our papers

[18, 19] and are given in Eq. (61).

mu ms mc mb

0.235 0.333 1.67 5.06 GeV
(61)

It is readily seen that the constraint Eq. (60) holds true for the low-lying flavored
pseudoscalar mesons but is no longer true for the vector mesons. In the case of
the heavy mesons D∗ and B∗ we will employ identical masses for the vector
mesons and the pseudoscalar mesons for the calculation of matrix elements in
Eqs. (56),(57) and (58). It is a quite reliable approximation because of (mD∗ −
mD)/mD ∼ 7% and (mB∗ − mB)/mB ∼ 1%.

We employ a Gaussian for the vertex function Φ̃H(k2
E/Λ2

H) = exp(−k2
E/Λ2

H)
where kE is the Euclidean momentum and determine the size parameters ΛH by
a fit to the experimental data, when available, or to lattice simulations for the
leptonic decay constants. The quality of the fit can be seen from Table 3. The
branching ratios of the semileptonic decays are shown in Table 4. The numerical
values for ΛH are Λπ = 1 GeV, ΛK = 1.6 GeV, ΛD = 2 GeV and ΛB = 2.25
GeV for all K, D and B partners, respectively.
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Table 3. Leptonic decay constants fH (MeV) used in the least-square fit. The
values are taken either from PDG [30] or from the Lattice [31]: quenched (upper
line) and unquenched (lower line)

Meson This model Expt/Lattice
π+ 131 130.7 ± 0.1 ± 0.36
K+ 161 159.8 ± 1.4 ± 0.44
D+ 211 203± 14

226± 15
D+

s 222 230± 14
250± 30

B+ 180 173± 23
198± 30

B0
s 196 200± 20

230± 30
B+

c 398

Table 4. Semileptonic decay branching ratios

Meson This model Expt.
π+ → π0l+ν 1.03 · 10−8 (1.025 ± 0.034) · 10−8

K+ → π0l+ν 4.62 · 10−2 (4.82 ± 0.06) · 10−2

B+ → D̄0l+ν 2.40 · 10−2 (2.15 ± 0.22) · 10−2

B+ → D̄∗ 0l+ν 5.60 · 10−2 (5.3 ± 0.8) · 10−2

B+
c → D0l+ν 2.05 · 10−5

B+
c → D∗ 0l+ν 3.60 · 10−5

We are now in a position to present our results for the B → K form factors.
We have used the technique outlined in our previous papers [18, 19] for the
numerical evaluation of the Feynman integrals in Eq. (58). The results of our
numerical calculations are well represented by the parametrization

F (s) =
F (0)

1 − as + bs2 . (62)

Using such a parametrization facilitates further integrations. The values of F (0),
a and b are listed in Tables 5-6. We plot our form factors in Fig. 3 and compare
them with those used in paper [8] in Fig. 4. The functional behavior of the curves
is similar to each other.

At the end of this section we would like to discuss the impulse approximation
used in our previous papers [18, 19]. It was simply assumed that the vertex
functions depend only on the loop momentum flowing through the vertex. The
explicit translational invariant vertex function in Eq. (55) allows one to check the
reliability of this approximation. We found that the results obtained with and
without the impulse approximation are rather close to each other except for the
heavy-to-light form factors. We consider the B → π-transition as an example to
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Fig. 3. Form factors for the B → K transition: (a) F+, (b) F−, (c) FT
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Fig. 4. Comparison of our B → K form factors (solid line) with those used in
[8] (dashed line)
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Table 5. Parameter values for the approximated form factors F (s) = F (0)/(1−
as + bs2) (s = q2/m2

B) in the decays B → Kl̄l

F+ F− FT

F (0) 0.357 -0.275 0.337
a 1.011 1.050 1.031
b 0.042 0.067 0.051

Table 6. Parameter values for the approximated form factors F (s) = F (0)/(1−
as + bs2) (s = q2/m2

B) in the decays Bc → D(D∗)l̄l

F+ F− FT A0 A+ A− V a0 a+ g

F (0) 0.186 -0.190 0.275 0.279 0.156 -0.321 0.290 0.178 0.178 0.179
a 2.48 2.44 2.40 1.30 2.16 2.41 2.40 1.21 2.14 2.51
b 1.62 1.54 1.49 0.149 1.15 1.51 1.49 0.125 1.14 1.67

illustrate this point. The calculated values of the FBπ
+ (q2) form factor at q2 = 0

are

FBπ
+ (0) =






0.27 exact

0.48 impulse approximation

One can see that the value of the form factor at q2 = 0 calculated without the
impulse approximation is considerably smaller than when calculated with the
impulse approximation. Its value is close to the value of QCD SR estimates, see,
for example, [29]:

FBπ
+ (0) =






0.25 asymptotic distribution

0.30 QCD SR distribution

5 Numerical results

In this section we collect and discuss our numerical results. We plot the normal-
ized differential distributions Γ−1

tot dΓ/ds with Γtot = 1/τB (τB = (τB0+τB+)/2 =
1.60 ps) and s = q2/m2

B in Figs. 5-6 for the decay B → Kl̄l.
We have also included the B → Kν̄ν modes. Their differential rates are

calculated according to

dΓ (B+ → Kν̄ν)
ds

=
G2
F m5

B |λt|2α2 |Dν (xt) |2
28 π5 sin4 θW

|F+|2 φ
3
2
H . (63)

The functions Dν(xt) and φH are given in Appendix B. The behavior of the
normalized differential distributions is shown in Fig. 7.
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Fig. 5. Normalized differential distributions 107 Γ−1
tot dΓ/ds for B → K µ+µ−.

The curves with resonant shapes represent long-distance contributions
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Fig. 6. Normalized differential distributions 107 Γ−1
tot dΓ/ds for B → K τ+τ−
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Fig. 7. Normalized differential distributions 108 Γ−1
tot dΓ/ds for B → K ν̄ν

Table 7. Decay branching ratios without(with) long distance contributions

Ref. Br(B → K µ+µ−) Br(B → K τ+τ−) Br(B → K ν̄ν)
[8] 0.57 · 10−6 1.3 · 10−7

[4] (0.35 ± 0.12) · 10−6

[11] 0.44 · 10−6 1.0 · 10−7 5.6 · 10−6

[32] 0.5 · 10−6 1.3 · 10−7

our 0.55 (0.51) · 10−6 1.01 (0.87) · 10−7 4.19 · 10−6

our [17]
Br(Bc → Dd µ+µ−) 0.44 (0.38) · 10−8 0.41 (0.33) · 10−8

Br(Bc → D∗
d µ+µ−) 0.71 (0.58) · 10−8 1.01 (0.78) · 10−8

Br(Bc → Ds µ+µ−) 0.97 (0.86) · 10−7 1.36 (1.12) · 10−7

Br(Bc → D∗
s µ+µ−) 1.76 (1.41) · 10−7 4.09 (3.14) · 10−7

Br(Bc → Dd τ+τ−) 0.11 (0.09) · 10−8 0.13 (0.11) · 10−8

Br(Bc → D∗
d τ+τ−) 0.11 (0.08) · 10−8 0.18 (0.13) · 10−8

Br(Bc → Ds τ+τ−) 0.22 (0.18) · 10−7 0.34 (0.27) · 10−7

Br(Bc → D∗
s τ+τ−) 0.22 (0.15) · 10−7 0.51 (0.34) · 10−7

Br(Bc → Dd ν̄ν) 3.28 · 10−8

Br(Bc → D∗
d ν̄ν) 5.78 · 10−8

Br(Bc → Ds ν̄ν) 0.73 · 10−6

Br(Bc → D∗
s ν̄ν) 1.42 · 10−6

We list our numerical results for the branching ratios in Table 7. When
comparing the values of the branching ratios with those obtained in [8] one finds
that they almost agree with each other.
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Fig. 8. Form factors for the Bc → Dd transition: (a) F+, (b) F−, (c) FT

Finally, we plot the dependence of the normalized differential distributions
s = q2/m2

Bc
in Figs. 10-12 for the decay Bc → D(D∗)l̄l(ν̄ν). In the numer-

ical analysis we use the input parameters: mBc = 6.4 GeV, τBc = 0.46 ps
and |V †

tdVtb| = 0.008. The Bc → Dd(D∗
d)-transition form factors are plotted in

Figs. 8,9 and the normalized differential distributions for Bc → D(D∗)µ+µ−,
Bc → D(D∗)τ+τ− and Bc → D(D∗)ν̄ν are shown in Figs. 10,11,12, respectively.
The results for the branching ratios are also given in Table 7. They are to be
compared with the results of calculations performed in [17] where the light front
and constituent quark models were employed.
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Fig. 9. Form factors for the Bc → D∗
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Appendix A: Wilson Coefficients

In this paper we use the Wilson-coefficients Ci calculated in the naive dimen-
sional regularization (NDR) scheme in the leading logarithmic approximation
[7]:

Cj(µ) =
8∑

i=1

kjiη
ai (j = 1, ...6)

C7(µ) = η
16
23 C7(MW ) +

8
3

(
η

14
23 − η

16
23

)
C8(MW ) +

8∑

i=1

hiη
ai ,

with

η =
α(MW )
α(µ)

, C7(MW ) = −1
2
A(xt), C8(MW ) = −1

2
F (xt),

where xt = m2
t/M

2
W and A(x) and F (x) are defined below. The numbers ai, kji

and hi are given in Table 8.
The coefficient of Q10 is given by

C10(MW ) = − Y (xt)
sin2 ΘW

with Y (x) given below. Since Q10 is not subject to renormalization under QCD,
its coefficient does not depend on µ ≈ O(mb). The only renormalization scale
dependence enters through the definition of the top quark mass.

Finally, including leading as well as next-to-leading logarithms, one finds

C9(µ) = P0 +
Y (xt)

sin2 ΘW

− 4Z(xt) + PEE(xt)

Table 8. Values of parameters in the formulae for the Wilson coefficients

i 1 2 3 4 5 6 7 8
ai

14
23

16
23

6
23 − 12

23 0.4086 −0.4230 −0.8994 0.1456
k1i 0 0 1

2 − 1
2 0 0 0 0

k2i 0 0 1
2

1
2 0 0 0 0

k3i 0 0 − 1
14

1
6 0.0510 −0.1403 −0.0113 0.0054

k4i 0 0 − 1
14 − 1

6 0.0984 0.1214 0.0156 0.0026
k5i 0 0 0 0 −0.0397 0.0117 −0.0025 0.0304
k6i 0 0 0 0 0.0335 0.0239 −0.0462 −0.0112
hi 2.2996 −1.0880 − 3

7 − 1
14 −0.6494 −0.0380 −0.0185 −0.0057

h̄i 0.8623 0 0 0 −0.9135 0.0873 −0.0571 0.0209
pi 0 0 − 80

203
8
33 0.0433 0.1384 0.1648 −0.0073

ri 0 0 0.8966 −0.1960 −0.2011 0.1328 −0.0292 −0.1858
si 0 0 −0.2009 −0.3579 0.0490 −0.3616 −0.3554 0.0072
qi 0 0 0 0 0.0318 0.0918 −0.2700 0.0059
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with

P0 =
π

αs(MW )
(−0.1875 +

8∑

i=1

piη
ai+1) + 1.2468 +

8∑

i=1

ηai [ri + siη]

PE = 0.1405 +
8∑

i=1

qiη
ai+1

Y (x) = C(x) − B(x), Z(x) = C(x) +
1
4
D(x).

Here

A(x) =
x(8x2 + 5x − 7)

12(x − 1)3
+

x2(2 − 3x)
2(x − 1)4

lnx,

B(x) =
x

4(1 − x)
+

x

4(x − 1)2
lnx,

C(x) =
x(x − 6)
8(x − 1)

+
x(3x + 2)
8(x − 1)2

lnx,

D(x) =
−19x3 + 25x2

36(x − 1)3
+

x2(5x2 − 2x − 6)
18(x − 1)4

lnx − 4
9

lnx,

E(x) =
x(18 − 11x − x2)

12(1 − x)3
+

x2(15 − 16x + 4x2)
6(1 − x)4

lnx − 2
3

ln x,

F (x) =
x(x2 − 5x − 2)

4(x − 1)3
+

3x2

2(x − 1)4
lnx.

The coefficients pi, ri, si, and qi are given in Table 8.

Appendix B: The functions in Eqs. (31) and (63)

We list here a set of the functions appearing in Eqs. (31) and (63) from [8] and
[17].

φH =
(

1 − rH

)2

− 2s

(

1 + rH

)

+ s2,

Dν(x) =
x

8

(
2 + x

x − 1
+

3x − 6
(x − 1)2

lnx

)

α1 = (1 − √
rH)2

∣
∣
∣
∣A0

∣
∣
∣
∣

2

+
φH

(1 +
√

rH)2

∣
∣
∣
∣V

∣
∣
∣
∣

2

β1 =
(1 − √

rH)2

4rH

∣
∣
∣
∣A0

∣
∣
∣
∣

2

− s

(1 +
√

rH)2

∣
∣
∣
∣V

∣
∣
∣
∣

2

+
φH

∣
∣
∣
∣A+

∣
∣
∣
∣

2

4rH(1 +
√

rH)2

− 1
2

(
1 − s

rH
− 1
)

1 − √
rH

1 +
√

rH
Re(A0A

†
+) ,
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α2 =
∣
∣
∣
∣C

eff
9 F+ +

2 m̂b Ceff
7 FT

1 +
√

rH

∣
∣
∣
∣

2

+ |C10F+|2 ,

β2 = |C10|2
[(

1 + rH − s

2

)

|F+|2 +
(

1 − rH

)

Re(F+F †
−) +

1
2
s|F−|2

]

,

α3 = (1 − √
rH)2

[∣
∣
∣
∣C

eff
9 A0 +

2m̂b Ceff
7 (1 +

√
rH) a0

s

∣
∣
∣
∣

2

+
∣
∣
∣
∣C10A0

∣
∣
∣
∣

2]

+
φH

(1 +
√

rH)2

[∣
∣
∣
∣C

eff
9 V +

2m̂b Ceff
7 (1 +

√
rH) g

s

∣
∣
∣
∣

2

+
∣
∣
∣
∣C10V

∣
∣
∣
∣

2]

,

β3 =
(1 − √

rH)2

4rH

[∣
∣
∣
∣C

eff
9 A0 +

2m̂b Ceff
7 (1 +

√
rH) a0

s

∣
∣
∣
∣

2

+
∣
∣
∣
∣C10A0

∣
∣
∣
∣

2]

− s

(1 +
√

rH)2

[∣
∣
∣
∣C

eff
9 V +

2m̂b Ceff
7 (1 +

√
rH) g

s

∣
∣
∣
∣

2

+
∣
∣
∣
∣C10V

∣
∣
∣
∣

2]

+
φH

4rH(1 +
√

rH)2

[∣
∣
∣
∣C

eff
9 A+ +

2m̂b Ceff
7 (1 +

√
rH) a+

s

∣
∣
∣
∣

2

+
∣
∣
∣
∣C10A+

∣
∣
∣
∣

2]

− 1
2

(
1 − s

rH
− 1
)

1 − √
rH

1 +
√

rH
Re
{[

Ceff
9 A0 +

2m̂b Ceff
7 (1 +

√
rH) a0

s

]

×
[

Ceff
9 A+ +

2m̂b Ceff
7 (1 +

√
rH) a+

s

]

+ |C10|2 Re(A0A
†
+)
}

,

δ =
|C10|2

2(1 +
√

rH)2

{

−2φH |V |2 − 3(1 − rH)2 |A0|2

+
φH
4rH

[

2(1 + rH) − s

]

|A+|2

+
φHs

4rH
|A−|2 +

φH(1 − rH)
2rH

Re
(

− A0A
†
+ − A0A

†
− + A+A†

−

)}

,

where m̂b = mb/mB .
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