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Photodynamic therapy (PDT) is one of the most bril-
liant therapies that used to treat malignancies, infectious 
disorders, and inflammatory diseases. In this type of ther-
apy, a photosensitizer (PS) is delivered either systemically, 
regionally, or topically, to a patient with a lesion, followed 
by lighting of the lesion with visible light, which generates 
cytotoxic species in the presence of oxygen, resulting in cell 
death and tissue damage. The PDT impacts the production of 
inflammatory mediators such as cytokines, growth factors, 
and proteins [2]. The role of Low-level laser therapy (LLLT) 
comes to promote lymphocyte proliferation, increase fibro-
blast’s secretion of growth factors and enhance the uptake of 
both fibrin and collagen [3].

In topical PDT, the wound site should receive a sufficient 
concentration of PS; however, retention of liquid PS appli-
cation is problematic [4]. In this approach, a fresh formu-
lation of PS-loaded hydrogel is being researched in order 
to get around this issue. Many studies have attempted to 
address the problem of PS’s solubility; curcumin-Pluronic® 

Introduction

A skin wound results from the breakdown of the epidermal 
layer integrity. The wound healing process has four over-
lapping phases which are hemostasis, inflammation, prolif-
eration, and remodeling [1]. Pre-clinical research on wound 
healing is a hot topic, especially when it comes to factors 
that boost healing speed or quality.
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Abstract
Purpose  Conventional approaches for enhancing wound healing may not always yield satisfactory results. Instead, we test 
the effectiveness of a newly developed photodynamic therapy (PDT) that uses methylene blue (MB) loaded with polyethyl-
ene glycol (PEG) (MB-PEG) hydrogel to accelerate wound healing process in mice.
Methods  A dorsal skin incision with 6 mm punch which topically subjected to MB-PEG hydrogel and a low-level laser 
light of red light to assess the regeneration process of wounded skin. A total of 63 adult male CD1 mice divided into normal 
group (no treatment) and other wound groups received different treatments of laser (650 ± 5 nm and power intensity of 180 
mW/cm2), MB-PEG, or PDT (MB-PEG followed by laser). The wound healing parameters were investigated by histologi-
cal examination of the skin and measuring of proinflammatory cytokines at the early stage (48 h) and a late one on day 
21. Results: at 48 h, the score of tissue granulation, inflammation, and angiogenesis process were markedly improved in 
wounded groups that received MB + PEG combined with laser compared to the group treated with laser alone. On day 21, 
a significant improvement of the inflammation was detected in the group treated with MB + PEG plus laser compared to the 
other groups. At 48 h, the upregulated serum levels of tumor necrosis factor (TNF)-α and interleukin (IL)-1β in the wound 
group were significantly (P < 0.001) reduced in the group treated with MB + PEG combined with laser.
Conclusion  MB-PEG based hydrogel improves and accelerates wound closure in the context of laser compared to either 
single treatment.
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F-127; [5]. Nevertheless, another research has looked into 
ways to improve the delivery of PS to the intended wound 
site; films containing chlorin p6 (Cp6, anionic PS) or meth-
ylene blue (MB), cationic PS) were prepared using sodium 
alginate (SA), pectin (PC), and carboxymethyl cellulose 
(CMC) [6]. However, a number of studies have shown that 
using polyethylene glycol (PEG)–protein wound dressings 
will enhance their hydrating action and hasten the healing 
process [7].

In terms of controlling the inflammatory response, PDT 
functions by suppressing the expression of nuclear factor-
kappa B (NF-kB) and proinflammatory interleukins (IL) 
such as IL–1α, IL-1β, and IL-2, as well as tumor necrosis 
factor-α [8]. However, poly-L-lysine-conjugated chlorin p6 
(pl-cp6) mediated PDT improves angiogenesis in diabetic 
rats [2].

Among the phenothiazine dyes, MB exhibits photosensi-
tization with light absorption at 660 nm. It also has a benign 
nonallergic impact and effective against a variety of patho-
gens, such as viruses, fungus, and bacteria [9]. Moreover, 
in MB-PDT, the innate immune response against infection 
is mainly supported by polymorphonuclear neutrophils 
(PMN) that, once recruited to the infected site, it ingests and 
kill microbes [10], Thus, it plays an irreplaceable role in 
limiting infections, extending the lifespan of skin fibroblasts 
and enhancing cell proliferation [11].

The nanoparticles (NPs) are utilized in the delivery of 
non-water-soluble PSs more rapidly to the wounded part 
thus accelerating wound healing. The PEG is synthetic 
polymer that is non-toxic, inert, and appropriate for usage 
in medical devices [12]. The goal of this work was to cre-
ate a hydrogel based on MB-PEG conjugates that could be 
topically given to mice with incisional skin lesions to hasten 
the healing process. Therefore, PEG plays a crucial role in 
creating a flexible synthetic hydrogel in the form of NPs. It 
also reduces inflammation at the onset of wound healing by 
modulating tissue-biomaterial interactions, which is advan-
tageous for accelerated tissue repair and excellent cosmetic 
outcomes [7]. Also, the hydrogel’s efficiency was compared 
to each single treatment. According to our knowledge, the 
combination treatment of PDT with MB-PEG hydrogel 
might help mice’s wounds heal faster by initiating early 
anti-inflammatory responses.

Materials and methods

Hydrogel preparation (MB-loaded PEG)

According to reference [13], 40 mL of anhydrous 4-chlo-
rophthalonitrile (Sigma-Aldrich) was mixed with 3.08 g of 
MB (equivalent to 5 mmol) and 2.6 g of PEG 800 (equiva-
lent to 7.5 mmol). Subsequently, 4 g (29 mmol) of anhy-
drous K2CO3 were added. After being mixed for 24 h at a 
temperature of 65 °C, the reaction mixture was filtered and 
then diluted with dichloromethane (Sigma-Aldrich). The 
diluted mixture was then extracted using distilled water. In 
order to obtain the PEG-conjugated MB, the organic layer 
was dehydrated using Na2SO4 and concentrated. To further 
purify the solution, 200 mg or 1.5 mmol of zinc chloride 
were introduced after dissolving PEG-linked MB in a solu-
tion containing 10 mL of dimethylaminoethanol and 5 mL 
of n-butanol. The reaction mixture was stirred at a tempera-
ture of 100 °C for a duration of 24 h, while being exposed 
to nitrogen pressure. The solid returned to its original form 
after cooling.

Photodynamic therapy

Mice were exposed to a diode laser (LSR-PS-ll#10,042,504 
- Germany) with emitted a red laser light of wavelength 
650 ± 5  nm, power intensity of 180 mW/cm2 (Table  1& 
Fig. 1S) and spot radius 6 mm at a distance of 20 cm from 
the injured skin part for 5  min [14]. Firstly,  injured mice 
were treated topically with MB-loaded PEG (hydrogel) and 
kept in the dark for an hour to prevent MB photoexcitation 
and poisoning before exposure to laser (Fig. 2S).

Ethical consideration

A total of sixty-three male albino mice, with an average 
weight of 22 ± 5  g, were given normal diet pellets and 
had access to water ad libitum. They were housed in stan-
dard cages. The mice were maintained at a temperature of 
22 ± 3 °C with a 12-h light/dark cycle. They were given a 
period of 7 days to acclimate before the experiment began 
[15].

Wounding skin incision strategy

All animal groups despite the normal group were shaved at 
their back by an electric animal shaver to facilitate wound-
ing [16], after that, each animal was partially numbed with 
isoflurane anesthetic solution (Pharco - Egypt) for a few sec-
onds then with a punch biopsy tool (Indiamart Bb - India), a 
circular wound with a diameter of 6 mm was performed on 
each animal shaved back.

Table 1  Properties of laser beam exposed to wound injury of mice
Emission 
Power (P)

Wavelength Distance Time Area 
(A)

Inten-
sity (I)

180 mW/mm2 650 ± 5 nm 20 cm 5 min 28 
mm2

191 W/
mm2

I = P/A A = πr2
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Fig. 1  Morphological representation of mice wounds showing various phases of wound healing on days 3, 7, 11, 15, 18, and 21 post-wounding, 
scale bar = 10 mm
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% = area before treatment - wound area after treatment / 
wound area before treatment.

The data are expressed as a percentage of early healing 
rate [18]. The animals were subjected to mild anesthesia 
using isoflurane [19]. Blood samples were then obtained 
from the venous orbital plexus of mice. Subsequently, the 
animals were euthanized through cervical dislocation [20].

Histological examination

Prior to cervical dislocation, the animals were rendered 
unconscious through the inhalation of isoflurane [20]. The 
wound skin was gathered and preserved in a solution of 10% 
neutral buffered formalin. Washing was done in tap water 
then serial dilutions of alcohol (ehanol) were used for dehy-
dration. Specimens were cleared in xylene and embedded 
in paraffin at 56 degrees in hot air oven for 24 h. Paraplast 
wax tissue blocks were prepared for sectioning at 4 microns 
thickness by rotatory microtome. The obtained tissue sec-
tions were collected on glass slides, deparaffinized, stained 
by hematoxylin & eosin stain [21], then slide sections were 
examined through the Olympus BX43 light microscope 

Experimental design

A total of sixty-three mice were employed for this study, 
dividing them into five groups of fourteen mice each. After 
48  h of wound induction, half of each group was eutha-
nized, while the other half lived for 21 days. Group N: nor-
mal mice. Group W: injured mice receiving no treatment. 
Group L: injured mice were exposed immediately with 
laser light after wound induction and conducted three times 
a week for 21 days [17] (Fig. 2S). Group MB-PEG: injured 
mice treated immediately by topical administration of MB-
PEG hydrogel after wound induction and conducted three 
times a week for 21 days. Group MB-PEG + L: injured 
mice treated immediately by combining a topical admin-
istration of MB-PEG hydrogel and exposure to laser after 
wound induction, conducted three times a week for 21 days. 
The diameter of the wound was measured by a caliper and 
recorded twice a week. The wounded area was capped dur-
ing the experimental period of 21 days on days 3, 7, 11, 15, 
18 and 21 as well as wound closures were compared with 
the original measurements (wound healing rate). The heal-
ing rate was estimated as the following calculation:

Fig. 2  Photomicrograph of wounded areas of different mice groups at 
48 h post-wounding (4X, scale bar = 100µm; 10X, scale bar = 50µm). 
All groups showed marked acute severe inflammation occupying the 
wound gap with serofibrinous exudates and necrotic crusts covering. 
(Cr) crust, (Ed) edema, (H) hemorrhages, (N) necrosis. Charts show-

ing histopathological parameters of wound healing evaluation at 48 h. 
Data are expressed as a mean ± SEM. Significant difference was con-
sidered at P < 0.05. PEG group: mice treated with MB-PEG, PEG+L 
group: mice treated with MB-PEG+L
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traced on an image to measure the healed area (Fig. 1). The 
wound healing rate was significantly affected by different 
time points (P < 0.01). The wound healing rate was remark-
ably improved as a result of treating wounded mice with 
laser, MB-PEG, and MB-PEG + laser, however, group that 
received treatment with MB-PEG + laser showed the most 
effective one with a significant (P < 0.05/) increase in wound 
closure, the wound areas were entirely covered by the epi-
dermis and the color of the wounds were close to normal 
skin, whereas the impact of treatment with laser alone was 
incomplete, and delayed till the end of experiment. Along 
21days post-wounding, the healing rate (%) was signifi-
cantly affected by the different time points, however, single 
treatment of MB-PEG or admixed with laser significantly 
increased the rate (%) of wound healing revealing 100% at 
day 21 compared to the wound group or laser group with 
a healing ratio of 93.28% and 98.42% respectively (Table 2).

Effects of PDT on histological architecture of skin 
wounds staining

Examination of 48 h post-induction of the wound was inves-
tigated in all groups. The early wound healing process was 
comparable in all experimental groups. The wound surface 
was covered by a thick crust with an underlying intense 
inflammatory reaction that was composed of acute inflam-
matory cells infiltration mainly neutrophils, edema, hemor-
rhage, and necrotic tissue in most circumstances. Regarding 
the re-epithelization score, although the application of (MB-
PEG) showed early epithelial proliferation that started at the 
wound edges either alone or admixed with laser, no signifi-
cant difference was detected between all groups. The granu-
lation tissue and the inflammation scores showed marked 
a significant improvement in MB-PEG + L compared to 
groups W or L. The angiogenesis process showed a marked 
significant enhancement in groups receiving MB-PEG in 
comparison with other groups (Fig. 2).

On day 21, group W showed poor wound healing that 
was characterized by incomplete epidermal remodeling 
with the persistence of necrotic serofibrinous crust. The 
wound gap was occupied by inflammatory granulation 

and photographed using the Cellsens dimensions software 
(Olympus) linked to Olympus DP27 camera.

Differential blood count

Complete blood picture is performed using an automated 
hematology analyzer, which counts red blood cells, white 
blood cells (WBCs) and platelets. The concentration of 
hemoglobin (HG) was measured, and the red blood cell 
indices are calculated from the red blood cell count, average 
red cell volume, and HG [22].

Cytokines assays

Quantitative determination of tumor necrosis factor (TNF)-α 
and interleukin (IL)-β levels [23] was performed using a 
sandwich enzyme-linked immunosorbent assay (ELISA) 
according to manufactured instructions (Glory Science Co., 
Ltd). Optical density was measured by a plate reader (Das, 
Italy) at 450 nm wavelength.

Statistical analysis

The Statistical Package for the Social Sciences (IBM-SPSS, 
v.26) was used for all statistical analyses. The effect of 
experimental time (48 h and 21 days) on the studied param-
eters was applied by using a one-way analysis of variance 
(ANOVA). Post comparison and Duncan Multiple Range 
Test (DMRT) were used to detect significant differences in 
the intervals of the wounded groups. For all tests, data were 
represented as a mean ± standard error of the mean (SEM). 
P < 0.05 was considered statistically significant.

Results

Healing rate

The entire wound healing process was assessed on days 3, 
7, 11, 15, 18 post-wounding. Images were captured to mea-
sure the wound areas and the border of each wound was 

Table 2  Percentage of wound healing rate in normal, wounded, and wounded treated groups at various time points
Groups Wound healing percent

Day3 Day7 Day11 Day15 Day18 Day21
W 13.42f 35.71d 55.57cd 72.71b 85.00b 93.28a

L 19.85ef 40.42d 60.57c 77.00b 91.14a 98.42a

MB + PEG 24.85e 67.42b 80.71b 93.57a 99.28a 100a

MB + PEG + L 27.42e 56.57c 84.85b 97.28a 100a 100a

One-way ANOVA P < 0.01
Data are expressed as mean ± SEM based on ANOVA analysis. Means in the same row followed by the same superscript letter(s) indicates to 
not significantly different, while means in the same row followed by the different superscript letter(s) refers to significantly different (P < 0.05) 
according to Duncan Multiple Range Test (DMRT).
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highest wound healing with healthy epidermal covering and 
organized granulation tissue (Fig. 3).

Differential blood count

After 48 h of wound induction, the wound group revealed 
significantly lower values of HB% and monocytes count 
compared to the normal group. Treatment with laser resulted 
in a significant increase in the count of platelets, lympho-
cytes, and monocytes while group MB+PEG exhibited sig-
nificantly higher values of HB% and monocytes and lower 
values of lymphocytes count compared to the wound group. 
The combination treatment of MB-PEG plus laser signifi-
cantly caused an elevation in values of HB%, total count of 
WBC, lymphocytes, and monocytes aw well as lowered val-
ues of neutrophils compared to the wound group (Table 3).

On day 21, non-significant differences were observed 
regarding all measured parameters in the wound group 
compared to the normal group. The wounded mice treated 

tissue which revealed excessive mononuclear inflamma-
tory cells infiltration, necrotic debris, and aggregations of 
bacterial colonies. Complete wound closure was observed 
in group L, group MB-PEG and group MB-PEG + L which 
showed a newly formed epidermal covering layer and evi-
dence of keratinization in some instances accompanied by 
varying grades of filling granulation tissue which showed 
a variable number of inflammatory cells, collagen bundles, 
and newly formed blood vessels. The statistical analysis 
showed a marked significant reduction in re-epithelization 
and granulation in all parameters in group L, compared 
to the other treated groups. Concerning re-epithelization, 
granulation tissue, and angiogenesis scores, the absence of 
significant difference was detected in the group receiving 
MB-PEG compared to MB-PEG + laser group. Meanwhile, 
a significant improvement in inflammation was detected 
in group MB-PEG + L compared to the other groups. The 
application of MB-PEG admixed with laser revealed the 

Fig. 3  Photomicrograph of wounded areas of different mice groups 
after 21 days post-wounding (4x, scale bar 100  μm;  10x, scale bar 
50 μm). Group W showing improper wound healing with absence of 
epidermal covering. Groups L, PEG and PEG + L showing compete 
epidermal growth and decrease the inflammation of the formed granu-
lation tissue. Keratinization is presenting in PEG treated groups. (E) 

Epidermal layer, (G) granulation tissue, (I) inflammation, (N) necro-
sis. Charts showing parameters of wound healing evaluation at day 
21. Data Expressed as means ± SEM. Significant difference was con-
sidered at P < 0.05. PEG group: mice treated with MB-PEG, PEG + L 
group: mice treated with MB-PEG + L
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group, while direct medication of the other groups with 
the action of laser, MB-PEG, or MB-PEG + laser caused 
a significant (P < 0.05, P < 0.01, and P < 0.001, respec-
tively) decrease of TNF-α levels compared to the wounded 
untreated group. At the end of the study on day21, no signif-
icant differences were detected between the wounded group 
and the other groups with various treatments (Table 5).

During the first 48 h, the IL-1β serum levels in the wounded 
group showed significantly higher levels (P < 0.001) than 
those of the normal group while the wounded groups treated 
with laser, MB-PEG, or MB- PEG + laser exhibited sig-
nificantly lower levels (P < 0.05, P < 0.01, and P < 0.001) 
respectively than those wounded group. On the other hand, 
at the end of the study,  IL-1β still showed significantly 
higher levels (P < 0.001) in the wounded group compared to 
the normal group but all other groups that received various 
treatments showed no significant differences compared to 
the wounded group (Table 6).

Discussion

Healing process following tissue injury includes homeo-
stasis, inflammation, proliferation, and tissue remodeling 
phases [24]. Achieving the fastest healing rate and reepi-
thelization is the aim of this investigation. In topical PDT, 
a crucial stage in treating wound site is delivering PS at 
the right concentration. As a result, PS must be applied in 
the right formulation at the affected site [6]. The recently 

with either laser or MB-PEG showed a significant decrease 
in the Hb% as well as a significant increase in the count 
of platelets and neutrophils compared to the wound group. 
Combination treatment of of MB-PEG plus laser resulted 
in significantly higher values of platelets and neutrophils 
while significantly lower counts of WBCs,  lymphocytes, 
and monocytes compared to the wound group (Table 4).

Cytokines profile

A Comparison of the proinflammatory cytokines TNF-α 
and IL1β serum levels was investigated after 48 h and 21 
days among experimental groups. At 48 h of wound injury, 
the serum levels of TNF-α were significantly increased 
(P < 0.001) in the wounded group compared to the normal 

Table 3  Values of blood count parameters 48 h post-wound injury in all experimental animal groups
Groups HB% Platelets

(103 /cmm)
WBCs
(103 /cmm)

Neutrophils Lymphocytes Monocytes

N 12.02± 0.13a 706.750 ± 20.7a 6.4± 1.07a 21.75 ± 5.30a 47.0± 5.70a 27.25± 1.10a

W 8.30± 0.76c 675.2 ± 51.7b 6.4± 1.46a 33.8± 3.50c 51± 4.60b 8.75± 1.60d

L 8.27±0.60c 1302.25 ± 281.0c 5.0±0.54a 28.00±1.90b 76.50± 1.90d 10.00± 2.56b

MB + PEG 10.82± 0.65b 1012 ± 72.0 b 5.4± 0.25a 47.0± 1.30c 24.50± 4.20a 23.75± 3.50a

MB + PEG + L 10.95± 0.27b 1135.75 ± 46.0b 6.7± 2.97b 17.0± 2.90 a 70.7±3.10c 10.75±0.48c

Data are expressed as a mean ± SEM based on ANOVA analysis. Means in the same row followed by the same superscript letter(s) indicates to 
not significantly different, while means in the same row followed by the different superscript letter(s) refers to significantly different (P < 0.05) 
according to Duncan Multiple Range Test (DMRT)

Table 4  Values of blood count parameters 21 days post-wound injury in all experimental animal groups
Groups HB% Platelets

(103 /cmm)
WBCs
(103 /cmm)

Neutrophils Lymphocytes Monocytes

N 12.92± 0.22a 793.25±3.50a 7.1± 1.05a 20.25±5.5a 48.00± 8.70a 27.25± 1.75a

W 12.02± 0.13a 706.75±5.10a 6.4± 1.07a 21.75±5.10a 47.00± 5.7a 27.25± 1.10a

L 11.02 ± 0.29b 1039±1.90b 10.8±3.10a 28.00±4.9b 40.25±1.60a 27.25± 3.63a

MB + PEG 10.20± 0.17d 1284± 1.20c 31.6± 4.1a 35.00± 9.5d 49.00±4.04a 12.5±4.48c

MB + PEG + L 11.57± 1.06c 1171.25±2.80b 5.6± 0.67b 32.50± 3.8c 39.00±2.12b 23.7±5.25b

Data are expressed as mean ± SEM based on ANOVA analysis. Means in the same row followed by the same superscript letter(s) indicates to 
not significantly different, while means in the same row followed by the different superscript letter(s) refers to significantly different (P < 0.05) 
according to Duncan Multiple Range Test (DMRT)

Table 5  Serum levels of TNF-α (pg/ml) among treated groups after 
48 h and 21 days
Groups 48 h Day 21
N 431 ± 25.51 431 ± 25.51
W 733.4 ± 21.26# 496.9 ± 21.16
L 581.2 ± 31.84* 498.9 ± 8.963
MB + PEG 565.8 ± 36.27** 446.3 ± 14.05
MB + PEG + L 470.7 ± 45.9*** 432.7 ± 12.21
Pvalue < 0.001 < 0.01
Kruskal-Wallis 18.37 11.79
Data were expressed as mean ± SEM. n = 6, #: Significant difference 
(P < 0.001) compared to group N
*: Significant difference (P < 0.05) compared to the group W, **: Sig-
nificant difference (P < 0.01) compared to group W, ***: Significant 
difference (P < 0.001) compared to group W

1 3

Page 7 of 11    141 



Lasers in Medical Science

or admixed with laser. Several studies approved that PDT 
improves angiogenesis and tissue healing, including regu-
lar epithelial lining, decreased fibrinous exudate, and more 
organized and thick conjunctive tissue, which resulted in 
full re-epithelization and keratin production [2, 29–31]. The 
outcomes of this investigation were corroborated with [32] 
who concluded that topical application of low dose Foslip® 
in a collagen matrix followed by illumination considerably 
accelerates wound healing.

Among the hematological parameters, the HG% was 
significantly decreased either in laser treated group or MB-
PEG + laser group compared the wounded and normal 
group at late phase of recovery (day21). A previous study 
denoted to the decrease in the erythrocytes volume by the 
exposure to LLLT [33]. This is because LLLT can split cell 
membranes, increasing porosity and attracting calcium ions 
that are free in extracellular solution and move to the intra-
cellular fluid of the erythrocytes. Thus, this rise causes the 
passage of K + ions into the extracellular fluid, which causes 
a decrease in the MCV of erythrocytes [34]. White blood 
cells are key players in inflammation because they operate 
as phagocytes in the tissue, removing bacteria and cellu-
lar debris. After 48 h of injury, the total count of WBCs of 
wounded mice treated with both laser and MB-PEG hydro-
gel significantly promoted higher counts of WBCs while at 
the end of study by day 21 counteract the increase of the 
count compared to wounded or normal group. These find-
ings may denote to the effect of photodynamic therapy in 
stimulation of WBCs production in early phases while after 
a long period of photodynamic therapy has inverse effect 
by decreasing the WBCs count. In a previous study, an 
increase in leukocytes was linked to the elevation in mito-
chondrial intracellular ATP [35]. Neutrophils play a crucial 
role in the early stages of inflammation by helping to restore 
hemostasis, perform phagocytosis, and release extracellular 
chemical messengers. They are attracted to wound sites in 
huge numbers, where they release cytokines and toxic sub-
stances that foster an inflammatory environment. Inflam-
mation reaches its peak 48  h after injury, and during this 
period, the site of injury begins to malfunction and become 
red, hot, swollen, and painful. Differential count of neu-
trophils showed significant higher levels in wounded mice 
compared to the normal group after 48 h of injury. These 
findings are comparable with [36] and [37] who showed 
that in full-thickness incision wounds in mice displayed 
infiltration of the tissue by neutrophils and macrophages for 
at least 13 days. Whereas application of MB-PEG or MB-
PEG + laser along 21 days significantly induced a rise in 
the count of neutrophils compared to wounded and normal 
groups, these results are compatible with [10] who found 
that in MB mediated PDT; human neutrophils adhesion 
increases and does not modify myeloperoxidase release. 

developed MB-PEG hydrogel outperformed all expecta-
tions in terms of its ability to promote wound healing and 
reepithelialization. The role of MB comes to reduce inflam-
mation and protect against free radicals, thus, it hastens the 
healing process [25], while the PEG-based hydrogel showed 
good biocompatibility and safety [26]. After applying the 
MB-PEG hydrogels, bleeding from the incisions on the dor-
sum of mice immediately stopped, and the wound openings 
closed within few min while the wound openings did not 
close after applying laser only. Along 21 day, both groups 
that treated with MB-PEG hydrogel and MB-PEG + laser 
recorded highest percent of wound healing rate and the 
wounds have a distinct appearance from a macroscopical 
and histological perspective. The impact of PEG-based 
chitosan (hg-PEGDA-Q) was also thoroughly examined 
by [27] who suggested that hydrogel scaffolding networks 
could be a therapeutic substitute to quicken the healing pro-
cess in mice under both normal and diabetic settings. Also, 
according to [28], the polyethylene glycol/triethoxysilane-
modified polyurethane (PUESi) dressing improved wound 
healing in rats by generating micronegative pressure through 
its high absorption capacity with deformation, in addition to 
being made using an easy-to-use and effective technique.

Histologically, 48  h post-wounding; the inflammation 
score of infiltrated neutrophils, edema, hemorrhages and 
necrotic tissue was significantly elevated in the groups 
treated with laser, MB-PEG hydrogel or MB-PEG + laser 
compared to wounded group, During the inflammation 
phase, the granulation tissue is primarily composed of pre-
dominant inflammatory cells, mainly neutrophils that are 
recruited to the wound site and removed during the repair 
process. However, during the proliferative phase, endo-
thelial cells, macrophages, and fibroblasts begin to fill the 
wound area to restore tissue integrity [24]. Twenty-one days 
post-wounding, the best rate of wound healing with a healthy 
epidermal layer and well-organized granulation tissue was 
demonstrated by the group treated with MB + PEG hydrogel 

Table 6  Serum levels of IL-1β (pg/ml) in normal, wounded, wounded 
treated groups after 48 h and 21 days
Groups 48 h Day 21
N 70.96 ± 4.93 70.96 ± 4.93
W 198.8 ± 37.76# 62.22 ± 3.267#

L 142.8 ± 20.93* 65.77 ± 4.9
MB + PEG 59.66 ± 3.744** 59.91 ± 6.269
MB + PEG + L 50.84 ± 4.227*** 52.34 ± 4.156
Pvalue P < 0.001 P ≥ 0.05
Kruskal-Wallis 40.32 19.1
Data were expressed as a mean of 6 mice ± SEM. #: Significant 
difference (P < 0.001) compared to group N, *: Significant differ-
ence (P < 0.05) compared to the group W, **: Significant differ-
ence (P < 0.01) compared to group W, ***: Significant difference 
(P < 0.001) compared to group W
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physiologically, as a result, the inflammatory phase and the 
remodeling phase begin earlier in MB-PEG based hydrogels 
treatment.

Conclusion

Based on the data collected, it appears that MB-PEG hydro-
gel facilitates the healing process of acute wound dam-
age. When LLLT is applied in combination with MB-PEG 
hydrogel, the healing rate is increased and the skin’s mor-
phological and histological characteristics are improved. 
However, the effects of LLLT alone on inflammation and 
wound closure are somewhat less favorable.
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