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Abstract

The aim of this work was to perform an integrative literature review on the influence of laser irradiation on zirconia implants
to enhance surface topographic aspects and the biological response for osseointegration. An electronic search was carried
out on the PubMed database using the following search terms: “zirconia” AND “laser” AND “surface modification” OR
“surface treatment” AND “dental implants” OR “bone” OR “osteoblast” OR “osseointegration.” Of the identified articles,
12 studies were selected in this review. Results reported that the laser irradiation was capable of promoting changes on
the zirconia surfaces regarding topographic aspects, roughness, and wettability. An increase in roughness was recorded at
micro- and nano-scale and it resulted in an enhanced wettability and biological response. Also, adhesion, spreading, pro-
liferation, and differentiation of osteogenic cells were also enhanced after laser irradiation mainly by using a femtosecond
laser at 10nJ and 80 MHz. After 3 months of osseointegration, in vivo studies in dogs revealed a similar average percentage
of bone-to-implant contact (BIC) on zirconia surfaces (around 47.9 + 16%) when compared to standard titanium surfaces
(61.73 £16.27%), denoting that there is no significant difference between such different materials. The laser approach
revealed several parameters that can be used for zirconia surface modification such as irradiation intensity, time, and fre-
quency. Laser irradiation parameters can be optimized and well-controlled to reach desirable surface morphologic aspects
and biological response concerning the osseointegration process.
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Introduction

In implant dentistry, osseointegration has been studied
considering the direct, structural, and functional connec-
tion between bone tissue and implant surfaces over occlusal
loading [1-4]. The long-term stability of dental implants
depends on the chemical composition and surface of
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implants materials; although, the health state of patients
also affect osseointegration [5, 6]. On standard titanium
dental implants, several physicochemical techniques have
been successfully used for enhanced osseointegration such
as double acidic etching and grit-blasting [3, 6]. However,
the surface modification of zirconia surfaces revealed dif-
ferent outcomes taking into consideration ordinary physico-
chemical techniques [7—11]. At first, the surface topographic
aspects are quite different when compared to those noticed
on titanium surfaces [8, 11, 12]. Second, the ordinary acidic
etching has no effect on zirconia surfaces regarding rough-
ness changes [11]. In this way, advanced surface modifi-
cation methods have been developed to modify zirconia
surfaces and maintaining the physical performance of the
material [12-17].

Zirconia is a chemically stable and biocompatible
ceramic material that has been used for implants and pros-
thetics in orthopedics and dentistry [5, 18-20]. The chemical
stability of zirconia becomes a challenge concerning the sur-
face modification [11, 19]. The physical properties of zirco-
nia are achieved by stabilizing the tetragonal zirconia phase
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at room temperature by incorporating small contents of dif-
ferent oxides, namely Y,05, MgO, CeO,, or CaO [21, 18].
For instance, yttria-stabilized tetragonal zirconia polycrys-
tals (Y-TZP) has a flexural strength at 900—-1200 MPa, elastic
modulus of approximately 210 GPa, and fracture toughness
at around 7—-10 MPa.m"? [20, 18]. In vitro and in vivo stud-
ies have reported the osseointegration capability of Y-TZP
zirconia implants quite similar to those on titanium implants
since the surface modification techniques are well applied
[7-11]. Grit-blasting has been commonly used to increase
the titanium or zirconia roughness for adsorption of pro-
teins, attachment of osteogenic cells, and bone formation
[5,8,9, 22, 23]. Micro- and nano-scale surface modification
influences the adsorption of extracellular matrix proteins,
which regulate the adhesion of osteoblasts to the implant
surface leading to cell proliferation and differentiation [5, 8,
24, 23]. However, the morphological aspects of zirconia sur-
faces cannot be controlled by using only ordinary surface
modification such as grit-blasting since that provides a ran-
dom texture on the surface.

Various methods of surface treatment have been proposed
to improve the surface properties of zirconia implants [11,
22, 25-27]. Currently, surface modification on the implant
surface via laser irradiation has gathering attention regard-
ing the increase in roughness, wettability, and biological
response without affecting the physical properties of zirconia
[12, 14-16, 28, 23]. Morphological features (e.g., micro-
grooves, pits, valleys, and peaks) on material surfaces can
be controlled by using different intensity, type, time, and
frequency of laser irradiation [12, 14, 28, 29].

Lasers can operate in either continuous mode (continuous
wave—CW) or pulsed mode (PM), although the latter deliver
the energy to the material in short (mili- to nano-seconds) or
ultra-short (pico- to femto-seconds) periods of time (pulses).
Various laser sources, working at different wavelengths and
pulse duration have been studied aiming to modifying the
surface of zirconia-based ceramics: Nd:YAG [30], Er:YAG
[31], CO, [32], Er, Cr:YSGG [33], and Nd:YVO, [34].
Considering zirconia is a brittle material it is highly sensitive
to surface processing defects like pores and cracks, as the one
produced for CW CO, lasers or Nd: YAG lasers working short
pulses (nanosecond regime) [35]. The presence of cracking is
attributed to the (extensive) heat-affected zone generated by
the thermal induced mechanisms developed by lasers working
at the nanosecond regime and proved to be detrimental to the
mechanical performance of zirconia [30, 35]. Alternatively,
ultra-short pulsed lasers (pico- and femtosecond lasers) have
been referred to produce ceramic-structured ceramic surfaces
with minimal or no damages on the adjacent surfaces to the
laser-machined ones [12, 13, 28]. The localized energy in
very thin surface layers (< 100 nm) during very short times
(107-107"2 5) can lead to surface ablation of material with
negligible heat effects on the surrounding material, and thus
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avoiding surface defects that are detrimental to the mechanical
behavior of brittle materials.

The main aim of this study was to perform a litera-
ture review on the effects of laser irradiation of zirconia
implants on their surface morphological aspects and bio-
logical response. It was hypothesized that laser irradiation
is able to improve the surface morphologic features of zirco-
nia implants leading to a enhanced biological response and
osseointegration.

Method
Information sources and search strategy

An electronic search was performed on the PubMed database
using the following search items: “zirconia” AND “laser”
AND “surface modification” OR “surface treatment” AND
“dental implants” OR “bone” OR “osteoblast” OR “osseoin-
tegration.” The inclusion criteria involved articles published
in English language up to January 10, 2021 reporting studies
on the modification of zirconia surfaces by laser irradiation.
The eligibility inclusion criteria used for article searches
also involved articles written in English, meta-analyses, ran-
domized controlled trials, and prospective cohort studies.
The exclusion criteria were the following: papers without
abstract; case report with short follow-up period; studies
focusing only on other surface modification methods. Also,
a hand-search was performed on the reference lists of all pri-
mary sources and eligible studies of this systematic review
for additional relevant publications. Studies based on publi-
cation date were not restricted during the search process. The
present method was performed following the search strategy
applied in previous integrative reviews 36—41.

Study selection and data collection process

The articles retrieved from the search process were evaluated
in three steps. The total of articles was compiled for each
combination of key terms and therefore the duplicates were
removed using Mendeley citation manager (Elsevier BV).
Studies were primarily scanned for relevance by title, and the
abstracts of those that were not excluded at this stage were
assessed. The second step comprised the evaluation of the
abstracts and non-excluded articles, according to the eligibil-
ity criteria on the abstract evaluation. Three of the authors
(JCMS, BH, WFC) independently evaluated the titles and
abstracts of potentially relevant articles.

A preliminary evaluation of the abstracts was carried out
to establish whether the articles met the main aim of the
study. Selected articles were individually read and evaluated
concerning the purpose of this study. At last, the eligible articles
received a study nomenclature label, combining first author
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names and year of publication. Two reviewers independently
organised the data, such as author names, journal, publication
year, purpose, zirconia types, roughness, biological response,
bone-to-implant contact (BIC) percentage, and laser parameters
such as intensity, exposure time, laser type, wavelength, and
application mode. Data of the reports were harvested directly
into a specific data collection form to avoid multiple data
recording regarding multiple reports within the same study
(e.g., reports with different set-ups). Such evaluation was
individually carried out by two researchers, followed by a joint
discussion to ultimately select the relevant studies.

Results

The bibliographic search on PubMed identified a total of 101
articles, as shown in Fig. 1. After excluding duplicates, 46
articles were evaluated by title and abstract although 31 were
excluded because they did not meet the inclusion criteria.
The remnant 15 articles were full read; although, 12 stud-
ies were considered relevant to the purpose of the present
study taking into account a complete information on laser
parameters, methods, and main outcomes.

Of the 12 selected articles, 7 studies were carried out
in vitro while 5 studies were performed in vivo. The BIC
percentage was evaluated by 4 studies while 3 studies evaluated
the resorption of the bone crest. Laser surface treatment was
morphologically characterized by in vitro articles although
4 studies evaluated the cellular response to the laser surface
treatment. The main outcomes can be drawn as follow:

e The laser treatment of the surface promoted changes in the
topography of the implant surface at the following levels
of scale: mesoscale (e.g., grooves), micro-scale (e.g., peak/
valley), nanoscale (e.g., nodules) [42]. The crystalline
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Fig. 1 Study selection flowchart

structure of the zirconia can be maintained after laser
treatment leading to the maintenance of the tetragonal
phase [12, 14]. A nano-scale rough surface was noted in
the micro-grooves of zirconia surfaces [14, 43—45].

¢ Different surface topographic aspects were associated
with the different types of lasers used for surface modi-
fication: CW lasers (e.g., CO,) produced different levels
of stochastic roughness while short or ultra-short pulsed
lasers (e.g., nano, pico, or femtosecond lasers) were able
to imprint different patterns to the surface.

e The laser surface treatment enhanced the adhesion,
proliferation, and differentiation of osteoblasts on the
zirconia surfaces, within 1 to 8 times of cell proliferation
within the laser-treated groups compared to control groups
[15, 16].

¢ In animal models, BIC percentage on laser-treated zirco-
nia implants showed high mean values as found for zir-
conia surfaces with enhanced osseointegration [13, 46,
47]. When compared to the laser treatment produced on
the surface of zirconia implants over grit-blasted and
etched surfaces, the further laser treatment provided a
higher degree of BIC [43]. However, laser-treated zirco-
nia showed similar BIC values to the titanium surfaces
treated by ordinary grit-blasting and etching procedures
[13].

e Also, the laser-treated implants showed adequate levels
of peri-implant bone crest maintenance (~0.5+0.23 mm)
in the animal models over a period of 90 days.

Discussion
Zirconia implants

Zirconia has revealed remarkable clinical outcomes in the
biomedical field, mainly in orthopedics and dentistry, due to
the biological and mechanical response [6, 9, 21, 18, 19]. In
the last years, zirconia has been used to develop teeth root
canal posts, orthodontic brackets, implant abutments, and
prosthetic infrastructures [48, 49, 19]. In the last 15 years,
zirconia implants has increasingly become commercially
available providing adequate esthetic, mechanical, and bio-
logical peri-implant outcomes [8, 20, 19, 23].

Zirconium dioxide (ZrO,) known as zirconia is a poly-
morphic ceramic, which has three distinct crystallographic
phases: monoclinic (m), tetragonal (t), and cubic (c) [S0] At
room temperature, pure ZrO, has a monoclinic structure that
remains stable up to 1170 °C [21]. It turns to the tetragonal
zirconia when sintered at temperature between 1170 and
2370 °C while the cubic phase is reached between 2370 and
2680 °C [21, 18]. On cooling, the ZrO, tetragonal phase
becomes monoclinic at a temperature around 970 °C [21].
The transformation pathway of tetragonal to the monoclinic
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phase is associated with approximately 3 to 4% volumetric
expansion that can lead to cracks [21, 50]. The mechanical
properties of the zirconia are enhanced when the tetrago-
nal phase is stabilized by adding small contents of oxides
such as yttrium oxide (or yttria, Y,05), magnesium oxide
(or magnesia, MgO), cerium oxide (or ceria, CeO,), and
calcium oxide (or calcia, CaO) [21, 18]. For instance, yttria-
stabilized zirconia polycrystals (YTZP) is produced by add-
ing 2-5 mol% yttria to zirconia [21, 18]. That results in a
significant increase in the flexural strength values at around
1200 MPa, elastic modulus at 230-270 GPa, and fracture
toughness of approximately 9—10 MPa. m'? [20, 50]. On
high stresses, oxide-stabilized zirconia has an inherent mech-
anism to inhibit the propagation of cracks. That consists in
a transformation of the tetragonal to the monoclinic phase
with an increase in the surrounding volume leading to the
compression of the crack as seen in Fig. 2. However, YTZP
is susceptible to degradation at low temperature when used
in a humid environment as the one found in the oral cavity
[20, 18, 51]. Tetragonal-to-monoclinic phase transformation
can occur under fatigue conditions caused by cyclic stresses
with origin in mastication loading and thermal oscillations.
In this way, additive oxides such as alumina, ceria, or silica
has been used to improve the resistance to low temperature
degradation of zirconia [20, 21, 18, 51].

Topography, roughness, and chemical composition
control the wettability and adsorption of proteins and ions
(e.g., Ca™, PO, OH"™) onto the zirconia surface prior to
the osseointegration [15, 16, 24, 25, 45]. Then, the activa-
tion of blood platelets and osteogenic cell migration follow
the formation of the primary bioactive layer composed of
ions and proteins [45, 23]. The differentiation of osteogenic
cells and further formation of collagen matrix and bone tis-
sue depend on the surface features and chemical interaction
[45, 52, 23]. Several surface modifications have been pro-
posed to enhance the surface behavior such as grit-blasting,
calcium-based coatings, and laser-structuring protocols [10,
13, 17, 22-27]. Nevertheless, zirconia surface modification
is a current challenge considering a balance among physi-
cal properties, chemical stability, and degradation behavior.
Nowadays, most zirconia implants commercially available
undergo surface treatment by grit-blasting, which produce
non-homogeneous and random surface features under high
risks of degradation [23]. Surface modification of zirconia
by laser-structuring has been studied and therefore different
procedures can be applied regarding the laser type, inten-
sity, time, and mode [12—17, 28, 52]. In fact, the wettabil-
ity and roughness of zirconia surfaces can be enhanced by
laser-structuring while maintaining the degradation resist-
ance, biocompatibility, and chemical interaction with the
surrounding medium [14-16, 51, 45, 52].
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Fig.2 Schematics of a zirconia implant (Straumann, Switzerland). Crystallographic phases of zirconia. Schematics of crack propagation which

can occur among zirconia polycrystals prior to fracture
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Zirconia surface modification

Zirconia implants are often machined by using CAD-CAM
systems that results in surfaces with micro-scale grooves
or scratches leading to an average roughness (Ra param-
eter) at around 0.2-0.4 um [15, 42, 52, 23]. In a previous
study, similar roughness values (~0.3 um) were reported on
machined MgO-PSZ [16, 45]. Wettability of the MgO-PSZ
was measured by the contact angle of glycerol droplet of
around 79° [16] while machined Y-PSZ revealed a mean
value of 82.4° [15]. In another previous study, the aver-
age roughness of sintered Y-TZP was measured at around
1.2+0.6 um [17]. Sintered Y-TZP implants are produced
with rough randomly surfaces once the micro-scale peak
and valleys at the roughness profile depend on the zirco-
nia powder particle size [12]. On the standard surfaces of
Y-TZP implants modified by the grit-blasting method, the
average roughness of machined Y-TZP can be increased
due to the abrasive effect of airborne particles [14, 29].
As a consequence, morphological features such as micro-
scale peaks and valleys are also randomly distributed over
the grit-blasted and sintered zirconia surfaces. The average
roughness of Y-TZP grit-blasted surfaces has been measured
ranging from 1.2 up to 1.6 um [14, 29].

Nevertheless, morphological aspects of zirconia surfaces
can be controlled by using the laser irradiation approach.
Surfaces of different roughness have been produced by CO,
CW laser and patterned surfaces have been generated with
short and ultra-short-pulsed lasers. Well-designed grooves,
scratches, valleys, and peaks are produced at macro- and
micro-scale width (1-100 pm) and micro-/submicron-scale
depth (0.1-10 um), as shown in Fig. 3 [42]. The roughness
and wettability of laser-treated surfaces can also be adjusted
considering the implant region and clinical considerations,
as seen in Table 1 [14, 16, 45, 29]. In a previous study,
a femtosecond la ser irradiation (120 fs, 795 nm, 1 kHz)

Fig.3 Illustration of surface
morphological aspects produced
by laser treatment on zirconia
implants at different magni-
fication scales: (A) macro-
scale; (B,C) micro-scale; and
(D,E) nano-scale texturization

was used to produce micro-scale pore patterns with 30 um
diameter and 70 pm pitch and micro-grooves with 30 um
width and 70 um pitch on Y-TZP. The average roughness val-
ues of the micro-scale pores’ patterns reached 2.4 +0.6 pm
while micro-grooved surfaces showed roughness values of
9.5+0.6 um. That resulted in an effective surface contact
area of 15% on micro-porous surfaces and 25% on micro-
grooved surfaces [14, 29]. Another study reported the use
of a femtosecond laser irradiation (800 nm, 1 kHz, 30mW)
on A-Y-TZP surfaces leading to regular micro-scale grooves’
patterns with 30 um width and 25 pym depth [12]. Granu-
lar polycrystalline structures with dimensions of 1-6 pm
and nanostructures with sizes ranging from 30 to 100 nm
were detected [14]. In fact, the modification at micro- and
nano-scale increased the surface contact area for interaction
with proteins and osteogenic cells.

Previous studies reported the modification of MgO-PSZ
surfaces by using CO, laser regarding different laser inten-
sity [16, 45]. Morphologic aspects of the surfaces varied
in function of the intensity such as crystal refurbishment
on 0.6 kW/cm?; hexagonal structure on 0.9 kW/cm?; pores
formation on 1.6 kW/cm?; and dendrite on 2.5 kW/cm?) [16,
45]. Consequently, Ra roughness increased as the power den-
sity of the laser irradiation increased (Table 1): Ra roughness
was recorded at 0.3 um on 0.6 kW/cm?; 0.33 pum on 0.9 kW/
cm?; 0.71 pm on 1.6 kW / cmz); 1.8 um on 1.9 kW/cm?;
and 3.8 um on 2.5 KkW/cm? [16, 45]. On the MgO-PSZ sur-
faces, the angle of contact of the glycerol droplet decreased
as the roughness increased that indicates an increase in wet-
tability: 76° on 0.6 kW / cm?; 62° on 0.9 kW/cm?; 40° on
1.6 kW/cm?; 50° on 1.9 kW/cm?; and 54° on 2.5 kW/cm?
[16]. However, a significant decrease in the Ra roughness
was detected on Y-PSZ when the CO, laser intensity was
increased; although, the morphological aspects also varied
as a hexagonal microstructure appeared on 1.8 kW/cm?,
while a porous microstructure was noted on 2.25 kW/cm?.
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The mean values of the contact angle of the glycerol drop-
let also decreased with the increase in laser power: 74.2°
was recorded on 1.80 kW/cm?, while an angle of 70.5° was
recorded on 2.25 kW/cm? [15].

On Er, Cr: YSGG laser at low level irradiation, no sig-
nificant changes were detected on Y-TZP using the fol-
lowing parameters: 1.5 W (Ra of 1.52+2.0 ym and Sa
of 1.78 +2.0 um); 3.0 W (Ra of 1.14+0.7 um and Sa of
1.24 +1.3 pm); and 5.0 W (Ra of 0.70 +£0.3 pm and Sa of
1.36 +1.0 um) [17]. However, micro-scale scratches and
grooves were detected in another study assessing a laser irra-
diation of 3 W on Y-TZP surface that resulted in a Ra rough-
ness at 1.41 +£0.166 pym and Rz roughness at 5.1 +0.327 um
[44]. A fiber laser was also used to produce changes on the
Y-TZP surfaces, and therefore the results revealed regular
edges’ pattern leading to an increase in roughness at around
10 times (Sa of 1.75+0.32 um) when compared to machined
surf aces (Sa of 0.18 +£0.04 um) [52].

Biological response to surface characteristics
produced by laser

In vitro studies on cell culture have shown stimuli of the
osteogenic cell response on laser-treated zirconia, as illus-
trated in Table 1 [15-17]. For instance, zirconia surface
treated with CO, laser revealed a significant increase in the
osteogenic cell proliferation by 70-90% when compared to
untreated zirconia [15, 16]. The laser energy used in the
surface treatment of zirconia has an active effect on the
surface morphologic aspects , which in turn influenced the
osteogenic cell behavior [15-17]. The osteogenic cell pro-
liferation is significantly increased when the laser intensity
was increased [15—17]. A progressive increase in cell prolif-
eration was noted on Y-TZP irradiated with Er, Cr: YSGG
laser with wavelength of 2780 nm, for 30 s and 20 Hz on
1.5 W, 3 W, or 5 W when compared to untreated zirconia
[17]. Another study with Er,Cr:YSGG laser at 20 Hz and
3 W reported a significant difference in cell proliferation for
3 and 7 days cell incubation. Viable cell count was measured
at [23+ 1.9] x 10° and [37.5 + 1.2]x 10? for laser-treated
Y-TZP and [51 +1.4] x 10% and [72 +2.1] X 10> for untreated
zirconia [44].

The morphological aspects of the osteoblast have been
reported in previous studies by evaluating projections of
cytoplasm, namely phyllopodia, and the spreading of the cell
over the surfaces [15-17, 42, 52]. The cells exhibited a final
stage of cell adhesion, showing more flattened and with a
higher cytoplasmic projection with phyllopod that extended
about 50-60 um beyond the cells when compared to smaller
phyllopods (5 to 10 um projections) on untreated surfaces
[15, 16]. The degree of maturation achieved by osteoblasts
after contact with leaser-treated Y-TZP surfaces is another
important aspect to be considered, since it is a key factor

@ Springer

for the production of the bone matrix [42, 52]. A higher
degree of cell differentiation on laser-treated surfaces was
validated by measuring osteogenic genes, such as collagen
type I, osteopontin, osteocalcin, and BMP-2 [42]. Results
showed values ranging from 7 up to 25 times higher for
laser-treated Y-TZP compared to untreated surfaces over a
period of 7-days incubation [42]. Remarkable changes in cell
morphologic aspects were evaluated by a previous study [52]
at approximately 3 times for irradiated Y-TZP when com-
pared to the non-irradiated Y-TZP [52]. The morphologic
changes were linked to an increase in the gene expression of
Runx2 mRNA, alkaline phosphatase, and oxytocin mRNA
for 3, 7, and 14 days incubation, respectively [52]. Those
are essential transcriptional factors for the differentiation
of osteoblasts. Thus, laser-assisted surface modifications
increased the gene expression related to time-dependent
osteogenic differentiation.

Studies have shown similar BIC values for titanium or
zirconia implant surfaces treated with laser irradiation [13,
46, 53]. In American Foxhound dogs, mean BIC percent-
age was recorded at 44.6 + 17.6% on zirconia for 1 month
and 47.9 +16% for 3 months. No statistically differences
were found when compared to titanium implant surfaces
regarding the BIC mean values at 51.3 £12% for 1 month
and at 61.7 £16.2% for 3 months [13]. In another study in
American Foxhound dogs, laser-treated zirconia implant
surfaces showed the BIC mean values at 22.8 +1.5% for
1 week and 37.5 +2.1% for 4 weeks [46]. Those values
were also not statistically different when compared to
BIC values for titanium surfaces: 25.4 +1.2% for 1 week
and 38.4 +1.8% for 4 weeks [46]. Similar results were
found in another study in New Zealand white rabbits
regarding the BIC mean values recorded on laser-treated
zirconia implants at 39.97+ 13.19% for 6 weeks and
43.87 +14.54% for 12 weeks in comparison to BIC mean
values on titanium implant surfaces at 34.15+10.34%
for 6 weeks and 34.82+12.21% for 12 weeks [53]. Thus,
the laser treatment is capable of modif ying the surface
topographic aspects of zirconia for an enhanced osseoin-
tegration as compared to titanium implant surfaces [14,
46]. BIC studies in Wistar rats showed no statistically
differences between Y-TZP (56.2 +3.56%) and Ce-TZP
(37.1 £14.01%) with grit-blasted surface treatment and
acidic etching for 4 weeks [43]. However, the laser-treated
Y-TZP surfaces by using Nd:YAG wavelength 1064 nm,
pulse of 3 ns, 50 Hz, and 150 mJ/pulse revealed higher
BIC mean values (78.9 £6.57%) when compared to laser-
treated Ce-TZP (14.0+2.43%) [43].

In the comparison between machined and laser-treated
Y-TZP implants, within a period of 4 weeks, BIC mean
values were 2 times higher (81.9 + 20.4%) in the cortical
bone portion in the Sprague—Dawley rats when compared
to those for machined Y-TZP surfaces (39.8 + 19.2%).
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In the cancellous bone portion, BIC mean values did not
show significant differences [52]. In the evaluation of the
BIC percentage between zirconia implants with differ-
ent surface treatments, no statistically significant differ-
ences were found between the Y-TZP surfaces with dif-
ferent surface treatments for 6 or 12 weeks respectively:
33+14% and 33.7 +14.5% on sintered zirconia; 39.6 +15%
and 41.3 +£15.8% on grit-blasted; and 39.97 £13.19% and
43.87 £14.54% on laser-treated surface [53]. Regarding
occlusal loading, Y-TZP implants treated with femtosec-
ond lasers, subjected to immediate loading, showed higher
BIC values for 1 month (38.9 + 6.68%) and 3 months
(65+4.36%) when compared to the same implant condi-
tion free of occlusal loading (32 +3.65%) for 1 month and
(57.6 £3.62%) for 3 months. Findings revealed a statisti-
cally significant improvement of the BIC percentage when
implants were immediately loaded [47].

In a Foxhound dogs model, Y-TZP zirconia implants
treated with femtosecond laser (100 fs, 795 nm, 10n]J,
80 MHz), near-infrared wavelengths 795 nm and 10 nJ
energy with a 80 MHz, showed marginal bone crest resorp-
tion values at 0.01 £0.57 mm for 1 month and at 1.25 +
1.73 mm for 3 months [13]. These values were statistically
significant only in the 3-month period when compared
to the marginal bone crest resorption values in titanium
implants: 0.77 £0.69 mm for 1 month and 0.37 +0.34 mm
for 3 months [13]. Another study reported findings on
Y-TZP zirconia implants treated by using femtosecond
on the entire implant body or only on the implant neck
[29]. After 3 months, zirconia implants treated with laser
at the neck region revealed a higher crestal bone loss
(0.36+0.01 mm) when compared to the implants treated in
the entire contact surfaces (0.26 £0.01 mm) [46]. Immedi-
ately, loaded Y-TZP zirconia implants showed crestal bone
loss values of 0.5 +0.3 mm for 1 month and 0.5 +0.23 mm
for 3 months [47].

Conclusions

Within the limitations of the previous studies, the follow-
ing outcomes can be drawn:

e The surface treatment performed by laser-assisted
techniques generated changes in the surface roughness
parameters, producing textures at meso-, micro-, and
nano-scale leading to a enhanced surface wettability.

e The laser treatment produced a favorable response
in the initial levels of adhesion and proliferation of
osteoblasts on the zirconia surface when compared to
untreated zirconia surfaces.

e A high BIC percentage was recorded on the laser-
treated zirconia surfaces that corresponded to enhanced

osseointegration. Similar values of bone-implant con-
tact were found on standard titanium implants and
laser-treated zirconia implants.

e Further studies are required to establish optimum pro-
cessing parameters for each type of laser used in the
surface treatment of different zirconia-based materials.
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