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Abstract
In this experimental study, we aimed to evaluate the antibacterial and anti-biofilm effects of photodynamic therapy 
with a photosensitizer in conjunction with Gold nanoparticles against Streptococcus mutans as an important cari-
ogenic bacterial agent. This experimental in vitro study evaluated the antibacterial and anti-biofilm effect of five 
groups as followed against S. mutans: methylene blue (MB), Gold nanoparticles (AuNPs), methylene blue conjugated 
with Gold nanoparticles (MB–AuNPs), MB mediated photodynamic therapy (MB mediated PDT) and methylene 
blue conjugated with Gold nanoparticles mediated photodynamic therapy (MB–AuNPs mediated PDT). InGaAlP 
laser (Azor-2 K) with 25 mW total output, 660 nm wavelength and laser probe cross-section of 0.78 cm2 was used for 
methylene blue activation. Total dose of 19.23 J/cm2 for 10 min was irradiated to each group. Minimum inhibitory 
concentration (MIC), minimum bactericidal concentration (MBC) and colony forming unit (CFU) were determined. 
Bacterial biofilm formation inhibition was assessed by crystal violet staining (The microtiter plate biofilm assay). 
The viability of S. mutans cells was assessed by MTT assay. MB mediated PDT and MB–AuNP mediated PDT were 
the most effective method for S. mutans biofilm inhibition (P < 0.05). MB alone, MB–AuNP alone and MB mediated 
PDT and MB–AuNP mediated PDT had the same effect against the planktonic phase of S. mutans (P > 0.05). Also 
they had similar pattern for bacterial growth inhibition and bactericidal effect (P > 0.05). Gold nano particle mediated 
photodynamic therapy represented antibacterial and antibiofilm activity against S. mutans; but this modality was not 
more effective than routine PDT.

Keywords  Biofilm · Cell survival · Low level llaser therapies

Introduction

Streptococcus mutans is a spherical gram-positive bacte-
rium from the phylum firmicutes and the lactic acid bac-
teria group which plays an important role as a cariogenic 
bacterium [1–4]. Photodynamic therapy (PDT) is a safe 
treatment in which a photosensitizer is activated by a light 
with specific wave length. Singlet oxygen and free radicals 
are produced in the presence of oxygen and can damage cel-
lular organelles [5]. PDT in dentistry is recommended for its 
antimicrobial effect, diagnosis and treatment of cancerous or 
dysplastic lesions. Antimicrobial effects of PDT have been 
demonstrated in previous studies [5]. PDT is safe and it is 
not mutagenic. PDT can inhibit biofilm formation and can 
cause decrease in microbial load [6, 7].

Different nanoparticles including gold nanoparticles, 
in previous studies have demonstrated antimicrobial 
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properties [2, 8]. Colloidal gold nanoparticles (AuNPs) 
have proper bioconjugation surface for molecular probes 
and optical properties which make it a suitable choice for 
using it in nanomedicine. AuNP has been used as a car-
rier of drugs for selective killing of diseased cells and 
microbes [9, 10]. Cationic thiazine dyes such as methylene 
blue interact with AuNP strongly and increase ultravio-
let (UV)-Visible absorption [11]. Nanoparticles in sev-
eral studies have shown antibacterial properties [12–15]. 
Using both nano particles with photodynamic therapy may 
increase cell penetration and produce cytotoxic singlet 
oxygen strongly [16] and finally it seems to cause syner-
gistic antibacterial effect.

To the best of our knowledge there is no study about the 
antibacterial effects of photodynamic therapy with gold 
nanoparticles or any other nanoparticles. There were some 
studies about the anticancer effect of photodynamic ther-
apy with nanoparticles [16–18] In addition, some studies 
evaluated antibacterial properties of nanoparticles [13, 19]. 
Due to the properties of AuNPs and therapeutic effects of 
photodynamic therapy, we decided to evaluate the effect of 
photodynamic therapy with gold-nanoparticle on S. mutans 
as the most prevalent cariogenic bacteria.

Materials and methods

This experimental study has been approved by ethic com-
mittee of Shiraz University of Medical Sciences (IR.SUMS.
REC.1395.S916).

Synthesis of gold nanoparticles

A solution of 0.1 g gold nanoparticles (AuNP) dissolved in 
50 mL water was prepared by Iranian Nanomaterial Pioneers 
Company. This solution was dark brown with more than 
99.97% purity. Size of AuNPs was 28 nm with spherical 
morphology. Crystallographic structure of nanoparticles was 
cubic. True density and bulk density of this solution were 
19.32 g/cm3 and 0.85 g/cm3, respectively.

Characterization of AuNP

Characterization of AuNP particles was determined by the 
company which the solution was prepared from. Transmis-
sion electron microscopy (TEM) image of colloidal solution 
of AuNPs was obtained at 100 kV with 180,000 magnitude 
(EM208, Philips). Image of scanning electron microscopy 

(SEM) of AuNPs solution was obtained with 70,000 mag-
nitude (Leo 440i) The pattern of X-Ray powder diffraction 
(XRD) was recorded using EQUINOX (INEL, France) in 
the range of 30 to 120° in 2θ.

Bacterial strain

Standard strain of S. mutans ATCC25175 was used in this 
study. The culture of microorganism was prepared in Brain 
Heart Infusion (BHI) broth and incubated at 37 °C.

Photosensitizer and light source

The photosensitizer used in this study was Methylenee Blue 
(MB). A stock solution of 1 mg/mL was prepared with dis-
tilled water. A InGaAlp laser (Azor-2 k) low level laser with 
25mW output power and 660 nm wavelength was used for 
irradiation. Calculation of effective radiant exposure of light 
was as fallow:

This irradiation area of laser beam was 0.78 cm2 (laser 
probe cross section). Continues irradiation with no distance 
from the plates, in 10 min can produce 19.23 J/cm2 dose.

Determination of minimum inhibitory concentration 
(MIC) and the minimum bactericidal concentration 
(MBC) and colony formation unit (CFU)

Micro-dilution method was used for determination of MIC 
and MBC of MB, MB–AuNP conjugates with and without 
irradiation and AuNP against S. mutans in fresh BHI sup-
plemented with 1% sucrose and fresh BHI alone.

Evaluation grous with fresh BHI alone

Group 1: MB.
Group 2: MB–AuNP.
Group 3: MB + Laser (MB mediated PDT).
Group 4: MB–AuNP + Laser (MB–AuNP mediated 

PDT).
Group 5: AuNP.

Evaluation grous with fresh BHI supplemented with 1% 
sucrose

Group 6: MB.
Group 7: MB–AuNP.
Group 8: MB + Laser (MB mediated PDT).
Group 9: MB–AuNP + Laser (MB–AuNP mediated 

PDT).

dose =
power × time

area
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In two 96-wells microtiter plates, MB which was six fold 
serially diluted for four times (initial concentration 1 mg/
mL) were added. In two series of MB serial dilution (one 
for S. mutans in BHI culture media alone and another for S. 
mutans in BHI supplemented culture media with sucrose), 
solution of AuNP with concentration of 0.2 mg/mL was 
added to each well for MB–AuNP conjugate. The stand-
ard count of bacterium (inoculum), equal to 0.5 McFarland 
turbidity, was prepared in PBS and added to all wells. Two 
wells in each plate were considered as positive and negative 
controls. One of the plates was considered for the experi-
mental group without laser irradiation and the other one was 
considered for PDT study (activation of the methylene blue 
with laser).

In PDT study plate, after 10 min that MB was in contact 
with the inoculum, all wells were irradiated for 10 min, in 
dark with no distance between laser probe and plate. Dark 
environment can help to minimize the other confounding 
factors including environmental light which can affect the 
photosensitizer.

Both plates were incubated at 37 °C for 24 h under shake 
condition. Then the MIC, in which the lowest concentrations 
that inhibited visible bacterial growth was determined. MBC 
determination was assessed by culturing the test dilution 
on a blood agar plate incubated at 37 °C with 5% CO2 for 
24 h. MBC was taken from the highest dilution at which no 
bacterial growth was seen. The number of colony forming 
unit (CFU) was calculated as well.

Biofilms formation assay by crystal violet staining

Biofilm formation of S. mutans biofilm treated with MB, 
MB–AuNP conjugate with and without irradiation and 
AuNP were assessed via micro-titer plate biofilm assay, as 

described previously (in 1% sucrose supplemented wells) 
and quantified by using crystal violet. For removing the not 
adhered bacteria, after incubation the medium was removed 
gently by washing three times with 200 µL PBS. Then 200 
µL of 0.1% crystal violet was added to each well for biofilm 
staining. After incubating dye for 25 min, extra dye was 
removed by rinsing three times with 350 µL of sterile dis-
tilled water and immediately de-stained with 200 µL of 95% 
ethanol and remained for 15 min. Quantification of biofilm 
formation was then measured by optical density (O.D) of 
suspension at 490 nm, 570 nm and 630 nm [20] with an 
ELISA reader.

Interaction between MB and AuNPs causes a significant 
reduction in GNP absorption peak (534 nm) and change it 
to a new absorption peak (613–662 nm), measured by UV 
absorption spectroscopy. According to this reduction, a wide 
range of UV absorption for MB–GNP conjugation can be 
seen so in this study three different wave lengths have been 
considered for OD measurement [21].

MTT reduction assay

For the assessment of bacterial cell viability, the MTT assay 
was performed. A 5 mg/mL concentration of 3–4–5 diphe-
nyl tetrazolium (MTT) dissolved in PBS was used for MTT 
assay. The solution was filter sterilized using 0.2 mm pore-
size filter. As previously described in crystal violet assay, 
the adherent cells in treated and control S. mutans biofilm, 
were rinsed three times with 200 µL PBS to remove loosely 
adherent and planktonic cells. Afterward 100 µL of MTT 
solution was added to each well. Then the micro-titer plates 
were incubated at 37 °C for 2 h. Then 400 µL of acidic 
Isopropanol was added to each well. Colorimetric changes 

Fig. 1   TEM(1-a) and SEM 
(1-b) images of gold nanopar-
ticles

a b
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were measured using a microtiter plate ELISA reader at the 
wavelength of 530 nm.

Statistical analyses

Data analysis was performed using SPSS version 18. 
The mean value of MIC, MBC, CFU of duplicate evalu-
ations were reported. Kruskal Wallis test was used for 
comparing the mean of MIC and MBC.

Results

Characterization of AuNP

TEM and SEM images (Fig. 1) of AuNPs show spherical 
shape and the 28 nm size of the particles. In Fig. 2 a typical 
power XRD pattern of AuNP is observed.

MIC, MBC and CFU

The minimum inhibitory (MIC) and bactericidal (MBC) 
concentrations and CFU count of groups 1–9 are reported 
in Table 1.

Group 4 (MB–AuNPs mediated PDT) demonstrated 
the lowest MIC and MBC. The CFU count was at low-
est level for group 3 (MB mediated PDT) and group 4 
(AuNPs-MB mediated PDT) but there was no statistical 
difference (P > 0.05). AuNP alone with a relative high 
concentration had inhibitory effect (250 µg/mL) but MBC 
and CFU could not be detectable even at the highest con-
centration tested.

No significant difference was detected between different 
concentrations of MB (P = 0.2) and between different stud-
ied groups (P = 0.5) for MIC and MBC.

Assessment of biofilm formation by S. mutans

Biofilm inhibitory effect of groups 1, 2, 3, 4 (MB and 
MB–AuNp with and without laser illumination) are dem-
onstrated in Figs. 3, 4, 5. AuNP alone did not have anti-
biofilm effect.

Applied three wave lengths (490  nm, 570  nm and 
630  nm) in most of evaluations showed no significant 

Fig. 2   XRD; X-Ray differentiation pattern of AuNP. L laser illumina-
tion, O.D optical density, concentration (µg/mL)

Table 1   The MIC, MBC and 
CFU measured for MB, MB–
AuNP, MB mediated PDT, 
MB –AuNP mediated PDT and 
AuNP on S. mutans in BHI 
broth and BHI supplemented 
with sucrose

L laser illumination, MIC minimum inhibitory concentration, MBC minimum bactericidal concentration, 
CFU colony forming unit

Groups Component MIC (µg/mL) MBC (µg/mL) CFU (Count)

1 MB 93.75 125 150
2 MB + AuNP 93.75 156.25 175
3 MB + L 93.75 187.5 100
4 MB + AuNP + L 78.125 93.75 120
5 AuNP 250 Not detectable Overgrowth
6 MB + sucrose 140.625 187.5 115
7 MB + AuNP + sucrose 78.125 140.625 165
8 MB + L + sucrose 78.125 156.25 135
9 MB + AuNP + L + sucrose 78.125 93.75 90
10 AuNP + sucrose Not detectable Not detectable Overgrowth
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difference between concentrations in evaluated groups was 
(P value > 0.05).

But, in 490 and 570 nm wave lengths, group 3 (MB 
mediated PDT) and 4 (MB–AuNP mediated PDT) were 
significantly more effective against biofilm formation 
in comparison to group 1 (MB alone) (P < 0.05). In 

addition, in 570 nm, group 2 (MB–AuNP) and in 630 nm, 
group 3 (MB mediated PDT) showed more effective than 
group 1 in biofilm inhibition (P < 0.05).

In all three wave-lengths, the concentration of 7.81 µg/
mL of MB had the lowest biofilm inhibition than all other 
evaluated concentrations (P < 0.05).

Fig. 3   Crystal violet assay; MB, MB–AuNP, MB mediated PDT and 
MB–AuNP mediated PDT inhibitory effects on biofilm formation 
with O.D measurement (490  nm). L laser illumination, O.D optical 
density,concentration (µg/mL)

Fig. 4   Crystal violet assay; MB, MB–AuNP, MB mediated PDT and 
MB–AuNP mediated PDT inhibitory effects on biofilm formation 
with O.D measurement (570  nm). L laser illumination, O.D optical 
density, concentration (µg/mL)

Fig. 5   Crystal violet assay; MB, MB–AuNP, MB mediated PDT and 
MB–AuNP mediated PDT inhibitory effects on biofilm formation 
with O.D measurement (630 nm). L laser illumination, O.D: optical 
density, concentration (µg/mL)

Fig. 6   MTT assay for bacterial viability; MB, MB–AuNP, MB-medi-
ated PDT and MB–AuNP mediated PDT effect on bacterial viability 
with O.D measurement in 530 nm

1721Lasers in Medical Science (2022) 37:1717–1725
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Assessment of bacterial viability

The viability of S. mutans during different antibacterial 
assays in this study is revealed in Fig. 6.

No difference was detected between different concentra-
tions in evaluated groups (P > 0.05).

Discussion

A photosensitizer is capable to absorb light of specific 
wavelength and transform it into useful energy [22]. A 
proper photosensitizer should be low toxic toward mam-
malian cells. In order to fulfill this property, they should 
be high binding affinity for microorganisms (positively 
charged photosentisizer for appropriate adherence to 
negatively charged bacterial cell wall) [23], low binding 
affinity for mammalian cells and low chemical toxicity and 
mutagenicity [24].

PDT cause the bacterial cell wall damage, increasing 
cytoplasmic membrane permeability and breakage of DNA 
[25]. PDT can destroy carbohydrates, amino acids or phos-
phate transport through carrier proteins of cell membrane 
[26]. Intracellular enzymes will be knocked out and disturb 
ATP production and cellular metabolism [27] cyclic depend-
ent kinase inhibitor and cell growth inhibition causes over 
expression of P21 which irritates mitochondria [28]. Biologi-
cal chlorophores in cells and organisms excites via proper 
dose and wavelength of laser illuminance, and produce singlet 
oxygen and superoxide. These toxic products destroy microor-
ganisms by DNA and cell membrane destruction [29].

The different nanoparticles including gold nanoparticles, in 
previous reports have revealed antimicrobial properties [2, 8] 
besides, Cationic thiazine dyes such as methylene blue inter-
act with AuNP strongly and increase ultraviolet (UV)-Visible 
absorption [11]. Evaluation of the antibacterial and anti-bio-
film effect of photodynamic effect of methylene blue with gold 
nanoparticles against S. mutans as the significant producer of 
cariogenic biofilm was the idea of the present study.

According to the results of the present study, all testing 
groups except for AuNP onle, had antibacterial and anti-
biofilm effect. AuNP alone with a very high concentration 
had inhibitory effect (more than twofold higher concentra-
tions than the other groups) and MBC and CFU could not 
be measured.

The MIC, MBC and CFU counts of all evaluated groups 
(MB, MB–AuNPS, MB mediated PDT, MB–AuNP medi-
ated PDT) for S. mutans cultured in BHI with and without 
sucrose supplementation, are in a similar pattern and there 
were no significant differences between them (P < 0.05). 
Biofilm assay confirmed the concentration dependency for 
better S. mutans biofilm inhibition. MB mediated PDT and 
MB–AuNP mediated PDT had the best inhibitory effect on 

S. mutans biofilm formation among all groups in all three 
applied wave lengths. In MTT assessment no statistical dif-
ference between all evaluated groups was detected.

There are a few studies that evaluated the effectiveness 
of nanoparticles mediated PDT including an in vitro antimi-
crobial and anti-biofilm study of PDT with AgNP, TBO and 
AgNP-TBO, used 9.1 J/cm2 irradiation dose with 630 nm 
wavelength for 70 s [19].

The MIC and MBC of TBO-AgNP mediated PDT (with 
an initial concentration of 1 mg/mL TBO and a constant 
concentration of 25 µg/mL AgNP) showed a twofold higher 
activity against S. mutans than TBO alone. In comparison, 
our results showed less MIC and MBC for MB–AuNP-medi-
ated PDT than MB mediated PDT alone against S. mutans, 
however, these differences were not significant.

In Misba et al. study [19], crystal violet assay showed 
anti-biofilm effect in a concentration dependent manner. A 
more significant reduction of biofilm formation with TBO-
AgNP mediated PDT was detected in comparison with TBO 
mediated PDT. Better effect of photodynamic therapy gen-
erally in comparison to use of methylene blue alone is in 
line with our results in the presenting study. In addition to 
the concentration dependent pattern, MB–AuNP-mediated 
PDT and MB-mediated PDT had a higher effectiveness in 
biofilm inhibition than MB and MB–AuNP alone. Misba 
et al. [19], observed a better effect when adding AgNP to 
TBO mediated PDT than TBO mediated PDT alone. This is 
not in accordance with the present study, which could not 
detect significant differences between the PDT groups, that 
is, no extra effect was obtained with the addition of AuNP 
to MB mediated PDT. Moreover, MB itself has antibacterial 
effect [30] also higher concentrations of AuNPs for prepar-
ing the MB and nanoparticle conjugation might have been 
needed for better a antibacterial effect. This may justify this 
controversy.

In addition, Misba evaluated the bactericidal activity by 
converting the value of XTT, which was found to be concen-
tration dependent as well. TBO-AgNP mediated PDT had a 
noticeable bactericidal effect on S. mutans in comparison 
with TBO at the same concentrations. We used MTT assay 
for bacterial viability assessment and MB–AuNP mediated 
PDT had no superiority for bactericidal properties than MB 
mediated PDT and other groups at the same concentrations.

Other study declared that polymeric nanoparticles are 
potent to load MB and act as a carrier of MB for PDT sys-
tem [31]. Khan et al. study showed that AuNPs (GNP) con-
jugates with photosensitizer (PS) in PDT exhibited syner-
gistic antimicrobial activity against Candida albicans. The 
GNP-PS mediated PDT against Candida biofilm formation 
showed significant biofilm reduction and adverse effect 
against Candida albicans [32].

In Sherwani et al. study, the effect of GNP-PS based 
PDT on C. albicans was also evaluated, which confirmed 
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the synergistic activity of GNP-PS conjugation against C. 
albicans [8].

Chemical structure of photosensitizer, incubation period 
of photosensitizer and bacterial cell, bacterial species, time 
of irradiation, photosensitizer concentration and laser energy 
dose would affect the PDT effectiveness [22, 25].

MB is a phenotiazinuim dye, which has a very low toxic-
ity in dark, penetrates the bacterial cell membrane, affect 
the bacterium genome and kill them [30]. MB is hydrophilic 
with low molecular weight and positive charge. These prop-
erties allow MB to pass across purine-protein channel in the 
outer membrane of gram-negative bacteria [33, 34].

Bacterial colonies are more resistant when they accumu-
late as a biofilm, due to better communication between cells 
[35]. PDT has a direct effect on extracellular polysaccharides 
matrix of biofilm are susceptible to photo damage [36].

As explained previously, energy of light exposure is an 
important factor in PDT efficacy. Thus it has been indicated 
that light exposure with a high power density over a short 
period of time compared with low power density over a 
longer time even with the same energy density in both, may 
cause different antimicrobial effects [25].

Nowadays, metallic nanoparticles are mostly used for 
bio-conjugation, drug delivery and also diagnostic applica-
tion [37, 38]. Metallic nanoparticles are large in surface area 
which affects its antimicrobial effect [39]. The antimicrobial 
activity of nanoparticles has an inverse relationship with 
nanoparticles’ size. A range size between 1 and10 nm have 
the best antibacterial activity. In comparison with conven-
tional and narrow target antibiotics, bacteria are less likely 
to acquire resistance against metallic nanoparticles [40, 41].

Several studies indicated that positive charge on the 
metal ion is essential for antimicrobial activity. Bacterial 
cell membrane has negative charge. Thus an electrostatic 
attraction happens between the positive charge of metal ion 
and negative charge of cell membrane [42].

Gold nanoparticles (GNP) is known to have special chem-
ical and physical and optical properties due to its remarkable 
surface plasmon resonance for imaging and fluorescence 
enhancing [43, 44] Molecular cytotoxicity mechanism of 
GNP is only disruption of protein conformation [6].

Interaction between MB and AuNPs causes a significant 
reduction in GNP absorption peak (534 nm) and change it 
to a new absorption peak (613, 662 nm), measured by UV 
absorption spectroscopy. According to this reduction, a wide 
range of UV absorption for MB–GNP conjugation was seen 
[20]. The interaction between the negative charge of GNP 
and positive charge of MB has been confirmed by TEM 
image [31]. A noticeable quenching of MB fluorescence in 
addition with GNP was reported. AuNPs interaction with 
MB in the form of a 2 ± 0.5 nm layer of MB around AuNPs 
causes the new peak of UV absorbance [31].

The mechanism of quenching the fluorophore by AuNPs are 
a radioactive energy transfers from fluorophore to GNP and 
collision dynamics between fluorophore and AuNPs [45, 46].

Pagonis et al., revealed that the permeability of cell walls 
for MB carrier increases by the concentration of nanoparti-
cles on bacterial cell wall [47].

Photodynamic therapy can be used as a method for 
decreasing the oral cariogenic bacterial count especially in 
patients with rampant caries or in patients with greater sus-
ceptibility to dental caries including patients with history of 
xerostomia, chemo and radio therapy.

Although there is a good concept about nanoparticles 
efficacy, side effects must also be considered. for example, 
actively excreted form of copper and silver accumulation 
within normal body [48]. To understand the toxic kinetic 
properties of nanoparticles, information about their absorp-
tion, distribution, metabolism and excretion is necessary [49].

Performing the evaluation in laminar flow, which pro-
duce a sterile, isolated environment for such lab research, 
could assure the researcher about no external contamination. 
In this study the anti S. mutans effect of PDT mediated by 
different compositions of MB and MB–AuNPs, in several 
media (BHI and sucrose supplemented BHI) were assessed. 
To determine the effective component of these approaches, 
different groups were designed. The antibacterial effects of 
MB, MB–AuNP and AuNPs alone without any light activa-
tion were also analyzed. Higher concentrations of AuNPs 
for preparing the MB and nanoparticle conjugation should 
be assessed in further evaluations.

In our study, the cover of plates was not removed dur-
ing laser application since multiple plate contamination 
had been occurred before in pilot studies. The presence 
of this translucent barrier could reduce the irradiation 
dose. According to some studies, Vahabi et al. [50], using 
shorter time and higher dose of irradiation can induce 
more prominent effect. Our laser device could not pro-
duce enough dose of irradiation in a short period. In six 
series of repeating the evaluation, there were somehow 
different and contradictory results; while we did our best 
effort to homogenize and statistically analyze the situa-
tion on each effort.

It can be suggested to evaluate different AuNP concentra-
tions and different irradiation dose. To have more complete 
evaluation, it can be proposed to study the developed biofilm 
inhibition of S. mutans.

While there is a global interest to introduce nanotechnol-
ogy as an effective modality for different medical interven-
tions, treatments or preventive procedures, according to our 
results there was no significant superiority for nanoparticle 
association with PDT. Choosing a proper photosensitizer 
and light activation wavelength and irradiation dose can 
induce enough antibacterial effects.

1723Lasers in Medical Science (2022) 37:1717–1725
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Conclusion

Our study revealed MB-mediated PDT and MB–AuNP-
mediated PDT were the most effective method for S. mutans 
biofilm inhibition. Increasing the concentrations of photo-
sensitizer along with gold nanoparticles reduces the bacte-
rial biofilm formation more effectively, however, side effects 
must also be an important concern. Different groups in this 
study had the same effect against the planktonic phase of S. 
mutans. MB alone, MB–AuNP alone and MB-mediated PDT 
and MB–AuNP-mediated PDT had similar pattern for bacte-
rial inhibition and bactericidal effect. Based on this study, 
both MB-mediated PDT and MB–AuNP-mediated PDT had 
proper antibacterial biofilm formation activity.
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