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Abstract
In this paper, a closed-form analytical solution of hyperbolic Pennes bioheat equation is obtained for spatial evolution of
temperature distributions during moving laser thermotherapy of the skin and kidney tissues. The three-dimensional cubic
homogeneous perfused biological tissue is adopted as a media and the Gaussian distributed function in surface and exponentially
distributed in depth is used for modeling of laser moving heat source. The solution procedure is Eigen value method which leads
to a closed form solution. The effect of moving velocity, perfusion rate, laser intensity, absorption and scattering coefficients, and
thermal relaxation time on temperature profiles and tissue thermal damage are investigated. Results are illustrated that the moving
velocity and the perfusion rate of the tissues are the main important parameters in produced temperatures under moving heat
source. The higher perfusion rate of kidney compared with skin may lead to lower induced temperature amplitude in moving path
of laser due to the convective role of the perfusion term. Furthermore, the analytical solution can be a powerful tool for analysis
and optimization of practical treatment in the clinical setting and laser procedure therapeutic applications and can be used for
verification of other numerical heating models.
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Introduction

The non-invasive thermal therapy has some advantages for
reduction of physical, emotional, and financial impacts on
the cancer patient, which main of them are low cost, minimal
scarring, less pain, and shorter hospitalization time [1]. The
thermal therapy method is chosen depending on cancer tumor
location, stage, or whether it became resistant to the ongoing
treatment. There are some challenges to select the heating
power of cancer cells without damaging the surrounding tis-
sue; therefore, obtaining appropriate temperature distribution
is an important issue. Developing effective strategies to treat
cancer has been an important task in the field of medical
research. The mathematical models can play a vital role in
providing significant information to the clinical practitioners
about the possible outcomes and risks involved before the
onset of thermotherapy cancer treatment. The applications of

simple bioheat equation comprise simulations of hyperthermia
[2], cryosurgery [3–5], thermal parameter estimation [6, 7],
radiofrequency ablation [8, 9], laser thermotherapy [10–17],
and microwave ablation [18, 19] for estimating temperature
profiles and thermal parameters of perfused tissues. In these
medical problems, heat transfer analysis needs to simulta-
neously deal with transient and spatial heating both on the
biological tissues. Up to now, several bioheat transfer models
have been suggested by researchers [20]. One of the most
distinguished and earliest bioheat models is the Pennes
bioheat equation, which is declared the parabolic natured
bioheat transfer equation in 1948 [21]:

∂T
∂t

¼ α∇2Tþ ρbϖbCb

ρtct
T b−Tð Þ þ Q

ρtct
ð1Þ

Where, Q is the heat source term, ρt and Ct refer to density
and specific heat of tissue, ρb, ϖb, and Cb are the density, the
perfusion rate per unit volume of tissue, and the specific heat
of blood, respectively, α is thermal diffusivity and Tb is the
blood temperature. Heat transfer modeling must consider both
of temperature changes and impact of blood flow which acts
as a heat sink and influences the temperature field in the vi-
cinity of the vessels. The main idea of the Pennes bioheat
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equation is to apply the effect of blood convective heating or
cooling in live tissues as the perfusion term in conduction
equation. Perfusion plays an important role in the local trans-
port of oxygen, nutrients, pharmaceuticals, and heat through
the body.

The Fourier heat conduction equation is acceptable for
most engineering applications; however, it estimates the infi-
nite speed of thermal propagation which is physically unreal-
istic. Hence, it has been modified and more complex models
have been introduced. A relaxation time is considered be-
tween heat flux and temperature gradient in non-Fourier or
hyperbolic heat transfer equation (HHTE) which leads to fi-
nite speed and wave behavior of heat propagation [22]. The
relaxation time has an important influence on the transient
temperature and temperature gradient. At first, the modified
heat flux model is introduced in the following form by
Cattaneo and Vernotte [23]:

qþ τq
∂q
∂t

¼ −k∇T ð2Þ

Where q is the heat flux vector, τq is the thermal relaxation
time which shows the delay between heat flux and tempera-
ture gradient, and k is the material thermal conductivity. It is

known that w ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
αt=τq

p
denotes the propagation speed of

temperature wave, where αt ¼ k
ρc is the material thermal dif-

fusivity. Due to long-thermal relaxation time of biological
tissue, the non-Fourier model becomes more reliable for
depicting the propagation process and estimating the temper-
ature distribution than the classical Fourier one. Thus, the
hyperbolic Pennes bioheat equation is introduced and applied
in the literature as follows [24, 25]:

τq
∂2T
∂t2

þ 1þ τq
ρbϖbCb

ρtct

� �
∂T
∂t

¼ αt∇2Tþ ρbϖbCb

ρtct
Tb−Tð Þ þ 1

ρtct
τq

∂Q
∂t

þ Q

� �
ð3Þ

Clearly, considering τq = 0 leads to the special case of
above equation which corresponds to the Fourier or parabolic
heat transfer. In recent years, the solutions of parabolic and
hyperbolic Pennes bioheat Eqs. (1) and (3) are focused by
researchers.

Thermal conduction and convection of tissues, blood perfu-
sion, metabolism heat generation, and changing of the tissue
properties are some of the features that make hard to obtain an
accurate knowledge of heat transfer of living systems for all the
thermal clinical therapies [26]. Hence, due to the complexity of
the boundary conditions and irradiated flux, themost solutions of
Eqs. (1) and (3) are numerical. For example, Xu et al. [27]
surveyed previous researches on the parabolic, hyperbolic, and
dual phase lag (DPL) models of bioheat transfer processes and
developed a numerical solution for single layer one-dimensional

skin tissue model under uniform heat source. Zhou et al. [28]
consideredDPLmodel on Pennes bioheat equation to investigate
thermal damage of laser-irradiated biological tissues numerical-
ly. They found that hyperbolic model has a significant difference
in estimation of temperature compared with Fourier one.
Ströhers [29] used numerical methods to solve the parabolic
and hyperbolic Pennes bioheat equation of the skin tissue tran-
sient temperature and burn injury distributions.

Since finite element method (FEM) is a domain-based nu-
merical technique which requires discretizing the entire com-
putational media, it has some disadvantages like that large
computational costs (memory and CPU time) for complex
bioheat problems. Consequently, a theoretical model is need-
ed that not only has a good adaptability to complex tumor
shapes but also is computationally efficient. Therefore,
Askarizadeh and Ahmadikia [30] derived analytical solution
of the parabolic and hyperbolic bioheat transfer equation for
two-dimensional skin tissue under instantaneous surface
heating boundary condition using Laplace transform and sep-
aration of variables. Lee et al. [31] studied the hyperbolic heat
conduction equation of the skin tissue with an inverse algo-
rithm to determine tissue temperature profiles under the un-
known time-dependent surface heat flux based on the temper-
ature measurements. Jaunich et al. [32] analyzed the temper-
ature distributions and heat-affected zone of skin tissue during
short-pulse laser beam exposure. They used hyperbolic and
parabolic bioheat equations for modeling and verified the re-
sults of hyperbolic model by comparing themwith experimen-
tal results of a multi-layer tissue. Talaee andKabiri [33] solved
the hyperbolic bioheat equation of radiofrequency heating
(RFH) technique in spherical coordinates using Eigen value
method and introduced closed-form solutions. Also, they [34]
presented the analytical solution of parabolic Pennes bioheat
equation under concentric moving heat source for one-
dimensional non-homogeneous layer of biological tissue with
blood perfusion term. Brix et al. [35] investigated thermal
response of radiofrequency exposure during magnetic reso-
nance (MR) procedures and introduced analytical solution
for the parabolic Pennes bioheat equation using the Green’s
function. Ahmadikia et al. [36] solved the one-dimensional
Fourier and non-Fourier bioheat transfer equation under laser
heating using the Laplace transform method. Liu [37] inves-
tigated the hyperbolic Pennes bioheat equation to study the
thermal behavior of a living tissue subjected to constant, sinu-
soidal and step surface heating using combined Laplace and
finite deference. Hooshmand et al. [38] derived a generalized
DPL model based on the non-equilibrium heat transfer of
biological tissues during laser irradiation and solved it by the
separation of variables and Duhamel’s integral method. They
found that the results of generalized DPL model are different
from the classical DPL and Pennes bioheat transfer models.

Some of the analytical solutions of the biological tissues’
thermal transfer are done as non-perfused (i.e., without
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considering the blood perfusion term). For example, Trujillo
et al. [39] solved hyperbolic heat transfer equation of the one-
dimensional non-perfuse homogeneous biological tissue which
is irradiated by laser beam. Manns et al. [40] presented a semi-
analytical technique to calculate the heat transfer equation of
homogeneous non-perfuse tissue during collimated laser beams
with Gaussian intensity distributions and convective boundary
conditions at the surface. Talaee et al. [41] derived an exact
analytical solution for the three-dimensional hyperbolic heat
conduction equation under pulsed surface heat flux using com-
bined separation of variables and the Duhamel integral. Also,
he [42] continued to obtain the exact solution for this problem
with time-dependent andGaussian distributed heat source using
Eigen value procedure which is used for modeling laser heating
of biological tissues.

Laser treatment has become an established clinical modality
over the past decade [43]. Laser ablation is a non-invasive tumor
treatment modality which utilizes photothermal interaction be-
tween lasers and tissues and produces minimal damage to
healthy tissue compared with the most conventional therapies
like surgery and chemotherapy [44]. High-speed startup, selec-
tive energy absorption, instantaneous electric control, non-pollu-
tion, high energy efficiency, and high product quality are several
advantages of laser treatment [45]. Both continue wave (CW)
and pulsed lasers have been employed for the ablation of sub-
surface tumors. Modeling laser-tissue interaction is a potent tool
to help in analyzing and optimizing the parameters governing
planned laser ablation procedures. Moreover, the lack of exper-
imentation in this field makes bioheat models more significant.
Conventional laser thermal modeling has included the following
steps: calculation of the laser energy in tissue based on the ab-
sorption and scattering coefficients, calculation of the tempera-
ture increase using various bioheat transfer equations, and calcu-
lation of the thermal damage [45]. Up to our knowledge, there is
not any analytical solution for three-dimensional hyperbolic
Pennes bioheat equation (Eq. (3)) under moving heat source to
obtain thermal field and damage of tissues. For the applicability
of the solution, the Gaussian distributed in surface and exponen-
tially distributed in depth function of moving heat source are
used formodeling a sample laser scanning of tissue. The solution
procedure is Eigen value method which leads to a closed-form
solution and the effect of moving velocity, perfusion rate, and
laser intensity, absorption, and scattering on temperature profiles
are investigated. Also, Arrhenius equation is used for determin-
ing the spatial and temporal extent of tissue damage to minimize
damage of surrounding healthy tissue in vital organs.

Mathematical model

For modeling of biological tissue, a cubic with length of l on
each side was considered as shown schematically in Fig. 1.
The tissue was simulated under laser treatment moving in the

x direction with Gaussian distribution in top surface and ex-
ponentially distribution in absorption depth.

The tissue was assumed to be homogeneous such that tis-
sue properties (mass density, thermal conductivity, and spe-
cific heat) were constant and independent of temperature. The
wasting of energy from tissue was negligible, and neither
phase change and nor chemical reactions occurred in the tis-
sue. The distribution of blood vessels was considered isotropic
and heat dissipation due to blood flow was modeled with a
constant perfusion. Due to the relatively highmagnitude of the
laser energy source term compared with the metabolic heat
generation, the metabolic heat generation rate was neglected
[46]. The moving laser heat source term Q(x, y, z, t) was
expressed in the following form [47]:

Q x; y; z; tð Þ ¼ P

2πσ2
e−

x−vtð Þ2þy2

2σ2

� �
exp −μzð Þ ð4Þ

Where, P is a constant power, μ = (μa + μs) is the summa-
tion of absorption and scattering coefficients, v is the constant
velocity along the positive direction of the x-axis, and σ is the
spot radius which shows the concentration of laser point.

Here, it was focused on the simulation of treating kidney
and skin tumor through one laser beam with Gaussian distri-
bution. The heat source term is based on Beer’s Law, which
identifies the exponential attenuation of light as it travels
through a medium [46]. This approximation is less accurate
than the mathematically rigorous Monte Carlo method; how-
ever, it is less computationally intensive and is frequently used
in modeling light propagation of tissues. This method has
been extensively used in the literature for the measurement
of temperature rise during laser irradiation of tissues [48].

Due to the convenience of the results, the following dimen-
sionless variables were introduced:

X ¼ wx=2α ð5:aÞ
Y ¼ wy=2α ð5:bÞ
Z ¼ wz=2α ð5:cÞ
V ¼ v=w ð5:dÞ
τ ¼ t=2τq ð5:eÞ
θ ¼ T−Tbð Þ= Tm−Tbð Þ ð5:f Þ
ψ ¼ Qτq= ρtCt Tm−Tbð Þ½ � ð5:gÞ
β ¼ 2wτqμ ð5:hÞ
ζ ¼ τqρbϖbCb=ρtCt ð5:iÞ

where Tm is an arbitrary reference temperature.
The governing Eq. (3) can be rewritten in terms of dimen-

sionless variables as follows:

∂2θ
∂τ2

þ 2 1þ ζð Þ ∂θ
∂τ

¼ ∂2θ
∂X2 þ

∂2θ
∂Y2 þ

∂2θ
∂Z2

� �
−4ζθþ f X ; Y ; Z; τð Þ ð6Þ
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where f X ; Y ; Z; τð Þ ¼ 2 ∂ψ
∂τ þ 4ψ is the non-dimensional

moving distributed heat source function, which ψ is in the
following non-dimensional form as follows:

ψ ¼ ψ0e
− 2 α

σwð Þ2 X−Vτð Þ2þY2ð ÞþβZ
� �

ð7Þ

where ψ0 ¼ P
2πσ2Pr

that Pr is the reference power.

The tissue initial temperature was considered at constant
body temperature of (Tb = 37 ° C) and the the surroundings
were kept at body temperature too. Due to the small value for
thermal conductivity of tissue, the boundary conditions were
considered adiabatic, except the upper surface. Thus, the
boundary conditions can be written in the dimensionless form
as follows:

∂
∂X

θ 0; Y ; Z; τð Þ ¼ ∂
∂X

θ L; Y ;Z; τð Þ ¼ 0 ð8:aÞ
∂
∂Y

θ X ; 0; Z; τð Þ ¼ ∂
∂Y

θ X ; L; Z; τð Þ ¼ 0 ð8:bÞ
∂
∂Z

θ X ; Y ; 0; τð Þ ¼ 0;
∂
∂Z

θ X ; Y ; L; τð Þ ¼ hθ X ; Y ; L; τð Þ ð8:cÞ

where h is the dimensionless number and denotes the convec-
tion cooling coefficient. It was assumed that the tissue was in

equilibrium with the body and blood temperature at its initial
state. Hence, the dimensionless initial conditions of the prob-
lem were assumed as follows:

θ X ; Y ; Z; 0ð Þ ¼ 0 ð9:aÞ
∂
∂τ

θ X ; Y ; Z; 0ð Þ ¼ 0 ð9:aÞ

The model was used to investigate the effects of surface
temperature and treatment time on the depth of tissue injury. It
is hoped that this model can contribute to improve the current
operations and lead to more effective treatments and greater
patient safety.

Analytical solution

The problem is the three-dimensional Poisson equation with
homogeneous boundary conditions. Due to the homogeneous
boundary, selection of Eigen function series solution which
composed of harmonic functions with zeroes on the boundary
can solve this problem. Extension of our procedure for solu-
tion of the Poisson equation with nonhomogeneous boundary
condition is simply done with the help of super position

Fig. 1 Schematic of cubic
biological tissue under moving
heat source in the x-direction with
a constant velocity (v)
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principle. According to the super position principle, the
Poisson equation with nonhomogeneous boundary conditions
is divided to the summation of two problems of Steady
(Dirichlet problem) with nonhomogeneous boundary condi-
tions and transient (Poisson problem) with homogeneous
boundary conditions and reformed initial conditions.

Due to boundary conditions (Eq. (8)), the below Eigen
function was considered the solution of Eq. (6):

θ X ; Y ; Z; τð Þ ¼ ∑
∞

m¼0
∑
∞

n¼0
∑
∞

k¼1
Amnk τð Þcos mπX

L

� �
cos

nπY
L

� �
cos μkZð Þ

ð10Þ

where the Eigen values μk are positive zeroes of the charac-
teristic equation of tan (μkL) + h/μk = 0, and Amnk(τ) is time
dependent constant which can be determined from application
of the solution (Eq. (10)) into the Eq. (6). This leads to the
following ordinary differential equation with the initial condi-
tions (Eq. (9)):

::
Amnk τð Þ þ 2 1þ ζð ÞȦmnk τð Þ þ mπ

L

� �2
þ nπ

L

� �2
þ μkð Þ2 þ 4ζ

� �
An τð Þ ¼ Rmnk τð Þ

A 0ð Þ ¼ 0; Ȧ 0ð Þ ¼ 0

8><
>: ð11Þ

where Rmnk(τ) is the Fourier expansion coefficient of the
source term function due to the below Eigen function:

f X ; Y ;Z; τð Þ ¼ ∑
∞

m¼0
∑
∞

n¼0
∑
∞

k¼1
Rmnk τð Þcos mπX

L

� �
cos

nπX
L

� �
cos μkZð Þ ð12Þ

Considering Fourier expansion relation, Rmnk(τ) is deter-
mined as below:

Rmnk τð Þ ¼ 32ψ0

L3 ∭
L

0
1þ 2

α
σw

� �2
V X−Vτð Þ

� �
e− 2 α

σwð Þ2 X−Vτð Þ2þY2ð ÞþβZ
� �� �

cos
mπX
L

� �
cos

nπX
L

� �
cos μkZð ÞdXdYdZ

ð13Þ

The above integration is solvable and the results are
shown in appendix A. Equation (11) is an ordinary dif-
ferential equation of second order, thus its solution con-

sists of homogeneous Ah
mnk τð Þ and particular solution

Ap
mnk τð Þ [49]:

Amnk τð Þ ¼ Ah
mnk τð Þ þ Ap

mnk τð Þ ð14Þ

The homogeneous solution is expressed as follows:

Ah
mnk τð Þ ¼ Ah1

mnk þ Ah2
mnk ¼ e− 1þζð Þτ Bmnkcos αmnkτð Þ þ Cmnksin αmnkτð Þð Þ γmnk > 0

Ah
mnk τð Þ ¼ Ah1

mnk þ Ah2
mnk ¼ e− 1þζð Þτ Bmnk þ Cmnkτð Þ γmnk ¼ 0

Ah
mnk τð Þ ¼ Ah1

mnk þ Ah2
mnk ¼ e− 1þζð Þτ Bmnkcosh αmnkτð Þ þ Cmnksinh αmnkτð Þð Þγmnk < 0

8<
:

ð15Þ

where αmnk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ζð Þ2− mπ

L

� �2 þ nπ
L

� �2 þ μkð Þ2 þ 4ζ
� �r

and

γmnk ¼ 1þ ζð Þ2− mπ
L

� �2 þ nπ
L

� �2 þ μkð Þ2 þ 4ζ
� �

:

The particular solution can be found based on homoge-
neous solution, by the method of variation of parameters as
follows [50–59]:

Ap
mnk τð Þ ¼ Ah1

mnk∫ −
Ah2

mnkRmnk τð Þ
W Ah1

mnk;A
h2
mnk

� �
 !

dτ

þ Ah2
mnk∫

Ah1
mnkRmnk τð Þ

W Ah1
mnk;A

h2
mnk

� �
 !

dτ ð16Þ

where W Ah1
mnk;A

h2
mnk

� �
is the Wronskian of the homogeneous

solutions:

W Ah1
mnk;A

h2
mnk

� � ¼ Ah1
mnkA

h2
mnk

0
−Ah2

mnkA
h1
mnk

0
ð17Þ

Thus, the particular solution can be expressed as follows:

Ap
mnk τð Þ ¼ e− 1þζð Þτ

αmnk
sin αmnkτð Þ ∫

τ

0
e 1þζð Þτcos αmnkτð ÞRmnk τð Þdτ

� �
− cos αmnkτð Þ ∫

τ

0
e 1þζð Þτsin αmnkτð ÞRmnk τð Þdτ

� �� �
γn > 0

Ap
mnk τð Þ ¼ e− 1þζð Þτ τ ∫

τ

0
e 1þζð ÞτRmnk τð Þdτ

� �
− ∫

τ

0
τe 1þζð ÞτRmnk τð Þdτ

� �� �
γn ¼ 0

Ap
mnk τð Þ ¼ e− 1þζð Þτ

αmnk
sinh αmnkτð Þ ∫

τ

0
e 1þζð Þτcosh αmnkτð ÞRmnk τð Þdτ

� �
− cosh αmnkτð Þ ∫

τ

0
e 1þζð Þτsinh αmnkτð ÞRmnk τð Þdτ

� �� �
γn < 0

8>>>>>>><
>>>>>>>:

ð18Þ

Then, by applying the initial conditions, the time-dependent

coefficient of Amnk(τ) reduces to the particular solution Eq. (18).

Hence, θ(X, Y,Z, τ) will obtain from Eq. (10) and a closed form

analytical solution of hyperbolic Pennes bioheat (Eq. (6)) will

achieve for spatial and the temporal evolution of temperature

distributions during laser moving thermotherapy.

For demonstration of the solution, the kidney and skin tis-
sues were modeled. The thermophysical properties and the
optical properties for each tissue are summarized in the
Table 1 which is based on the literature. For the convergence
of the solution, 100 terms of the Eq. (10) solution series were
calculated.

(18)
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Prediction of thermal damage

Estimation of tissue thermal damage is necessary to optimize
laser treatment, increase the efficacy of each treatment ses-
sions, and minimize the total number of required treatment
sessions. Arrhenius equation for evaluating the thermal dam-
age of biological tissues was used as follows [63]:

Ω X;Y;Z; τð Þ ¼ ∫
τ

0
A0exp −

Ea

RT X;Y;Z; τð Þ
	 


dτ ð19Þ

where R= 8.314 J/(mol K) is the universal gas constant; T is
the tissue absolute temperature. A0 is the frequency factor and
Ea is the activation energy of protein denaturation reaction.
These parameters are dependent on the type of tissue. Due to
the lack of available data on the properties of damaged tissue,
similar material properties were assumed for the healthy and
the thermally damaged tissue.

The damage function Ω(X, Y, Z, τ) was obtained by evalu-
ating the right-hand side of Eq. (19) at any time and position in
the tissue. The criteria for the thermal damage of tissue are
assumed to be 40 °C to represent comfort, 60 − 100 °C for
coagulation, 100 °C for vaporization, and greater than 100 °C
for carbonization [64]. On the other hand, temperatures above
100 °C can lead to tissue boiling and cavitation and can cause
undefined and unpredictable lesion growth. Increase ofΩ over
the value of 1 leads to higher degree of burn and complete
necrosis of the tissue [60].

Validation

Experimental validation was performed by irradiating excised
pig skin tissue with a Gaussian-shaped spot size laser and
calculation of the surface temperature results. Experimental
results of Museux et al. [65] were used to validate the present
mathematical model and analytical results. Figure 2 shows the
temperature profiles of the hyperbolic bioheat model and ex-
perimental analysis. Good agreement (error less than 5%) be-
tween the analytical result and the obtained data from in vivo
experiment is seen. Due to the natural convection, evaporative
cooling and water vaporization heat loss, the difference of the
predicted temperature and the measured one is observed.

Results

In this study, the influences of five parameters such as laser
moving velocity (v), laser intensity (σ), absorption and scat-
tering coefficient (μ = μa + μs), tissue perfusion rate (ωbÞ: and
thermal relaxation time (τq) have been investigated. The laser
beam was considered to impact on the top surface and moved
on a path with beginning point of (l/6, l/2, 0) as shown in
Fig. 1. The solution is depicted as temperature contours of
kidney tissue surface plane at some steps of laser movement
with velocity=0.01 (ms−1) in Fig. 3. Also, the temperature
contours of the vertical middle plane of kidney tissue beneath
the moving path are shown in Fig. 4. The zones with the
highest temperature value occurred in the laser beam concen-
trated hot spot. The maximum temperature of the tissue at the
center of the spot zone reached to 110 °C.

The most important objective of clinical thermal therapy is
to achieve an efficient treatment outcome without damaging
normal tissues. Hence, Figs. 5 and 6 illustrate the thermal
damage contours of the surface plane and the vertical middle
plane of kidney tissue.

The behavior of the temperature profiles for some different
treatment times at moving path on the surface plane of kidney
tissue is shown in Fig. 7. The temperature increases eventually
to a final distribution from the beginning of heating. However,
as time passes, the temperature gradient becomes weaker. At

35
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36

36.5

37

37.5
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39

0 10 20 30 40 50 60

T 
(

)

t (s)

Experimental [65]

Presented hyperbolic bioheat model

Fig. 2 Comparison of hyperbolic bioheat model temperature history with
experimental result

Table 1 Applied values of tissues and laser parameters [32, 35, 36, 38, 60–62]

k (W/mK) ct (J/kgK) ρt (m
2/s) αt (kg/m

3) cb (J/kgK) ρb (kg/m
3) ϖb (s

−1) 10−3 τq (s) μ (m−1) σ (m) A0 (s
−1) Ea(kJ/

mol)

Kidney 0.556 3830 1060 1.37 × 10−7 3770 1060 61 10 40 0.1 3.2 × 1038 256

Skin 0.235 3600 1190 5.48 × 10−8 3770 1060 1.87 10 40 0.1 3.1 × 1098 627
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Fig. 3 Temperature contours of surface plane (Z = 0) of kidney tissue
under the moving laser with v = 0.01 (ms−1)
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Fig. 4 Temperature contours of vertical middle plane (Y = 0.5) of kidney
tissue under the moving laser with v = 0.01 (ms−1)
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Fig. 5 Thermal damage contours of surface plane (Z = 0) of kidney tissue
under the moving laser with v = 0.01 (ms−1)

Fig. 6 Thermal damage contours of vertical middle plane (Y = 0.5) of
kidney tissue under the moving laser with v = 0.01 (ms−1)
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higher treatment temperatures, the temperature profiles are
much steeper.

The thermal interaction of laser irradiation with biological
tissues is quantified by the thermal dose accumulated in the
tissue, which can be identified from the time history of tem-
perature during laser irradiation. Hence, the temperature time
history of kidney tissue under the heating path is shown in
Fig. 8. The time lag for reaching the temperature gradient to
the upper point of the moving path, which is one of the char-
acteristic properties of hyperbolic temperature profiles, is seen
in Fig. 8.

The effect of moving velocity of heat source on the tem-
perature profiles is shown in Figs. 9 and 10. Due to the lower
time of heat absorption of the moving source with higher
velocity, increasing of laser moving velocity leads to decrease
of tissue temperature amplitude. Also, Fig. 11 shows the in-
fluence of the heat source moving velocity on the thermal
damage of kidney tissue. The thermal damage decreases with
the increase of the velocity of moving heat source.

The spatial distribution of the tumor therapy laser beam is
another important parameter for efficient delivery of thermal
energy to targeted tissues. Hence, the effect of concentration
factor of laser heating function (σ) on the temperature distri-
bution and thermal damage is shown in Figs. 12 and 13.
Increasing laser concentration due to smaller values of σ in
the laser distribution function leads to focus of absorbed heat
in the smaller point of the tissue and as a result, higher tem-
perature is produced.

The laser must penetrate into the tissue and release the
thermal energy at a specific target to achieve tissue coagula-
tion. Hence, studying the effects of absorption and scattering
parameters (μ) of laser function is conducted. The depth tem-
perature profile in vertical path of tissue middle point is plot-
ted in Fig. 14 under the same laser moving velocity and three
(40, 200, 2000) values of μ.

Blood perfusion plays an important role in thermoregula-
tion of living tissues, regulating and controlling tissues tem-
perature in biological transmission. To investigate the effect of
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Fig. 7 Temperature profiles of kidney tissue in various times; v =
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perfusion term on temperature distribution, the comparison of
skin and kidney temperature and thermal damage time history
are shown in Figs. 15 and 16 under the same heating
conditions.

Since various values for relaxation time (8–16 (sec)) of
biological tissues were reported in the literature [67–69],
for showing the effect of the relaxation time (τq) on tem-
perature profile, three values of 8, 10, and 16 are com-
pared for Kidney tissue in Fig. 17. Due to the inertial
effect of hyperbolic temperature profiles in balance of
heat flux and temperature gradient, increase of τq may
lead to increase of temperature amplitude and the cooling
rate decreases drastically.

Discussion

Kidney tissue temperature contours (Figs. 3 and 4) demon-
strate that the heat transfer within the tissue is due to heat
conduction, blood perfusion, and power absorption. Since
the value of the tissue conductivity is low, the distribution of

tissue temperature in the outside of the laser spot is very small.
The movement of the laser source leads to stretching of the
affected zone against the moving direction. The depth of af-
fected zone and the wavy behavior of temperature profiles in
depth, which are due to the hyperbolic modeling of bioheat
equation, can be seen in contours of Fig. 4. Penetration of the
temperature field into the tissue is obvious from the pattern of
the isotherms which move into the interior of the tissue with
time increasing.

Necrosis and ablation of tissues initiate at 45 ° C. Heat de-
position of tissue causes it to swell, and extensive heating
makes tissue dehydration, which can lead to tissue shrinkage
and coagulation. Figures 5 and 6 illustrate that the thermal
damage increases due to decrease of laser moving velocity.
The damaged zone has an elliptical shape according to the
laser distribution function. The iso-lines which are located
closest to the surface, representing the highest damage and
those that are located deeper into the tissue, representing lower
damage value. The highest damage value (Ω = 2.2 × 104) is
reached at the end of treatment on the tissue surface.

To examine the treatment process, temperature profiles of
different treatment times and temperature time history are
shown in Figs. 7 and 8, respectively. They illustrate that the
temperature increases rapidly in the early time of heating,
reaches a peak value, and then decreases gradually toward
steady state. This is because the laser power is absorbedwithin
the kidney tissue and increases the tissue temperature, but the
peak temperature is controlled by the internal convective role
of tissue perfusion rate and convective boundary condition on
the top surface of the tissue. The results of Fig. 8 demonstrate
that the tissue maximum temperature value is over 45 °C,
which is capable of destroying kidney tissue tumor. Since
the temperature greater than 100 °C is recorded in the tissue,
the vaporization of water and mechanical destruction of tissue
will occur very rapidly under laser ablation.

Laser intensity control is crucial to prevention of tissue
damage (keeps normal tissue temperature surrounding the
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tumor below 45 ° C). It is interesting to observe that the
hotspot zone which is produced under laser point in the tumor
leads the higher temperature of tumor from nominal tissue.
Figures 12 and 13 demonstrate that lower value of σ which
means the more concentrated heating source leads to higher
temperature amplitude and smaller radius of affected zone.
The increase of σ leads to larger heated spot diameters and
causes greater fragmentation, but also may lead to decrease of
the maximum central temperature. Thus, the different values
of σ could affect the treatment thermal damage. The thermal
damage intensity with σ = 0.2 is much smaller than that of σ =
0.1. This showed that scenarios of efficient laser treatment
should be controlled by all of parameters in different dose of
treatment.

Another important parameter of laser treatment is the sum-
mation of absorption and scattering coefficients. Since this
parameter presented in the decreasing exponential function
as e−μz, increasing of μ leads to decrease of absorbed heat
and the temperature amplitude decreases (Fig. 14). Increasing

of μ to very high values may lead to very small calculated
number and may produce oscillation in the temperature pro-
files. As the waves propagated through the tissue, their mag-
nitude decreased. In other words, the temperature gradient is
steep near the tissue surface but diminishes rapidly with in-
creasing tissue depth.

As laser increases the temperature of tissue, blood vessels
count as heat sinks by dissipating the heat to the surrounding
tissue. Loss of heat through blood perfusion is proportional to
the amount of blood perfusion [28]. The level of blood perfu-
sion varies greatly from body types and physiological condi-
tions [66]. Increasing of perfusion term leads to decrease of
temperature variation (Figs. 15 and 16). Due to the convective
role of the perfusion term in the Pennes bioheat equation, the
blood perfusion term contributes strongly to temperature
changes of the tissue. At first, temperature increases and then
decreases due to cooling by blood perfusion. The temperature
amplitude is higher for skin with lower perfusion term com-
pared with kidney tissue. Lower blood perfusion leads to low-

Fig. 13 Thermal damage
contours of kidney tissue due to
various spot radius (σ) of moving
heat source at τ = 0.66 and v =
0.01 (ms−1)

10

30

50

70

90

110

0 0.2 0.4 0.6 0.8 1

T 
(

)

Z

µ=40

µ=200

µ=2000

Fig. 14 The effect of μ on kidney tissue temperature profile; τ = 0.16 and
v = 0.01 (ms−1)

30

50

70

90

110

130

150

170

0 0.2 0.4 0.6 0.8 1

T 
(

)

Kidney

Skin

Fig. 15 Comparison of the kidney and skin tissue temperature history in
X = 0.2 and v = 0.01 (ms−1)

593Lasers Med Sci (2021) 36:583–597



er heat sink effect and in turn enhances the maximal thermal
dosage required for necrosis Fig. 16).

Conclusion

The three-dimensional hyperbolic Pennes bioheat equation
under moving laser irradiation was solved analytically based
on the Eigen value method. Comparisons with results of
in vivo experimental showed the good prediction of presented
closed form solution. The parametric study illustrated that the
amplitude, shape, and size of the temperature distribution and
thermal damage could be controlled by appropriately selecting
laser velocity, intensity, absorption, and scattering coeffi-
cients. The higher perfusion rate of kidneys compared with

skin may lead to lower induced temperature amplitude in
moving path of laser. Due to the convective role of the perfu-
sion term in the Pennes bioheat equation, higher perfusion rate
caused to decrease temperature variation and produce more
uniform temperature profile in kidney tissue. Moreover, the
increase in both blood perfusion rate at the periphery of coag-
ulation region and thermal properties for rising in temperature
reduced the thermal damage and its hysteresis. Furthermore,
increase of laser moving velocity leads to decrease of tissue
temperature amplitude and the thermal damage due to the
lower chance of heat absorption for the moving source with
higher velocity. Also, the effect of concentrated laser spot on
the tissue which caused higher temperature amplitude and
smaller radius of affected zone can be investigated by the
presented model. The presented closed-form solution could
be applied to measure laser parameters in real to provide a
better insight of how to set the parameters to achieve better
therapeutic outcomes resulting from clinical laser treatment.
Finally, the exact analytical solution can be used as a valida-
tion for numerical solutions of biological tissues surgery under
moving heat source such as laser cutting tools, bone drilling,
and neurosurgery bone grinding in future works. However, it
is important that the temperature dependence of the tissue
optical and thermal properties should be incorporated in future
studies.
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Nomenclature n, Fourier counter; q, Heat flux vector; t, Time (s); x,
Cartesian coordinate (m); y, Cartesian coordinate (m); z, Cartesian coor-
dinate (m); v, Constant velocity (ms−1); l, Dimension of biological tissue
(m);Q, Heat source function; P, Constant power; Pr, Reference power; T,
Temperature (°C); Tb, Blood temperature (°C); Ct, Tissue specific heat
(JKg−1 °C−1); Cb, Blood specific heat (JKg

−1 °C−1); Tm, Reference tem-
peratures (°C); h, Dimensionless convection coefficient; X,
Dimensionless coordinate; Y, Dimensionless coordinate; Z,
Dimensionless coordinate; w, Propagation speed (ms−1)

Greek symbols α, Thermal diffusivity (m2s−1); μ, Absorption depth
coefficient(m−1); ρt, Tissue density (Kgm−3); ρb, Blood density (Kgm−3);
ϖb, Blood perfusion rate (s

−1); κ, Thermal conductivity (Wm−1 °C−1); τq,
Thermal relaxation time(s); σ, Spot radius(m); τ, Dimensionless time; θ,
Dimensionless temperature

1E-10
1E-09
1E-08

0.0000001
0.000001

0.00001
0.0001

0.001
0.01

0.1
1

10
100

1000
10000

100000

0 0.2 0.4 0.6 0.8 1

Kidney

Skin

Fig. 16 Comparison of the kidney and skin tissue thermal damage history
in X = 0.2 and v = 0.01 (ms−1)

30

50

70

90

110

130

150

0 0.2 0.4 0.6 0.8 1

T 
(

)

X

q=8
q=10
q=16

Fig. 17 Comparison of the temperature profiles due to various tissue
relaxation times at τ = 0.66 and v = 0.01 (ms−1)

594 Lasers Med Sci (2021) 36:583–597



Appendix

The simplified relation of Rmnk(τ) is as follows:
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