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Abstract
This work proposed the diagnosis of iron deficiency anemia (IDA) and sickle cell disease (SCD) in human blood caused by iron
deficiency and hemoglobin S (HbS), which are among the most common anemias, by means of Raman spectroscopy. Whole
blood samples from patients diagnosed with IDA and HbS, as well as from normal subjects (HbA), were obtained and submitted
to Raman spectroscopy (830 nm, 150 mW, 400–1800 cm−1 spectral range, 4 cm−1 resolution). Difference spectra of IDA–HbA
showed spectral features of hemoglobin with less intensity in the IDA, whereas the difference spectra of SCD–HbA showed
spectral features of deoxyhemoglobin increased and of oxyhemoglobin decreased in SCD. An exploratory analysis by principal
components analysis (PCA) showed that the peaks referred to oxy- and deoxyhemoglobin markedly differentiated SCD and
HbA, as well as the increased amount of hemoglobin features in the SCD group, suggesting increased erythropoiesis. The IDA
group showed hemoglobin features with lower intensities as well as peaks referred to the iron bonding to the porphyrin ring with
reduced intensities when compared to the HbA. Discriminant analysis based on partial least squares (PLS-DA) and PCA (PCA-
DA) showed that the IDA and SCD anemias could be discriminated from the HbA spectra with 95.0% and 93.8% of accuracy, for
the PLS and PCA respectively, with sensitivity/specificity of 93.8%/95.7% for the PLS-DA model. The iron depletion and the
sickling of erythrocytes could be identified by Raman spectroscopy and a spectral model based on PLS accurately discriminated
these IDA and SCD samples from the normal HbA.
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Introduction

Anemia is a syndrome characterized by a decrease in the
quantity of red blood cells, normally associated to reduction
of hemoglobin levels or changes in the red blood cell mor-
phology, which leads to a clinical scenario of low-oxygen
supply for tissues (hypoxia) as a result of the reduced oxygen
transport capacity of the bloodstream [1]. An anemic individ-
ual has a variety of physiological changes as a consequence of
the reduction in the red blood cells; at the center of these

changes are compensatory responses of the organism itself
to anemia that, within limits, help preserve the oxygen supply
to the tissues. One of the compensatory mechanisms is asso-
ciated with increased kidney erythropoietin synthesis, which
stimulates the bone marrow to produce the red blood cell [2].

There are numerous types of anemia; among the majors
stand out the iron deficiency anemia (IDA) and the sickle cell
disease (SCD); the first is the most prevalent nutritional dis-
ease in the world and is the most severe form of lack of iron
[3]. The second is the most common hereditary monogenic
disease in the world with the most damaging consequences for
the body and is caused by sickling of red blood cells due to
changes in an amino acid in the hemoglobin chain [4]. One of
the most serious complications of SCD is high blood pressure
in the blood vessels supplying the lungs, thus inducing pul-
monary hypertension that occurs in about one-third of adults
with SCD and can lead to heart failure [5]. The World Health
Organization estimates for 2008 indicated that IDA would
affect about 1.62 billion people worldwide [3], whereas the
number of people affected by sickle cell disorders in 2003 is
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on the order of 2.3 per 1000 conceptions [6]. In Brazil, the
prevalence of IDA in 2006 was 20.9% for children below 5
years of age and 24.1% for children below 2 years of age; in
women of childbearing age, the prevalence was 29.4% [7].
Regarding the SCD, it affects mainly African descendants,
but it is not exclusive to this population due to the evident
racial miscegenation that occurs in Brazil [8]. The incidence
of SCD is approximately 1–3/1000 live births; in states such
as Bahia, where African ancestry predominates, this rate
reaches 1/650 newborns [9].

The IDA caused by iron deficiency presents a higher prev-
alence in women and children. IDA can impair mental and
psychomotor development, causes increased maternal and in-
fant morbidity and mortality, as well as a decrease in the indi-
vidual’s performance at work and reduction of infection’s re-
sistance [10–12]. The major risk factors for IDA include low
intake of iron, poor absorption of iron from diets with high
phytate or phenolic compounds, and period of life when iron
requirements are especially high, for example, during the pe-
riod of growth and pregnancy [3]. The SCD is a genetic dis-
order where the amino acid glutamic acid is substituted by
valine in the hemoglobin β chain, causing a “sickling”
(falcization) of the erythrocytes as a consequence of the expo-
sure of these cells to a low 3O2 tension. The normal HbA is
present in erythrocytes after the initial 6 months of life and
throughout the adult phase, being composed of two pairs of
polypeptide chains (α2/β2). Hemoglobin S (HbS) is the result
of abnormal mRNA template and the abnormal βS globin
chain complexes with α chains to form the sickle hemoglobin
tetramer (α2β

S
2) [13]. Other hemoglobin variants also include

hemoglobin C and E as well as thalassemia that also leads to
hemoglobinopathies [14].

The diagnosis of anemia is based on the patient’s history
and laboratory evaluation, by analyzing the amount of hemo-
globin and the number of erythrocytes in whole blood [15]. As
IDA is due to the lack of sufficient iron to form normal red
blood cells, it is characterized by microcytosis, hypochromia,
and low level of circulating iron [16]. Serum ferritin is cur-
rently the accepted laboratory test for diagnosis of IDA, and a
ferritin value < 12 mg/L is a highly specific indicator of iron
deficiency [17]. Other laboratory tests used are serum iron,
total iron binding capacity, mean corpuscular volume, and
transferrin saturation [18–21]. The most employed tests for
the diagnosis of SCD include hemoglobin electrophoresis,
dithionite solubility tube test for sickling hemoglobin, and
metabisulfite slide test. The peripheral smear test normally
presents fragmented red cells, polychromasia, and sickle cells.
Other methods include HPLC, DNA analysis, and isoelectric
focusing [22].

Due to the impact of the anemias to the individual’s health
and also to the demanding public health services, since un-
treated anemias can lead to complications that result in irre-
versible brain damage, such as dementia, loss of brain

function, and cardiovascular problems (cerebrovascular acci-
dent mainly for the HbS carrier) [23], and due to the relative
complex steps to reach the diagnosis of the HbS, there is a
need for a method to directly identify such diseases in the
whole blood without laborious preprocessing of the samples.
Optical techniques such as Raman spectroscopy can help in
the development of an in situ, real-time, and low-cost diag-
nostic tool for direct analysis of biological tissues including
blood analysis [24].

Raman spectroscopy technique is based on the inelastic
scattering of the incident monochromatic light by a polariz-
able molecule and has been used in the evaluation of blood
and serum, aimed at the quantification of analytes in serum
[25, 26] and diagnosis of SCD in hemolyzed blood samples
[27]. Atkins et al. [28] have highlighted the potential of using
Raman spectral information from the vibrational energy levels
of the molecules for the differentiation between healthy and
altered blood and blood components aiming diagnosis and
forensic applications. In fact, Raman spectroscopy can pro-
vide the vibrational “fingerprint” of the most important bio-
chemicals related to the diseases [24, 29–31] and also reflect
the changes in the spectrum due to the oxygenation status of
the erythrocytes [32, 33].

Due to the need of different techniques to identify these two
types of anemia (electrophoresis and spectrophotometer), this
study proposed the use of whole blood samples to identify the
biochemical differences between whole blood samples from
patients with IDA and SCD compared to the blood of HbA
subjects by means of Raman spectroscopy and principal com-
ponents analysis (PCA), to explain the spectral changes relat-
ed to the oxygenation status of the erythrocytes and to pro-
mote the discrimination of the IDA and SCD from the normal
HbA using discriminant analysis models via partial least
squares (PLS) and PCA (PLS-DA and PCA-DA).

Material and methods

The study has been approved by the Research Ethics
Committee of Universidade Brasil (Fernandópolis, SP,
Brazil) under Protocol No. 1.578.298 (CAAE No.
53543516.4.0000.5494). A total of 87 samples of whole blood
were obtained, being 28 from HbA, 26 from IDA and 33 from
SCD subjects. These samples were obtained from the Instituto
de Hematologia de Fernandópolis (Fernandópolis, SP, Brazil)
by an expert hematologist after the standard diagnosis by elec-
trophoresis (for the SCD) and serum ferritin (for the IDA).
Briefly, approximately 4.5 mL of total blood was collected
from each patient with anticoagulant (10% EDTA) to preserve
the erythrocytes from the action of coagulation factors and to
maintain the erythrocyte physicochemical characteristics. The
samples were snap-frozen and kept at – 20 °C prior to spectral
analyses for approximately 2 weeks to maintain the molecular
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viability of hemoglobin, being transported to the Raman
Laboratory using adequate container to keep the temperature
between – 20 and − 15 °C. At the time of spectral analysis,
these samples were kept to passively reach room temperature
(23 °C) and then were subjected to Raman spectroscopy.

A dispersive Raman spectrometer was used (model
Dimension P1, Lambda Solutions Inc., MA, USA) with
830-nm laser excitation and 350-mW maximum power, con-
nected to a Raman probe (model Vector Probe, Lambda
Solutions Inc.) for sample excitation and scattering collection.
The spectrometer has a resolution of about 4 cm−1 in the
Raman shift range of 400–1800 cm−1 (fingerprint region). A
volume of 80 μL of blood was pipetted in an aluminum sam-
ple holder with round-shape wells and the sample was
scanned with 3-s exposure time and 10 acquisitions. The laser
power was reduced to 150 mW at the probe’s distal
(excitation) end to avoid burning of blood due to the absorp-
tion of the excitation light, which could coagulate the blood.
Triplicate spectra were obtained from each blood sample, be-
ing these spectra treated as different samples in the further
discriminant analysis models. A total of 261 spectra were
collected. Some spectra (n = 3) were removed due to the
signal-to-noise ratio lower than 10, estimated in the spectral
region of 1400–1600 cm−1, therefore, the number of useful
spectra was 258.

After collection, the spectra were pre-processed to remove
spikes from cosmic rays, to remove the Raman background
(mostly due to fluorescence from blood molecules) by fitting
and subtracting a 7th order polynomial over the whole spec-
trum in the range of 400–1800 cm−1 Raman shift, and to
normalize by the area under the curve (1-norm or taxicab
norm) [34]. The mean spectra of each group were calculated
and the difference spectra between HbA and IDA and between
HbA and SCD were calculated. These spectra were then plot-
ted for the purpose of finding the gross differences between
the anemias and the HbA.

An exploratory analysis was performed using PCA
(princomp.m function, MatLab 7.4, The Mathworks Inc.,
Natick, MA, USA), where the principal component loading
vectors and scores were used to identify which spectral fea-
tures were different between the three groups and to assign
these features to the blood constituents referred to the HbA,
IDA, and SCD. The loading resembles Raman spectra and the
first loadings give the Raman features with the highest vari-
ance in the dataset (in fact they account for much of the var-
iability of the dataset), while the scores provide the intensities
of these loadings in each spectrum [35]. Therefore, the Raman
features found in a specific loading can be assigned to a par-
ticular or a group of biochemicals presented in the samples, or
spectral changes due to the changes in the polarizability of the
“new chemical environment” caused by a disease, and high
scores in a particular group indicate that these features, mean-
ing biochemicals or changes in the “environment,” are high in

this group. Then the differences in the biochemical constitu-
tion or biochemical environment between HbA and anemias,
as well as the differences between the anemias, can be pre-
cisely identified and can also be quantified.

Discriminant analysis (DA) models based on partial least
squares (PLS-DA) and PCA (PCA-DA) were also performed
in order to discriminate the IDA and SCD samples from the
HbA samples. The discriminant models group the samples
according to the biochemical/environmental differences found
in the PCA described by the loadings and scores (for the PCA-
DA), and differences in the latent variables (for the PLS-DA).
While in the PCA-DA model, the grouping is based on the
optimization of the inter-group differences in the scores; in the
PLS-DA model, the grouping is optimized using the inter-
group differences while estimating the intra-group differences
[36]. The DA models were developed with the aid of the
Chemoface software [37] using the “leave-one-out” cross-
validation (LOOcv) approach, where a sample is withdrawn
from the dataset, the model is built, and the left-out sample is
tested, being this procedure repeated for all samples. DA
models using LOOcv have advantages when the number of
samples per group is not big enough to allow the split of the
data into training and validation dataset. The LOOcv has been
used to discriminate Raman spectra of bone marrow smear
and peripheral blood from subjects with acute myeloid leuke-
mia and myelodysplastic syndrome [38] and to discriminate
skin cancer and keratosis from normal skin sites with Raman
spectra taken ex vivo and in vitro [39].

Results and discussion

Raman spectra of blood with IDA, SCD, and normal
blood (HbA)

Figure 1 shows the normalized Raman spectra of blood sam-
ples: iron deficiency anemia (IDA), sickle cell disease (SCD)
and normal HbA. The spectra present Raman bands referred to
the human blood constituents—cells (mainly erythrocytes and
also leucocytes and platelets) and plasma (mainly albumin and
other minor constituents)—which present Raman vibrational
band assignments as described elsewhere [28, 32, 33, 40–44].
Despite the very similar spectral features, there were observ-
able differences in the 753 and 1004 cm−1 and in the regions
of 1130–1230 cm−1, 1350–1410 cm−1, and 1520–1650 cm−1.
Difference spectra of IDA and HbA (IDA–HbA) and of SCD
and HbA (SCD–HbA) are also presented, showing that the
mentioned peaks were increased or reduced depending on
the type of anemia.

The difference spectra in Fig. 1 showed that both IDA and
SCD presented lower intensity for the peaks at 1227, 1375,
and 1406 cm−1, which can be assigned to oxyhemoglobin [33,
45, 46]; the IDA presented lower intensity for the peaks at

Lasers Med Sci (2020) 35:1065–1074 1067



753, 1567, 1622, and 1644 cm−1, assigned to the hemoglobin
molecule [46–50] and higher intensity for the peak at 1131
cm−1, assigned to the pyrrolic ring of the porphyrin; the SCD
presented lower intensity for the peak at 1004 cm−1, assigned
to aromatic ring of amino acids (phenylalanine) [51], and
higher intensity for the peaks at 1215, 1358, 1526, 1547,
and 1622 cm−1, assigned to deoxyhemoglobin [45, 46, 50].
All of these labeled peaks showed statistically significant dif-
ferences when comparing the three groups (HbA, IDA, and
SCD) (one-way ANOVA test, p < 0.05). Detailed analysis of
these spectral differences is presented in the exploratory anal-
ysis of the “Differences in the spectra of IDA and SCD com-
pared to HbA observed by principal component analysis”
section.

Differences in the spectra of IDA and SCD compared
to HbA observed by principal component analysis

An exploratory analysis by principal component analysis
(PCA) revealed the differences in the spectral features of
IDA and SCD compared to HbA furnished by the principal
component loadings. Figure 2 presents the first four principal
component loadings and the respective scores, which
accounted for more than 98% of the spectral variation in the
dataset (principal components 1, 2, 3, and 4: 84.3%, 2.5%,
1.4%, and 0.8%, respectively). The number of spectral fea-
tures revealed by the loadings suggests specific biochemical
changes caused by both types of anemia compared to HbA.
The loading vector 1 (Loading 1) presents the spectral features
referred to whole blood [28, 41, 44, 46], with positive peaks at
753, 1004, 1215, 1227, 1358, 1375, 1406, 1526, 1547, 1567,

1622, and 1644 cm−1 assigned to blood cells (mainly erythro-
cytes) [28, 41] and plasma constituents (mainly albumin) [44].
The Score 1 showed statistically significant differences be-
tween the groups IDA versus HbA, SCD versus HbA, and
IDA versus SCD (one-way ANOVA, Tukey posttest, p <
0.05), with lower intensity for the IDA and higher intensity
for the SCD. The lower Score 1 for the IDA can be explained
by the fact that Loading 1 presents peaks referred to erythro-
cytes, as the iron deficiency disease is characterized by the
reduction of the produced erythrocytes by lack of iron. With
regard the SCD group, the increased Score 1 may indicate that
the erythrocytes are in higher amounts, suggesting that a com-
pensative mechanism of erythropoiesis is acting at the marrow
level, probably due to the low tissue oxygenation, microvas-
cular occlusion, or lack of function of the erythrocytes in the
HbS hemoglobin. Jelkmann [52] showed elevated erythropoi-
etin in SCD due to microvascular occlusion associated with
hypoxia.

The loading vector 2 (Loading 2) presented positive spec-
tral features at 1004, 1375, and 1644 cm−1, which can be
assigned to hemoglobin and oxyhemoglobin [33, 46, 50,
51], and negative spectral features at 753, 1215, 1358, 1526,
and 1547 cm−1, which can be assigned to deoxyhemoglobin
[33, 41, 45, 46, 50]. The Score 2 showed statistically signifi-
cant differences for the SCD versus HbA and SCD versus
IDA (one-way ANOVA, Tukey posttest, p < 0.05), with pos-
itive values for the HbA and IDA and negative values for the
SCD. Negative loading and negative score indicate that the
spectral features assigned to deoxyhemoglobin are significant-
ly higher in the SCD group. The peaks of deoxyhemoglobin
(753, 1215, 1358, 1526, and 1547 cm−1) present a higher

Fig. 1 Mean normalized Raman spectra of whole blood samples from
normal (HbA), iron deficiency anemia (IDA) and sickle cell disease
(SCD) obtained from 87 subjects. All spectra present the Raman
features of blood as reported by the literature (red and white blood cells
as well as compounds of the plasma) [27, 31, 32, 39–43] and the
assignments of the most relevant bands (bold labels) are presented in
the text (Differences in the spectra of IDA and SCD compared to HbA

observed by principal component analysis section). The difference
spectra IDA–HbA and SCD–HbA are also presented, where the bold-
labeled peaks represent the main biochemical differences in the SCD
and IDA versus HbA, also discussed in the text (Differences in the
spectra of IDA and SCD compared to HbA observed by principal
component analysis section)
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intensity for the SCD compared to the hemoglobin and oxy-
hemoglobin peaks that presented higher intensity in the HBA
and IDA groups. This is interesting because the formation of
deoxy-sickle hemoglobin polymers is directly related to the
degree of oxygen desaturation, which is a known component
of SCD [52]. The decrease in oxygen desaturation results from
the marked shift to the right of the oxyhemoglobin dissocia-
tion curve that frequently appears in the sickling of the red
blood cells in the SCD. A right-shifted curve follows in a

reduction of affinity between oxygen and hemoglobin that is
considered a defense mechanism to improve oxygen delivery
to the tissues in the presence of anemia [53]. Score 2 shows
that the intensity of these peaks is significantly altered in the
SCD. Changes in the shape of erythrocytes (discoid red blood
cells can be transformed into echinocyte or stomatocyte
shape) lead to change in the oxygen affinity, and it was dem-
onstrated that changes in hemoglobin oxygenation lead to
changes in the Raman peaks referred to hemoglobin [54].

Fig. 2 Plot of the first 4 principal components loading vectors (left) and
scores (right) used to identify the spectral differences between the HbA,
IDA, and SCD blood samples and to discriminate these samples using the
PLS-DA and PCA-DAmodels. The vertical dashed lines in the Loadings

are in the same positions as the ones presented in Fig. 1. Superscript
letters a, b, and c in the Scores indicate statistically significance (one-
way ANOVA, Tukey post test, p < 0.05) between groups HbA vs IDA,
HbA vs SCD, and IDA vs SCD, respectively
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Atkins et al. [46] showed that these deoxyhemoglobin peaks
increase with the time of storage of blood transfusion bags.
According to this Atkins’s study, the ration between the 1208
and 1222 cm−1 peaks correlated with the “morphology scor-
ing” of the erythrocytes and can be used to monitor blood
oxygenation status after long-term storage. Ward et al. [32]
identified differences in oxy- and deoxyhemoglobin regarded
to the peaks at 1376 and 1385 cm−1, respectively, under “nor-
mal” conditions, being the peak at 1376 cm−1 much more
intense than the 1385 cm−1. In contrast, in hemorrhagic con-
ditions, they noticed an increase in the peak at 1385 cm−1

compared to the peak at 1376 cm−1 due to a reduction in the
red blood cells, close to the IDA condition.

Loading vector 3 (Loading 3) presents positive spectral
features at 753, 1227, 1375, 1406, 1567, 1585, 1622, and
1644 cm−1, all of them assigned to hemoglobin, and negative
features at 1215, 1358, 1526, 1547, and 1607 cm−1 assigned to
deoxyhemoglobin [46–50]. Score 3 presented statistically sig-
nificant differences for the IDA versus both HbA and SCD
(one-way ANOVA, Tukey posttest, p < 0.05), with negative
intensity for the IDA compared to both HbA and SCD. The
negative Score 3 suggests decrease in the amount of iron in the
IDA group since most of these peaks, markedly the peaks at
1375 and 1406 cm−1, assigned to the pyrrolic ring of the por-
phyrin, and the peak at 1227 cm−1, assigned to the C-H
methine deformation of the porphyrin [55], are diminished
in the IDA samples due to the absence of iron (by the iron
deficiency) to bond, by methine bridges, to the pyrrolic mol-
ecules at the porphyrin ring. The peaks at 1585 and 1644
cm−1, assigned to CαCm vibration of the methine ring [42,
49, 56], are also diminished in these IDA samples, which
may be due to the already mentioned decrease in the methine
bonds. Loading vector 4 presented positive features at 753,
1004, 1227, 1406, 1547, and 1567 cm−1, assigned to hemo-
globin [28, 41], and sparse negative features, whereas Score 4
presented not significant differences between the groups (one-
way ANOVA, Tukey posttest, p = 0.08), despite the (not

significant) higher intensity of the oxyhemoglobin features
in the HbA group.

As observed in Fig. 2 (right), the features of Loadings 1 and
3 can distinguish IDA from HbA and SCD, whereas the fea-
tures of Loading 2 can distinguish SCD from IDA and HbA.
This is clearly seen in the binary plot of Score 1 versus Score
2, Score 1 versus Score 3, and Score 2 versus Score 3 (Fig. 3).
These features, related to general hemoglobin features of
blood (Loading 1), being reduced in the IDA and increased
in the SCD (Score 1), related to deoxyhemoglobin (Loading
2), higher in SCD (Score 2), and related to pyrrolic ring and
methine bridge of the porphyrin ring (Loading 3), lower in the
IDA, configures the general biochemical changes related to
IDA and SCD that can be used to biochemically differentiate
these two types of blood anemia by means of Raman
spectroscopy.

Discrimination between HbA, IDA, and SCD blood
samples

Discriminant analysis (DA) models based on PLS and PCA
(PLS-DA and PCA-DA, respectively) that uses the spectral
dataset were developed in order to obtain discrimination between
the three groups: HbA, IDA, and SCD. The PLS-DA model
takes advantage of the PCA-DA model because the PLS uses
the annotated label (in fact the group class number) to maximize
intra-group variance, i.e., maximizing the separation of classes
while reducing the data dimension. The PLS treats the class as
the dependent variable and includes the relationship of the inde-
pendent (spectra) and the dependent variables in its minimiza-
tion. On the other hand, PCA treats all variables equally while
maximizing the between-group variance [36]. In fact, with PLS
one can achieve better discrimination than PCAwhen intra-group
variations are relevant. Discrimination models have been imple-
mented using the Chemoface routine described by Nunes et al.
[37] (download at http://www.ufla.br/chemoface/), where the
inputs are the spectra and the real group (or class) each sample
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Fig. 3 Binary plot of Score 1 vs Score 2, Score 1 vs Score 3, and Score 2
vs Score 3 and the covariance ellipse error that represents the 90%
confidence interval of each group data dispersed over each binary plot.

This plot shows the capability of these Scores to discriminate the SCD
group from the IDA and HbA groups
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belongs, and the outputs are the number of correct classification
per latent variable (for the PLS-DAmodel) or loading vector (for
the PCA-DA model) and the model’s predicted group (or class),
estimated in a “leave-one-out” cross-validation fashion.

Table 1 presents the contingency table with the discrimina-
tion of the spectra into the groups HbA, IDA, and SCD using
the “leave-one-out” cross-validation. It has been shown that
both PLS-DA and PCA-DA promoted the overall accuracy of
78.3% using the first 6 latent variables and the first 6 loading
vectors, respectively. Sensitivity, specificity, and overall accu-
racy values for the discrimination of anemias (SCD and IDA)
from HbA and IDA from SCD and HbAwere also presented
in Table 1. Due to the high confusion of the HbA samples into
the IDA group and vice versa (Table 1), mostly due to the
small spectral differences in these two groups (IDA and
HbA presented lower spectral difference than the SCD and
HbA (Fig. 1)), one can consider grouping the HbA and IDA
and use these two groups as “non-HbS” hemoglobin; there-
fore, the PLS-DA promoted the highest sensitivity, specificity,
and overall accuracy of 92.8, 93.8, and 93.4%, respectively,
compared to the PCA-DA model (both models with 6 latent
variables and loadings) to discriminate subjects with SCD.

The DA model was also developed to discriminate “non-
HbS” hemoglobin (HbA + IDA) from SCD, by grouping the
spectra of HbA and IDA, the contingency table presented in
Table 2 showed that PLS-DA promoted sensitivity, specificity,
and overall accuracy of 93.8%, 95.7%, and 95.0%, respectively,
using the first 3 latent variables, compared to the sensitivity,
specificity, and overall accuracy of 90.7%, 95.7%, and 93.8%,
respectively, for the PCA-DA using the first 6 loading vectors.
Therefore, the PLS model is suitable to better discriminate the
groups by the biochemical changes associated with both anemias

and presenting accuracy as high as 95.0% when discriminating
biochemical changes associated with SCD compared to “non-
HbS” hemoglobin. The employment of the first and second de-
rivative of the Raman spectra in the discriminantmodels changed
only the number of latent variables or loadings used in the
models, without changing the discrimination capability.

Final remarks

The differences in the Raman features of the different types of
anemia revealed by PCAwere related mostly to differences in
the oxygenation status of the hemoglobin (lower oxy- and
higher deoxyhemoglobin) for the SCD and reduction of gen-
eral hemoglobin features and lack of iron in the porphyrin ring
of hemoglobin for the IDA. In fact, most of the differences of
HbS compared to HbA can be related to the difference in the
oxygenation status of the Hb molecule [56]; mainly the in-
creased peaks at 1215, 1358, and 1547 cm−1 and the decreased
peaks at 1227 and 1375 cm−1 with the decrease in the hemo-
globin oxygenation as mentioned by Ward et al. [32], Torres
Filho et al. [33], and Atkins et al. [28]. The differences in the
spectra of IDA compared to HbA, with lower intensity of the
peaks at 753, 1227, 1375, 1406, and 1567 cm−1, can be attrib-
uted to the lack of the iron ion bonded to the porphyrin ring in
the iron deficiency anemia samples, since these peaks are
attributed to the methine bridge and pyrrolic ring in the hemo-
globin [42, 49, 56].

The results described here are in accordance with the recent
literature of Raman spectroscopy applied to the diagnosis of
anemias [27, 43, 57]. De Luca et al. [27] performed the spec-
troscopic and mechanical characterization of normal and thal-
assemic red blood cells by Raman tweezers. Bueno Filho et al.

Table 1 Contingency table
showing the discrimination of the
HbA, IDA, and SCD based on
PLS and PCA discriminant
analysis (PLS-DA and PCA-DA)
considering both anemias as
independent groups

Blood type Discrimination PLS-DA Discrimination PCA-DA

HbA IDA SCD HbA IDA SCD

HbA (84 spectra) 62 16 6 57 14 13

IDA (77 spectra) 23 50 4 21 54 2

SCD (97 spectra) 6 1 90 6 0 91

Number of variables 6 latent variables 6 loading vectors

Overall accuracy 78.3% 78.3%

Sensitivity/specificity* 83.3%/73.8% 84.5%/67.9%

Overall accuracy* 80.2% 79.1%

Sensitivity/specificity** 64.9%/90.6% 70.1%/92.3%

Sensitivity/specificity*** 92.8%/93.8% 93.8%/90.7%

Overall accuracy*** 93.4% 91.9%

*Sensitivity, specificity, and overall accuracy for diagnosis of anemia by grouping the classification data of the
HbS and IDA groups as anemic group versus normal HbA group

**Sensitivity and specificity for diagnosis of IDA by grouping the classification data of the HbA and HbS groups
as a non-IDA hemoglobin group

***Sensitivity, specificity, and overall accuracy for diagnosis of SCD by grouping the classification data of the
HbA and IDA groups as a “non-HbS” hemoglobin group
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[43] proposed a method to discriminate hemolyzed blood
samples diagnosed as SCD from HbA based on PCA scores
andMahalanobis distance, reaching 100% accuracy. Yan et al.
[58] proposed a method based on fiber-enhanced Raman spec-
troscopic analysis to evaluate the biomolecules hematin, he-
moglobin, biliverdin, and bilirubin in whole intact, oxygenat-
ed erythrocytes, thus demonstrating the potential for the diag-
nosis of red blood cell–related diseases, such as different types
of anemia and hemolytic disorders. Wood and McNaughton
[59] proposed a method based on Raman microspectroscopy
to monitor porphyrin perturbation related to the tense-relaxed
state transition of hemoglobin within a single erythrocyte,
illustrating the dynamics of porphyrin perturbation during
erythrocyte respiration with applications in the diagnosis of
red blood cell disorders including thalassemia and sickle cell
anemia. Therefore, Raman spectroscopy shows promising re-
sults for a direct, rapid, and precise analysis of hemoglobin
and red blood cells for disease characterization and diagnosis.

The results are encouraging in proposing the Raman as a
technique for diagnosis of anemias (IDA and SCD) in whole
blood, since high sensitivity, specificity, and accuracy with
respect to the discrimination of both anemias from HbA
(93.8%, 95.7%, and 95.0%, respectively), where a single drop
of peripheral blood could be used to identify the spectral
changes associated to the diseases and a discrimination model
could promote diagnosis. The limitations of the study is relat-
ed to the “not so high” discrimination capability of IDA com-
pared to the HbA, since the remarkable difference between
these two groups is related to the reduced number of erythro-
cytes and microcytic and hypochromic red blood cells in the
IDA samples, which may be challenging to be measured by
the Raman spectroscopymethodology as presented and can be
exploited in future studies aiming differential diagnosis of
IDA and SCD.

Advantages of Raman spectroscopy in detecting the spec-
tral changes associated with SCD and IDA compared to HbA
rests on the no need for preparation of blood samples prior
analysis, fast spectrum collection, and processing, and the
possibility of obtaining biochemical information for real-
time diagnostics with a drop of peripheral blood sample or
even directly in capillary vessels in vivo. The study could be
extended to other types of anemia (for instance the

thalassemia) in order to identify the particular changes in the
Raman features related to each disease.

Conclusion

This study showed that the Raman spectral differences between
iron deficiency anemia (IDA) and sickle cell disease (SCD) com-
pared to normal hemoglobin (HbA) in human blood samples
were related to the lower oxyhemoglobin and higher
deoxyhemoglobin content, as well as the possible high number
of erythrocytes (increased erythropoiesis) in SCD samples, and
low hemoglobin content, aswell as to the lack of Raman peaks of
iron bonded to the porphyrin ring in IDA samples. Both discrim-
ination models (PLS-DA and PCA-DA) could discriminate all
the three groups individually (HbA, IDA, and SCD) with overall
accuracy of 78.3%, and the PLS-DA model could discriminate
SCD (HbS hemoglobin) from “non-HbS” hemoglobin (HbA
and IDA) better than the PCA-DA, with accuracy of 95.0%,
showing that Raman spectroscopy is a promising technique for
the discrimination of sickle cell disease anemia, with rapidness,
no need for reagents, and ease to obtain the signal, thus opening
the possibility for in vivo diagnosis.
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Table 2 Contingency table
showing the discrimination of the
spectra in the HbA and IDA
grouped together as “non-HbS”
hemoglobin versus SCD group
based on PLS and PCA
discriminant analysis

Blood type Discrimination PLS-DA Discrimination PCA-DA

“Non-HbS” hemoglobin SCD “Non-HbS” hemoglobin SCD

“Non-HbS” hemoglobin (161 spectra) 154 7 154 7

SCD (97 spectra) 6 91 9 88

Number of variables 3 latent variables 6 loading vectors

Sensitivity/specificity 93.8%/95.7% 90.7%/95.7%

Overall accuracy 95.0% 93.8%
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