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Photobiomodulation therapy modulates epigenetic events
and NF-κB expression in oral epithelial wound healing
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Abstract
The aim of this study was to evaluate the effect of photobiomodulation therapy (PBMT) on histone 3 acetylation
(acH3) and NF-κB expression during oral ulcer healing. A total of 48 male Wistar rats were divided into control
group (CG) and PBMT group (n = 24 each). Traumatic ulcers were created in the dorsum of the rats’ tongue with a
punch tool. Irradiation with InGaAlP laser, 660 nm, 40 mW, 0.04 cm2 spot size, 4 J/cm2, 4 s, and 0.16 J per spot
was performed once a day in close contact for 10 consecutive days. CG received only daily handling. Rats were
euthanized on days 3, 5, and 10 (n = 8) and were monitored daily to assess wound status. Immunohistochemical
analysis for acH3 and NF-κB detection was performed. One thousand epithelial cells were counted, and mean acH3-
and NF-κB-positive cells were calculated and compared between the groups. PBMT accelerated the repair of oral
ulcers. On day 3, PBMT showed significantly higher means for acH3- and NF-κB-positive cells than CG. On day 5,
no difference was observed between the groups concerning both markers. On day 10, PBMT presented lower acH3
and NF-κB means than the control group. We concluded that PBMT stimulates keratinocyte migration in the early
stage of oral wound healing and keratinocyte differentiation at the final stage by modulating histone acetylation and
NF-κB expression.
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Introduction

Oral ulcers are common in the dental clinic routine. They are
characterized by the loss of the epithelial barrier and exposure
of the underlying connective tissue resulting in symptoms
such as pain or soreness that can impact patients’ quality of
life [1]. The healing process of ulcers follows physiological
mechanisms to repair the wound area, involving several
events that begin with hemostasis followed by three main
overlapping phases, inflammation, proliferation, and remod-
eling [2–4]. This multi-step process occurs through the com-
bined action of several cell types and a cascade of biochemical
reactions [5, 6]. Moreover, the mechanisms involved in
wound healing have, in part, an epigenetic origin, which aims
to activate the repair machinery regulated at the transcription
and post-transcription levels [7].

Histones are proteins that support the packaging of DNA
and are associated with important functions, including gene
expression regulation in several types of tissues [8]. The
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acetylation process occurs through the addition of acetyl
groups by the enzymes histone acetyltransferases (HATs) to
lysine residues located in the histone tails. During
deacetylation, the opposite event of acetylation, acetyl groups
are removed by histone deacetylase (HDACs) [9]. The bal-
ance between acetylation and deacetylation of histones regu-
lates several biological processes, including wound healing
[4], by controlling important events such as transcription, nu-
clear translocation, and cytoskeletal architecture modifica-
tions. Evidence shows that the nuclear transcription factor
NF-κB is also regulated by HDAC enzymes [10]. The
NF-κB has been considered an important pro-inflammatory
signaling pathway acting as a key regulator of inflammatory
gene transcription. It plays important roles in adaptive im-
mune defense, secretion of antimicrobial peptides, cytokine
and chemokine release, leukocyte recruitment, and cell sur-
vival [10–12].

Several treatment protocols have been proposed to improve
the healing process of oral ulcers and alleviate pain. The most
commonly prescribed treatments are analgesics, antibiotics,
antiseptics, immunomodulators and anti-inflammatories,
herbal medicines, and specific local treatments, such as surgi-
cal removal, debridement, chemical cauterization, low-density
ultrasound, and photobiomodulation therapy (PBMT) [3,
13–17].

PBMT promotes the increase of cellular metabolism,
which can induce various tissue effects, such as analgesic,
anti-inflammatory, and reparative [16–19]. In addition, our
group has demonstrated that PBMT is capable of accelerating
keratinocyte migration [3, 20]. During the process of wound
healing, the formation of a new epithelial lining is extremely
important to restore the physical barrier and prevent wound
contamination [21]. However, the effects of PBMT on epige-
netic mechanisms involved in re-epithelization of oral mucosa
wounds are completely unknown. Thus, the aim of this study
was to evaluate the effect of PBMTon histone acetylation and
NF-κB in keratinocytes during oral wound healing in rats.

Materials and methods

Animal model

All experiments were performed according to the Guide for
the Care and Use of Laboratory Animals, and the protocol was
approved by the ethics committee of Porto Alegre Clinics
Hospital (Brazil) under process number 14-0534. Forty-eight
male Wistar rats weighing 250 to 300 g were kept under stan-
dard temperature conditions (20 to 24 °C) and 12-h light/dark
cycle with food and water ad libitum. The animals were ran-
domly divided into two experimental groups of 24 animals
each: control group, which was not treated but the animals
were handled daily similar to the treated groups (0 J/cm2),

and photobiomodulation group (PBMT), treated with low
power laser therapy.

Under aseptic conditions, the animals were anesthetized
with intraperitoneal administration of ketamine (0.1 mL/
100 g) and xylazine (0.05 mL/100 g). Traumatic ulcers mea-
suring 3 mm in diameter were made on the dorsal surface of
the tongue by punch biopsy. The lesions were performed by a
single investigator. Randomization of the animals was done
after the wounds were performed. Eight rats from each group
were euthanized using an isoflurane anesthetic overdose on
days 3, 5, and 10, and the tongues were removed for posterior
analyses.

Laser irradiation

Photobiomodulation was performed using a continuous wave
diode laser (InGaAlP,MMOptics Ltd., São Carlos, SP, Brazil)
with a spot size of 0.04 cm2, at a wavelength of 660 nm, and
power of 40 mWapplied by contact to the spot. The power of
the apparatus was confirmed every day prior to application
using a power meter. Irradiation was performed perpendicular
to the mucosa in two spots 3 mm apart on the opposite mar-
gins of the ulcer for 4 s. Thus, the energy density provided was
4 J/cm2 (energy per spot of 0.16 J, total energy of 0.32 J). A
single investigator (same that produce the wounds) applied the
laser to the wounds once a day, starting immediately after the
wound creation and for 10 days. During laser application, the
animals were kept under isoflurane inhalation anesthesia. The
control group was handled under identical conditions, but
with the laser equipment turned off.

Histopathological analysis

The tongues were fixed in 10% buffered formalin solution for
48 h. After washing with water, the specimens were
dehydrated and embedded in paraffin. Slices 5-μm thick were
obtained and stained with hematoxylin–eosin. The analyses of
experimental groups in each evaluation day (3, 5 and 10) were
performed, followed by a semi-quantitative analysis. The
evaluation was performed by pathologist blinded to clinical
procedures. The degree of re-epithelialization was determined
by a classification system (0 to 4), as described previously:
grade 0—re-epithelialization at the wound margins; grade 1—
re-epithelialization in less than half the wound; grade 2—re-
epithelialization in more than half of the wound; grade 3—re-
epithelialization of the entire wound with irregular thickness;
and grade 4—re-epithelialization of the entire wound with
normal thickness [3].

Immunohistochemistry analysis

Histological sections of 4 μm were deparaffinized in an oven
at 60 °C for 12 h, followed by xylene baths and alcohol
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hydration. The slides were immersed in 0.3% hydrogen per-
oxide solution in methanol to block endogenous peroxidase,
subjected to antigenic recovery in water bath, and subsequent-
ly incubated with the primary antibodies acH3 (lys9) (clone
C5B11, 1:500, Cell Signaling, Danvers, MA, USA) and
NF-κB p65 (clone L8F6, 1:400, Cell Signaling). Reactions
were performed using a chromogen solution containing
0.03% of 3-31-diaminobenzidine (Dako, Santa Clara, CA,
USA) and counterstained with Mayer’s hematoxylin solution.
All reactions were accompanied by positive controls accord-
ing to the manufacturer’s instructions.

One previously calibrated observer performed the quanti-
tative immunohistochemical analysis of acH3 (lys9) and
NF-κB p65 expression at the epithelial tissue. The calibration
process was performed in two stages. Initially, two observers
evaluated the slides using a conventional light microscope: the
one who performed the quantitative analysis (AFG) and an
experienced investigator with previous experience in immu-
nohistochemical quantitative analysis (MDM). In this mo-
ment, cell positivity and capture area were defined. The sec-
ond stage was carried out after the image captures. The ob-
server (AFG) performed two analyses of the same slide at a 1-
week interval. This process was carried out in 10 slides aiming
to confirm the reproducibility of the observer. Only nuclear
brown staining was considered positive. High-power fields (×
400 magnification) of the migratory epithelial tongue or epi-
thelial tissue recovering the wound area were captured using a
conventional light microscope (CX41RF model; Olympus
Latin America, Inc., Miami, FL, USA) The slides were eval-
uated and photographed under an Olympus BX 50 micro-
scope in a × 400 magnification. The images were analyzed
using the ImageJ program (NIH, Bethesda, MD, USA). One
hundred cells were counted, and the percentage of positive
cells was calculated.

Statistical analysis

Statistical analyses were performed using GraphPad Prism
(GraphPad Software, San Diego, CA, USA). Differences be-
tween the groups in degree of re-epithelialization and percent-
age of acH3- and NF-κB-positive cells were evaluated by the
Student’s t test. The level of significance was 5% (P < 0.05).

Results

PBMT accelerated re-epithelialization in oral lesions

The group submitted to PBMT showed a higher degree of re-
epithelialization of the wound when compared to the control
group on days 3 and 5 (p = 0.01 and p = 0.002) (Fig. 1). On
day 10, no difference was observed since all groups had epi-
thelium covering the entire wound.

PBMT stimulated H3 acetylation during the early
stages of wound healing

The epithelium in both PBMT and control groups had a large
number of acH3-positive cells. However, on day 3, acH3 was
significantly higher in the PBMT group than in the control
group (p = 0.04) (Fig. 2); on day 5, no significant difference
was observed between the groups; and on day 10, acH3-
positive cells were significantly lower in the PBMT group
(p = 0.05) (Fig. 2).

PBMT stimulated NF-κB in the initial phases
of re-epithelialization

The effect of NF-κB in the re-epithelialization process was
evaluated by p65 nuclear labeling, since the nucleus location
indicates whether the protein is active. On days 3 and 5, the
PBMT group showed an increase in this pathway compared to
the control group (p = 0.02; p = 0.03) (Fig. 3), showing that
PBMTcaused NF-κB activation in epithelial cells at the initial
stages of tissue repair. On day 10, a decrease in NF-κB in the
PBMT group (p = 0.001) was observed in relation to the con-
trol group (Fig. 3).

Figure 4 summarizes the main findings of the present study
showing the epigenetic modulation of epithelial tissue during
oral mucosal repair (initial and final periods) and the associa-
tion with NF-κB activation.

Discussion

PBMThas beenwidely used in the dental clinical practice to treat
oral ulcers because it accelerates healing and alleviates pain. The
mechanisms involved in this process include modulation of
chemical mediators, stimulation of cell proliferation and migra-
tion, regulation of angiogenesis, and collagen remodeling [19,
20, 22]. However, other cellular and molecular processes in-
volved in wound healing should be studied to better understand
the action of PBMT. In the present study, we evaluated the im-
pact of PBMT on oral ulcers repair and its action on acH3 and
NF-κB in keratinocytes. Our results showed that PBMTacceler-
ates the repair of ulcers by activating epigenetic mechanisms
such as histone 3 lysine 9 acetylation and the NFkB pathway
in early healing stages and decreasing their expression at ad-
vanced stages. Histopathological analysis of the wounds showed
that PBMT accelerated the repair of oral ulcers in rat tongue.
Most lesions submitted to PBMT demonstrated total epithelial
covering of the wound at day 3. These results corroborate the
positive effect of PBMT previously described in oral wound
healing in vitro [17, 20, 23], animal models [3, 19, 24] and
clinical studies [25, 26]. Sperandio et al. (2015) [24] evaluated
in vitro growth and differentiation of skin keratinocytes and in
vivo wound healing response when treated with PBMT. These
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authors observed improvement of epithelial healing (more epi-
thelial proliferation and maturation) using different energy den-
sities protocol (3, 6 and 12 J/cm2), 660 nm, 100 mW). In addi-
tion, other studies demonstrated that PBMT activated TGF-β1
[23, 27] and mTOR signaling [20] promoting epithelial cell mi-
gration and wound closure. In animal models, Wagner et al.
(2013) [3] using 4 J/cm2 observed a reduction of clinical and
histopathological aspects in oral tongue wounds on the initial
days of repair. Also, the clinical improvement of oral ulcers with
PBMTappears to bewell established to treat different oral lesions
such as traumatic ulcer, aphthous lesion, oral mucositis,
periimplantitis etc. [16, 17, 23, 25, 26]. Antunes et al. (2018)
[25] using similar PBMT parameters that we used in the present
study (660 nm, 100mW, 4 J/cm2) observed an increased expres-
sion of seven SPRR gene family members in samples of oral

mucosa of oncological patients submitted to PBMTcompared to
placebo group. These genes are known to be induced during
differentiation of human epidermal keratinocytes which explain
the epidermal regeneration mediated by PBMT. Although the
literature has demonstrated the effect of PBMTon some cellular
and molecular pathways to date, no study has evaluated the
possible involvement of epigenetic mechanisms with the laser-
stimulated re-epithelialization.

Epigenetics plays a key role in tissue healing, controlling
cellular activity and regulating gene repair. Epigenetic regula-
tory mechanisms are important in the maintenance of cellular
phenotypes in organs and tissues, and act in pathological con-
ditions.Wound healing occurs through a dynamic and complex
process of cell proliferation, migration and differentiation,
which are dependent on epigenetic signaling. The acetylation

Fig. 2 a Expression of acH3 of the control and PBMT groups; *p < 0.05. Representative images of the acH3 labeling in the control and PTBMgroups on
day 3 (b) and on day 10 (c)

Fig. 1 Graphs of re-epithelialization analysis. Note that on days 3 and 5, the PBMT group presented an accelerated pattern of epithelial repair
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and deacetylation of histones, regulated by HAT and HDACs
enzymes, are part of the epigenetic mechanism. Acetylation is
associated with gene activation, as the open chromatin of the
DNA (acetylated) gives access to transcription factors.
Deacetylation is associated with gene suppression, as the
closed chromatin (deacetylated) does not allow access to these
factors. Histones 3 and 4 are the main targets of acetylation and
methylation, which have roles in the regulation of gene expres-
sion by recruiting other proteins [28, 29, 30, 31, 32]. Our study
is the first to evaluate epigenetic mechanisms in oral tissue
repair submitted to PBMT, demonstrating its capacity to in-
crease the acetylation of histone 3 in the initial stages of the
repair process (D3) of oral wounds. Therefore, we suggest that
PBMT promotes the increase of chromatin relaxation via his-
tone 3 acetylation, activating the transcription of genes in-
volved in tissue repair. In another tissue repair model, an in-
crease in total protein acetylation was observed in the wound
area through α-tubulin and histone 3 Lysine 9, improving the
clinical conditions of the lesion [7]. Our results showed that the
PBMT group presented lower histone acetylation compared to
the control group on the last day of analysis (D10). There is
evidence that the activation of HDACs is essential for the final
differentiation of the epidermis [33, 34]. Thus, we consider that
the lower expression of acetyl histone 3 at the final stages of
repair indicates an imbalance in favor of deacetylation

(HDACs), which is associated with a greater keratinocyte dif-
ferentiation in the laser-treated group. The epithelium of the
laser-treated animals had thickness and cellular characteristics
more similar to the normal mucosa compared to the control
group at the final stage.

The NF-κB transcription factor is a key part of the inflamma-
tory response, and plays an important role in immune defense
[35, 36]. In its inactive form, this factor is located in the cyto-
plasm of cells coupled to its inhibitor IkB. Different stimuli may
lead to the activation of NF-kB through ubiquitination followed
by degradation of IkB, causing its release and translocation to the
nucleus of the cell, stimulating gene transcription. In our study,
PBMT increased the percentage of cells expressing nuclear
NF-κB at the initial stages of repair (D3). NFκB is generally
recognized for its proinflammatory role through the activation
of proinflammatory cytokines [37, 38]; however, recent studies
have demonstrated the importance ofNFκB activation during the
re-epithelialization process. Na et al. (2016) demonstrated in vitro
that the migration of skin keratinocytes is dependent on the acti-
vation of NF-kB [39]. This group also demonstrated the impor-
tance of NF-kB activation for wound closure in an animal model.
This transcription factor acts through the activation of NOTCH1
that stimulates the migration of keratinocytes [40], which may
explain the early reepithelialization observed in the group treated
with PBMT. In addition, our group has demonstrated in an
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animal model of chemo-induced mucositis that PBMT leads to
an early wound closure through the activation of the NF-kB
signaling pathway. The increased production of reactive oxygen
species by PBMT seems to activate directly or indirectly NF-kB
[41]. Similarly to acH3, at D10, a reduction of NF-kB in the
PBMT group was observed. Adams et al. (2006) demonstrated
that the reduction of NF-kB activation in keratinocytes is accom-
panied by increased expression of genes associated with the final
differentiation of these cells, such as cytokeratin 10 [42].

Conclusion

Our study was the first to show the ability of PBMT to mod-
ulate epigenetic events during the repair of oral ulcers by
affecting histone 3 lysine 9 acetylation and NF-κB expression.
In early stages of repair, PBMT activates epithelial migration
and, in late stages, it stimulates final differentiation of oral
epithelial cells. Our study contributes with the elucidation of
the yet unexplored domain of epigenetics related to PBMT.
Nevertheless, other studies analyzing with greater detail these

mechanisms (e.g., through mechanistic assays in cell culture)
should be performed to better understand how the laser inter-
acts in this important area of regulation of gene expression.
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