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Abstract
Pathology as a common diagnostic test of cancer is an invasive, time-consuming, and partially subjective method. Therefore,
optical techniques, especially Raman spectroscopy, have attracted the attention of cancer diagnosis researchers. However, as
Raman spectra contain numerous peaks involved inmolecular bounds of the sample, finding the best features related to cancerous
changes can improve the accuracy of diagnosis in this method. The present research attempted to improve the power of Raman-
based cancer diagnosis by finding the best Raman features using the ACO algorithm. In the present research, 49 spectra were
measured from normal, benign, and cancerous breast tissue samples using a 785-nm micro-Raman system. After preprocessing
for removal of noise and background fluorescence, the intensity of 12 important Raman bands of the biological samples was
extracted as features of each spectrum. Then, the ACO algorithm was applied to find the optimum features for diagnosis. As the
results demonstrated, by selecting five features, the classification accuracy of the normal, benign, and cancerous groups increased
by 14% and reached 87.7%. ACO feature selection can improve the diagnostic accuracy of Raman-based diagnostic models. In
the present study, features corresponding to ν(C–C) αhelix proline, valine (910–940), νs(C–C) skeletal lipids (1110–1130), and
δ(CH2)/δ(CH3) proteins (1445–1460) were selected as the best features in cancer diagnosis.
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Introduction

Nowadays, there exist different types of cancers with complex
causes and cures, which affect human health. Among such
cancers, breast cancer is one of the most common cancers in
women annually, leading to thousands of deaths. Early detec-
tion is useful for the treatment of breast cancer [1].

Screening mammography followed by histopathological
diagnosis is used to identify and characterize breast lesions.
The treatment in many cases is breast-conserving surgery. The
surgery aims to preserve as much healthy tissue as possible
while removing the tumor thoroughly. Therefore, an intra-
operative guidance tool is needed to assess large tissue areas
and detect lesions in real-time [2].

Therefore, many different studies have been carried out on
the earlier, faster, and more accurate detection of this type of

cancer; nevertheless, histopathology remains the gold stan-
dard for diagnosis. Despite its strengths, this method has its
weaknesses including being invasive, prolonged response
time, and its dependency on the pathologist’s experience and
skill. Therefore, recently, different techniques such as optical
coherence tomography (OCT), white light reflectance (WLR),
auto-fluorescence, and Raman spectroscopy have been pro-
posed to solve these problems. OCT and WLR rely on the
visualization of changes in tissue structure. These techniques
provide little or no information about the molecular composi-
tion of tissue and, therefore, generally provide low specificity.
Auto-fluorescence imaging has shown to improve diagnostic
sensitivity. Nonetheless, the specificity of this technique is
low too [2].

Raman spectroscopy, which analyzes molecular vibrations,
can provide high molecular specificity. Any changes from
healthy tissue to cancer are reflected in their Raman spectra.
This technique can characterize biological tissues in vivo or in
vitro noninvasively and without any need to prepare the tissue.
These specifications facilitate the translation of the technique
to the clinic. Moreover, many anatomical locations can be
assessed in vivo by the use of optical fibers in combination
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with Raman spectroscopy. Researchers in the assessment of
different cancers have utilized this method [2–6].

Raman spectroscopy is a method that relies on inelastic
scattering of monochromatic light usually coming from a laser
source. When monochromatic light penetrates a sample, some
of it scatters, either in the same frequency of the incident light
(Rayleigh scattering) or in different frequencies (Raman scat-
tering). The frequency difference between the incident and
scattered light depends on the vibration frequency of the sam-
ple’s molecular bonds. Therefore, Raman spectroscopy can
provide a unique fingerprint for each material. This is a tech-
nique to identify different materials, including biological sam-
ples [7].

Cancer-related cellular and molecular changes cause differ-
ences in measured Raman spectra. In the present research, we
aimed to find the best changes relevant to cancer in Raman
spectra as discriminating features to improve the diagnosis of
malignant (cancer) and benign neoplasm. Therefore, we de-
veloped a model to discriminate normal, benign, and cancer-
ous samples of breast tissue and subsequently optimized the
model by removing useless features using the ant colony op-
timization (ACO) technique.

Materials and methods

In this study, 49 Roman spectra were measured from 11 nor-
mal, cancerous, and benign samples. Then, interfering factors
including noise and background fluorescence were removed
using range independent algorithm (RIA) [8]. Next, the inten-
sity of 12 important Raman bands of the biological samples
was extracted as discriminating features of each Raman

spectrum (Table 1). Finally, the ACO was applied to find the
best of the resultant 12 features for diagnosis.

Samples and spectra

A set of breast tissue samples consisting of three cancerous
(invasive ductal carcinoma), three normal (obtained from the
margin of tumors), and five benign (fibrocystic change) sam-
ples was borrowed from the pathology lab of Kashan’s Shahid
Beheshti Hospital in the state of fixed in formalin solution
(10% neutral buffered formaldehyde inwater). Taken out from
formalin for a few minutes, the samples were measured by
Raman spectroscopy. Then, considering the size of the sam-
ples, between three to six spectra were measured in terms of
different features.

A Senterra-Bruker micro-Raman spectroscope with a ×50
lens was used in this research. This spectroscope with 785-nm
wavelength and 10-mW power diode laser measures the spec-
tra in 500–3200-cm−1 interval with a resolution less than
3 cm−1.

After spectroscopy, tissue samples were taken back to the
formalin solution and sent to the pathology lab, and the re-
mainder of the histopathology procedure comprising tissue
processing (including dehydration, clearing, and impregna-
tion), embedding in paraffin, sectioning by microtome, stain-
ing by hematoxylin and eosin, and finally, slide examination
under a light microscope and diagnosis of the disease were
conducted by an expert pathologist. The pathologist’s diagno-
sis was attached to the spectra obtained from each sample as
the label of class in the dataset. This procedure of sample
preparation for spectroscopy and histopathology is shown in
Fig. 1 with some sample photographs of underlying steps.

Table 1 Position and title of the important peaks observed in the sample spectra [9]

Rows Peak position Assignments Mean normalized intensity ± standard deviation

Cancerous Normal Benign

1 880–830 Polysaccharide 0.1947 ± 0.5010 0.3388 ± 0.7105 0.0708 ± 0.5343

2 940–910 ν(C–C) αhelix proline, valine (protein) 0.1935 ± 0.6236 0.2147 ± 0.5193 0.0950 ± 0.6705

3 1030–1005 νs(C–C) phenylalanin 0.3424 ± 0.6849 0.2812 ± 0.3726 0.1100 ± 0.4220

4 1050–1030 δip(C–H) phenylalanine 0.2903 ± 1.0350 0.3403 ± 0.5683 0.2014 ± 0.8761

5 1068–1050 νas(C–C) skeletal lipids 0.2461 ± 1.1527 0.4898 ± 0.7885 0.1629 ± 0.9882

6 1087–1075 ν(C–C) or ν(C–O) lipids/ν(C–C) or νs(PO2)
nucleic acids

0.3581 ± 0.8768 0.5010 ± 1.0074 0.1696 ± 0.7756

7 1130–1110 νs(C–C) skeletal lipids 0.1286 ± 0.5204 0.3296 ± 0.7240 0.0815 ± 0.5095

8 1278–1262 AmidIII protein/δip(C–H) lipids 0.5189 ± 2.0183 0.9476 ± 1.7054 0.2741 ± 2.3998

9 1304–1285 CH2 twisting and wagging lipids 0.4836 ± 2.2524 1.0876 ± 2.1952 0.2719 ± 2.4099

10 1442–1422 CH2 deformation lipids or proteins 1.0555 ± 1.3187 1.2997 ± 1.4342 0.1587 ± 0.6456

11 1460–1445 δ(CH2), δ(CH3) proteins 0.8771 ± 1.4968 1.1366 ± 2.3955 0.4693 ± 1.0365

12 1683–1653 amidI proteins/ν(C=C) lipids Normalization Band

13 1740–1750 ν(C=O) lipids 1750–1740 0.1880 ± 0.4249 0.1183 ± 0.2993
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Finally, 49 spectra including 17 from cancerous, 14 from
normal, and 18 from benign samples were obtained. The raw
spectra were processed using MATLAB 7 software.

Preprocessing

The purpose of preprocessing is to remove interfering factors
such as noise and background fluorescence from the Raman
spectra. At first, the resolution increased to 1 cm−1 by spline
interpolation for correct detection of peak locations. Then,
background fluorescence was removed using RIA introduced
by Krishna in 2012 [8].

In RIA, the spectrum is cut into the required wavenumber
range and then extrapolated in both ends using least square
linear fitting. Then, two Gaussian peaks with suitable heights
and widths are added to both sides of the extrapolation.
Finally, the resulting spectrum is smoothed iteratively. In each

iteration, the minimum of the smoothed and original spectrum
is retained. The algorithm is continued until the accurate re-
trieval of the two added Gaussian peaks [8].

In the present study, the RIA algorithm was used in the
500–3200 wavenumber range. The height of the added
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Fig. 1 Diagram of the experiment
from tissue resection to data
collection

Table 2 Values and
definitions of parameters
in the ACO algorithm

ACO

50 (Maxit)Algorithm frequency

20 The number of ants (nant)

1 (τ)Primary pheromone

1 (α) Defined weight of pheromone

1 (β) Innovative defined weight

0.05 Evaporation rate of pheromone (ρ)

1 Background information (η)
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Gaussian peaks was twice the maximum height of the spec-
trum and their FWHM was equal to 40 cm−1. Moreover, a
zero-order Savitzky-Golay (SG) smoothing filter with a span
of 20 spectral points was selected. Finally, normalization was
done with respect to the intensity of 1655 cm−1 (Amide I)
band that was clearly observed in all the spectra; the ratio of
the other Raman bands to this band is widely used as a dis-
criminating feature for cancer diagnosis [3].

Feature extraction

After preprocessing, a dataset containing 2700 features for
every 49 spectra in the range of 500–3200 was prepared.
The 13 most important bands of the biological samples were
determined (Table 1), and the height of the spectral peaks in
these bands was extracted as a feature. As mentioned before,
the 12th band was considered as the normalizing band.

Feature selection using the ant colony optimization
algorithm

The ant colony optimization (ACO) is a metaheuristic method
that is used to find the best path in a weighted graph using
artificial ants. The ants move on the graph stochastically, but
with bias produced by a pheromone model. The pheromone
guides ants to the shortest path incurring the lowest cost (the
best) solution.

In the present problem, the ACO algorithm produces a
large population of artificial ants that look for the best
subset of features to distinguish classes in a high dimen-
sional feature space (12 features). In this research study,
each artificial ant was attributed to a unique subset of
features. The artificial ants interact via virtual chemical
pheromone distributed on the features. The pheromones
changed dynamically in each iteration and reinforced
themselves using positive feedback. For removing redun-
dant features, an evaporation constant was applied in such
a way that the effect of pheromone decreased evenly over
time.

The ACO algorithm iteratively executed a loop including
three central elements [10].

(1) Creating ants for each subset of features proportional to
the trace of pheromone on that subset

Spectral features were assigned to artificial ants by the fol-
lowing transition probability function:

Pi tð Þ ¼ τ i tð Þð Þαηβi
∑i τ i tð Þð Þαηβi

ð1Þ

Fig. 2 Mean spectra in the three classes, normal, cancerous, and benign

Table 3 Selection frequency of
the best features by the ACO
algorithm

NF Selected Features Minimum Error

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12

1 x x ✓ x x x x x x x x x 0.3469

2 ✓ x x x ✓ x x x x x x x 0.2448

3 x x ✓ ✓ x ✓ x x x x x x 0.2040

4 x x x x x x ✓ x ✓ x ✓ ✓ 0.1836

5 x ✓ x x x x ✓ x ✓ x ✓ ✓ 0.1224

6 21 30 10 7 x 20 27 x 33 35 24 33 0.1632

7 ✓ ✓ ✓ x ✓ x ✓ x x ✓ ✓ x 0.1224

8 ✓ 25 ✓ 28 27 ✓ ✓ x 28 12 12 28 0.1428

9 ✓ 21 ✓ ✓ ✓ ✓ ✓ 19 21 x 19 ✓ 0.1428

10 33 27 36 ✓ ✓ ✓ ✓ 25 31 28 20 ✓ 0.2040

11 ✓ ✓ ✓ ✓ ✓ ✓ ✓ x ✓ ✓ ✓ ✓ 0.2244

12 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 0.2653
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where τi(t) is the amount of pheromone for the ith spectral

feature in time (t), ηβi identifies background information
(ACO allows adding information to background search to
improve the result), and α and β are pheromone and back-
ground information weights. Therefore, the ants are more like-
ly to choose such spectral features provided the background
information or the amount of pheromone is high.

In the first step, the value of all pheromone was equal
to 1; therefore, each ant was able to choose spectral var-
iables with proper probability according to background
information.

(2) Evaluating the performance of each ant (i.e., evaluating
the classification accuracy of each subset of features)

In the present study, the QDA classifier was used and its
performance was measured by each ant using the leave one
out method. Accordingly, in each implementation, one spec-
trum was put aside and QDAwas trained with the rest of the
spectra. Then, the performance of the retained spectrum was
evaluated. This process continued until all the Raman spectra
were classified.

(3) Updating pheromone trace by evaporation constant and
classifier performance

The amount of the pheromone τi for each spectral feature
was updated according to the following equation:

τ i t þ 1ð Þ ¼ ρ:τ i tð Þ þΔτ i tð Þ ð2Þ

in which ρ is a constant between 0 and 1 and simulates the
pheromone evaporation rate andΔτi is related to the accuracy
of the ants’ classification. It should be mentioned that there
was a slight difference between various versions of ACO,
mostly related to the pheromone update process. In this study,
the following formula was used to calculateΔτi; here, Ei is the
classifier error (1—classification accuracy).

Δτ i ¼ 1

Ei
ð3Þ

Classification accuracy is the ratio of the number of truly
classified instances (spectra) to the number of total instances.

Over the ACO steps, the best ant was selected as the
elite ant. Thus, Raman features with the best classification
accuracy were allowed to increase pheromone, while the
pheromone in the rest of the ants gradually evaporated.

These three phases were repeated step by step until
obtaining the best classification accuracy.Ta
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The ACO parameters used in the present study are shown
in Table 2.

In order to find the optimum subset of features, the ACO
algorithm was applied 40 times with NF (number of features)
elements, where NF changed from 1 (the smallest subset) to
12 (the whole set).

Results

Figure 2 shows the mean of spectra after preprocessing in
the three classes: cancerous, normal, and benign. The dot-
ted line is for the cancerous, continuous line for the nor-
mal, and dashed line for the benign class. The horizontal
axis refers to the wave number and the vertical axis indi-
cates the intensity.

Table 3 shows the NF selected features using ACO from
NF = 1 to NF = 12. The features were numbered from 1 to 12
as F1 to F12. The features selected in all the 40 repetitions
were shown by ✓, while the features never selected were
shown by ×; for the other features, the number of their selec-
tions was reported. Evidently, the best results were related to
the 5- and 7-feature subsets having a minimum classification
error equal to 0.1224.

The confusion matrix of classification visualizes the
performance of classification. Each row of the confusion
matrix represents the predicted class of instances while
the columns represent their actual class. The (i,j) element
of this matrix is the number of instances belonging to
class j and is classified as class i. Subsequently, the ele-
ments on the main diagonal of the matrix (i = j) represent
true classified instances.

Table 4 shows the results of the classification in three
different states including without ACO and with the best
5- and 7-element subsets. Dark columns indicate the num-
ber of correctly classified spectra in each class. In the first
state (without ACO), the accuracy of the diagnosis
equaled 0.73. In the 5- and 7-feature states, the diagnosis
accuracy increased to 0.87. Therefore, it is seen that diag-
nosis accuracy increased by 14% while the number of
features reduced.

In addition, the confusion matrices of 12-, 5-, and 7-feature
states are shown in Tables 5, 6, and 7, respectively.

The diagram of processing including the results is shown in
Fig. 3.

Discussion

In the present research, we were able to improve the
Raman-based diagnosis accuracy of normal breast tissue
and its neoplasia-related abnormalities (benign and can-
cerous tumor) using optimum feature selection by ACO.

Table 4 shows a diagnosis accuracy improvement from
73.4 to 87.7% before and after ACO feature selection,
respectively. In addition to increasing the total diagnosis
accuracy to more than 14%, according to Tables 5, 6, and
7, as shown in the distinctive increase in the diagnostic
ratio of the ill-behaved normal class, the sensitivity and
specificity of diagnosis increased in all the classes,
Furthermore, this improvement in diagnosis power oc-
curred simultaneously with reduction in the number of
features that decreased the complexity of the diagnostic
model. By reducing the number of features from 12 to 7
or 5, model complexity and consequently, its construction
time decreased greatly, leading to the easier interpretation
of the model.

As shown in Table 3, the features 2, 7, and 11 were
selected for both the 5- and 7-feature states. These fea-
tures refer to bands of proteins, and therefore, such bands
are apparently important in diagnosing cancer. However,
according to our test, only applying these three common
features to the classifier decreases the efficiency of
diagnosis.

Ant colony optimization among many other evolutionary-
based optimization methods has shorter processing time and
has been shown capable of exploiting mutual interactions
among spectral variables according to their importance [10,

Table 7 Confusion matrix of the 7-feature state

C N B

C 16 0 1 0.941

N 3 11 0 0.785

B 1 1 16 0.888

0.800 0.916 0.941 0.877

Table 6 Confusion
matrix of the 5-feature
state

C N B

C 16 1 0 0.941

N 4 10 0 0.714

B 0 1 17 0.944

0.800 0.833 1 0.877

Table 5 Confusion
matrix of the 12-feature
state

C N B

C 14 2 1 0.823

N 7 5 2 0.357

B 0 1 17 0.944

0.666 0.625 0.850 0.734
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11]. Therefore, ACO has been chosen for spectral feature se-
lection for dimension reduction, which is useful for real-time
in vivo diagnosis. The present study proved its ability in re-
ducing model complexity and simultaneously improving its
discriminating power.

Conclusion

The present study showed that ACO feature selection can
improve the diagnostic power of Raman-based cancer diagno-
sis. We reached the accuracy of 87.7% with only five features
in the three discriminating classes of normal, benign, and can-
cerous samples of breast tissue.
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