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Abstract
Although low-level laser therapy (LLLT) was discovered already in the 1960s of the twentieth century, it took almost 40 years to be
widely used in clinical dermatology/surgery. It has been demonstrated that LLLT is able to increase collagen production/wound
stiffness and/or improve wound contraction. In this review, we investigated whether open and sutured wounds should be treated with
different LLLT parameters. A PubMed search was performed to identify controlled studies with LLLT applied to wounded animals
(sutured incisions—tensile strength measurement and open excisions—area measurement). Final score random effects meta-analyses
were conducted. Nineteen studies were included. The overall result of the tensile strength analysis (eight studies) was significantly in
favor of LLLT (SMD=1.06, 95% CI 0.66–1.46), and better results were seen with 30–79 mW/cm2 infrared laser (SMD= 1.44, 95%
CI 0.67–2.21) and 139–281 mW/cm2 red laser (SMD= 1.52, 95% CI 0.54–2.49). The overall result of the wound contraction analysis
(11 studies) was significantly in favor of LLLT (SMD= 0.99, 95%CI 0.38–1.59), and the best results were seenwith 53–300mW/cm2

infrared laser (SMD= 1.18, 95% CI 0.41–1.94) and 25–90 mW/cm2 red laser (SMD= 1.6, 95% CI 0.27–2.93). Whereas 1–15 mW/
cm2 red laser had a moderately positive effect on sutured wounds, 2–4 mW/cm2 red laser did not accelerate healing of open wounds.
LLLT appears effective in the treatment of sutured and open wounds. Statistical heterogeneity indicates that the tensile strength
development of sutured wounds is more dependent on laser power density compared to the contraction rate of open wounds.
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Introduction

Although low-level laser therapy (LLLT) was discovered al-
ready in the 1960s of the twentieth century [1], it took almost

40 years to be widely used in clinical dermatology/surgery [2].
In general, lasers with output powers in the range between 5
and 50 mW delivering doses of 1–4 J/cm2 have been found to
be most effective in stimulating tissue repair [3]. Since a dose
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may only be found effective when it reaches the targeted tis-
sue, it must be taken into consideration that the power of laser
is reduced as it penetrates the tissues. Although the penetration
profiles for selected lasers may differ [4], in general it can be
expected that for example a near infrared laser at 810 nm lose
approximately 75% of its power during skin transmission [5]
and with red laser, the loss of power is even higher [6].

It is well known that the amount of granulation tissue (GT)
that is formed during the proliferation phase depends on the
size of the wound. Therefore, an open wound heals with ex-
tensive new tissue formation, whereas a primary wound forms
no or only a negligible amount of GT [7, 8]. The GT is com-
posed of cells (fibroblasts and endothelial cells) that are pres-
ent in the normal tissue before injury, cells (immune/inflam-
matory cells and other bone marrow-derived cells) that are
recruited to the wound-associated stroma from distal sites
and non-cellular components such as the extracellular matrix
(ECM) [9].

A crucial step in accelerating the healing of open wounds
is wound contraction (WC) during which the surrounding
skin moves centripetally and leaves a remarkably smaller
scar [10]. This process includes massive ECM remodeling
assured by a more compact organization of collagen fibrils
and water elimination. A principal role in WC is played by
α-smooth muscle acting (α-SMA) expressing fibroblasts,
so-called myofibroblasts, discovered in 1971 [11]. In con-
trast, sutures can be removed as soon as the wound is fixed
and no longer need mechanical support since early suture
resection assures a better cosmetic result [12]. During the
first days after injury, the ECM is highly hydrated allowing
cell invasion and assures only poor wound stiffness. Later
during the maturation phase, it becomes more densely com-
posed by collagen associated with an exponential increase of
wound tensile strength (TS) [7] assured by gradual replace-
ment of collagen type III by collagen type I [13].
Unfortunately, even a year later, a scar remains weaker and
functionally deficient compared to healthy skin.

LLLT has been shown to effectively modulate selected
steps in skin wound healing, including generation of
myofibroblasts [14], stimulation of collagen deposition
[15] and keratinocyte proliferation [16], and/or reduction
of oxidative stress and inflammation [17, 18]. In vitro,
ex vivo, and in vivo models as well as clinical studies have
shown that wound healing is promoted by different laser
wavelengths/powers/doses; thus, no optimal set of parame-
ters has yet been identified [19]. Although absorbed energy
may differ for each wound type, only a few studies have
been focusing on direct comparison of LLLT on the healing
of two basic wound models (Fig. 1) [20]. Therefore, in this
review, special attention was given to compare the efficien-
cy of the most commonly used red and infrared LLLT on
the healing of sutured incisions (focusing on TS) and open
excisions (focusing on WC).

Methods

Eligibility criteria

We only included controlled animal studies reported in English
language with open wounds (the healing rate measured with
wound size) and/or incisional sutured wounds (the healing rate
measured with tensile strength) treated with LLLT.

Search strategy

A systematic PubMed search was performed throughout all
years until December 31, 2017 to identify studies containing
information of LLLT effect on skin wound healing, in terms of
TS of sutured wounds and WC of open wounds. The search
string for identifying articles contained search andMeSH terms
describing open and sutured wounds, TS, WC, wound healing,
and LLLT (search keywords in the category sutured wounds/
incisions: Btensile strength laser therapy wound,^ and Btensile
strength laser therapy incision,^ Btensile strength laser therapy
incisional wound^; search keywords in the category open
wounds/excisions: Blaser therapy open wound,^ Blaser therapy
excisional wound,^ Blaser therapy excision skin wound,^ and
Blaser therapy wound contraction^; search keywords for both
categories: Blow level laser therapy skinwound repair animal^).

Study selection

Initially, one reviewer carefully read the titles and abstracts of
the publications, identified by the search, and retrieved them in
full text, unless they were clearly irrelevant. The same reviewer
evaluated the full texts of all potentially eligible articles and
made a careful decision to include or exclude each article, with
close attention to the eligibility criteria. Subsequently, another
reviewer checked the first reviewers’ work by reading the full
texts of the articles initially included and excluded. Any re-
trieved article not meeting the eligibility criteria was excluded
and had its details listed with reason for exclusion.

Data extraction and meta-analysis

The data extraction involved a two-person procedure. First, one
reviewer extracted the means, variance data and time points of
assessment for analysis, and then, another reviewer checked
this work. Laser parameters, including mW/spot, mW/cm2,
J/spot, J/session, treatment time, wavelength, distance or con-
tact with laser probe, scanning in the middle, and/or edge of the
wound, were additionally collected or calculated when possi-
ble, to investigate which ones that might impact healing rate.

All presented meta-analyses were conducted using final
score random effects models, weighting the individual trial
effect estimates relatively even, when heterogeneity is present.
Impact from heterogeneity on the meta-analyses, i.e.,
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inconsistency, was examined using I2 statistics [21]. The level
of inconsistency was categorized as low (25%), moderate
(50%), and high (75%) [22].

The standardizedmean difference (SMD)was calculated as
the difference between the final scores of the LLLT and con-
trol groups divided by the pooled standard deviation (SD).
The SDs were extracted or estimated from other variance data,
i.e., standard errors, 95% confidence intervals, p values, visu-
ally from graphs, and medians of SDs. The SMDwas adjusted
to Hedges’ g, using a correlation factor, as Cohens’ d can
exaggerate the results, especially in analyses based on few
trials and small sample sizes. The SMD was clinically
interpreted as proposed by Cohen, i.e., a SMD of 0.2 repre-
sents a small, ~ 0.5 a moderate, and > 0.8 a large effect [23].

All intervention groups have been incorporated in the
meta-analyses by splitting their related control groups. That
is, except for the studies by Yasukawa et al. [24] and Hegde
et al. [25], since they had 10 and 5 intervention groups and
only 10 and 7 animals in the control groups, respectively, and
consequently, some of their intervention groups were merged.

The meta-analyses were performed using the software pro-
grams Excel 2016 for Microsoft Windows and Review

Manager, version 5.3 (Copenhagen: The Nordic Cochrane
Centre, The Cochrane Collaboration, 2014).

Results

Study selection

The literature search yielded 51 potentially eligible publica-
tions of which 19were judged eligible (Table 1) and 32 judged
irrelevant (Table 2). Eighteen articles had data that allowed for
meta-analysis of either TS of sutured incisions or WC of open
excisions.

Synthesis of results—tensile strength of sutured
wounds

Data allowing for meta-analysis of TS of sutured woundswere
available from eight studies with 28 comparisons (n = 378).
The overall result favored LLLT over control after 7–56 days
by a significant SMD of 1.06 [95% CI 0.66 to 1.46] with

Fig. 1 Schema of sutured incision
and open excision (E epidermis,
D dermis). Photographs of skin
wounds (sutured incision and
open excision) at the day of
surgery (day 0) and following
7 days of healing (day 7).
Histological picture of sutured
skin incision with thin incisional
gab (I) with only minimal amount
of granulation tissue (area
between dashed lines) surrounded
by intact dermis (D) and open
skin excision with extensively
formed granulation tissue (GT)
rich on cells and high caliber
vessels. Both histological pictures
show wounds at day 7 stained
with hematoxylin and eosin (H+
E; ×200)
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Table 1 Included studies. The different comparison groups in the same
studies are labeled with different uppercase letters (A-J) as in the forest
plot figures (Figs. 2–5). Abbreviations: CM continuous mode, PM pulsed
mode treatment, ED every day, EOD every other day, SD single dose/

number of sessions/follow-up day, DS dose per session, PD power den-
sity, TS tensile strength, WC wound contraction, I incision, E excision, ↑
laser therapy was superior

Reference Wavelength DS/PD Mode Treatment Wound/effect

Suzuki et al. (2016) A 660 nm 1 J/cm2/11.3 mW/cm2 CM SD/1/7 I/TS ↑

Suzuki et al. (2016) B 660 nm 5 J/cm2/11.3 mW/cm2 CM SD/1/7 I/TS ↑

Suzuki et al. (2016) C 660 nm 10 J/cm2/11.3 mW/cm2 CM SD/1/7 I/TS 0

Dancáková et al. (2014) 810 nm 0.9 J/cm2/30 mW/cm2 CM ED/7/14 I/TS ↑

Dadpay et al. (2012) A 890 nm 0.03 J/cm2/1.08 mW/cm2 PM ED/12/15 I/TS ↓

Dadpay et al. (2012) B 890 nm 0.2 J/cm2/1.08 mW/cm2 PM ED/12/15 I/TS ↑

Dadpay et al. (2012) C 890 nm 0.2/J/cm2/1.08 mW/cm2 PM ED/12/15 I/TS ↑

Vasilenko et al. (2010) A 635 nm 5 J/cm2/4 mW/cm2 CM ED/7/7 I/TS ↑

Vasilenko et al. (2010) B 635 nm 5 J/cm2/15 mW/cm2 CM ED/7/7 I/TS ↑

Vasilenko et al. (2010) C 670 nm 5 J/cm2/4 mW/cm2 CM ED/7/7 I/TS ↑

Vasilenko et al. (2010) D 670 nm 5 J/cm2/15 mW/cm2 CM ED/7/7 I/TS ↑

Yasukawa et al. (2007) A 632.8 nm 2.09 J/cm2/139 mW/cm2 CM ED/6/7 I/TS ↑

Yasukawa et al. (2007) B 632.8 nm 2.09 J/cm2/139 mW/cm2 CM EOD/3/7 I/TS ↑

Yasukawa et al. (2007) C-E 632.8 nm 2.09 J/cm2/139 mW/cm2 CM SD/1/7 I/TS ↑

Yasukawa et al. (2007) F 632.8 nm 4.21 J/cm−2/281 mW/cm−2 CM ED/6/7 I/TS ↑

Yasukawa et al. (2007) G 632.8 nm 4.21 J/cm2/281 mW/cm2 CM EOD/3/7 I/TS ↑

Yasukawa et al. (2007) H-J 632.8 nm 4.21 J/cm2/281 mW/cm2 CM SD/1/7 I/TS ↑

Stadler et al. (2001) A, E 830 nm 5 J/cm2/79 mW/cm2 CM ED/4/11 I/TS ↑

Stadler et al. (2001) G 830 nm 5 J/cm2/79 mW/cm2 CM ED/4/11 I/TS 0

Stadler et al. (2001) C 830 nm 5 J/cm2/79 mW/cm2 CM ED/4/11 I/TS ↓

Stadler et al. (2001) B, D, F, H 830 nm 5 J/cm2/79 mW/cm2 CM ED/4/23 I/TS ↑

Lyons et al. (1987) A 632.8 nm 1.22 J/cm2/4.05 mW/cm2 CM EOD/3/7 I/TS ↑

Lyons et al. (1987) B 632.8 nm 1.22 J/cm2/4.05 mW/cm2 CM EOD/7/14 I/TS ↑

Lyons et al. (1987) C 632.8 nm 1.22 J/cm2/4.05 mW/cm2 CM EOD/10/21 I/TS ↑

Lyons et al. (1987) D 632.8 nm 1.22 J/cm 2/4.05 mW/cm2 CM EOD/14/28 I/TS ↑

Lyons et al. (1987) E 632.8 nm 1.22 J/cm2/4.05 mW/cm2 CM EOD/28/56 I/TS ↑

Allendorf et al. (1997) A 632.8 nm 2 J/cm2/1.27 mW/cm2 CM ED/7/7 I/TS ↑

Allendorf et al. (1997) B 632.8 nm 2 J/cm2/1.27 mW/cm2 CM ED/14/14 I/TS ↓

Allendorf et al. (1997) C 632.8 nm 1 J/cm2/2.26 mW/cm2 CM ED/16/16 E/WC 0

Allendorf et al. (1997) D 632.8 nm 2 J/cm2/2.26 mW/cm2 CM ED/16/16 E/WC 0

Allendorf et al. (1997) E 632.8 nm 4 J/cm2/2.26 mW/cm2 CM ED/16/16 E/WC 0

de Medeiros et al. (2017) A 660 nm 4 J/cm2/3 mW/cm2 CM EOD/3/7 E/WC ↑

de Medeiros et al. (2017) B 660 nm 4 J/cm2/3 mW/cm2 CM EOD/7/14 E/WC ↑

Santana et al. (2015) A 660 nm 1 J/cm2/38 mW/cm2 CM EOD/4/22 E/WC ↓

Santana et al. (2015) B 660 nm 4 J/cm2/38 mW/cm2 CM SD/1/22 E/WC 0

Lau et al. (2015) A 808 nm 5 J/cm2/100 mW/cm2 CM ED/9/9 E/WC ↑

Lau et al. (2015) B 808 nm 5 J/cm2/200 mW/cm2 CM ED/9/9 E/WC ↑

Lau et al. (2015) C 808 nm 5 J/cm2/300 mW/cm2 CM ED/9/9 E/WC 0

Novaes et al. (2014) A 660 nm 3 J/cm2/25.47 mW/cm2 CM ED/21/21 E/WC ↑

Novaes et al. (2014) B 660 nm 30 J/cm2/25.47 mW/cm2 CM ED/21/21 E/WC ↑

Gonçalves et al. (2013) A 830 nm 30 J/cm2/73 mW/cm2 CM ED/21/21 E/WC ↑

Gonçalves et al. (2013) B 830 nm 90 J/cm2/73 mW/cm2 CM ED/21/21 E/WC ↑

Rezende et al. (2007) A 830 nm 1.3 J/cm2/53 mW/cm2 CM SD/1/14 E/WC ↑

Rezende et al. (2007) B 830 nm 3 J/cm2/53 mW/cm2 CM SD/1/14 E/WC ↑

Medrado et al. (2003) A 670 nm 4 J/cm2/28.27 mW/cm2 CM SD/1/14 E/WC ↑

Medrado et al. (2003) B 670 nm 8 J/cm2/28.27 mW/cm2 CM SD/1/14 E/WC ↑
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moderate inconsistency. Higher mW/cm2 yielded better point
effect estimates and could explain some of the heterogeneity:

A subgroup of nine comparisons (n = 134) with infrared
30–79 mW/cm2 laser favored LLLT over control after 11–
23 days by a significant SMD of 1.44 [95% CI 0.67 to 2.21]
with moderate inconsistency.

A subgroup of three comparisons (n = 36) with 1.08 mW/
cm2 pulsed infrared laser favored LLLT over control after
15 days by a non-significant SMD of 0.69 [95% CI − 1.8 to
3.19] with high inconsistency.

A subgroup of two comparisons (n = 55) with 139–
281 mW/cm2 red laser favored LLLTover control after 7 days
by a significant SMD of 1.52 [95% CI 0.54 to 2.49] with no
inconsistency.

A subgroup of 14 comparisons (n = 153) with 1–15 mW/
cm2 red laser favored LLLT over control after 7–56 days by a
significant SMD of 0.73 [95% CI 0.34 to 1.12] with no incon-
sistency (Fig. 2).

Synthesis of results—contraction of open wounds

Data allowing for meta-analysis of contraction of open
wounds were available from 11 studies with 23 comparisons
(n = 583). The overall result favored LLLT over control after
6–14 days by a significant SMD of 0.99 [95%CI 0.38 to 1.59]
with high inconsistency. None of the collected laser parame-
ters could explain the heterogeneity, and thus, we subgrouped
studies by wavelength and mW/cm2 as in the TS analysis.
Higher mW/cm2 yielded better point effect estimates:

A subgroup of seven comparisons (n = 192) with infrared
53–300 mW/cm2 laser favored LLLT over control after 6–
7 days by a significant SMD of 1.18 [95% CI 0.41 to 1.94]
with high inconsistency.

A subgroup of eight comparisons (n = 285) with 25–
90 mW/cm2 red laser favored LLLT over control after 7–
14 days by a significant SMD of 1.6 [95% CI 0.27 to 2.93]
with high inconsistency.

A subgroup of eight comparisons (n = 106) with 2–4 mW/
cm2 red laser favored LLLT over control after 6–7 days by a
non-significant SMD of 0.11 [95% CI − 0.68 to 0.91] with
moderate inconsistency (Fig. 3).

Synthesis of results—LLLT in diabetic animals

Data allowing for meta-analysis of TS of sutured wounds of
diabetic animals only were available from three studies with
six comparisons (n = 86). The overall result favored 1–
79 mW/cm2 LLLT over control after 11–23 days by a signif-
icant SMD of 1.84 [95% CI 0.83 to 2.84] with moderate in-
consistency (Fig. 4).

Data allowing for meta-analysis of WC of open wounds of
diabetic animals were available from two studies with five com-
parisons (n = 132). The overall result favored control over 4–
38 mW/cm2 LLLT after 7–8 days by a non-significant SMD of
− 0.51 [95% CI − 1.11 to 0.09] with low inconsistency (Fig. 5).

Discussion

Our previous experimental wound therapy-related works
[26–29] demonstrated that identical treatment protocols of su-
tured and open wounds yielded different outcomes, which
may present an aspect with crucial significance for clinical
practice. These findings are in line with the overall meta-
analysis results of the present study, indicating that LLLT is
effective in accelerating healing of open excisions and sutured
incisions.

In detail, our meta-analysis indicates that both 53–
300 mW/cm2 infrared laser and 25–90 mW/cm2 red laser is
effective in accelerating WC, whereas less intense red laser in
the range 2–4 mW/cm2 is not effective. In comparison, 30–
79 mW/cm2 infrared laser and 139–281 mW/cm2 red laser
seem to be effective in increasing wound TS, and even red
laser with as low as 1.27–15 mW/cm2 appears moderately

Table 1 (continued)

Reference Wavelength DS/PD Mode Treatment Wound/effect

Demidova-Rice et al. (2017) 632.8 nm 2 J/cm2/90 mW/cm2 CM SD/1/8 E/WC ↑

Hegde et al. (2011) A+B 632.8 4.02 mW/cm2/1–2 J/cm2 CM SD/1/7 E/WC ↓

Hegde et al. (2011) C+D 632.8 4.02 mW/cm2/3–4 J/cm 2/ CM SD/1/7 E/WC ↓

Hegde et al. (2011) E 632.8 4.02 mW/cm2/5 J/cm2 CM SD/1/7 E/WC ↓

Bisht et al. (1994) 638.2 mm 4 J/cm2/40 mW/cm2 CM ED/14/14 E/WC ↑

Braverman et al. (1989)a 632.8 nm 1.65 J/cm2/3 mW/cm2 CM ED/20/21 E/WC 0

Braverman et al. (1989)a 904 nm 8.25 J/cm2/13 mW/cm2 PM ED/20/21 E/WC 0

Braverman et al. (1989)a 632.8/904 nm 1.65/8.25 J/cm2/3/13 mW/cm2 CM/PM ED/20/21 E/WC 0

Kana et al. (1982)a 632.8 nm 4 J/cm2/45 mW/cm2 CM ED/12/12 E/WC ↑

Kana et al. (1982)a 514.5 nm 4 J/cm2/45 mW/cm2 CM ED/12/12 E/WC 0

aData did not allow for meta-analysis
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Table 2 Excluded studies/comparisons. Abbreviations: DS dose per session, PD power density, TS tensile strength,WCwound contraction, I incision,
E excision, ↑ laser therapy was superior

Reference Wavelength DS/PD Effect Reason for exclusion

Solmaz et al. (2017) 635 nm 1 J/cm2/50 mW/cm2 I/TS ↑ No sutures, WC not evaluated

Solmaz et al. (2017) 635 nm 3 J/cm2/50 mW/cm2 I/TS ↑ No sutures, WC not evaluated

Solmaz et al. (2017) 809 nm 1 J/cm2/50 mW/cm2 I/TS 0 No sutures, WC not evaluated

Solmaz et al. (2017) 809 nm 3 J/cm2/50 mW/cm2 I/TS 0 No sutures, WC not evaluated

D O Guirro et al. (2010) 670 nm 4 J/cm2/500 mW/cm2 I/TS ↑ No sutures, WC not evaluated

D O Guirro et al. (2010) 670 nm 7 J/cm2/500 mW/cm2 I/TS 0 No sutures, WC not evaluated

Reddy et al. (2003) 904 nm 1 J/cm2/14 mW/cm2 I/TS ↑ No incisions, WC not evaluated

Ghamsari et al. (1997) 632.8 nm 3.64 J/cm2/114 mW/cm2 I/TS ↑ 2-layer suturing, teat healing

Ghamsari et al. (1996) 632.8 nm 3.642 J/cm2/114 mW/cm2 I/TS ↑ 2-layer suturing, teat healing

Basford et al. (1986) 632.8 nm 0.054 J/cm2/? mW/cm2 I/TS 0 Unknown PD

Asghari et al. (2017) 890 nm 0.324 J/cm2/1920 mW/cm2 ? TS not evaluated, WC not evaluated

Aragão-Neto et al. (2017) 660 nm 4 J/cm2/? mW/cm2 WC ↑ Unknown PD

Keshri et al. (2016) 810 nm 22.6 J/cm2/40 mW/cm2 ? TS not evaluated, WC not evaluated

Keshri et al. (2016) 810 nm 22.6 J/cm2/40 mW/cm2 ? TS not evaluated, WC not evaluated

Keshri et al. (2016) 810 nm 22.6 J/cm2/40 mW/cm2 ? TS not evaluated, WC not evaluated

Tabakoglu et al. (2016) 808 nm 6.38 J/cm2/1276 mW/cm2 WC ↑ High-level laser therapy

Pouriran et al. (2016) 890 nm 0.2 J/cm2/1.08 mW/cm2 ? TS not evaluated, WC not evaluated

Isman et al. (2015) 810 nm 8 J cm−2/3175 mW cm−2 ? High-level laser therapy

Kurach et al. (2015) 635 nm 1125 J cm−2/? mW cm−2 WC 0 Unknown PD, assumable high-level laser therapy

Kilík et al. (2014) 635 nm 5 J cm−2/1 mW cm−2 ? TS not evaluated, WC not evaluated

Kilík et al. (2014) 635 nm 5 J cm−2/5 mW cm−2 ? TS not evaluated, WC not evaluated

Kilík et al. (2014) 635 nm 5 J cm−2/15 mW cm−2 ? TS not evaluated, WC not evaluated

Colombo et al. (2013) 660 nm 10 J cm−2/318.4 mW cm−2 ? TS not evaluated, WC not evaluated

de Sousa et al. (2013) 660 nm 10 J cm−2/478 mW cm−2 ? TS not evaluated, WC not evaluated

de Sousa et al. (2013) 790 nm 10 J cm−2/398 mW cm−2 ? TS not evaluated, WC not evaluated

Fathabadie et al. (2013) 890 nm 0.03 J cm−2/? mW cm−2 ? TS not evaluated, WC not evaluated

Fathabadie et al. (2013) 890 nm 0.2 J cm−2/? mW cm−2 ? TS not evaluated, WC not evaluated

Dadpay et al. (2012) 890 nm 0.03 J cm−2/1.08 mW cm−2 ? WC not evaluated, no sutures, TS not evaluated

Dadpay et al. (2012) 890 nm 0.2 J cm−2/1.08 mW cm−2 ? WC not evaluated, no sutures, TS not evaluated

Garcia et al. (2012) 660 nm 5.57 J cm−2/420 mW cm−2 ? TS not evaluated, WC not evaluated

Peplow et al. (2012) 660 nm 2 J cm−2/? mW cm−2 ? WC not evaluated, PD not provided

Hussein et al. (2011) 890 nm 1.5 J cm−2/5 mW cm−2 ? TS not evaluated, WC not evaluated

Peplow et al. (2011) 660 nm 6 J cm−2/65 mW cm−2 ? TS not evaluated, WC not evaluated

Bayat et al. (2010) 780 nm 2 J cm−2/50 mW cm−2 ? TS not evaluated, WC not evaluated

Chung et al. (2010) 660 nm 0.8 J cm−2/200 mW cm−2 ? WC not evaluated, used Tegaderm HP dressing

Chung et al. (2010) 660 nm 1.6 J cm−2/200 mW cm−2 ? WC not evaluated, used Tegaderm HP dressing

Chung et al. (2010) 660 nm 3.2 J cm−2/200 mW cm−2 ? WC not evaluated, used Tegaderm HP dressing

Jahangiri et al. (2010) 670 nm 10 J cm−2/500 mW cm−2 ? TS not evaluated, WC not evaluated

Jahangiri et al. (2010) 810 nm 12 J cm−2/250 mW cm−2 ? TS not evaluated, WC not evaluated

Lacjaková et al. (2010) 670 nm 5 J cm−2/5 mW cm−2 ? TS not evaluated, WC not evaluated

Lacjaková et al. (2010) 670 nm 5 J cm−2/15 mW cm−2 ? TS not evaluated, WC not evaluated

Lacjaková et al. (2010) 670 nm 5 J cm−2/40 mW cm−2 ? TS not evaluated, WC not evaluated

Prabhu et al. (2010) 632.8 nm 2 J cm−2/4.02 mW cm−2 WC ↑ Light emitting diode therapy, not laser

Gál et al. (2009) 635 nm 5 J cm−2/1 mW cm−2 ? TS not evaluated, WC not evaluated

Gál et al. (2009) 635 nm 5 J cm−2/5 mW cm−2 ? TS not evaluated, WC not evaluated

Gál et al. (2009) 635 nm 5 J cm−2/15 mW cm−2 ? TS not evaluated, WC not evaluated

Gul et al. (2009) 632.8 nm 1 J cm−2/? mW cm−2 ? TS not evaluated, WC not evaluated, unknown PD

Gul et al. (2009) 632.8 nm 3 J/cm2/? mW cm−2 ? TS not evaluated, WC not evaluated, unknown PD
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effective (SMD= 0.73). These discrepancies support the hy-
pothesis that the higher amount of granulation tissue in open
wounds [7, 8] absorbs more of the laser energy compared to
the relatively intact superficial skin in sutured wounds.

The observed differences in the effectiveness of LLLT be-
tween healthy and diabetic models may be related to differences
in their respective wound microenvironment and/or the use of
different laser parameters. Imbalance in the production of
growth factors, abnormal ECM function, and poor blood supply
are the key factors responsible for delayed wound healing in

diabetic patients [30]. Furthermore, diabetic animals have in
general decreased expression ofα-SMA [31], and subsequently,
these wounds exert lower contraction rates [32] which may also
explain the poor efficiency of LLLT in this model. The TS
analysis of sutured diabetic animals yielded a very large effect
estimate in favor of LLLT, whereas LLLT did not improve WC
of open wounds in diabetic animals. It is plausible that this
discrepancy is due to the higher mW/cm2 and/or longer wave-
length applied to the sutured wounds. On the other hand, the
effect of LLLT in diabetic foot ulcers (DFU) has been

Table 2 (continued)

Reference Wavelength DS/PD Effect Reason for exclusion

Maiya et al. (2005) 632.8 nm 4.8 J cm−2/? mW cm−2 ? TS not evaluated, WC not evaluated, unknown PD

Pinheiro et al. (2005) 685 nm 20 J cm−2/300 mW cm−2 ? TS not evaluated, WC not evaluated

Petersen et al. (1999) 830 nm 2 J cm−2/30 mW cm−2 WC 0 TS not evaluated, Values of WC not provided

Hunter et al. (1984) 632.8 nm 96 J cm−2/64 mW cm−2 WC 0 Only 2 animals (pigs) included

Fig. 2 Forest plot for a meta-analysis based on TS of sutured wounds.
Synthesized results are shown as totals in the bottom of the figure. Plots
on the right-hand side of the y-axis indicate that LLLT is superior. The

uppercase letters after author name and publication year refer to the com-
parison groups in Table 1
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investigated in an interesting systematic review and meta-
analysis and those results showed that LLLT has significant
potential to become a portable, non-invasive, easy-to-use, and
cost-effective treatment modality for DFU [33].

Since the review revealed different effects of LLLT in both
models of wound healing, several underlying biological mech-
anisms need to be considered. In this context, it has been shown
that LLLT with 635-nm diode laser (dose 0.3 J/cm2, output
power 89 mW) inhibited TGF-β1/Smad3-mediated conversion
of fibroblasts into myofibroblasts, and this effect involved the
modulation of TRPC1 ion channels [34]. These data indicate a
potential antifibrotic effect of LLLT and suggest that this ther-
apy is a promising therapeutic tool against tissue fibrosis. On
the other hand, open wounds irradiated with a higher dose of

HeNe laser (dose 1 J/cm2, output power 10 mW) contained α-
SMA positive cells, reduced inflammation, and better organi-
zation of collagen fibrils [35]. Similarly, combined red
(685 nm) and blue (470 nm) therapy (both power densities
8 mW/cm2 and daily doses 3.36 J/cm2) of sutured skin inci-
sions led to improved formation of cross-linked collagen fibers
[36]. The abovementioned data are very interesting, since very
low doses, and not high doses, are able to block selected path-
ways which led to very specific effects of treatment.

Recent progress in wound healing research has also
highlighted the significance of the ECM as an essential part
of the niche. Important molecules involved in ECM remodel-
ing are matrix metalloproteinases (MMPs), a family of calci-
um-dependent, zinc-containing endopeptidases that are

Fig. 3 Forest plot for a meta-analysis based onWC. Synthesized results are shown as totals in the bottom of the figure. Plots on the right-hand side of the
y-axis indicate that LLLT is superior. The uppercase letters after author name and publication year refer to the comparison groups in Table 1

Fig. 4 Forest plot for a meta-analysis based on TS of diabetic sutured
wounds. Synthesized results are shown as totals in the bottom of the
figure. Plots on the right-hand side of the y-axis indicate that LLLT is

superior. The uppercase letters after author name and publication year
refer to the comparison groups in Table 1
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negatively regulated by their inhibitors (TIMPs). In particular,
MMP-2 enables endothelial cell migration during angiogene-
sis and facilitates re-epithelization and fibroblast growth. On
the other hand, MMP-2 also digests several structural glyco-
proteins (including collagen type III) and gelatins [37].
Collagen type III plays an important role in wound stiffness
during the early stages of wound healing [7, 13], thus may
represent additional mechanisms of wound-type specific dif-
ferences of treatment. In this context, LLLT has been shown to
improve open wound healing by enhancing neocollagenesis,
neoangiogenesis, and MMP-2 expression [38]. However, up-
regulation of MMP-2 has led to a decrease of wound TS in an
aged-associated rat model of skin incision [39]. From this
point of view, it would be interesting to test this LLLT proto-
col on the biomechanical parameters of skin incisions.

LLLT parameter/wound-type-dependent effects—red
lasers

The first paper comparing both incisions and excisions was pub-
lished already in 1983. In this work, no significant differences
were observed in healing between laser-treated (tested doses 1.1
and 2.2 J/cm2) and untreated control wounds. Conversely, rat
skin incisions exposed to 2.2 J/cm2 demonstrated significant
increase in wound TS over controls [40]. These results have been
partially confirmed later, since LLLT at 632.8 nm with a output
power of 1.56 mWand a dose of 1.22 J/cm2 has also resulted in
improvement in the wound TS [41]. Nevertheless, no differences
were found between control and laser treated (wavelength
632.8 nm; output power 4 mW) groups in the WC of open and
TS of closed wounds [42]. Rats received a treatment of 1, 2, or
4 J/cm2 in the case of excisions and 2 J/cm2 for skin incisions. In
addition, by comparing two parameter settings of HeNe laser, it
has been shown that power density of 281 mW/cm2 with a dose
of 4.21 J/cm2 ismore effective than 139mW/cm2 and 2.09 J/cm2

[24]. Furthermore, LLLT produced a better effect when treatment
was applied every other day compared to daily treatment.

The first pivotal paper describing inverse relationship be-
tween wavelength and power density was published in 2004
[43]. LLLTat 670 and 685 nm (dose 10 J/cm2; delivered by 2,
15, or 25 mW) has been found more effective when combin-
ing higher intensity with shorter wavelength or lower intensity

with higher wavelength, using an open wound model.
Motivated by this study, we have tested red LLLT, by the
means of both basic wound healing models. We have also
shown that the LLLT effect depends upon dosing (dose 5 J/
cm2; tested power densities 1, 5, 15, and 40 mW/cm2), wave-
length (635 vs. 670 nm), and wound type (incision vs. exci-
sion) [26–28]. In detail, open wounds were effectively stimu-
lated by applying higher intensities with both 635 and 670 nm
wavelengths [26, 27], which corresponds to the paper pub-
lished in 2004. However, the model of sutured incisions re-
vealed that LLLT at 635 and 670 nm was more effective in
increasing wound TS when higher intensity was combined
with shorter wavelength and/or lower intensity was combined
with longer wavelength [28]. Later realized in vivo experi-
ments reinforced the data, demonstrating positive effects of
LLLT on wound stiffness. Laser irradiation at 635 nm of both
energy densities, 1 and 3 J/cm2 (delivered by 50 mW), in-
creased wound TS [44]. Similarly, LLLT at 660 nm energy
densities of 1 and 5 J/cm2, but not 10 J/cm2, enhanced wound
TS in a rat incisional wound model [45]. Interestingly, wound
treatment at 660 nm (tested doses 3 and 30 J/cm2, power
density 25.47 mW/cm2) revealed that the higher tested energy
density was more effective in modifying the morphology of
the scar tissue (increased collagen and glycosaminoglycan
content as well as elevated density of blood vessels) and led
to a faster course of healing [46]. LLLT at 670 nm (tested
doses 4 and 8 J/cm2, power density: not provided) reduced
inflammation and increased collagen deposition and the pres-
ence of myofibroblasts [47]. Wound contraction was faster
following therapy with the lower tested dose.

LLLT parameter/wound-type-dependent
effects—infrared lasers

Other examples of wound-type-specific effects have been
demonstrated using infrared lasers. The 808 nm (5 J/cm2 de-
livered with different power densities 100, 200, and 300 mW/
cm2) wavelength has been found more effective when energy
was delivered at the lowest tested power density. This has
been verified by increased GT formation, collagen deposition,
and faster rate of wound contraction in an open wound healing
model [48]. However, LLLT at similar parameters (809 nm;

Fig. 5 Forest plot for a meta-analysis based on WC of diabetic sutured
wounds. Synthesized results are shown as totals in the bottom of the
figure. Plots on the right-hand side of the y-axis indicate that LLLT is

superior. The uppercase letters after author name and publication year
refer to the comparison groups in Table 1
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tested energy densities 1 and 3 J/cm2; delivered by 50 mW)
did not have any positive effects on wound TS [44]. Other
examples of the wound-type-specific LLLT effects may be
reflected in our experiment conducted with diabetic rats. In
this study, treatment with an infrared 810-nm laser with a
power density of 30 mW/cm2 and daily dose of 0.9 J/cm2

reverse wound impairment mediated by diabetes induction
in open wounds, but was not that effective in increasing
wound TS of sutured incisions [49]. A single irradiation at
830 nm produced a slightly better result by applying the dose
of 1.3 J/cm2 when compared to the dose of 3 J/cm2 (power
density 53 mW/cm2) on open wounds in rats [50]. Our theory
regarding a parameter/wound-type efficiency of LLLT was
supported by other study where treatment of full-thickness
incisions with a laser radiation at 830 nm (dose 5.0 J/cm2;
power density 79 mW/cm2) resulted in significantly enhanced
cutaneous wound TS in healthy and diabetic mice [51]. On the
other hand, a direct comparison of two laser doses, 30 and
90 J/cm2, at 830 nm (power density 73 mW/cm2) revealed
that the higher dose was more beneficial to the healing process
via modulating the morphology and oxidative status of open
wounds [52]. In another study, healthy and diabetic rats were
submitted to a treatment with either 0.03 or 0.2 J/cm2 dose by
a pulsed infrared 890-nm laser with 80 Hz frequency [53].
Interestingly, a lower LLLT dose significantly decreased
wound TS in healthy rats, whereas a higher dose significantly
increased the maximum load of wounds in both healthy and
diabetic animals.

Conclusion

In summary, our review has resulted in two (clinical and ex-
perimental) important observations. Firstly, LLLT appears ef-
fective in treatment of sutured and open wounds. Laser power
density could explain some of the statistical heterogeneity in
the TS analysis, but not in theWC analysis. This indicates that
TS development of sutured wounds is more dependent on
laser mW/cm2, compared to the contraction rate of open
wounds. Thus, it is plausible that optimized treatment of the
two wound types require different laser parameters. More
comprehensive subgroup analyses with other laser parame-
ters, e.g., dose and irradiation protocol, were prohibited due
to poorly reported treatment parameters. However, we may
conclude that laser doses around 5 J/cm2 can accelerate wound
healing. Secondly, common use of both basic wound models
(sutured incision and open excision) should become the gold
standard in all further experimental studies comparing the ef-
ficiency of specific treatment protocols/approaches. However,
our results should be interpreted with caution, as only one
literature database was used and due to statistical heterogene-
ity, which could be a product of other LLLT parameters than
power density and wavelength. Finally, a direct extrapolation

from data seen in animal studies to the human clinical situa-
tion is not possible due to the inter-species variability. Since
the general molecular regulation of wound healing should be
similar, further clinical LLLT investigations are encouraged,
with comprehensive reporting of LLLT parameters.
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