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Abstract Photodynamic inactivation (PDI) is a light-
associated therapeutic approach suitable for treatment of local
acute infections. The method is based on specific light-
activated compound which by specific irradiation and in the
presence of molecular oxygen produced molecular singlet ox-
ygen and other reactive oxygen species, all toxic for patho-
genic microbial cells. The study presents photodynamic im-
pact of two recently synthesized water-soluble cationic lute-
tium (III) acetate phthalocyanines (LuPc-5 and LuPc-6) to-
wards two pathogenic strains, namely, the Gram-negative bac-
terium Pseudomonas aeruginosa and a fungus Candida
albicans. The photodynamic effect was evaluated for the cells
in suspensions and organized in 48-h developed biofilms. The
relatively high levels of uptakes of LuPc-5 and LuPc-6 were
determined for fungal cells compared to bacterial cells. The
penetration depths and distribution of both LuPcs into micro-
bial biofilms were investigated by means of confocal fluores-
cence microscopy. The photoinactivation efficiency was stud-
ied for a wide concentration range (0.85–30 μM) of LuPc-5
and LuPc-6 at a light dose of 50 J cm−2 from red light-emitting
diode (LED; 665 nm). The PDI study on microbial biofilms

showed incomplete photoinactivation (<3 logs) for the used
gentle drug-light protocol.
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Introduction

The increasing incidence ofmicrobial infections, coupled with
the growing resistance towards conventional antibiotic-
associated therapy and the side effects of the chemotherapeu-
tic drugs, has forced the research and development of alterna-
tive therapeutic strategies [1, 2]. Historically, photodynamic
therapy (PDT) was well developed starting from the begin-
ning of the twentieth century as a curative procedure for tumor
treatment [3]. In the recent years, research interest to PDT has
been reinforced because of the fast development of drug re-
sistance of the pathogenic microorganisms [4]. The mecha-
nism of PDTaction on pathogenic cells is the same which acts
also on tumor cells with an essential role of type II photocat-
alytic mechanism [5]. It involves an energy transfer from the
triplet state of a photosensitizer (PS) to the molecular oxygen
in the grown triplet state which converts to molecular singlet
oxygen [6]. Additionally, reactive oxygen species (ROS) can
be produced by type I mechanism which happens through an
electron or proton transfer from the triplet state of PS to the
biomolecules which are in the vicinity of the PS pathway. The
produced radicals are reacting with atmospheric oxygen with
generation of oxidized products such as superoxide radical
anion, hydrogen peroxide, or hydroxyl radical. The conse-
quences of both mechanisms are oxidative reactions which
action is limited to a fewmicrons around the area of local light
application. The parts of microbial cells such as cell wall, lipid
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membranes, enzymes, or nucleic acids which are in the singlet
oxygen and in the surrounding environment of ROS are the
target of the generated cytotoxic species [7]. The development
of resistance to photodynamic inactivation (PDI) seems very
unlikely because of the harmful singlet oxygen which is caus-
ing irreversible cell death [8]. The photodynamic method for
control and inactivation of multispecies microbial biomass has
several advantages compared to known antimicrobial drugs:
(1) local application of a PS and light, (2) lack of specificity of
PS to the pathogenic genus, (3) minimal or non-resistance
against PS, and (4) the local application of light only on the
site of the lesion which leads to fast results a short time after
treatment [9].

The metal phthalocyanines (MPcs) belong to second-
generation photosensitizers for cancer PDT [10–12]. The op-
tical properties of MPcs such as far-red high-intensity absorp-
tion (>670 nm, >105 mol−1 cm−1) and red-shifted fluorescence
(>680 nm) with relatively high singlet oxygen quantum yield
(>0.3) are favorable for PDI application. Sulfonated alumi-
num (III) phthalocyanine (Photosens®) is the first clinically
accepted metal phthalocyanine for treatment of a variety of can-
cer localizations [13, 14]. Another phthalocyanine on clinical
stage is silicon phthalocyanine (Pc4) which has been studied as
photosensitizer for decontamination of blood transfusion [15].

PDI studies suggested advantages of cationic PSs for inac-
tivation of pathogenic microorganisms [16–18]. They can
bond to the negatively charged outer membrane of the fungal
and bacterial cellular wall by electrostatic interaction and by
direct mechanism of cellular inactivation straight to affect the
outer cell membranes [19, 20]. On the other hand, the positive
charge of the PS affects the permeability barrier of the highly
organized outer membrane, which allows the PS penetration
and localization in the cytoplasm [21]. The lutetium
texaphyrin derivatives are used for radiation and PDT on clin-
ical stage [22, 23]. Two new lutetium (III) acetate phthalocy-
anines (LuPcs) were recently synthesized and characterized
with photophysicochemical properties which are suitable for
PDI application [24].

At the beginning of the clinical PDT for the tumor treat-
ment it involves the use of lasers which are not easy to operate,
and they are expensive for maintenance. However, the coher-
ence of laser light is not a crucial property for PDT. In recent
years, the non-coherent light sources have become available
and useful in the experimental as well as for clinical PDT [25].
They are relatively inexpensive, stable, and easy to operate
and require simple maintenance but differ fundamentally from
the lasers in their output characteristics.

Nowadays, the available treatments for Candida albicans
(C. albicans)-associated infections are mainly based on the con-
ventional antifungal drugs,mostlywith high toxicity to thewhole
body [26]. The fungal strain studied in the present work belongs
to Candida species, the pathogens associated with the opportu-
nistic fungal diseases, particularly in immuno-compromised

patients and denture wearers [27]. The bacterial strain
Pseudomonas aeruginosa (P. aeruginosa) is a Gram-negative
bacterium which is known for its very low susceptibility to the
conventional antibiotic therapy [28].

The study presents the uptake of two water-soluble cationic
lutetium (III) acetate phthalocyanines LuPc-5 and LuPc-6 for
cellular suspensions of bacterial P. aeruginosa and of fungal
C. albicans cells by observation of the fluorescence signal ob-
tained at excitation from one LD at 365 nm and emission be-
tween 660 and 750 nm. The localization and penetration depth of
both LuPcs were studied in 48-h biofilms by using laser excita-
tion from a confocal laser fluorescence microscope. In vitro pho-
todynamic inactivations were evaluated for a wide concentration
range of LuPcs at irradiation with therapeutic light (LED
665 nm) applied on cells as planktonic and biofilm cultures.

Materials and methods

Photosensitizers and chemicals

The photosensitizers used in this study are two Lu(III) acetate
phthalocyanines with four methylpyridyloxy groups which
differ in the position on the macrocycle, namely, non-
peripheral (α position) for LuPc-5 and peripheral (β position)
for LuPc-6 (Fig. 1, inset). The synthesis and chemical charac-
terization of LuPcs are recently described [24]. The stock so-
lutions of LuPc-5 and LuPc-6 (2 mM) were freshly prepared
in dimethyl sulfoxide (DMSO) and diluted prior the experi-
ments. The dilution was made in sterile 0.01 mM phosphate-
buffered saline (PBS). The control of the concentrations was
carried out spectrophotometrically in DMSO of spectroscopic
grade (Sigma-Aldrich). All used chemicals for PBS prepara-
tion and for the extraction procedure during the uptake study
such as sodium dodecyl sulfate (SDS) and tetrahydrofuran
(THF) are products of Sigma-Aldrich.

Microbial strains and culture conditions

The fungus C. albicans strain no. 74 and the Gram-negative
P. aeruginosa 1390 were taken from the National Bank for
Industrial Microorganisms and Cell Cultures (NBIMCC),
Sofia, Bulgaria. Brain Heart Infusion Broth (Difco, BD
Diagnostic Systems, and Sparks, MD) for P. aeruginosa and
Tryptic Soy Broth and Tryptic Soy Agar media (Difco) for
C. albicans were used. Both microbial strains were grown
aerobically at 37 °C. The cells were harvested by centrifuga-
tion, and then they were resuspended in sterile PBS buffer.
The cell density was checked by absorbance at 600 nm, A =
0.490 for 109 cells per milliliter.

The Gram-negative strain P. aeruginosa 1390 used in our
study was tested for drug resistance against a variety of drug
classes which included penicillins (amoxicillin and penicillin);
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polypeptide antibiotic (bacitracin); glycopeptide antibiotic
(vancomycin); tetracycline (doxycycline); sulfonamide
(trimethoprim); aminoglycoside (kanamycin); and others (lin-
comycin, nalidixin acid and rifampin, novobiocin). The re-
sults showed sensitivity of P. aeruginosa to the groups of
antibiotics: cephalosporins (ceftriaxone); aminoglycosides
(amikacin, tobramycin, gentamicin); and other (chloramphen-
icol). The used strain P. aeruginosa 1390 has comparable
values of sensitivity to the above drugs to those published
from the commercially available strains specified under the
name ATCC® Drug-Resistant Pseudomonas aeruginosa
Panel (ATCC® MP-23™) [29].

Light sources and equipment

An experimental setup (Scheme 1) is arranged on the basis of
several irradiation devices such as diode lasers (DLs) and
light-emitting diodes (LEDs). The setup is configured to be
usable for experimental PDT investigations with different pho-
tosensitizers. This setup allows controlling the bleaching and
measurements of spectral properties of different photoactive
compounds by several irradiation modalities. In case of PDT
experiment, the irradiation mode of two different light sources
with maximum at 635 and 665 nm can be used in dependence
of the absorption band of the applied PS (Fig. 1). The light
sources have a full width of half maximum (FWHM) of 25 nm
with maximum at 635 and 665 nm, respectively. The working
regimes of the LED sources (power and distance to the target)
and illumination duration (texc) were evaluated for the light
dose (D) needed at the applied wavelength in accordance with
the equation D= I × texc, where I is the measured light inten-
sity on the sample position. The maximal power density at a
distance of 10 cm from the irradiated sample is up to
200 mW cm−2 for a 635-nm LED and up to 100 mW cm−2

for the second 665-nm LED at an area of 25 cm2 (ELO Ltd.,
Sofia, Bulgaria).

The spectral measurements are based on the use of a QE
65000 spectrophotometer as it is shown in Scheme 1, As exci-
tation sources for fluorescence measurements, we used
continuous-wave (CW) diode lasers with different wave-
lengths. The excitation power applied at the excitation wave-
lengths for fluorescence measurements was constant at about
50 mW. Different delivery components (light guide, lenses (L),
several optic filters (F), and polarizer) to obtain light intensity in
the linear range of the QE 65000 spectrophotometer were used.
Several optical fibers (LG) to deliver the excitation and regis-
tered signals in the spectral range 275–800 nm were used.

The absorbance and fluorescence spectra were recorded
using a fiber-optic QE 65000 microspectrometer (Ocean
Optics Inc., Dunedin, FL, USA).The spectral resolution of
the microspectrometer was approximately 1 nm. The spectra
were recorded using the microspectrometer specialized soft-
ware Spectra Suite (Ocean Optics Inc., Dunedin, USA). The
data were analyzed and graphically represented by means of
computer programme Origin 8.0 (Microcal Software, Inc.,
Northampton, MA. USA). The assessment of the drug con-
centration was performed on Shimadzu UV–Vis 3000 appa-
ratus (Japan). The confocal laser scanning microscope
(CLSM) of Leica Microsystems (Leica TCS SPE) equipped
with Leica LAS AF software was used.

Uptake study

The suspensions were serially diluted to the required densities
from 108 to 105 cells per milliliter prior to the experiments.
The uptake study was carried out following the chemical ex-
traction procedure. The quantification of the number of mol-
ecules accumulated into bacterial and fungal cells was evalu-
ated by means of fluorescence measurements of the collected
samples. The pathogenic cells were incubated for 15 min with
3 μM LuPc-5 and LuPc-6 in the dark. The collected samples
for fluorescence measurements were (1) the supernatant of
PBS after incubation, (2) the PBS after the first and (3) after
the second cell wash, and (4) the supernatant after extraction
with THF: 2 % SDS (1:9). The fluorescence spectra of the
collected samples were measured by using an elaborated ex-
perimental setup with an excitation source DL of 365 nm
(Scheme 1).The samples (1–4) were diluted with DMSO,
and the fluorescence maxima were recorded in the 660–750-
nm region. The results were presented as the number of mol-
ecules of LuPc-5 or LuPc-6 per one cell by processing the
obtained values of fluorescence intensities and referring to
the calibration curves taken for both LuPcs in the solvent
mixtures.

Biofilm development

The microbial pathogenic biofilms of each of the studied path-
ogenic strains (P. aeruginosa and C. albicans) were cultured

Fig. 1 UV-visible spectra of Lu(III) acetate phthalocyanines (LuPc-5 and
LuPc-6) in dimethylsulfoxide with their chemical structures (inset)

Lasers Med Sci (2016) 31:1591–1598 1593



on coverslips, which were placed in commercial pre-sterilized
polystyrene flat-bottomed 12-well cell culture test plates
(Switzerland). A standard cellular suspension (1 mL, 107

CFU mL−1) prepared after serial dilutions was applied onto
the surface of the discs placed in each well of the plate follow-
ed by incubation for 1.5 h at 37 °C to promote cellular adher-
ence to surface of the discs. The blank control wells with the
discs at the same conditions but without bacterial cells were
inoculated. After the initial adhesion phase, the cell suspen-
sions were aspirated and the discs were gently washed with
PBS to remove loosely adherent cells. In the biofilm phase
formation, an addition of 4 mL Tryptic Soy Broth (Difco
Laboratories, MD, USA) was placed in each well. The plates
were covered, and the incubation continued for 48 h at 37 °C
to form the biofilms for analyses.

Confocal laser scanning microscopy

The biofilm images were processed via the Leica LAS AF
software provided with the equipment. The characteristics of
biofilm were studied following the protocol of our recent stud-
ies [30, 31]. The oil immersion of ×63 objective (NA = 1.23)
was used. The thickness of the biofilm was evaluated by the
native fluorescence of the cells (excitation 488 nm, emission
520–580 nm). The microbial biofilms were incubated in the
dark for 1.5 h with 20 μMLuPcs. The study includes measure-
ments of the biofilm thicknesses and LuPc localization and
penetration depths into the biomass. The samples were washed
in PBS, and then they were covered with coverslips. The fluo-
rescence images of the biofilms were obtained by excitation
with a 633-nm laser, and the emission was taken between 660
and 740 nm to image the localization and penetration depth of
LuPcs throughout the biofilm thicknesses. The whole biofilm

was scanned on slices of 0.100 μm each by following the
fluorescence and transmittance modes. The co-localization of
LuPcs in the cells organized in the biofilm was evaluated by
following both channels.

In vitro PDI study

The cells in suspensions (1 mL) were incubated with LuPcs
for 15 min, by using the freshly prepared stock solutions. The
incubation was carried out on a magnetic stirrer with wide
concentration range (0.85, 1.70, 3.40, 6.80, 12, 20, and
30 μM LuPc-5 and LuPc-6) in the dark at room temperature.
The cell suspensions for experiments were with cell densities
between 106 and 107 CFU per milliliter in PBS. After incuba-
tion time was passed, an aliquot (200 μL) of the suspension
was placed in a standard palette. The power densities applied
on the samples were calculated according to the power mea-
sured on the surface of the irradiated cells with a negligible
decrease (5 %) inside the thin layer of the cells as suspension
as well as for the biofilm cultures. The irradiation from a 665-
nm LED was adjusted at a distance of 20 cm to achieve the
power density of 60 mW cm−2. The requested dose of
50 J cm−2 was reached for an irradiation time of 12 min. The
samples of four control groups were collected: (1) with pho-
tosensitizer, but no light (dark toxicity), (2) without photosen-
sitizer, but illuminated, (3) only bacterial suspension (no pho-
tosensitizer, no light), and (4) bacteria incubated only with
DMSO (5 % from the total volume). After irradiation, the
aliquot of cells (0.1 mL) was taken off and serially diluted
(10-fold) with PBS. The same action was repeated for the
control samples (1–4). Aliquots (0.1 mL) were spread over
Trypticase® Soy Agar, and the number of colonies (CFU)
was counted after a 48-h incubation.

Scheme 1 Experimental setup of fiber optics and several light sources with elaborated Ocean Optics QE 65000 spectrometer, used in the uptake and
in vitro photodynamic studies and applicable for different photosensitizers
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Statistics

The uptake and in vitro experiments were carried out in trip-
licate, and the data were presented as a mean ± standard devi-
ation (SD). The difference between two means was compared
by a two-tailed unpaired Student’s test. The values of p < 0.05
were considered as significant.

Results and discussion

Uptake

Two water-soluble cationic Lu (III) acetate phthalocyanines,
which are presented with the absorption spectra in Fig. 1, were
recently synthesized and characterized as photosensitizers
suitable for PDI. The absorption, fluorescence, and photo-
chemical properties of LuPc-5 and LuPc-6 were determined
with promising values [24]. Both complexes, apart from the
formation of photoinactive aggregates in pure water, show a
tendency to monomerize by addition of some detergent [24].
The larger atom of lutetium coordinated in the macrocycle of
phthalocyanine contributed to properties of the triplet excited
state which relates to the singlet oxygen quantum yields of
LuPcs (0.3–0.4).

The uptake of LuPc-5 and LuPc-6 was evaluated for
P. aeruginosa and C. albicans cellular suspensions (Fig. 2).
The results are presented as a number of LuPc molecules
attached to one bacterial or fungal cell on the basis of the
fluorescence intensity of the collected samples referring to
the calibration curves. The results suggested that LuPc-5 and
LuPc-6 are likely to accumulate with lower amount in the
Gram-negative bacterial cells than in fungal cells. Both LuPc
values of uptake are inversely proportional with densities.
Namely, the number of LuPc molecules per one cell decreases
with an increment of the cell density. This phenomenon of the
opposite dependence of the number of PS molecules on the
cell density of suspension was firstly reported for the Gram-
negative Escherichia coli [16]. Further studies on the various
bacterial and fungal strains confirmed that the uptake of any
applied PS decreases with an increment of cellular density
[17–19]. The cationicMPc was proved that can bemore easily
taken up by the cells as a result of the nature of the membrane
bilayers [20]. Having in consideration that the binding process
usually occurs via an electrostatic mechanism of interaction,
the positively charged PSs are taken up usually in higher
amount into the cells than the neutral and negatively charged
PSs [19, 32]. The permeability of the membranes is also in-
fluenced by dipole moment of PS as was shown in a recent
study with the mono-substituted molecules which were eval-
uated with better uptake for cells [33]. However, another study
suggests that the photodynamic effect has no correlation to the

uptake efficiency as was reported for mono- and tetra-
substituted indium (IV) phthalocyanines [34].

Biofilm study

The biofilms were characterized by the excitation wavelength
typical for the native cell chromophores and the fluorescence
of the applied LuPcs (Fig. 3a, b). The native cellular fluores-
cence (A) was used for visualization of the formed biofilms
(excitation 488 nm; emission 520–580 nm). The typical red
fluorescence of LuPc-5 was observed for the spectum 660–
740-nm at excitation with laser at 633 nm (Fig. 3a, b (B)). The
fluorescence detection of LuPc-5 in the biofilm slices sug-
gested that it is localized into the cells and also the matrix of
the formed biofilm. There are parts of the biofilmwhere LuPc-
5 and LuPc-6 showed a full penetration (100 %) and others
with limited penetration (75 %). This was proven by scanning
the whole biofilm by fluorescence mode. The signal of red
fluorescence typical for LuPcs was determined throughout
the whole biofilm with thickness between 7 and 13 μm
(Fig. 3a, C). The obtained images showed a high co-
localization of the incubated LuPcs which means the overlap
of the native (green) and LuPc (red) fluorescence signals. The
non-peripherally substituted LuPc-5 was evaluated with lim-
ited penetration (up to 3–7 μm) in some regions of the biofilm
to full depth of penetration (7–13 μm) in other parts of the
biomass as was seen by z-images.

The studied 48-h developed C. albicans biofilms were
measured with full penetration of LuPc-5 into the biomass
which was observed by fluorescence mode (Fig. 3b). The
developed 48-h fungal biofilms were measured with thick-
nesses between 14 and 21 μm. The accumulation of LuPcs
into bacterial and fungal biofilms suggested an efficient pho-
todynamic inactivation due to the close distance between the

Fig. 2 Uptake of Lu(III) acetate phthalocyanines (LuPc-5 and LuPc-6)
after a 15-min incubation of cellular suspensions of P. aeruginosa and
C. albicans cells with different density. Each point is the mean ± standart
deviation (SD) of three experiments with p < 0.05 for the presented data
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cell membranes where the photosensitizer is localized as well
as the generated singlet oxygen and other ROS during the light
exposure. The observed complete penetration of LuPc-5 and
LuPc-6 in biofilms can be due to the cationic charge of the
substituents. The large lutetium atom is positioned out of the
plane of the phthalocyanine molecule which prevents the for-
mation of photoinactivate aggregates and favors the photody-
namic process.

In vitro PDI

The setup for PDT treatment shown in Scheme 1 is general for
PDT studies and has more opportunities; some of them are not
applied in the present investigations, but the used light sources are
specified in the BMaterial and methods^ section. The photody-
namic efficacy of two water-soluble cationic LuPc-5 and LuPc-6
was studied at constant red LED irradiations for a wide concen-
tration range of LuPcs towards bacterium P. aeruginosa (Fig. 4a)
and fungus C. albicans (Fig. 4b). The full photoinactivation was
achieved with 20 μM LuPc-5 for P. aeruginosa and 30 μM
LuPc-5 for C. albicans. This study suggests that the high uptake
of LuPcs in the bigger-by-size C. albicans cells needs higher
concentration for full inactivation than for the Gram-negative
bacterium P. aeruginosa. The photoinactivation with the

peripherally substituted LuPc-6 was not so significant (2 logs)
as with LuPc-5 for C. albicans (Fig. 4b). Both LuPcs showed
no dark toxicity within thewide treatment concentration range for
the bacterium as well as for the fungus.

The recent study with tetra- and mono-substituted indium
phthalocyanines (InPcs) showed a higher effect towards
E. coli after PDI with a tetra-substituted InPc, suggesting that
the number of positive charges can play a more important role
than the symmetry of the Pcmolecule [34]. The comparison of
the PDI efficacy of LuPc-5 and LuPc-6 on microbial patho-
gens P. aeruginosa and C. albicans with the previously stud-
ied unsubstituted Zn(II) phthalocyanine (ZnPc) and Zn(II)
phthalocyanine with methylpyridyloxy substituents
(ZnPcMe) showed a higher activity for the complexes with
zinc [17, 19]. Thus, it suggests that the difference in molecular
electronic structure due to replacement of Zn(II) with Lu(III)
leads to improved physicochemical properties of MPc, but it
does not influence the PDI efficiency. The comparative study
with different metal complexes of phthalocyanine (Ga, In, Si,
Ge) showed that coordination with gallium (GaPc1) and sili-
con (SiPc2) results in high phototoxic effect and full inactiva-
tion of C. albicans as planktonic and biofilm cultures [35]. In
case of LuPc-5, the presence of nuclear membrane in the
much-bigger-in-size fungal cells seems to be an obstacle for

Fig. 3 Confocal laser scanning images of P. aeruginosa biofilm (a),
C. albicans biofilm (b), and at excitation at 488 nm (A) and emission at
520–580 nm (green native fluorescence) and at excitation at 633 nm (B)

and emission at 660–740 nm (red photosensitizer fluorescence) as well as
the overlapping of the images (a, C). Scale bar 20 μm
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intracellular accumulation and the full inactivation was
achieved for high LuPc-5 concentration. The applied PDI pro-
tocol on the 48-h biofilms showed low PDI efficacy (<3 logs)
compared to effect in suspension.

Conclusions

The uptake and localization study of two water-soluble cation-
ic Lu(II) acetate phthalocyanines were evaluated for bacterial
(P. aeruginosa) and fungal (C. albicans) cells with greater
accumulation in fungal cells compared to bacterial cells and
with full penetration (100 %) into fungal biofilms. The com-
plete photoinactivation was achieved with 20 μM LuPc-5 for
bacterium and with 30 μM LuPc-5 for fungus. The applied
gentle irradiation from LED at 665 nm (50 J cm−2) was

sufficient for the obtained high PDI efficacy for planktonic
cultures. The used protocol was identical for biofilms and for
the suspension, but the photoinactivation of the 48-h bacterial
and fungal biofilms was not efficient (<3 logs).
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