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Abstract We report the results of our investigations on the
effect of antimicrobial photodynamic therapy (APDT) on an-
giogenesis in wounds of diabetic mice. For this, measure-
ments were made on levels of nitric oxide (NO), vascular
endothelial growth factor-A (VEGF-A), and markers of pro-
inflammatory stress (phosphorylated nuclear factor kappa B
and p38 mitogen-activated protein kinase) on day 3 post-
wounding. For uninfected and infected wounds, the levels of
NO, VEGF-A were lower and the levels of phospho-NF-kB-
p65, phospho-p38MAPK were higher in diabetic mice com-
pared with that in nondiabetic mice. For infected wounds,
multiple APDT (fluence ~60 J/cm2) led to increase in NO,
VEGF-A levels and a decrease in the phospho-NF-kB-p65,
phospho-p38MAPK. Further, compared with aminoguanidine,
and silver nitrate, multiple APDT was observed to result in a
much improved proangiogenic response.
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Introduction

Antimicrobial photodynamic therapy (APDT), which makes
use of photoexcitation of a photosensitive drug to inactivate

bacteria is receiving a lot of attention for the management of
antibiotic-resistant bacteria infection in wounds [1–3]. PDT, in
addition to the antibacterial effect, has also been shown to
have influence on several other factors like bacterial toxins
[4], proinflammatory cytokines [5], matrix metalloproteases,
collagen synthesis, and remodeling [6] in wounds. Therefore,
APDTappears promising for the treatment of diabetic wounds
where healing is impaired and the treatment is further compli-
cated by bacterial infection [7–9]. An important cause for
impaired healing in diabetes is reduced angiogenesis [10,
11] which is primarily caused by reduced arteriogenic re-
sponse of monocyte/macrophages in the wound [12]. Al-
though, the enhancement in angiogenesis in tumor by PDT
has been reported [13], so far, the effect of APDT on angio-
genesis process of diabetic wound has not received attention.

In this study, we investigated the influence of poly-L-
lysine-conjugated chlorin p6 (pl-cp6) mediated APDT on an-
giogenesis in wounds of diabetic mice. Chlorin p6, a
cholorophyll derivative, is a promising photosensitizer as it
has strong absorbance in the red (660 nm) region and good
triplet yield [14]. Since cp6 is anionic, it was conjugated with
cationic peptide poly-L-lysine to enhance the targeting to both
gram-positive and gram-negative bacterial cells. Our previous
studies on pl-cp6-mediated PDT have shown it to be a very
efficient antimicrobial photodynamic agent [5, 6]. Effect of
PDT on angiogenesis was evaluated by monitoring the levels
of nitric oxide (NO) and vascular endothelial growth factor-A
(VEGF-A). Also, effect of PDT on level of inflammatory
stress markers, phosphorylated nuclear factor kaapa B
(phospho-NF-kB-p65) and p38 mitogen-activated protein ki-
nase (phospho-p38 MAPK) were monitored, since expression
of these factors are influenced by diabetes [15, 16], bacteria
infection [17], and ROS [18, 19]. Further, the efficacy of
APDT has been compared with that of aminoguanidine
(AG), an inhibitor of advanced glycated end products which
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play an important role in the pathogenesis of diabetic compli-
cations [20, 21] and silver nitrate (AgNO3), an antibacterial
agent [22].

Material and methods

Bacterial strain and growth conditions

Themethicilin resistant Staphylococcus aureus (MRSA) strain
used in this study (ATCC 43300) was maintained routinely by
sub culturing in tryptone soya broth (TSB, Himedia, Mumbai,
India). For experiments, a colony of the bacteria was inocu-
lated in TSB and was grown aerobically for 18 h at 37 °C
using a shaker incubator. For studies on wounds, optical den-
sity of the overnight culture of bacteria was measured at
600 nm using a spectrophotometer (Cintra 20, GBC) and di-
luted appropriately to achieve ~108 CFU/ml.

Induction of diabetes and establishment of infection
in wounds

A total of 48 Swiss albino mice (male and female, 12 weeks)
were used for all experiments. Diabetes was induced by
injecting multiple doses of Streptozotocin (STZ; Sigma-
Aldrich Chemicals, USA) intraperitoneally according to the
protocol‚ described in [23]. The blood glucose concentration
was measured by a commercial glucometer (One-Touch
Horizon, Johnson and Johnson) for 3 months to ensure
sustained hyperglycemia. Mice with blood glucose level of
>250 mg/dl were considered as diabetic. The diabetic mice
at 4 weeks post STZ treatment and the corresponding gender,
age-matched nondiabetic mice were used for wound creation.
For this, in mice anesthetized by intraperitoneal injection of
Ketamine (80 mg/kg) and Xylazine (10 mg/kg; Sigma-
Aldrich Chemicals, USA) cocktail, the dorsal skin was
shaved, treated with a depilatory cream, and then cleaned with
povidone-iodine solution followed by 70 % alcohol wipe.
Single wound (~1.5×1 cm) was created at the back of each
mouse by excising the skin down to panniculus carnosus,
using sterile surgical scissors and forceps [5, 6].

For the development of infection in wounds, ~107 CFU
of exponential phase MRSA were applied topically onto
each wound of diabetic mice and bacteria were allowed
to grow for 48 h (day 2 post-wounding (p.w.). Signs of
infection like purulent discharge, redness, and swelling
were observed on day 2 p.w., suggesting development of
infection in wounds.

Photodynamic therapy and other treatment of wounds

Cp6 was prepared in house following the procedure described
in [14], and the drugwas conjugated with cp6 by carbodiimide

coupling method described in [5]. All the mice with
wounds were divided into following groups: (1) uninfect-
ed, (2) uninfected, PDT given once on day 2 p.w., (3)
infected untreated control, (4) infected, PDT given at
24-h intervals during days 1 to 3 p.w. (multiple PDT),
(5) infected AgNO3 and (6) infected AG. For carrying
out PDT, 20 μl of 200 μM pl-cp6 was applied topically
onto wounds. After 30 min of pl-cp6 application, wounds
were exposed to red light (660±25 nm) using light source
LC-122A (Citek, USA) at a power density of ~100 mW/
cm2, for 10 and 20 min, to achieve light fluence of ~60
and ~120 J/cm2, respectively. For the infected PDT
(multiple) group, light fluence of ~60 J/cm2 was used.

AG was injected intraperitoneally at a dose of 100 mg/kg
1 day prior to wound creation and during days 1–3 p.w. [20].
In the AgNO3 group, 10 μl of 0.5 % AgNO3 [22] was applied
onto wounds topically at 24-h intervals during days 1–3 p.w.

On day 3 p.w., animals (treated and untreated) were
euthanized and wound tissues containing the scab, granulation
tissue were harvested using scissors and forceps. The harvest-
ed wound tissues were either used for bacterial load analysis
immediately or snap frozen in liquid nitrogen and stored at
−80 °C for experiments requiring measurements on other
biomarkers.

To determine bacterial load, wound tissues were homoge-
nized (3500 rpm, 5 min) in phosphate-buffered saline (five
times, w/v). The supernatant collected after centrifugation
(10,000×g, 10 min) was plated on TSA agar plates. After
incubation (24 h, 37 °C in dark), the number of colonies in
each plate was counted. Bacterial load was determined by
multiplying the number of colonies with dilution factor and
volume of supernatant obtained during the tissue homogeni-
zation and was expressed as log CFU/wound [24].

Nitrite measurement in tissue lysate

For measurements on nitrite level, the tissues were first pul-
verized in liquid nitrogen with the help of a mortar/pestle. The
tissue fragments were mixed (1:5, w/v) with 0.1 M chilled
potassium phosphate buffer ( pH 7.4), homogenized
(3500 rpm, 5 min), and then sonicated at ~20 kHz, 10 s for
four times, with gap of 10 s (Model CPX 130, Cole Parmer,
USA). The supernatant collected after centrifugation (10,
000 rpm, 10 min) was used for measuring nitrite level using
Griess reagent according to the protocol described in [25] with
somemodifications. Briefly, the tissue supernatant (50μl) was
mixed (1:1, v/v) with freshly prepared Griess reagent (0.1 %
N-(1-naphthyl)ethylenediamine dihydrochloride, 1 %
sulphanilamide, and 5 % phosphoric acid in a 1:1:1 ratio)
and incubated for 30 min at 37 °C, in a 96-well microwell
plate. Absorbance of the reaction product was measured at
545 nm using a microplate reader (Power Wave X340, Bio-
Tek Instruments Inc, USA). The total protein content of the
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wound lysate was estimated by bicinchoninic acid assay [26],
using bovine serum albumin as standard. The NO levels of
samples were determined by comparing with a calibration
curve prepared using known concentration of sodium nitrite
and NO level was expressed as micrograms of nitrite per mil-
ligram of protein.

VEGF-A measurement in tissue lysate

VEGF-A in the tissue lysate was measured using ELISA kit
(Sigma-Aldrich, USA). Briefly, the powdered tissues were
mixed with lysis buffer provided along with the ELISA kit
and kept on ice for 30 min. The lysates were sonicated
(BNitrite measurement in tissue lysate^) by keeping on ice
and then centrifuged (5000 rpm, 10 min, 4 °C). The sample
supernatant of each group was mixed (1:1, v/v) with a sample
diluent buffer and incubated in the capture antibody-coated
microwells provided with the kit, for 18 h at 4 °C. The assay
was carried out according to the protocol described in the kit,
and absorbance was recorded at 450 nm using a microplate
reader. The tissue VEGF-A concentration was calculated from
a standard curve prepared using the absorbance values of
known concentrations of VEGF-A (10 pg–10 ng/ml), normal-
ized with the protein content, and expressed as picograms per
milligram of protein.

Estimation of stress signaling response markers in tissue
lysate

The level of phospho-IKB-α, NF-kB p65, phospho-NF-kB
p65, and phospho-p38 MAPK in the tissue lysate were esti-
mated using multi-analyte ELISA kit (PATH SCAN ELISA
Kit, Cell Signaling Technology, USA) following the protocol
described by the manufacturer. The wound tissue lysate was
prepared as described above (BNitrite measurement in tissue
lysate^ and BVEGF-A measurement in tissue lysate^). The
absorbance values of samples were normalized with protein

content [26] and expressed as OD per milligram of tissue
protein [5].

Determination of DNA content of wounds

The color reaction of deoxyribose with diphenylamine DNA
content of the wound tissues were measured following the
protocol described in ref. [25] with somemodifications. Brief-
ly, wound tissues were homogenized in 2 N HCl (1: 5, w/v),
and the homogenate was incubated at 75 °C for 30 min in a
water bath and then centrifuged (845 g, 20 min). The super-
natant (0.5 ml) was mixed with 1 ml of diphenylamine reagent
(1.5 g diphenylamine dissolved in 100 ml acetic acid and
1.5 ml sulfuric acid) and boiled in a water bath (95 °C) for
10 min. Absorbance of the colored product was measured at
600 nm in a spectrophotometer (Cintra 20, GBC Corp). The
amount of DNA was determined by comparing calibration
curve prepared using the absorbance of DPA and known con-
centrations (0.05–0.5 mg/ml) of calf thymus DNA (Bangalore
Genei, India). The DNA concentration of the tissue lysates
(mg/ml) obtained from the standard curve was normalized
with the dry weight of tissue and expressed as milligrams of
DNA per gram of tissue weight.

Wound closure

Mean wound closure time was determined as the time point
(day) when the wound was devoid of any visible crust on
the surface [5].

Statistical analysis

Data were analyzed and expressed as mean±standard de-
viation. Statistical comparison between means was carried
out using one-way ANOVA. To quantify the correlation
between the different parameters, the regression coefficient
R from the linear regression analysis was used. p<0.05
were considered significant.

Fig. 1 a Effect of PDT fluence
on NO level of wounds of
diabetic mice on day 3 p.w. b
Effect of topical APDT and other
treatments on nitrite level of
infected wounds of diabetic mice
on day 3 p.w. Fig. 1b: inset;
Bacterial load of wounds.
Treatment frequencies for each
group are denoted in parentheses,
on x-axis. UI uninfected wounds,
Inf infected wounds,UC untreated
control, ND wound, nondiabetic
mice. PDT (3) refers to multiple
PDT fluence of ~60 J/cm2
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Results

Effect of APDTon total nitrite content of wounds

In Fig. 1a, we show the results on NO level of uninfected
wounds of diabetic mice exposed to single APDT at fluence
~60 and 120 J/cm2. As shown in Fig. 1a, the level of NO in
wounds treated with PDT at a light fluence of ~60 J/cm2

increased significantly (by ~1.5 fold), whereas in wounds
exposed to higher light fluence (~120 J/cm2), their level
decreased by ~1.5-fold. It should be noted that for the infected
wounds, the multiple PDT protocol at lower light fluence
(~60 J/cm2) was used to maximize the bacterial inactivation
and to reduce bacterial regrowth and damage to the inflamma-
tory and other cells of the wound tissue. The results in Fig. 1b
show the comparison of NO levels in wounds of the APDT,
AgNO3, and AG treatment groups. In MRSA-infected
wounds, multiple APDT resulted in a significant increase in
NO level. The level of NO in AgNO3 treated wounds did not
show significant change as compared with the wounds of
untreated control group, although there was a significant
reduction in bacteria (Fig. 1b, inset).

Effect of APDTon VEGF-A content of wounds

In Fig. 2a, we present the results on VEGF-A level in unin-
fected wounds of diabetic mice exposed to single APDT
fluence of ~60 or 120 J/cm2. As seen in the figure, the level
of VEGF-A in response to PDT was similar to that of the
changes observed for NO level. In infected wounds subjected
to multiple PDT, the level of VEGF-A was observed to in-
crease by ~1.75-fold as compared with the untreated controls.
However, in wounds treated with AgNO3 and AG (Fig. 2b),
the VEGF-A level was significantly lower than for APDT.
These results were also qualitatively similar to PDT response
on NO level (Fig. 1).

Effect of PDT on NF-kB and p38 MAPK in wounds
of diabetic mice

In Fig. 3, we show the results of our measurements on
phospho-IKB-α, NF-kB p65, phospho-NF-kB p-65, and
phospho-p38 MAPK levels in infected wounds of diabetic
mice subjected to APDT, AG, and AgNO3 treatment. While
the infected wounds showed significantly higher levels of NF-
kB p65, phospho-NF-kB p-65, and phospho-p38 MAPK, ex-
posure of these wounds to PDT led to their downregulation.
Further, levels of these markers in wounds of the three treat-
ment groups followed the order APDT<AG<AgNO3. In fact,
it was observed that in the AgNO3 group, the level of inflam-
matory markers were higher than the levels found in the
untreated control group.

Fig. 2 a Effect of PDT fluence
on VEGF-A level of wounds of
diabetic mice on day 3 p.w. b
Effect of topical APDT and other
treatments on VEGF-A level of
wounds of diabetic mice on day
3 p.w. Treatment frequencies for
each group are denoted in
parentheses, on x-axis. UI
uninfected, Inf infected wounds,
UC untreated control, NDwound,
nondiabetic mice. PDT (3) refers
to multiple PDT fluence of
~60 J/cm2

Fig. 3 Effect of APDT on biomarkers of stress signaling response of
MRSA-infected wounds of diabetic mice on day 3 p.w. Treatment
frequencies for each group are denoted in parentheses, on x-axis. UI
uninfected wounds, Inf infected wounds,UC untreated control,NDwound,
nondiabetic mice. PDT (3) refers to multiple PDT fluence of 60 J/cm2
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Effect of APDTon DNA and protein content

The results in Table 1 show that in MRSA-infected wounds of
diabetic mice subjected to multiple APDT, the DNA and pro-
tein contents increased significantly (p<0.05), compared with
their untreated counterparts.

Correlation of wound NO, VEGF, and wound closure

Figure 4a shows a correlation between NO and VEGF-A
levels in wound with wound closure. A good positive corre-
lation (R=0.8) between wound tissue NO and VEGF-A level
(Fig. 4a) was observed. Also, the wound closure time de-
creased with increase in NO level (Fig. 4b).

Discussion

It is known that impairment of wound healing in diabetes
is caused by several systemic and local abnormalities.
One important factor is reduced angiogenesis due to mi-
croangiopathy and vasculogenesis [10–12]. Since previ-
ous studies have demonstrated that ROS produced in
response to hypoxia or ischemia, play important role in
angiogenesis [27], it was of interest to investigate

whether APDT-induced oxidative stress modulates angio-
genesis in wounds of diabetic mice.

The results presented in this study (Figs. 1b and 2b) show
that level of both the angiogenic markers (NO, VEGF-A) in
the wounds of diabetic mice are significantly lowered com-
pared with that of nondiabetic mice. This may be due to im-
pairment of NO production and inducible nitric oxide syn-
thase (iNOS) activity due to hyperglycemia-induced depletion
of NADPH [28, 29]. The enhancement in angiogenic markers
(NO, VEGF-A) observed in diabetic mice in response to PDT
(Figs. 1a and 2a), could occur due to increase iNOS [28–30],
release of protein-bound NO [31], and activation of hypoxia
inducible factor VEGF signaling pathway [27]. However, the-
se responses were reversed at the high APDT fluence, possi-
bly due to the higher oxidative stress-induced damage to in-
flammatory cells [32]. Our results are consistent with previous
studies wherein it has been shown that PDT-induced angio-
genic response in tumors is light fluence dependent [13]. In-
crease in blood vessel formation has also been reported during
PDT [33, 34].

It is known that S. aureus infection can delay angio-
genesis [35] by inducing prolonged presence of neutro-
phils [36, 37], apoptosis in macrophages [38], downregulated
VEGF signaling [39], and reduced VEGF stability in the
wound environment [35]. Therefore, the observations of
APDT-induced increase in VEGF-A and NO levels in
infected wounds could be due to inactivation of S. aureus
toxins such as the alpha toxins and other proteases which
would result in higher macrophage recruitment to the
wound site. This increased NO, produced by macro-
phages, in a feedback loop would lead to more VEGF-
A as well as contribute to macrophage accumulation at
the wound site. It is also important to note that in addi-
tion to increase in proangiogenic response, APDT also
led to increase in DNA and protein contents (Table 1)
of the infected wounds subjected to PDT, compared with
their untreated controls. It is pertinent to note that this
increase cannot be accounted for by the increased

Table 1 Effect of PDTon DNA and protein contents ofMRSA-infected
wounds of diabetic mice on day 3 p.w.

DNA content
(mg/g wound tissue)

Protein content
(mg/ml)

Uinfected 10–12 18–22

Untreated infected 15–20* 25–30*

Infected+PDT 24–28** 35–45*

Values present data of three experiments

*p<0.05, one-way ANOVA‚ compared with uninfected group;
**p<0.05‚ compared with untreated group

Fig. 4 a Correlation of wound
NO versus VEGF-A in diabetic
mice (n=9). b Effect of
APDT-induced increased nitrite
level on wound closure of
MRSA-infected wounds of
nondiabetic and diabetic mice. UI
uninfected wounds, Inf infected
wounds, UC untreated control,
ND wound, nondiabetic mice.
PDT (3) refers to multiple PDT
fluence of 60 J/cm2
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bacteria content. The protein content of a single bacterium
is only 50–300 fg [40] and even bacterial load as high as
109 CFU/wound would contribute only ~0.3 mg increase in
the total protein content of the wound. This is insignificant
considering the magnitude of increase (~4–5 mg) in protein
content observed for the infected wounds. Further, com-
pared with untreated infected wounds, DNA and protein
contents in the infected wounds subjected to PDT are sig-
nificantly higher (Table 1), in spite of the ~1.5 log decrease
in bacterial load (Fig. 1b, inset). Therefore, the increased
DNA/protein contents of the wounds suggest increase in
host cell proliferation. This is consistent with the faster
closure of wounds in photodynamically treated group
(Fig. 4b).

Further, the results show down regulation of NF-kB p65,
phos-NF-kB p65 by PDT which is expected to be due to the
destruction of bacteria and the moderate enhancement in NO
[18]. NF-kB and p38 MAP kinase (MAPK) participate in
signaling cascade controlling the cellular response to proin-
flammatory stress during hyperglycemia, bacteria infection,
and overexpression of these proteins can lead to inhibition
of wound closure [15] by various ways such as prolonged
inflammation [10, 11, 15] by extending neutrophil half
life [41], inhibition of angiogenesis [42, 43], upregula-
tion of matrix metalloproteases (MMPs) [16], and bacte-
rial invasion [41]. Therefore, downregulation of NF-kB
and p38 MAPK levels of wounds, on day 3 p.w. can lead
to beneficial response such as reduction in neutrophil
number [41], increased angiogenesis [42, 43], inhibition
of bacteria growth [41], and improved wound closure
[15].

Our study also shows that among the three treatment
groups, a reduction in inflammatory response is observed
only in the APDT group; though both AG, AgNO3 treat-
ments led to significant decrease in bacterial load. In
fact, AgNO3 led to enhancement of inflammatory
markers. This is in agreement with induction of acute
inflammation by AgNO3 reported previously [44] and
also because AgNO3 does not have any effect on bacte-
rial toxins. Although AG is expected to reduce inflam-
mation and promote wound healing by inhibiting AGE in
diabetic wounds [20, 21], it does not have any bacteri-
cidal effect like APDT.

Conclusion

Results presented in this study suggest that APDT en-
hances angiogenic response in the bacteria-infected
wounds. Further, the results presented suggest that antibacte-
rial effect of PDT-induced abrogation of hyperinflammatory
response and enhancement of cell proliferation results in faster
wound closure.
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