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Abstract The objective of this study was to investigate the
effects of low-level laser therapy (LLLT) treatment alone
(l0660 nm and l0830 nm) or associated with platelet-rich
plasma (PRP). We used 54 male rats divided into six groups,
with nine animals each: group 1, partial tenotomy; group 2
(GII), PRP; group 3 (GIII): λ660nm; group 4 (GIV),
λ830nm; group 5 (GV), PRP + λ660nm; and group 6
(GVI), PRP + λ830nm. The protocol used was power
density 0.35 W/cm2, energy 0.2 J, energy density 7.0 J/cm2,
time 20 s per irradiated point, and number of points 3.
Animals in groups GII, GV, and GVI received treatment
with PRP, consisting of a single dose of 0.2 mL directly
into the surgical site, on top of the tenotomy. Animals
were killed on the 13th day post-tenotomy and their
tendons were surgically removed for a quantitative analysis

using polarization microscopy. The percentages of collagen
fibers of types I and III were expressed as mean ± SD. Higher
values of collagen fibers type I were obtained for groups GV
and GVI when compared with all other groups (p<0.05),
whereas groups GIII and GIV showed no significant
difference between them (p>0.05). For collagen type III, a
significant difference was observed between GII and all other
groups (p<0.5), but no significant difference was found
between GIII and GIV and between GV and GVI. Results
showed that the deposition of collagen type I was higher when
treatment with PRP and LLLT was combined, suggesting a
faster regeneration of the tendon.
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Introduction

Lesions of the calcaneal tendon (CT) are a common cause of
disability and are clinically characterized by pain and swelling
in and around the tendon, mainly arising from overuse [1].
These lesions are associated with disruption of collagen fibers,
increase in noncollagenous matrix, haphazard proliferation of
tenocytes, and subsequent decrease on biomechanical proper-
ties of tendon [2].

Tendon matrix is rich in collagens, such as types I and III
collagens. Type I collagen is considered to be responsible
for the mechanical strength of the tendon tissue and type III
collagen has an important role in the healing process [3].
Type I collagen (thick fibers) is the primary collagen incor-
porated in the tendon structure, and increasing the produc-
tion of type I collagen may enhance tendon healing [4].

Currently, a variety of treatments for lesions of the CT are
used or have been trialed. However, there is little evidence that
any conventional therapies are effective. In the last years, low-
level laser therapy (LLLT) [4–12] and platelet-rich plasma
(PRP) [13–21] have been used in orthopedics, traumatology,
and sports medicine showing interesting results in modulation
of calcaneal tendon repair. However, optimal parameters and
mechanisms behind these effects are not fully understood.

It has been demonstrated that LLLT reduces inflammatory
processes [5, 6] and promotes calcaneal tendon healing inter-
fering with the production and realignment of collagen fibers
[4, 7, 9–11], as well as enhancing biochemical and biomechan-
ical parameters of the tendon [12]. On the other hand, the
properties of high interest in PRP and calcaneal tendon repair
are justified by a reduction in total time of recovery of tissue
injury [16–18]. Besides, PRP is contributing to the tissue repair
through stimulation promoted by the presence of chemotactic
cytokines, chemokines, blood proteins, and growth factors
present in the plasma [15]. Platelets act in homeostasis, wound
healing, and reepithelialization, releasing several growth fac-
tors, which in turn stimulates angiogenesis, promoting fibro-
blast proliferation thereby increasing collagen synthesis [21].
Up to now, we found no study that associates the two therapies
(LLLT and PRP) in an attempt to improve tissue repair.

Inserted in this perspective, the objective of this study was to
investigate the effects of LLLT treatment (l0660 nm and l0
830 nm) alone or associated with PRP in tenotomies partial of
the CT in Wistar rats. The qualitative and quantitative assess-
ment will be carried out aiming to analyze the presence of fibers
of collagen type I and type III in the histological slides.

Materials and methods

This work was developed in compliance with the Standards
of Animal Experimentation and in accordance with the
ethical principles of handling and care of laboratory animals

recommended by the Brazilian College of Animal Experimen-
tation. Standards for educational and scientific practice of
vivisection of animals were observed at all stages of the study
(Law 6638 of 08/05/1979). The approval of the research
protocol is registered under the number CEP/UNIPAC 2011/6.

Animals and groups

This study was conducted with 54 male Wistar rats (Rattus
norvegicus albinos), with 8 weeks of age, body mass of
200±12.3 g, and maintained at temperature range of 20–
22 °C, from the Central Animal Facility at the University
of São Paulo. The animals remained in the vivarium of the
Laboratory of Physiology and Pathology, President Antonio
Carlos University (Itajubá, Minas Gerais, Brazil) in seven
standard polypropylene cages, kept in a controlled environ-
ment with 12-h light–dark cycle, and received water and food
“ad libitum.”

The animals were randomly divided into six groups with
nine animals each: Group I (GI), partial tenotomy of the CT
but received no treatment; group II (GII), partial tenotomy
of the CT + PRP treatment; group III (GIII), partial tenot-
omy of the CT + LLLT l660nm; group IV (GIV), partial
tenotomy of the CT + LLLT l830nm; group V (GV), partial
tenotomy of the CT + PRP + LLLT l660nm; and group
VI (GVI), partial tenotomy of the CT + PRP + LLLT
l830nm treatment.

Procedure for preparation of PRP

Animals from groups GII, GV, and GVI, after being anesthe-
tized, were subjected to a puncture of the caudal vein, and then
0.3 mL of blood was removed from each animal for PRP
preparation. It is suggested in the literature that the amount
of blood withdrawn should be not more than 6.4 % of the
animal body weight [22]. The quantity of PRP obtained was
approximately 10 to 15 % of the total volume of blood.

Most of the protocols for PRP production used a small
fraction of blood (0.3–0.5 mL). This blood is first subjected to
a 10-min centrifugation at 800 rpm, followed by another 20min
at 1,600 rpm [23, 24]. A 10 % calcium chloride activator was
added in a ratio of 1:20 for obtaining the total volume of PRP.
Platelet counts were performed to calculate the PRP concen-
trate, which should be around 400 % of the peripheral blood
platelet count [25]. The platelet concentrate was stored at 20 °C
until the exact time for use at the surgical site [22].

Procedure for the partial lesion of the CT

Rats were previously medicated with acepromazine (0.2 %
Acepram, Univest SA) and butorphanol (Fort Dodge Lab
Ltd.) at doses of 0.02 and 0.1 mL/kg, respectively, injecting
intramuscularly in the region of the right quadricepsmuscle.
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After 15 min, anesthetic Zoletil 50® (Virbac) at a dose of
0.1 mL/kg was applied. Trichotomy was performed in the
entire right thigh, and then a longitudinal incision was made
3 cm on the skin just above the origin and insertion of the
CT. The partial tenotomy was performed with a scalpel
blade number 11, with a cut of 2 mm in the middle third
of the tendon, the medial to lateral. Then, the skin was
sutured with nonabsorbable monofilament polyamide 4.0
(Ethicon, Johnson & Johnson) and subjected to local asepsis
[26]. These procedures occurred with all animals.

PRP treatment

The animal in groups GII, GV, and GVI received treatment
with PRP. Each animal received a single dose of 0.2 mL
directly into the surgical site, on top of the tenotomy. The
application of PRP was performed immediately after injury
but before suturing the lesion [27].

Laser treatment

For laser therapy, the low-intensity laser device Laser Flash®
DMC III (DMC Equipments Ltda, São Carlos, SP) was used
which can be operated in two wavelengths: l0660 nm (red
laser, mid-activity: InGaAlP) that was used for groups GIII
and GVand l0830 nm (infrared laser, mid-activity: GaAlAs)
applied to groups IVand VI [28]. Laser irradiations weremade
at the same day time (10:00 a.m.) leaving an interval of 1 day
between applications. The animals were immobilized manu-
ally, exposing the right side of the thigh and leg. Animals from
groups GIII, GIV, GV, and GVI were irradiated by the laser
according to the protocol described in Table 1.

Tissue samples

All animals were killed at the 13th day after surgery, receiv-
ing an intracardiac application of anesthetic sodium thiopen-
tal (crystal) at a dose of 0.05 mL per 100 g body weight,
followed by 19.1 % potassium chloride via intracardiac,
with a single dose of 0.4 mL per 100 g body weight. After

confirmation of euthanasia by verification of vital data and
absence of reflexes, the entire triceps surae muscle was
dissected and extirpation occurred at the calcaneal insertion
and myotendinous junction.

Morphometrical analysis

The CT was fixed in 10 % neutral buffered formalin for 48
to 72 h and processed in routine histological processing
order: dehydration, bleaching, paraffin inclusion, and dye-
ing [29]. Semi-serials cuts were obtained with 5 μm thick
and stained with Picrosirius Red, which allows visualization
of collagen fibers. The material was examined with a polar-
ized microscope Olympus CX31 trinocular, YS100 model,
equipped with digital camera Olympus SC20 and coupled to
a microcomputer. Morphometric analysis of collagen
fibers was performed according to Silva [29]: Collagen
area0(Σ regions with fibers of the same pixel / area on
the tendon)×100.

Statistical analysis

One-way analysis of variance was used for comparison
between groups. The calculations were performed using
the GraphPad Prism®. All statistical tests were performed
at a significance level of p<0.05.

Results

Figure 1 shows histological analysis using the Picrosirius
sections of calcaneal tendons with partial rupture showing the
presence of type I collagen fibers, which are thick and yellow
or red, and type III collagen fibers, which are thin and greenish.

Figure 2 shows the percentage of the type I collagen
fibers. Type I collagen fibers were more frequent in all
treated groups than in the untreated (group I). Both groups
that associated LLLT and PRP treatments (V and VI groups)
presented higher values (p<0.05) when compared with all
other groups (I, II, III, and IV). Additionally, LLLT groups
(III and IV) showed higher values (p<0.05) than PRP alone
(group II). However, no difference (p>0.05) was found
between LLLT groups (III versus IV).

Figure 3 displays the percentage of the type III collagen
fibers. Type III collagen fibers were more frequent in un-
treated group (group I) than all treated groups. Both groups
that associated LLLT and PRP (V and VI groups) presented
lower values (p<0.05) when compared with the all other
groups (I, II, III, and IV). Additionally, LLLT groups (III
and IV) showed higher values (p<0.05) than PRP alone
(group II). However, no difference (p>0.05) was found
between LLLT groups (III versus IV) and between groups
treated with LLLT plus PRP.

Table 1 Protocol for
the LLLT irradiation
(l0660 nm and
l0830 nm)

Parameters Value

Laser operation Continuous (cw)

Output power 100 mW

Spot size area 0.28 cm2

Power density 0.35 W/cm2

Energy 0.2 J

Energy density 7.0 J/cm2

Time per point 20 s

Number of points 3

Angle of application 90°
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A predominance of fibers type III was observed for
animals in groups GI (untreated), GIII, and GIV, a result
that can be justified by the absence of treatment in GI and
the low efficacy of only LLLT on groups GIII (l660nm) and
GIV (l830nm).

Discussion

Defragmentation of the PRP promotes the release of various
substances: platelet-derived growth factor, vascular

endothelial growth factor, transforming growth factor
beta-1, fibroblast growth factor, connective tissue
growth factor, transforming growth factor such as insu-
lin or stimulatory (IGF-1), epidermal growth factor,
platelet thromboplastin, calcium, serotonin, and fibrino-
gen hydrolytic enzymes [30, 31].

The results show the percentage difference of the types of
fibers of collagen type I and type III. The type I collagen
presents closely packed, thick non-argyrophilic, strongly
birefringent, yellow or red fibers and it is responsible for
the tensile strength, whereas type III collagen (1 %) presents
loose argyrophilic network of thin, weakly birefringent,

Fig. 1 Histological analysis
using the Picrosirius sections of
calcaneal tendons with partial
rupture showing the presence of
type I collagen fibers, which are
thick and yellow or red, and
type III collagen fibers, which
are thin and greenish. Bar scale
1/4 100 μm. a GI, tenotomy; b
GII, PRP; c GV, PRP + l660
nm; and d GVI, PRP + l830
nm. Representative histological
sections (5 μm, Picrosirius Red
under polarized light, ×10
objective) of the longitudinal
axis of the central region of the
tendon. The control group
collagen fibers increased as
evidenced by greenish areas in
the image (a)

Fig. 2 Percentage of the type I collagen fibers. Results are expressed
as mean ± SD. Statistically significant differences (p<0.05) when
compared groups: one asterisk GI with GII thru GVI; two asterisks,
GII with GIII thru GVI; three asterisks, GII–GIV with GV and GVI;
number sign, GV with GVI; n.s. indicates no statistically significant
difference (p>0.05)

Fig. 3 Percentage of the type III collagen fibers. Results are expressed
as mean ± SD. Statistically significant differences (p<0.05) when
compared groups: one asterisk, GI with GII thru GVI; two asterisks,
GII with GIII thru GVI, three asterisks, GII–GIV with GV and GVI;
n.s. indicates no statistically significant difference (p>0.05)
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greenish, reticular fibers and its main function is the struc-
tural maintenance in expansible organs [32, 33].

The fibers of type I collagen are responsible for tensile
strength; this collagen type constitutes the major portion of the
vertebrate body and they are the most abundant component of
the tendons. The type I collagen in normal adult tissues
appears in the form of thick (2–10 mm) fibers under the
optical microscope. When these fibers are observed under
polarized light, the enhancement of collagen birefringence
promoted by Picrosirius staining is specific for collagen and
discloses its distinct patterns of physical aggregation: type I
collagen (thick fibers) displays a strong birefringence and are
yellow or red [34]. It is suggested that the predominance of
this type of fiber in the GV group (PRP + LLLT l660nm) and
GVI (PRP + LLLT l830nm) is due to combination of LLLT
and PRP.

On the other hand, fibers of collagen type III are respon-
sible for maintaining the structure and this collagen type is
usually found intermixed with type I collagen. It is present
in many organs and is mainly, but not exclusively, related to
smooth muscle cells [35]. Histochemical evidence has been
presented suggesting that type III collagen appears by opti-
cal microscopy under the form of thin (0.5–2 mm) argyro-
philic, weakly birefringent, greenish fibers. Polarized light
microscopy of Picrosirius-stained sections has been widely
used to quantify types I and III collagen [36]. A predomi-
nance of fibers type III was observed in GI (untreated) and
GIII and GIV, being justified by the absence of treatment in
GI and low efficacy of the proposed protocol for GIII (LLLT
l660nm) and GIV groups (LLLT l830nm).

The study by Neves et al. [7], which aimed to evaluate
the effect of the GaAlAs laser with l0830 nm; a power of
40, 60, 80, and 100 mW; and an energy density of 20 J/cm2

on the repair of partial lesions tendons of rats, showed that
the fibers of type I collagen responded better for a laser
power of 80 mW, whereas a better response was obtained
for 60 mW for the fibers of type III collagen. The wave-
lengths of 660 and 830 nm were chosen because laser
radiation at wavelengths between 660 and 840 nm is less
absorbed by superficial chromospheres, resulting in better
tissue penetration [36].

LLLT and PRP treatments separately showed positive
results in the stimulation of healing of the Achilles tendon
[37]. Studies involving treatment with LLLT and ultrasound
combined showed positive results in the regeneration of the
calcaneal tendon, with respect to the increase of type I
collagen [38]. It is believed by some authors that the cellular
response of any tissue, particularly the calcaneal tendon
tissue, depends on the physical agent, a combination of
parameters, and associations [37].

In the present study, the results showed that the treatment
of animals with PRP or LLLT alone, groups GII (PRP), GIII
(l660nm), and GIV (l830nm), has significant advantages

over untreated animals (p<0.05), as the percentage of type I
collagen fibers is concerned. Furthermore, it was found that
the combined treatment with PRP and LLLT is even more
efficient than when each of the two treatments is used alone.
However, the treatments combining PRP and LLLT showed
significant results between groups GV (PRP l660nm) and
GVI (l830nm) (p<0.05). These encouraging results suggest
a decrease in the time of tendon regeneration using the two
therapies combined, accelerating the healing process. The
inflammatory signals also showed rapid transition but were
not measured in this study.

It is also interesting to observe that no significant differ-
ence is found (p>0.05) when animals are treated with either
one of the two laser wavelengths l0660 nm or l0830 nm
(groups III and IV).

Conclusion

The results showed the predominance of type I collagen
fibers in groups treated with the combination of PRP with
LLLT (λ0660 nm, λ0830 nm); nevertheless, further studies
are necessary to identify which are the mechanisms by
which this rapid regeneration occurs and the influence of
LLLT on growth factors in PRP.
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