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Abstract
Demand fulfillment and order management are important functions in 
semiconductor supply chains to interact with customers. In this paper, an iterative 
short-term demand supply matching (STDSM) algorithm based on mixed-integer 
linear programming (MILP) is proposed. This approach repromises orders taking 
into account the finite capacity of the shop floor. Decomposition is used to obtain 
computationally tractable subproblems. The STDSM approach is applied together 
with master planning and allocation planning in a rolling horizon setting. A 
simulation model of a simplified semiconductor supply chain is used for the rolling 
horizon experiments. The experiments demonstrate that the proposed STDSM 
scheme outperforms conventional business rule-based heuristics with respect to 
several delivery performance-related measures and with respect to stability.

Keywords  Demand fulfillment · Short-term demand supply matching · Rolling 
horizon · Semiconductor supply chains · Discrete-event simulation

1  Introduction

The semiconductor industry which manufactures integrated circuits (ICs) is 
one of the most complex industries in today’s world (Mönch et  al. 2013). The 
manufacturing of ICs takes place in a network of frontend (FE) and backend (BE) 
facilities. A FE facility consists of a wafer fab and a probe/sort area. Starting from 
a raw wafer, a thin silicon disc, the ICs are produced layer-by-layer on the wafer 
surface in a wafer fab. The wafers are then sent to a BE facility consisting of an 
assembly and test (A/T) facility and a final test area.
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Complex process flows in which machines are visited many times by jobs, also called 
lots in semiconductor manufacturing, are a result of the layer-based manufacturing of 
ICs. This reentrant behavior results in complex competition for scarce capacity. Long 
cycle times are common in semiconductor supply chains where the cycle time is the 
delay between work being released and its emerging as output. Semiconductor supply 
chains are challenging for existing planning and control approaches and the related 
information systems (Chien et al. 2011).

Demand fulfillment and order management are important in supply chains 
(Fleischmann and Meyr 2004; Kilger and Meyr 2015). Commercial advanced 
planning and scheduling (APS) systems are not appropriate for demand 
fulfillment in semiconductor supply chains (Chien et al. 2016). This is caused by 
the large number of products, the complexity of the process flows, the difficulty 
of capacity modeling due to reentrant flows, the size of the production facilities, 
and the large-sized supply networks in this industry. It is also shown by Mönch 
et  al. (2018b) that demand fulfillment for semiconductor supply chains is an 
underresearched area. This is at least partially caused by the fact that demand 
fulfillment strongly interacts with other planning functions which makes it 
difficult to study it in a stand-alone manner.

In the present paper, we are interested in proposing a STDSM approach for 
semiconductor supply chains. Since it is not reasonable to computationally assess the 
performance of the STDSM approach in isolation, we embed it into a hierarchical 
approach that contains master planning, allocation planning, release planning, and 
scheduling. The STDSM approach is based on decomposition that exploits the structure 
of the semiconductor supply chain. An iterative method is proposed to improve 
previously made matching decisions. To the best of our knowledge such an approach 
has not been discussed in the literature yet (cf. Mönch et al. 2018b).

The contribution of this paper is two-fold:

1.	 We analyze the STDSM planning problem for semiconductor supply chains and 
propose a corresponding planning approach.

2.	 The performance of the proposed STDSM approach is assessed in a dynamic 
and stochastic setting using a rolling horizon scheme based on discrete-event 
simulation. Incorporating master planning and allocation planning is crucial 
for this goal since both planning functions provide instructions for the STDSM 
function.

The paper is organized as follows. In the next section, we describe the 
problem and discuss related work. The planning approach is presented in Sect. 3. 
This includes a network-wide allocation planning approach and the STDSM 
scheme. In Sect.  4, we describe the simulation infrastructure that is used to 
apply master planning, allocation planning, and the STDSM scheme in a rolling 
horizon setting. Moreover, the supply chain simulation model and the demand 
generation scheme are described. The results of simulation experiments are 
presented and analyzed in Sect.  5. Conclusions and future research directions 
are discussed in Sect. 6.
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2 � Problem description and discussion of related work

We start by describing the demand fulfillment function in semiconductor supply 
chains in Sect. 2.1. We then discuss related work in Sect. 2.2.

2.1 � Demand fulfillment in semiconductor supply chains

The following three aspects of the demand fulfillment functionality can be distin-
guished (Fleischmann and Meyr 2004; Kilger and Meyr 2015; Mönch et al. 2018b):

1.	 Allocation planning
2.	 Order promising
3.	 Available to promise (ATP) reallocation and STDSM.

Allocation planning deals with assigning the projected supply of products to 
customers. We refer to the projected supply as ATP quantities. A distinction is 
made between committed and uncommitted ATP quantities. ATP quantities can be 
computed on the capacity planning, the master planning, or the production planning 
and scheduling level. Order promising is responsible for the ATP consumption by 
orders. If firm orders arrive they are matched with the corresponding ATP quantities. 
Three different order promising modes are differentiated:

1.	 Online order promising: An order is immediately promised after the customer 
places an order.

2.	 Batch order promising: All orders placed during the batch interval are 
simultaneously considered at the end of the batch interval. They are promised at 
a specific point in time.

3.	 Hybrid order promising: Online order promising activities are carried out for a 
certain period of time, followed by a batch promising step afterwards where the 
previously made promising decisions are confirmed and improved.

The desired delivery date for order o is denoted by do . A first promised deliv-
ery date � (i)

o
 is chosen for each order o by order promising. The superscript (i) is 

used to indicate that this is the initially promised delivery date. Moreover, since the  
promised delivery date of an order can change over time due to periodically per-
formed STDSM activities, we consider the currently promised delivery date �o for 
order o . This delivery date is computed during the last performed STDSM activity. 
The different types of delivery dates are shown in Fig. 1 where we assume without 
loss of generality that do is before � (i)

o
 and �o.

ATP reallocation approaches are responsible for releasing unused committed ATP 
quotas. All already promised but unfinished orders are considered within a STDSM 
approach (Fleischmann and Meyr 2004) taking into account the available supply and 
capacity. STDSM approaches are desirable in semiconductor supply chains due to 
the long cycle times and the process and demand uncertainty (Mönch et al. 2018b).
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A STDSM approach strives to keep the promised delivery dates and to perform 
manufacturing at the lowest possible cost. Order repromising is required due to high 
uncertainty and the resulting changes in supply and available capacity. The STDSM 
function is similar to batch promising, however, all already promised orders com-
pete for the supply and the capacity, while only the orders arriving within the batch 
interval are considered in batch order promising. The number of orders treated 
by STDSM approaches is large compared to batch order promising (Geier 2014). 
Note that in the literature (Fleischmann and Meyr 2004; Geier 2014) the notion of 
demand supply matching is typically used for the STDSM function described in the 
present paper. But demand supply matching approaches are also known on a more 
aggregated, mid-term level in semiconductor supply chains, for instance, the model 
predictive control approach by Smith and Kempf (2005) and semiconductor-specific 
master planning approaches (Mönch et al. 2018b). However, orders are not explicitly 
considered in these approaches. We refer to STDSM when an order-based matching 
takes place on a short-term level.

The literature for demand fulfillment in semiconductor supply chains is limited 
(see Sect. 2.2). To the best of our knowledge STDSM approaches in semiconduc-
tor supply chains are rule-based taking into account ATP quantities (Herding et al. 
2017). This paper contributes to this literature by designing a STDSM approach that 
considers available capacity in the FE and BE facilities while changing the current 
promised delivery dates of already promised orders as little as possible. Because of 
the large size of semiconductor supply chains, the proposed STDSM approach is 
based on decomposition.

The research questions addressed in this paper can be summarized as follows:

1.	 What are the design principles of a STDSM approach that is able to take into 
account process conditions of semiconductor supply chains?

2.	 How can the STDSM approach be embedded into a hierarchical approach for 
planning and control of semiconductor supply chains?

3.	 What is the performance of the STDSM approach with respect to solution quality 
and computing time relative to a conventional rule-based repromising approach 
that is only based on ATP quantities but not on available supply and capacities?

Fig. 1   Different delivery dates
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2.2 � Related work

2.2.1 � Demand fulfillment in semiconductor supply chain planning systems

Several early papers mention demand fulfillment-related subsystems of 
semiconductor supply chain planning systems. For instance, a module of the 
IMPReSS production planning system at Harris Corporation calculates product 
availability for the quotation and order entry system (Leachman et  al. 1996). 
Requirement and system specification efforts are described by Soares et al. (2000) 
for an order promising module of a decision support system for semiconductor 
supply chains, but computational results are not reported. The PROFIT planning 
system implemented at IBM Semiconductor contains an ATP module (Lyon et al. 
2001). Some semiconductor companies use commercial APS systems for demand 
fulfillment tasks in their daily business (Chien et  al. 2016). A capable-to-match 
(CTM) algorithm for the APS system SAP APO is discussed by Kallrath and Maindl 
(2006). The CTM approach is similar to the STDSM functionality. However, details 
are not provided for all these systems that provide demand fulfillment functionality.

2.2.2 � Allocation planning

Semiconductor-specific allocation planning approaches are rare (cf. Mönch et  al. 
2018b). However, there are a few papers for other industrial domains that can be 
extended towards semiconductor supply chains. An allocation planning approach 
for the lighting industry is proposed by Meyr (2009). The approach first segments 
customers with respect to their importance and profitability into different priority 
classes. ATP quantities are allocated to these classes based on short-term demand 
information. The objective is profit maximization. Several ATP consumption strate-
gies are tested. Seitz et al. (2020) extend the allocation planning approach of Meyr 
(2009) by exploiting the known demand forecast bias of customers. Using data 
from a large semiconductor manufacturer, it is shown by designed experiments that 
average stock levels are reduced and the overall service level is increased. This is 
especially true for customers that provide truthful forecasts. An allocation planning 
model similar to the model of Meyr (2009) is proposed by Babarogić et al. (2012). 
Customers are assigned to priority groups based on the size of their orders. The 
objective consists in maximizing the service level. Computational examples from 
the fast-moving consumer goods industry are used. An allocation planning proce-
dure for an assemble-to-order (ATO) supply chain is proposed by Chen and Dong 
(2014). Multiple facilities producing components that are used in various final prod-
ucts are assumed. Assembly operations are used to produce the end products. The 
proposed allocation planning approach considers the finite capacity of the differ-
ent facilities. A demand fulfillment system for semiconductor foundries in Taiwan 
is described by Chiang and Hsu (2014). An allocation planning component is pro-
posed that respects highly aggregated bottleneck capacities from capacity planning. 
Moreover, LP-based order promising models are designed. A period-based alloca-
tion review mechanism is proposed that reallocates unused ATP quantities. The 
allocation planning model of Chiang and Hsu (2014) is investigated by Framinan 
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and Perez-Gonzalez (2016) with inaccurate and biased forecast and the situation that 
only a certain fraction of the overall capacity may be allocated to specific products 
and customers. An online order promising approach is taken where the arrival of 
firm orders is simulated. The simulation experiments show that the allocation plan-
ning scheme is sensitive to inaccurate and biased forecasts. Caps on the capacity to 
be allocated can be seen as a strategy to deal with forecast inaccuracy. An allocation 
planning approach for semiconductor manufacturing is proposed by Mousavi et al. 
(2019). The service level and the reserved buffer stock are considered in a bi-criteria 
setting. A MILP is used to make allocation decisions. However, different objectives 
for allocation planning are considered in the present paper in a multi-facility set-
ting which is different from Mousavi et al. (2019). The single-facility, single-product 
allocation planning approach of Meyr (2009) is extended towards multiple products 
and alternative facilities by Azevedo et al. (2016). In the present paper, we will use 
a multi-facility procedure similar to the allocation approach by Meyr (2009) and 
Azevedo et al. (2016).

2.2.3 � Demand fulfillment in the thin‑film‑transistor liquid–crystal display industry

Another stream of related work deals with demand fulfillment in thin-film-transistor 
liquid–crystal display (TFT-LCD) manufacturing which is close to wafer fabrication 
but much simpler. An ATP model for computing a promised delivery date for 
each order is proposed by Jeong et al. (2002). A capable to promise (CTP) model 
is designed that determines the unused capacity of the shop floor for a module 
assembly schedule. However, this problem is different from our problem since we 
use the available capacity for repromising orders. Tsai and Wang (2009) propose 
a three-phase approach for a TFT-LCD ATO manufacturing setting. Orders are 
assigned to module plants in a first phase taking into account aggregated capacity 
and material availability. In a second phase, the ATP allocation to orders in single 
module plant is considered for a given order due date. Orders that cannot be 
allocated in the two phases are reallocated to all module plants. This approach 
is similar to the proposed STDSM approach, but instead of using a fixed desired 
delivery date do we propose an iterative approach for repromising orders based on 
time windows of increasing length. Experiments in a rolling horizon setting are not 
described by Tsai and Wang (2009). Therefore, important measures related to the 
first promised delivery date cannot be computed. Lin et  al. (2010) design a batch 
order promising approach. Alternative bill of materials and multiple quality grades 
are taken into account. The impact of the batch interval length on profit is studied. 
While the approach addresses important features of semiconductor supply chains, it 
is a batch order promising approach which is different from the STDSM function.

2.2.4 � Rolling horizon approaches for demand fulfillment

A scalable infrastructure for supply chains is applied to batch order promising by 
Zhao et al. (2003) on a conceptual level. The need for rolling horizon approaches 
for assessing demand fulfillment is conceptually discussed by Chen et  al. (2008). 
A STDSM approach is proposed by Geier (2014) for a computer manufacturer. It 
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is integrated with order promising in a rolling horizon setting, while feedback from 
the shop floor is considered. The STDSM approach proposed in the present paper 
is different since we compute the supply for BE facilities based on FE production 
planning. Moreover, we use an iterative approach that extends the delivery time 
windows of the orders. Seitz and Grunow (2017) propose an order promising 
approach that exploits product and process flexibility typical for semiconductor 
supply chains. ATP information is determined by rolling horizon production 
planning, but feedback from the shop floor is not taken into account. The interaction 
of order promising and master production scheduling for a ceramic tile company is 
studied by Alemany et al. (2018). However, the integrated approach is not assessed 
using a rolling horizon scheme and simulation. An infrastructure for simulation-
based performance assessment of demand fulfillment is proposed by Herding et al. 
(2017). However, only some preliminary computational results for the interaction 
of master planning and rule-based online order promising and repromising are 
presented in this paper.

To the best of our knowledge, there is no approach described in the literature that 
covers the interaction of master planning, allocation planning, and order promising 
and repromising for semiconductor supply chains. Optimization-based STDSM 
approaches are not considered so far in the literature for semiconductor supply 
chains. Assessing this interaction in a rolling horizon setting under process and 
demand uncertainty is highly desirable.

3 � Planning approach

We discuss the overall planning approach and the underlying assumptions in 
Sect. 3.1. Master planning and allocation planning as prerequisite for the STDSM 
are briefly sketched in Sect.  3.2. The proposed STDSM models are presented in 
Sect. 3.3. The reference approach and the remaining planning and control functions 
are discussed in Sect. 3.4.

3.1 � Assumptions and overall approach

A semiconductor supply chain consists of several FE and BE facilities. The 
probed wafers are stored in die banks (DBs) that serve as decoupling points 
between FE and BE. Distribution centers (DCs) are responsible for decoupling 
BE facilities and customers. Each FE and BE facility consists of machine groups 
which contain machines that provide the same functionality. We refer to machine 
groups as work centers in the rest of this paper. We start by describing different 
product aggregates, i.e. a grouping of products based on certain criteria, to char-
acterize the supply. The internal view of sellable products is given by finished 
products (FPs) that are available at the DCs. FPs contain information regard-
ing which FE and BE facilities produce the product. When the FE facility of a  
product is known, but the BE facility and the DC are not yet determined, the pro- 
duct is represented by a DB representative (DREP) in the supply picture provided 
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by master planning. DREP products are available at the different DBs. Finally, the 
fabrication position (FPOS) aggregate is used to represent the FE level in the sup-
ply picture offered by master planning. The DB of FPOS aggregates is not deter-
mined yet. In this paper, we differentiate between orders that are fulfilled by FP, 
DREP, and FPOS product aggregates. The structure of the considered semicon-
ductor supply chains including the different product aggregates is shown in Fig. 2.

The proposed STDSM approach is based on the following assumptions:

1.	 Process and product flexibility exist in semiconductor supply chains (Lyon et al. 
2001; Mönch et al. 2018a). The former means that a single production process can 
be used to manufacture several products, and the latter refers to the possibility to 
produce several products from one predecessor product. Therefore, the general 
product master data is given by a graph. However, for ease of exposition, we 
assume a 1:1 relationship between FP, DREP, and FPOS in the present paper.

2.	 Only the capacity of the bottleneck work centers is taken into account by master 
planning to reduce the size of the resulting MILP model (see Sect. 3.2).

3.	 The master planning formulation and the different planning models of the STDSM 
approach are based on exogenous lead times that are an integer multiple of the 
period length. Lead times are estimates of the cycle time (CT).

4.	 Supply is given by master planning which determines what quantities of the con-
sidered semi-finished and finished products have to be completed in which FE 
and BE facility of the considered supply chain in which period of the planning 
horizon (Mönch et al. 2018b). More specifically, the supply for FPOS products 
is given by the quantity of a product to be completed at the end of a given period 
in a given FE facility. Moreover, we consider supply for DREP products which is 
also computed by master planning.

5.	 Splitting of orders for partial order promising is not considered in this paper.

Fig. 2   Main entities in semiconductor supply chains
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Next, we describe both the allocation and the STDSM planning approach. We 
differentiate subproblems that refer to the BE and the FE yielding to decision models 
called BE STDSM and FE STDSM (these LP or MILP models will be described in 
the Sect. 3.3). The proposed planning approach consists of the following steps:

1.	 We use the FE STDSM-NO model with demand that is obtained from the supply 
determined by the master planning function. The supply is given by the quantity 
of a product to be completed at the end of a period in a given FE facility. No 
orders (NO) have to be repromised in this step. Since the FE STDSM-NO model 
considers capacity constraints for all work centers, not just for the bottlenecks 
(see Sect. 3.3), it is able to provide more accurate supply than the master planning 
model. Here, the supply is given by the output quantities of the FE STDSM-NO 
model for each product, period, and FE facility. The supply provided in this step 
is required for allocation planning (Step 2) and for the BE STDSM model (Step 
3).

2.	 The supply computed in Step 1 is used together with demand information to 
derive allocated ATP (AATP) quantities, i.e., scarce ATP quantities are assigned 
to customers.

3.	 Based on the supply computed in Step 1 and the AATP quantities from Step 2, the 
BE STDSM model aims at repromising all orders at the first promised delivery 
date � (i)

o
 on the DC level. If the repromised date of an order o is different from 

� (i)
o

 , this order is reconsidered in Step 4. Orders that are repromised at � (i)
o

 are not 
considered anymore.

4.	 The goal of this step is to repromise orders o with a repromised date different 
from � (i)

o
 in Step 3 as close as possible to � (i)

o
 using the FE STDSM-O model where 

the acronym O indicates that orders have to be repromised. Instead of using the 
original � (i)

o
 values, we modify them by subtracting the BE lead time measured 

in periods. Estimates for the BE lead time are obtained by simulation. Orders 
from Step 3 and AATP quantities from Step 2 serve as input for this step. Orders 
that are not repromised in Step 3 at � (i)

o
 can be repromised in Step 4 even if this 

decision might lead to a changing �
o
 value. This is motivated by the observation 

that repromising orders is crucial, whereas the concrete �
o
 value is less important. 

Step 4 can be iteratively repeated by increasing the allowed delivery time window 
for each order (see below for a description).

Since it is more likely that orders are repromised when they are equipped with a 
delivery time window covering multiple periods rather than a single allowed period, 
namely � (i)

o
 , we choose the start and end date of a delivery time window 

[
eo, fo

]
 for 

order o as follows:

(1)er
o
∶ = max

(
� (i)
o

− k(r), 1
)

(2)f r
o
∶ = min

(
� (i)
o

+ l(r), T
)
,
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where T  is the length of the planning window measured in number of periods, r 
the iteration counter, and k and l are non-decreasing functions with argument r that 
have to be specified in a concrete situation. Note that the maximization with 1 in 
(1) and the minimization with T  in (2) ensure that er

o
≥ 1 and f r

o
≤ T  , i.e. that the 

planning window is respected by the start and end date of the delivery time window. 
This results in more restricted time windows for orders with a � (i)

o
 value close to the 

beginning or end of the planning window. Due to the rolling horizon approach this 
is not crucial for orders with a � (i)

o
 value close to the end of the planning window. 

Moreover, it will be penalized in the objective function of the FE STDSM-O model 
when orders with a � (i)

o
 value close to the beginning of the planning window cannot 

be repromised within the given time window. We start by iterations where we use 
increasing k(r) values, followed by iterations where we increase l(r) since orders that 
are fulfilled before � (i)

o
 are considered as inventory that can be delivered at � (i)

o
 . If 

orders are repromised within a single iteration, they are not considered anymore in 
the following iterations. The corresponding repromising decisions are incorporated 
into the FE STDSM-O model by fixing the values of the related decision variables. 
This allows respecting previously made order repromising decisions. The overall 
STDSM approach including allocation planning activities is summarized in Fig. 3.

The FE and BE STDSM MILP instances can be solved individually for 
each single FE and BE facility since supply is provided by master planning for 
each single facility. This is indicated by individual boxes for the different FE 
facilities (indicated by FE1, …, FEm) in Step 1 and Step 4. However, we need a 
mechanism to assign orders to the different facilities. In the present paper, orders 
are randomly assigned to the FE facilities where all facilities have the same 
probability to be selected.

The BE facilities are much smaller with respect to the number of work centers 
and number of process steps in the routes (Mönch et al. 2013). Therefore, solving 

Fig. 3   STDSM planning approach
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a simultaneous BE STDSM MILP instance for all BE facilities is possible. This is 
indicated by the surrounding frame for the BE facilities (Step 3) in Fig. 3.

Note that the proposed planning approach is somehow similar to the FE- and 
BE-based production planning decomposition procedure used in the decision 
support system IMPReSS (Leachman et  al. 1996). However, orders are not 
considered in IMPReSS in contrast to the present paper. Next, we will describe 
the different ingredients of the proposed planning approach.

3.2 � Master planning and allocation planning

A generic planning window of finite length T  that consists of equidistant periods 
t = 1,… , T  is assumed for all planning formulations in the rest of the paper. The 
master planning formulation extends the model by Ponsignon and Mönch (2012) 
for several FE facilities to the situation that BE facilities are included. The LP 
model assumes fixed integer lead times for both FE and BE facilities. For simplicity 
reasons, all products have the same lead time. Capacity constraints are only taken 
into account for FE/BE bottleneck work centers to reduce the model size. The 
model is formulated for a set of demand classes I with different priorities (Leach-
man et  al. 1996). For instance, previously confirmed customer orders form the 
highest priority class, replenishment to target inventory levels is the second impor-
tant class, sales forecasts discounted by historical forecast errors is the third most 
important class, and the rest of sales forecast, i.e. the risky portion, forms the least 
important demand class. The main decision variables yFE

gjt
,yBE

gjt
 , IDB

gt
 , IDC

gt
 are for the 

number of lots of product g to be completed at the end of period t in FE/BE facility 
j and the DB/DC inventory level for product g in period t, respectively. The full 
model can be found in Herding and Mönch (2021) for the sake of completeness.

Allocation planning is responsible for allocating scarce ATP quantities, obtained 
by Step 1 of the proposed planning approach, to different customers. A multi-facility 
version of the allocation planning approach by Meyr (2009) is presented in 
Appendix A of the electronic supplement. The objective function of the resulting LP 
is the difference of the sum of the weighted AATP quantities and a penalty term for 
not meeting the given minimum ATP quantities for the different customers. The 
main FE decision variables are the aatpFE

jcigt�
 variables which represent ATP for 

demand class i of product g in FE facility j , available at the begin of period t , 
allocated to demand for customer c which is due in period � . The main BE decision 
variables are the aatpBE

cigt�
 variables which model the ATP for demand class i of 

product g for all BE facilities, available at the begin of period t , allocated to demand 
for customer c which is due in period � . In order to use the AATP quantities in the 
order repromising approach, we have to differentiate between the AATP quantities 
for the FE and BE repromising approaches. We set aatpFE

cgt�
∶ = aatpFE

c1gt�
 and 

aatpBE
cgt�

∶ = aatpBE
c1gt�

 for the FE and BE approach, respectively, where demand class 
1 refers to confirmed orders. The AATP quantities of demand class 2 that refers to 
forecasted demand are used in the online order promising procedure that will be 
described in Sect. 3.4.



876	 R. Herding, L. Mönch 

1 3

3.3 � FE STDSM and BE STDSM models

We start by formulating the FE STDSM model variants, i.e. the FE STDSM-O and 
the FE STDSM-NO. They are based on the following sets and indices, decision 
variables, and parameters.
Sets and indices.

t, �: Period index
g ∈ G: Product index for set of all products
j ∈ F: Facility index for set of all FE facilities
k ∈ KFE(j): Work center index for set of all work centers of FE facility j
l: Operation index
l∗: Last operation of the route for product g in facility j
n ∈ N: Product type index for set of all product types for FE facilities, N = {DREP,FPOS}

o: Order index
c ∈ Ω: Customer index for set of all customers
OFE(g, j): Set of all operations of product g in facility j
OFE(g, j, k): Set of all operations of product g on machines of work center k of facility j
Agc: Set of all orders of product g for customer c
Ag: Set of all orders of product g

Decision variables.

YFE
jgtl

: Quantity of product g in facility j completing operation l  in period t

YFE
jgt

: Output of product g in facility j in period t  from the last operation of its routing

XFE
jgt

: Quantity of product g released into the first work center of facility j in its routing in period 
t

WFE
jgt

: WIP of product g in facility j at the end of period t
Sn
ot�

: 1 if order o is completed by product type n in period t ≤ � , 0 otherwise
IDB
gt

: DB inventory of product g at the end of period t
B
gt

: Backlog of product g at the end of period t

Parameters.

qo: Size of order o (in wafers)
�n
o
: Unit revenue of order o assigned to product type n

lo�: Unit penalty value if order o is not repromised for period �
eo: Earliest delivery date of order o
fo: Latest delivery date of order o
h
gt

: Unit DB holding cost for product g in period t
�FE
jgt

: Unit WIP cost of FE facility j for product g in period t
b
gt

: Unit backlog cost for product g in period t

Y
FE(i)

jgt
: Initial quantity (in wafers) of product g in facility j to be completed at the end of period t

C
jkt

: Available capacity of work center k of facility j during period t
�
jgl

: Processing time of operation l  of product g in facility j
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L
gl

: FE lead time (in number of periods) for product g from release of the raw material to the 
completion of operation l

aatpFE
cgt�

: ATP quantity allocated to confirmed orders of product g for customer c due in period � , 
available at the begin of period t

S̃
gt

: Requested quantity of product g to be completed in period t (supply for FPOS products from 
master planning)

Next, the FE STDSM-O model is formulated as follows:

subject to

(3)max
�
g∈G

T�
t=1

⎡
⎢⎢⎣
�
o∈Ag

�
n∈N

fo�
�=eo

qo
�
�n
o
− lo� + lo,T+1

�
Sn
ot�

−
�
j∈F

�FE
jgt
WFE

jgt
− h

gt
IDB
gt

⎤
⎥⎥⎦

(4)WFE
j,g,t−1

+ XFE
jgt

− YFE
jgt

= WFE
jgt

j ∈ F, t = 1,… , T , g ∈ G

(5)

∑
j∈F

YFE
jgt

+
∑
j∈F

Y
FE (i)

jgt
+ IDB

g,t−1
− IDB

gt
=

T∑
�=1

∑
o∈Ag

∑
n∈N

qoS
n
ot�

t = 1,… , T , g ∈ G

(6)
∑
g∈G

∑
l∈OFE(g,j,k)

�
jgl
YFE
jgtl

≤ C
jkt

j ∈ F, t = 1,… , T , k ∈ KFE(j)

(7)YFE
jgtl

= XFE

j,g,t−
⌊
L
gl

⌋ j ∈ F, t = 1,… , T , g ∈ G, l ∈ OFE(g, j)

(8)YFE
jgt

= YFE
jgtl∗

j ∈ F, t = 1,… , T , g ∈ G

(9)
T∑

�=1

∑
o∈Ag

qoS
n
ot�

≤
∑
j∈F

YFE
jgt

+
∑
j∈F

Y
FE(i)

jgt
n = FPOS, t = 1,… , T , g ∈ G

(10)
T∑

�=1

∑
o∈Ag

qoS
n
ot�

≤ IDB
g,t−1

n = DREP, t = 1,… , T , g ∈ G

(11)
∑
n∈N

T∑
t=1

fo∑
�=eo

Sn
ot�

≤ 1 g ∈ G, o ∈ Ag

(12)
∑
n∈N

T∑
t=1

∑
�∉[eo,fo]

Sn
ot�

= 0 g ∈ G, o ∈ Ag
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The objective (3) seeks to maximize the profit, i.e. the difference of the revenue 
of the repromised orders and the sum of costs. The first term of (3) represents the 
difference of the revenue and the cost for repromising certain orders in a period 
different from � (i)

o
 . We use

for given order-specific quantities 1 ≤ �o ≤ �o . This setting ensures that the model 
prefers repromising orders within the time window at or before � (i)

o
 , followed by 

repromising them after � (i)
o

 within the time window. Orders that cannot repromised 
within the time window are artificially repromised at period T + 1 . We penalize this 
in the objective function by adding a term including lo,T+1 to the objective function. 
The second term models WIP costs. The cost for holding inventory at the DB is 
given by the third term.

Constraints (4) represent the WIP balance for each FE facility. Constraints (5) 
are inventory balance equations. The capacity restrictions for each work center 
are ensured by constraints (6). The Cjkt values are adjusted in such a way that the 
initial WIP, represented by YFE(i)

jgt
 is taken into account. Integer lead times that are 

a multiple of the period length are incorporated into the model by the input–output 
relation constraints (7). Simulation is used to determine appropriate waiting time 
estimates for computing operation-specific lead times L

gl
 in a recursive manner. 

The lead time is then obtained by rounding down the non-integer estimates 
obtained from the recursion (cf. Kacar et al. 2016; Missbauer and Uzsoy 2020). 
Constraint set (8) sets the values of the decision variables YFE

jgt
 to YFE

jgtl∗
 . Constraint 

sets (9) and (10) model the balance for order repromising. The orders can be 
repromised by product types DREP and FPOS. Here, the amount of DREP 
products in a given period is determined by the values of the IDB

g,t−1
 decision 

variables whereas the amount of FPOS products is represented by the values of 
the YFE

jgt
 decision variables. This means that constraints (9) ensure that the amount 

of repromised orders is not larger than the amount of completed lots that belong 
to FPOS, whereas constraints (10) model the same for DREP. The constraints 
(11) and (12) make sure that an order can only be repromised within its time 
window, whereas constraint set (13) ensures that the amount of orders per product 
and customer is not larger than the ATP quantities that are allocated to 

(13)
∑
n∈N

∑
o∈Agc

qoS
n
ot�

≤ aatpFE
cgt�

g ∈ G, c ∈ Ω, t, � ∈ {1,… , T}

(14)
XFE
jgt
, YFE

jgtl
, YFE

jgt
,WFE

jgt
, IDB

gt
,B

gt
≥ 0 j ∈ F, t = 1,… , T , g ∈ G, l ∈ OFE(g, j)

(15)Sn
ot�

∈ {0, 1} t, � ∈ {1,… , T}, g ∈ G, o ∈ Ag, n ∈ N.

(16)lo𝜏∶ =

⎧
⎪⎨⎪⎩

𝛼o
�
𝜏 (i)
o

− 𝜏
�
, if eo ≤ 𝜏 ≤ 𝜏(i)

o

𝛽o
�
𝜏 − 𝜏 (i)

o

�
, if 𝜏 (i)

o
< 𝜏 ≤ f (i)

o

𝛽o
�
T + 1 − 𝜏(i)

o

�
, otherwise



879

1 3

A rolling horizon planning approach for short‑term demand…

customer-specific demand that is due in period � . The range of the decision vari-
ables is modeled by the constraints (14)–(15).

Different product types N are used in the FE STDSM-O model to support 
repromising on the DREP and the FPOS level, respectively. The revenue of orders is 
selected as 𝜋DREP

o
> 𝜋FPOS

o
 to make sure that if possible, orders are repromised first 

as DREP before FPOS is used.
When we have Ag = � for all g ∈ G , i.e., orders are not considered in the 

formulation, we call the resulting model FE STDSM-NO (see Sect.  3.1). It is 
obtained from the FE STDSM-O model based on the following changes. First, the 
objective function (3) is replaced by

which has to be minimized. In (17), the third term models backlog cost. Moreover, 
the constraint sets (5), (9), and (10) are replaced by

Constraints (18) are inventory balance equations. Constraint sets (11)–(13) are 
obsolete. Note that we take the IDB

g0
 quantity, i.e. the initial DREP supply, from 

master planning. The right-hand side S̃
gt

 is the supply for FPOS products, i.e. 
S̃
gt
∶=

∑
j∈FE y

FE
gjt

 . Note that backlog is allowed in the FE STDSM-NO model to 
avoid infeasibilities due to limited capacity.

The BE STDSM model is similar to the FE STDSM-O model (3)–(15). Therefore, 
we only introduce the main decision variables and the constraints that are different 
from the FE-STDSM-O model. XBE

jgt
 is the quantity of product g released into the 

first work center of BE facility j in its routing in period t whereas YBE
jgt

 is the output 
of product g in facility j in period t from the last operation of its routing. The binary 
decision variable S

ot�
 is 1 if order o is completed in period t ≤ � and 0 otherwise. 

The objective function of the BE STDSM model is similar to (3). An FE inventory 
balance equation similar to (18) models the supply obtained from Step 1. Moreover, 
we have a BE inventory balance equation where the right-hand side is given by the 
sum of the sizes of the orders that are repromised in a given period. In addition, 
there is a constraint set similar to (13). Here, we have to replace the right-hand side 
of (13), i.e. aatpFE

cgt�
 , by aatpBE

cgt�
 . The complete model can be found in Appendix B of 

the electronic supplement.
Due to the binary decision variables, large-sized instances of both MILP models 

are hard to solve. This can be seen from Appendix C of the electronic supplement 
where we show that both the FE STDSM-O and the BE STDSM problems are 
NP-hard. Therefore, the FE STDSM-O and the BE STDSM models are solved by a 
heuristic time-based decomposition technique proposed by Brahimi et al. (2015) for 
a single-stage order acceptance model. This method is based on a decision interval 
with a length of � periods and a frozen interval that consists of � periods. Order 

(17)
∑
g∈G

T∑
t=1

[∑
j∈F

�FE
jgt
WFE

jgt
+ h

gt
IDB
gt

+ b
gt
B
gt

]

(18)

∑
j∈F

YFE
jgt

+
∑
j∈F

Y
FE (i)

jgt
+ IDB

g,t−1
− B

g,t−1
+ B

gt
− IDB

gt
= S̃gt t = 1,… , T , g ∈ G.
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repromising decisions are modeled by binary decision variables in the decision 
interval, whereas the binary decision variables are relaxed in the sense that they can 
take values from [0, 1] in the rest of the planning window. Moreover, the values of 
the already selected binary decision variables are fixed in the frozen interval.

3.4 � Remaining planning and control functions and reference approach

Next, we briefly describe the remaining planning and control functions that are 
used in all conducted computational experiments. We start by sketching the online 
order promising (OOP) algorithm. A backward search is performed to find AATP 
quantities of the forecasted demand class to fulfill order o in periods at or before 
do. A forward search in periods after do is carried out if not enough AATP is found 
during the backward search. Both the backward and the forward search initially 
strive to find ATP at the DC level. If ATP for an order cannot be fulfilled at the DC 
level, the algorithm looks for ATP at the DB level, BE lead time periods before. If 
ATP is still missing, the OOP scheme looks for ATP at the WIP level. The OOP 
algorithm is similar to the ATP search procedure described by Kilger and Meyr 
(2015), for details we refer to Herding et al. (2017).

Lot releases are determined by backward termination, a simple production 
planning approach, for each FE and BE facility based on product-specific quantities 
that are computed by master planning using lead time information. Waiting time 
estimates that are a multiple of the processing time are incorporated into the 
backward termination scheme. Scheduling is carried out using the distributed 
shifting bottleneck heuristic (DSBH) proposed by Mönch and Drießel (2005). 
Moreover, lots on the execution level have to be assigned to orders to fulfill them. 
Following the lot-to-order matching procedure by Knutson et al. (1998), all orders 
are randomly assigned to a specific FE and BE facility in a first stage. All facilities 
have the same probability to be chosen. The sequence in which the orders are 
considered in both stages is determined based on the qo and �o values of order o , 
i.e., the index woqo

/
�o is used. Here, wo is a weight associated with order o . The 

wo values are used to express the importance of order o . Orders with tight �o values, 
large qo quantities, and large weights wo are preferred. The existing lots in a wafer 
fab are used to fill the orders following the first fit decrease heuristic from bin 
packing (Dowsland and Dowsland 1992). The lots are considered in non-decreasing 
order of their due dates.

We continue by briefly describing the main ideas of the reference approach for 
the STDSM function, the rescheduling batch run (RBR). It is based on several 
repromising rules that control the search for AATP quantities similar to the logic 
used in the OOP scheme (see above). The repromising rule ALL_ON_TIME only 
repromises an order if the entire order quantity is available at the currently promised 
delivery date �o . Repromising rule ALL only repromises an order if the entire order 
quantity is available even if this results in a postponement of an order delivery. It 
collects order quantities until the entire quantity is available. The repromising date is 
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the date when the entire order quantity is available. The RBR procedure can be sum-
marized as follows:

RBR procedure

1.	 Determine the set of orders O to be repromised. Initialize the set of all already 
considered orders by R ∶= � . Sort the order set O in a non-decreasing order with 
respect to the �o values.

2.	 Let o∗ be the first order in the sorted list derived from the set O.
3.	 Apply the ALL_ON_TIME rule by checking whether the entire order quantity of 

order o∗ is available at the DC at �o∗ or not. If yes, go to Step 8.
4.	 Search for additional order quantities at the DC in the periods at or before �o∗ until 

the entire order quantity of order o∗ is obtained or the beginning of the planning 
window is reached.

5.	 If still quantities to be repromised are left for order o∗ , search for additional order 
quantities at the DB at or before �o∗ until the entire order quantity of order o∗ is 
obtained or the beginning of the planning window is reached.

6.	 If again quantities to be repromised are left, search for additional order quantities 
in future periods at the DC until the entire order quantity of order o∗ is obtained 
or the end of the planning window is reached.

7.	 If still quantities to be repromised are left, search for available order quantities in 
future periods at the DB until the entire order quantity of order o∗ is obtained or 
the end of the planning window is reached.

8.	 Update O := O\{o*} and R ∶= R ∪ {o∗} . If O ≠ ∅ go to Step 2.
9.	 Try to improve the repromising decisions by performing a cross-confirmation run 

(CCR) (described next).

Note that the Steps 4–7 represent the ALL rule. The CCR procedure aims to 
improve the repromised dates with respect to the desired delivery dates do . There-
fore, the procedure starts by freezing the remaining supply. All repromised orders 
are made available again. Based on this newly available supply, the CCR tries to 
improve the repromised delivery dates by performing again the RBR procedure with 
a modified Step 1 where the orders are sorted with respect to do instead of �o . If an 
improvement is possible, the improved order confirmation date is set, otherwise the 
previously repromised date is used. We illustrate the RBR by an example shown in 
Fig. 4.

A planning window of length T = 5 periods is considered. The order quantity is 
qo∗ = 1000 units. At �o∗ , we have only 200 units available. Hence, the ALL_ON_
TIME rule is not applicable (Step 3). In addition to the 200 units at �o∗ we find 
another 100 units in the period before �o∗ (Step 4). We search on the DB before or at 
�o∗ and find 100 units in the period before �o∗ (Step 5). Here, for the sake of simplic-
ity we assume that the production in the BE facilities can be carried out in less than 
a single period. Another 100 units are found in the periods after �o∗ at the DC by car-
rying out Step 6. In Step 7, we find the remaining 500 units at the DB. Overall, the 
order o∗ is repromised for period 5 while we have �o∗ = 3.
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Note that the STDSM approach is based on decomposition according to the 
physical structure of the underlying supply chain, i.e., optimization models 
are solved for the different nodes of the supply chain or groups of them. It is not 
obvious which one of the two decomposition approaches, i.e. the STDSM or the 
RBR procedure, is better. It is well-known that planning problems for large-scaled 
semiconductor supply chains can only be tackled by decomposition (Fordyce et al. 
2011). Either the STDSM or the RBR scheme is used in the simulation experiments 
whereas the remaining planning functions, i.e., master planning, allocation planning, 
release planning, scheduling, lot-to-to-order matching, and the OOP procedure 
are the same for both situations. The different planning and control modules are 
summarized in Table 1.

4 � Rolling horizon approach

The simulation infrastructure and the applied simulation model is discussed in 
Sect. 4.1. The demand and order generation scheme is described in Sect. 4.2.

4.1 � Simulation infrastructure and supply chain simulation model

The performance of the proposed STDSM approach can only be reasonably assessed 
in a rolling horizon manner since several planning functions are applied in different 
frequency and the value of STDSM decisions must be evaluated based on global, i.e. 
supply chain-wide performance measures. Discrete-event simulation is crucial for 
implementing rolling horizon schemes in a risk-free environment due to the fact that 
the dynamics and the uncertainty of the supply chain can be covered.

The simulation infrastructure proposed by Herding et al. (2017) is extended for 
the rolling horizon experiments carried out in the course of the research for this 
paper. It contains a planning, control, and execution level. According to Missbauer 
and Uzsoy (2022), the purpose of the planning level is to coordinate the material 

Fig. 4   Example for the RBR procedure (without the CCR)
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flow across time and space, while (production) control deals with the monitoring of 
the progress of work through the supply chain or production facility to identify and 
address deviations from the plan as they occur. This means that production control 
is related to lots that are already released on the shop floor. The order penetration 
point is at the interface between planning and control. A discrete-event simulation 
model represents the execution level of the semiconductor supply chain, while the 
master planning, production planning, allocation planning, STDSM, lot-to-order 
matching, and OOP procedures are located on the planning level. The corresponding 
planning models are populated with data using feedback from the execution level. 
The control level is responsible for computing release and dispatching instructions 
and performing order management activities. The backbone of the infrastructure is 
a blackboard-type data layer in the memory of the simulation computer. The data 
layer is coded in the C++ programming language. Business objects such as orders, 
lots, machines, and routes are stored in the data layer. These objects are updated in 
an event-driven manner using notification functions of the commercial simulation 
software AutoSched AP 9.3. A stop and go approach is applied for the rolling hori-
zon simulation experiments under which the simulation engine stops at the begin-
ning of a planning epoch to execute the different planning functions. The simulation 
continues after a plan is computed by the corresponding planning approach. The 
overall principle of the rolling horizon approach is shown in Fig. 5.

The first two planning epochs of the master planning and production planning 
function are indicated in the figure by vertical lines that are blue colored. The same 
is also shown for allocation planning, the STDSM/RBR procedure, and lot-to-order 
matching (green colored). We observe that the frequency of applying the different 
planning functions is different. For instance, allocation planning is more frequently 
used than master planning, whereas the OOP procedure is applied whenever an 
order is placed by a customer.

Fig. 5   Rolling horizon setting
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A slightly simplified version of the semiconductor supply chain simulation 
testbed (Ewen et al. 2017) that is publicly available under Testbed (2021) is used 
in the experiments. It contains two mature 200 mm FE facilities, each of them 
with more than 200 machines. Two BE facilities are also included. The semicon-
ductor supply chain has two DBs and three DCs. Two products with more than 
200 FE and 40 BE process steps are considered in the experiments. This small-
sized semiconductor supply chain model is abbreviated by SSC-S. The infra-
structure including the simulation model is shown in Fig. 6.

We use a simulation horizon of 2 years. It consists of S = 728 periods, i.e., the 
period length is a single day. The planning window of master planning, produc-
tion planning, allocation planning, and the STDSM approach is T  = 26 weeks. The 
period length is 1 week in the master and production planning approaches, while 
it is only a single day in allocation planning and the STDSM approach. The DSBH 
proposed by Mönch and Drießel (2005) serves as the scheduling approach. The 
next planning epoch always starts after one period. The weekly supply derived 
by master planning is evenly distributed over the daily planning periods of the 
STDSM approach. The scheduling window of the DSBH is 3  h, while a new 

Fig. 6   Simulation infrastructure

Table 2   Characteristics of the 
Planning and Control Process

Planning/control module Length of the 
planning window

Planning frequency

Master planning 26 weeks Weekly
STDSM 26 weeks Daily
Allocation planning 26 weeks Daily
Lot release planning 26 weeks Weekly
OOP – Based on request
Lot-to-order matching 26 weeks Daily
Scheduling 3 h 2 h
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schedule is computed every 2  h. The different lengths of the planning windows 
and the planning frequencies are summarized in Table 2.

4.2 � Demand and order generation scheme

Demand and order information evolving over time is crucial for the rolling hori-
zon scheme. Demand is generated based on the additive martingale model of 
forecast evolution (MMFE) by Heath and Jackson (1994). It is a quite general 
and powerful approach to model demand correlation across products and periods 
for production planning (Chen and Lee 2009; Albey et al. 2015; Ziarnetzky et al. 
2018, 2020). The details of the MMFE demand generation scheme are provided 
in Appendix D of the electronic supplement for the sake of completeness.

Firm orders and forecast are differentiated in the simulation experiments. The 
number of firm orders decreases over time while the amount of forecast 
increases. Orders are needed for the OOP and the STDSM approach. Firm orders 
of product g at planning epoch s are modeled by D(g)fo

st ∶ = D
(g)
st

(
1 −

t−1

T−1

)
(1 − �) , 

t = 1,… , T . Here, D(g)
st  , s ≤ t ≤ s + H − 1 is the demand forecast for product g 

made at the end of epoch s for period t  , and H is the length of the forecast 
window, given as number of periods. The demand of the current planning period 
t = 1 is deterministic, while the demand of future periods t = 2,… , T  consists of 
firm and forecasted orders that decrease and increase over time, respectively. 
The forecast portion is determined by the difference of total demand D(g)

st  and the 
amount D(g)fo

st  of firm orders. The bias −1 < 𝜂 < 0 is used to model overestimated 
and 0 < 𝜂 < 1 to represent underestimated firm order quantities. The bias causes 
average realizations of orders that do not match with the forecast which is quite 
common in semiconductor manufacturing.

Order quantities O(g)(c)
st�  at the planning epochs s = 1,… , S are randomly 

generated according to O
(g)(c)
st� ∼ U

[
0.9s

(g)(c)
st , 1.1s

(g)(c)
st

]
 for each product g , 

customer c ∈ Ω , period t  , and randomly chosen day � = 1,… , 7 of the planning 

period where the average order size is given by s(g)(c)st =
1

7|Ω|

{
D

(g)fo
st −D

(g)fo

s−1,t+1

}

(1−�)
 . Order 

quantities are generated until the total amount of 
∑Ω

c=1

∑7

�=1
O

(g)(c)
st� =

D
(g)fo
st −D

(g)fo

s−1,t+1

1−�
 

is reached. The periods 7(s + t) + � represent the desired delivery date do of the 
incoming orders at planning epoch s . The demand D(g)

st  of product g for each 
planning period is used in master planning, and it is separated into firm orders 
coming from order management and a forecast portion obtained as the difference 
between the overall demand and the firm orders. The remaining forecast portion 
D

(g)fc
st ∶ = D

(g)
st − D

(g)fo
st  must be assigned to customers and periods with a length of 

a single day. The ratios of the customer-specific order quantities in already 
executed periods are exploited to determine the fraction of the forecast portion 
that is assigned to a certain customer. Customers with a large amount of orders 
in the past are preferred. Finally, the customer-specific forecast portion is evenly 
distributed over the 7 days of a master planning period.
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5 � Simulation experiments

We start by discussing the design of experiments in Sect. 5.1. Parameter setting issues 
and implementation details are described in Sect. 5.2. Section 5.3 is used to present the 
simulation results.

5.1 � Design of experiments

We expect that the planned bottleneck utilization (BNU) of the FE facilities influences 
the performance of the proposed STDSM approach. Therefore, 70% and 90% are used 
as BNU levels of the FE facilities. Allocation planning requires a mean demand that is 
higher than the available ATP to model scarce capacity. A moderate and a high demand 
scenario are examined in the simulation experiments. The moderate demand scenario is 
given by BNU = 70%. The resulting demand for the moderate scenario is randomly cho-
sen between 95 and 110% of the calculated mean demand where a continuous uniform 
distribution is assumed. In the high BNU scenario, the demand is randomly chosen 
between 110 and 130% of the determined mean demand for BNU = 90% where again a 
continuous uniform distribution is applied. This leads to different mean demand values 
�g of the products g for each demand scenario. Five independent demand instances are 
used in the experiments. Moreover, five independent simulation replications are per-
formed for each demand instance to compute the performance measure values in the 
face of execution uncertainty. The average is taken over all replications. Two different 
cost settings are applied (see Sect. 5.2 for details). Overall, 1200 simulation runs are 
performed. The design of experiments is summarized in Table 3 where the abbrevia-
tion CV is used for the coefficient of variation of the demand (cf. Appendix D).

We are interested in the on-time delivery (OTD) performance defined as the fraction 
of all promised orders o (set OP ) that are delivered at the first promised date � (i)

o
 (set 

OFPD ) i.e., we have:

(19)OTD∶ =
∑

o∈OFPD
wo

/∑
o∈OP

wo.

Table 3   Design of experiments Factor Level Count

Planning approach STDSM, RBR 2
Cost setting Regular, foundry 2
BNU level Moderate 

(BNU = 70%), high 
(BNU = 90%)

2

CV 0.10, 0.25 2
Bias � − 0.2, 0.0, 0.2 3
Independent demand realizations 5
Independent simulation replications 5
Total simulation runs 1200
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The next measure is the order-based delivery (OBD) performance:

It is the fraction of all promised orders that are delivered at the desired date d
o
 

(set OD ). Moreover, the average realized waiting time (AWT) of the promised orders 
is measured. It is defined as:

where the set of tardy orders ( OT ) is defined by OT∶ =
{
o ∈ OP|𝜏o − 𝜏 (i)

o
> 0

}
 . 

Here, 𝜏o is the realized delivery date of order o . Finally, the stability is considered 
which is defined as

where �
o
(s) is the promised delivery date for order o in planning epoch s . Moreo-

ver, we have I(o, s) = 1 for the indictor I(o, s) if 𝜏o ≤ s and I(o, s) = 0 otherwise. 
A stability value close to zero is preferred since it means that the �

o
(s) value for a 

given order o does not change much in the different planning epochs. Investigating 
planning stability or instability is important for rolling horizon approaches (Kimms 
1998).

5.2 � Parameter setting and implementation issues

The cost settings for the STDSM approach are summarized in Table 4. Since specific 
cost settings are not available from the industry due to confidentiality reasons, the 
cost values are chosen based on our experience with semiconductor supply chains 
where the revenue from a single IC is much larger than inventory-related costs. 
Inventory holding costs are rather small relative to backlog costs since they only rep-
resent delayed revenue. FE WIP costs are chosen higher than inventory holding cost 
due to the limited available clean room space within wafer fabs. Additional experi-
ments are conducted for a foundry-type setting (Mönch et al. 2018a). A pure play 

(20)OBD∶ =
∑

o∈OD
wo

/∑
o∈OP

wo.

(21)AWT∶ =
∑

o∈OP
wo

(
𝜏o − do

)+/∑
o∈OT

wo,

(22)� =
1

S
∑

o∈OA wo

�
o∈OP

wo

S�
s=1

I(o, s)
����o(s) − �(i)

o

���,

Table 4   Parameter settings for 
the STDSM approach

FE BE

Parameter Value Parameter Value

�DREP
o

180 �o 180
�FPOS
o

150 hDC
gt

15
h
gt

15 (30) �BE
jgt

7
b
gt

50 (100)
�FE
jgt

20



889

1 3

A rolling horizon planning approach for short‑term demand…

foundry manufactures ICs for other companies, without designing them. This means 
that customer orders have to be completed on time and finished inventory cannot be 
used to satisfy demand of other customers. Therefore, we double backlog and inven-
tory holding cost for the FE facilities, i.e., we use a second cost setting. The corre-
sponding values are presented in brackets in Table 4.

The functions k, l to set the endpoints of the time window 
[
eo, fo

]
 are:

Note that 182 periods cover the entire planning window for the STDSM approach. 
The settings �o ≡ 2 and �o ≡ 1 are chosen to penalize orders that are not repromised 
at � (i)

o
 . We use � = 10 periods for the decision interval and � = 8 periods for the 

frozen interval in the time-based decomposition approach for solving FE and BE 
STDSM instances. A relative MIP gap of 15% is used for each subproblem resulting 
from the decomposition of the MILPs. These values are chosen by trial and error 
based on some preliminary experimentation with a small number of problem 
instances. Six customers are considered in the simulation experiments. The settings 
wcgt� ≡ 5 for the most important customer, wcgt� ≡ 3 for the customer of medium 
importance, and wcgt� ≡ 1 for the remaining four customers of regular importance 
are used for all products to mimic a situation where a certain customer is more 
important than others. The weights wo for the resulting orders are taken as the wcgt� 
values of the customer. Similar to the weights of each customer, the penalty value 
pcig� for not reaching the minimum amount of demand that belongs to class i of 
product g for customer c and is due in period � is chosen as pcig� ≡ 15 for the most 
important customer, pcig� ≡ 13 for the customer of medium importance, and 
pcig� ≡ 10 for the four regular customers. The minimum ATP quantity APcig� of 
demand class i of product g , allocated to demand for customer c which is due in 
period � is set according to APc1g� =

∑
{o�o∈Agc,�o=�}

qo and APc2g� ≡ 0 . This allows 
prioritizing orders that are already promised as most important when allocating 
scarce ATP quantities. Two demand classes are used in the STDSM formulations. 
Demand class 1 refers to confirmed orders demand class 2 is used to model 
forecasted demand. The revenue and cost settings for master planning can be found 
in Herding and Mönch (2021).

The FE STDSM-O and FE STDSM-NO instances are solved individually for 
each FE facility due to the size of the FE simulation models used in the conducted 
simulation experiments. Therefore, we restrict the FE STDSM-O model to the 
orders that belong to an individual facility. Moreover, the right-hand side of 
constraint set (9) is replaced by YFE

gjt
+ Y

FE(i)

gjt
 for FE facility j . For the FE STDSM-NO 

model, we have to replace the right-hand side of constraint set (18) by S̃
gjt

∶= yFE
gjt

 
for FE facility j where the quantities S̃

gjt
 are provided by master planning. For both 

models, the IDB
g0

 quantities are taken from master planning.

(23)

k(r)∶ =

⎧
⎪⎨⎪⎩

0 periods for r = 1

7 periods for r = 2

182 periods for 3 ≤ r ≤ 6

, l(s)∶ =

⎧
⎪⎨⎪⎩

0 periods for 1 ≤ r ≤ 3

7 periods for r = 4

15 periods for r = 5

182 periods for r = 6

.
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The Apparent Tardiness Cost (ATC) dispatching rule (Vepsalainen and Morton 
1987) is used in the DSBH procedure. The due dates dj of the lots for scheduling are 
set according to the flow factor FF , i.e. the ratio of the amount of time a lot spends 
in a wafer fab and the raw processing time (Mönch et al. 2013). The due date set-
ting scheme dj∶ = rj + FF ⋅ zj

∑nj

k=1
pjk is used where rj is the period when lot j is 

released, pjk is the processing time of process step k , and nj is the number of steps of 
lot j . The settings zj = 0.55 and zj = 2.75 are applied to make the due dates tight and 
wide for lots belonging to customer 1 and the remaining five customers, respectively.

All the algorithms are coded using either the C++ programming language or 
ILOG CPLEX 12.1. The computational experiments are performed on a computer 
with 3.6 GHz Intel Core i7-4790 processor with eight cores and 8 GB RAM.

5.3 � Simulation results

5.3.1 � Overview

The analysis of the simulation results will be centered around the following four 
questions which will be addressed in the subsequent subsections:

1.	 To which extent does the demand setting characterized by BNU and demand 
variability impact the results?

2.	 How are the results impacted by the accuracy of information for firm order quanti-
ties represented by the bias �?

3.	 Do the results depend on the used cost setting for the STDSM, i.e. regular vs. 
foundry setting?

4.	 What are the computing time requirements of the optimization-based and the 
rule-based approaches?

5.3.2 � Impact of demand settings

The results of the rolling horizon experiments are shown in Table 5. 95% confidence 
intervals are presented instead of the values of point estimates to obtain statistically 
reasonable results. The results for both the RBR and the STDSM are shown. Two 
values are provided for each factor level and performance measure. The upper value 
is obtained by the RBR whereas the lower value is computed by the STDSM. Best 
values for each pair of performance measure values are marked bold.

Moreover, the improvement of the STDSM over the reference approach in % is 
shown for each factor combination in Table 6. Here, we consider the improvement 
value Imp: = 100%

|||OSTDSM − Oref

|||
/
Oref , where OSTDSM and Oref  refer to the perfor-

mance measure value of the STDSM and the RBR approach, respectively. Again, 
best results for the same factor level are marked bold. The results for the foundry 
setting are shown for the sake of completeness in Appendix E of the electronic sup-
plement. Table E-1 is similar to Table 5.
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We see from Table  5 that the STDSM approach outperforms the RBR pro-
cedure under almost all experimental conditions. Improvements of the STDSM 
of up to almost 35% are possible (cf. Table 6). The setting BNU = 90% leads to 
larger improvements for the OBD measure since it is beneficial to use the STDSM 
scheme in the case of scarce capacity, whereas BNU = 70% leads to larger 
improvements of the AWT since there is more room for improvement in this 
situation. The difference between the case of CV = 0.25 and CV = 0.10 is fairly 
small, only the AWT improvement is considerably larger for CV = 0.25 due to the 

Table 5   Simulation results (regular cost setting)

Factor/level OTD OBD AWT (in days) Stability

BNU
 70% RBR 0.610 ± 0.022 0.532 ± 0.011 2.943 ± 0.039 0.682 ± 0.067

STDSM 0.702 ± 0.030 0.594 ± 0.031 2.663 ± 0.046 0.549 ± 0.054
 90% RBR 0.579 ± 0.048 0.441 ± 0.022 4.064 ± 0.070 0.797 ± 0.042

STDSM 0.631 ± 0.049 0.541 ± 0.073 3.859 ± 0.087 0.681 ± 0.054
CV
 0.10 RBR 0.605 ± 0.021 0.475 ± 0.015 3.144 ± 0.036 0.772 ± 0.088

STDSM 0.628 ± 0.021 0.594 ± 0.045 3.085 ± 0.069 0.526 ± 0.153
 0.25 RBR 0.560 ± 0.026 0.431 ± 0.021 4.179 ± 0.050 0.786 ± 0.067

STDSM 0.578 ± 0.036 0.501 ± 0.033 3.507 ± 0.064 0.607 ± 0.094
Bias
 0.00 RBR 0.626 ± 0.015 0.473 ± 0.015 3.726 ± 0.027 0.781 ± 0.011

STDSM 0.670 ± 0.020 0.586 ± 0.021 3.219 ± 0.042 0.650 ± 0.014
 0.20 RBR 0.545 ± 0.032 0.353 ± 0.073 4.225 ± 0.064 0.922 ± 0.051

STDSM 0.630 ± 0.027 0.421 ± 0.018 3.985 ± 0.073 0.876 ± 0.027
 − 0.20 RBR 0.590 ± 0.015 0.428 ± 0.013 4.163 ± 0.040 0.821 ± 0.017

STDSM 0.639 ± 0.053 0.577 ± 0.105 3.596 ± 0.096 0.781 ± 0.075

Table 6   Improvement of the 
STDSM over the RBR approach 
(in %) (regular cost setting)

Factor/level OTD OBD AWT​ Stability

BNU
 70% 15.117 11.732 9.510 19.465
 90% 9.120 22.825 5.044 14.543

CV
 0.10 3.808 25.174 1.866 31.817
 0.25 3.245 16.398 16.066 22.656

Bias
 0.00 7.035 24.026 13.607 16.714
 0.20 15.706 19.425 5.664 4.952
 − 0.20 8.369 34.942 13.605 4.775
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different demand behavior. However, the improvement with respect to stability is 
larger for CV = 0.10 . It turns out that the STDSM approach that simultaneously 
repromises all orders makes better decisions than the myopic RBR procedure. It 
is notable that this even holds for the stability measure.

5.3.3 � Impact of information accuracy for firm order quantities

As expected, underestimated demand for firm orders, i.e. the setting � = 0.2 , leads 
to worst performance measure values since wrong allocation and repromising 
decisions are made that cannot be corrected when considerably more orders 
arrive in the system as expected during planning. The stability is low in this 
situation. Overestimated demand, i.e. � = −0.2 , however, leads to a situation 
where the performance measure values are outperformed by the ones obtained 
by � = 0.0 (see Table  5), but the magnitude of deterioration is smaller compared 
to an underestimated amount of firm orders. This behavior is caused by the fact 
that the number of arriving orders considered during planning is smaller. This 
still leads to wrong decisions, but they can be easier compensated as in the case 
of underestimation since the rolling horizon setting ensures periodic replanning. 
This is also confirmed by the results shown in Table 6 where the setting � = −0.2 
consistently leads to the largest improvement rates among the different � values 
expect for the stability measure where � = 0.0 leads to the best results. This means 
that applying the STDSM scheme is particularly useful in this situation.

5.3.4 � Impact of the cost setting for the STDSM scheme

The results for the foundry case are similar to the regular cost case. As expected, 
the OTD and OBD values in Table E-1 of the electronic supplement are slightly 
better than the ones for the regular case, the same is true for the AWT values since 
the backlog cost is much higher in the foundry setting. However, these improve-
ments which are a result of the different cost settings are obtained at the expense of 
reduced stability.

5.3.5 � Computing times for the optimization‑ and rule‑based approaches

A single simulation run leads to 728 planning epochs of the STDSM approach. The 
corresponding average computing time for a single simulation run of the SSC-S sce-
nario is 3581  min whereas the corresponding time for the RBR heuristic is only 
1388 min. Both the STDSM and the RBR approach require allocation planning, i.e. 
solving instances of the model (A1)–(A6). Note that the average computing time for 
a single STDSM decision in the case of the SSC-S supply chain is less than 5 min. 
The foundry case leads to similar computing times.
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6 � Conclusions and future research directions

In this paper, a STDSM approach for semiconductor supply chains was proposed. 
The approach is based on a decomposition that takes into account the structure 
of the semiconductor supply chain. The NP-hardness of the related planning 
problem was proven. The integration of the STDSM approach into a hierarchical 
planning approach that includes master planning, allocation planning, and 
production planning was discussed. It was demonstrated by means of applying 
the hierarchical planning approach in a rolling horizon setting that the proposed 
approach outperforms a conventional rule-based repromising heuristic with 
respect to several delivery performance-related measures and with respect to 
stability.

Next, we provide managerial insights for decision makers in the semiconductor 
industry:

1.	 Optimization-based approaches for STDSM are able to outperform more 
conventional rule-based approaches with respect to on-time delivery-related 
performance measures. This is especially true in situations where the capacity in 
the FE facilities is scarce.

2.	 Moreover, optimization-based approaches are able to increase the planning 
stability to a large extent, especially when the demand uncertainty is fairly small. 
Nervous plans are not desirable since customers accept only a few changes in the 
promised delivery date.

3.	 The accuracy of estimating firm order quantities is crucial for the performance 
of the optimization-based approaches. However, underestimation is more critical 
than overestimation.

4.	 Although the planning problems are NP-hard, the computing times for the 
optimization-based approaches are acceptable if heuristic decomposition 
approaches are applied. They can be further improved if the cloud-based 
infrastructure proposed by Herding and Mönch (2022) is used or if metaheuristic 
approaches are applied (Wang and Mönch 2021).

5.	 The proposed optimization-based approach seems to be quite implementable in 
next-generation software agent-based planning systems for semiconductor supply 
chains (Herding and Mönch 2022).

There are several directions for future research. First of all, we believe that it is 
possible to execute the STDSM approach in a distributed manner using a cloud-
based infrastructure to obtain reasonable computing times. Cloud manufacturing 
is a promising direction for semiconductor supply chains (Wu et al. 2014; Chen 
2014; Yang et  al. 2020; Herding and Mönch 2022). As a second direction of 
future research, we propose using the simulation-based infrastructure designed 
by Herding and Mönch (2022) to include more directly demand and execution 
uncertainty in procedures for STDSM via simulation-based optimization.

As a third research avenue, it seems possible to replace the time-based decompo-
sition approach to solve the FE STDSM-O and BE STDSM models by metaheuristic 
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approaches. The meta-heuristic chooses the values of the binary decision variables 
associated with the repromising decisions while an LP approach deals with the 
remaining decisions. The approach will require solving many LPs. Such models are 
already proposed by Wang and Mönch (2021) for single wafer fabs. The approach 
could take advantage of the proposed distributed computing environment. Moreo-
ver, it is well-known that the planning models based on exogenous lead times are 
outperformed by models with workload-dependent lead times (Mönch et al. 2018b). 
Therefore, formulations based on non-linear clearing functions have to be investi-
gated as a fourth research direction.
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