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Abstract
The objective of Assembly Line Balancing (ALB) is to find the proper assignment 
of tasks to workstations, taking into consideration various types of constraints and 
defined management goals. Early research in the field focused on solving the Simple 
Assembly Line Balancing problem, a basic simplified version of the general prob-
lem. As the production environment became more complex, several new ALB prob-
lem types appeared, and almost all ALB problems are NP-hard, meaning that finding 
a solution requires a lot of time, resources, and computational power. Methods with 
custom-made algorithms and generic approaches have been developed for solving 
these problems. While custom-made algorithms are generally more efficient, generic 
approaches can be more easily extended to cover other variations of the problem. 
Over the past few decades, automation has played an increasingly important role in 
various operations, although complete automation is often not possible. As a result, 
there is a growing need for partially automated assembly line balancing models. In 
these circumstances, the flexibility of a generic approach is essential. This paper 
compares two generic approaches: mixed integer linear programming (MILP) and 
constraint programming (CP), for two types of partially automated assembly line 
balancing problems. While CP is relatively slower in solving the simpler allocation 
problems, it is more efficient than MILP when an increased number of constraints 
is applied to the ALB and an allocation and scheduling problem needs to be solved.
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1  Introduction

Assembly lines are an integral part of mass production. Proper task assignment to 
workstations can help reduce manufacturing costs, increase production rates, and 
improve worker’s workload balance. With the recent advancements in robotics, 
the use of industrial robots in manufacturing has continued to grow. The auto-
mation of assembly lines aims at achieving further cost reduction, productivity 
increase and improves the safety level of workers (Villani et al. 2018).

Despite the advantages of automation, creating a completely automated line 
is not always possible. Many assembly lines are too complex for robots to fully 
replace the flexibility of human workers, or the automation of certain tasks may 
not be economically feasible. It is also often the case that robots perform activi-
ties at a slower pace (Weckenborg et al. 2020).

Automated production lines and manual assembly lines represent two distinct 
paradigms within the manufacturing domain. Automated production lines rely on 
robotics, machinery, and computer-controlled processes to carry out tasks with 
high precision and consistency. On the other hand, manual assembly lines involve 
workers performing various tasks, introducing an element of variability inherent 
in human actions. Finding the best resource configuration and the proper level of 
automation frequently leads to the establishment of hybrid assembly lines where 
significant increase in productivity can be achieved while also improving working 
conditions. (Michalos et al. 2014; Tsarouchi et al. 2017).

Operator 4.0 envisions a symbiotic relationship between workers and robots 
(Romero et al. 2020), where each brings their strengths to the table. Collaborative 
assembly line balancing enables the capabilities of both workforce types (Cohen 
et al. 2019).

The difficulty of solving the resulting assembly line balancing problems 
depends on several factors, including the size of the production line, the available 
resources, and other specific requirements of the production process. In general, 
finding the optimal solution to an assembly line balancing problem can be a com-
putationally intensive task, and it may require significant time and effort to obtain 
a satisfactory solution.

Assembly line balancing problems can be solved with exact or heuristic meth-
ods. The main difference between exact and heuristic assembly balancing models 
consist in the guarantee of finding the optimal solution. Exact models provide 
such a guarantee, while heuristic models do not. The exact method can be fur-
ther split to generic methods and dedicated exact methods. The choice of method 
depends on the specific problem requirements and the available resources.

Balancing assembly lines with a hybrid setup requires models and approaches 
that take into consideration the nature and level of human–robot collaboration 
applied in the line. With the evolution of industrial robots an increasing number 
of different formulations already exists (Nourmohammadi et  al. 2022) and new 
formulations of the line balancing models are expected. This means that a generic 
solution could be adapted more easily to the change in requirements than would 
be the case with a dedicated exact method.
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The paper presents and compares mixed integer linear programming (MILP) and 
constraint programming (CP) formulations of three types of assembly line balancing 
problems for human only and partially automated lines, each building upon the pre-
vious one in terms of generality. In the first type only human workers are performing 
tasks. In the second type humans and robots are only used at separate stations and 
an allocation problem is solved. Finally, in the third type, at most one robot and one 
worker can be used at a station. In this case workers and robots are executing some 
tasks in parallel with high interdependency resulting from possible precedence rela-
tions between tasks. Considering the execution order of tasks assigned to the same 
station but to different resources converts the problem into an allocation and sched-
uling problem.

The remainder of this paper is organised as follows. In Sect. 2, an overview of the 
literature of the related assembly line balancing problems and possible approaches 
to solve is given. Section 3 outlines the mathematical formulations of the proposed 
models. In Sect. 4, the performance of the CP and MILP formulations of the pro-
posed models are compared using benchmark datasets. Finally, the conclusions of 
the presented research are summarised in Sect. 5.

2 � Literature review

An assembly line is a system of workstations that are used to complete a set of tasks 
on a product unit. The product unit moves through the line and is finished once it 
has been through all the workstations. Assembly line balancing problems (ALBPs) 
occur when designing or redesigning an assembly line, and they involve finding the 
best way to assign tasks to workstations to meet production goals. A well-planned 
allocation of tasks can improve profit, increase the production rate, and improve 
workload efficiency, while also reducing costs, cycle times, idle times, and the num-
ber of workers needed.

The Simple Assembly Line balancing problem (SALBP), is a basic simplified 
version of the general problem that assumes indivisible tasks, a fixed maximum 
cycle time, deterministic operation times, production of just one homogeneous prod-
uct, no assignment restrictions besides the precedence constraints and a single line 
with equally equipped stations (Becker and Scholl 2006).

The assumptions of the simple assembly line balancing problem simplify the 
problem and make it easier to solve, but they may not reflect the real-world com-
plexity of a manufacturing or production environment. In practice, many of these 
assumptions are relaxed and the problem becomes more complex, requiring more 
sophisticated methods for solving it. Sivasankaran and Shahabudeen (2014) offers a 
broad overview of the different types of ALBPs, categorized based on their assump-
tions and solution methods.

Modern assembly lines use industrial robots to execute certain tasks on the line. 
In cases where a full automation is not possible both workers and robots execute 
tasks on the line, leading to a necessary collaboration between the humans and 
robots. Human–robot collaboration arises when robots and workers work together 
in a shared physical workspace, workers and robots work towards a shared goal in 
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shared space or workers and robots work simultaneously on a shared object (Arents 
et al. 2021).

In the case of a partially automated line the type of resource used to perform cer-
tain tasks also needs to be decided. Finding the proper assignment is enough on its 
own only if tasks can be executed in an arbitrary order at the station without affect-
ing the cycle time or feasibility. However, the execution order of tasks at the station 
may influence the station time in many cases, and an incorrect execution order could 
render the solution infeasible. When the execution order of tasks at the station is 
also taken into consideration, the model leads to there being a joint assignment and 
scheduling problem.

Many papers have been published relating to assembly lines that use multiple 
resource types with various additional constraints to which partially automated 
assembly line balancing problems can be related. Parallelisation and resource 
assignment are two important characteristics of ALB model classification (Boysen 
et al. 2007) that most obviously relate most to partially automated lines.

Two-sided assembly lines (TALBPs) are one example of possible parallelisation 
and consist of a series of mated-stations, each featuring two facing sides. This type 
of parallelization allows two different tasks to be performed simultaneously on the 
same piece if the two tasks do not interfere with each other. Approaches towards 
solving the two sided assembly line problems include heuristic-based assignment 
procedures (Lee et  al. 2001), branch-and-bound algorithm (Wu et. al. 2008), tabu 
search algorithm (Özcan and Toklu 2009), genetic algorithm (Purnomo et al. 2013) 
and constraint programming (Kizilay and Cil 2020).

A significant amount of research has been conducted on the resource assign-
ment aspect of assembly lines, particularly regarding the types of resources uti-
lised in these systems. This literature covers a wide range of topics, including opti-
mising resource allocation and using advanced technologies such as robotics and 
automation.

The Multi-manned Assembly Line Balancing Problem (MALBP) typically occurs 
in industries producing high volume of large size products (Giglio et al 2017) and 
allows the assignment of more than one operator with identical skills and equal pro-
cessing times to each workstation. Miralles et al. (2007) considers worker dependent 
processing times in their model and formulate the assembly line worker assignment 
and balancing problem (ALWABP). Yilmaz and Yilmaz (2020) more recently for-
mulated a mathematical model for multi-manned assembly lines with assignment 
restrictions and proposed a tabu search algorithm to solve the resulting problem. 
Roshani and Giglio (2015) present a simulated annealing algorithm for solving the 
MALBP.

Pinto et al. (1983) extend the simple assembly line balancing problem to include 
alternative processing options. Tasks are still executed by workers, but they do this 
using non-identical equipment. The dual problem of assigning equipment to work-
stations and tasks to workstations gave rise to the equipment selection problem. 
Graves and Withney (1979) presented a linear programming model to solve the 
problem for a single product. Later, Bukchin and Tzur (2000) developed an optimal 
method and a heuristic algorithm that can be used when several equipment alterna-
tives are available.
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The assembly line that uses robots in its value-added operations is referred as the 
Robotic Assembly Line Balancing problem (RALBP) and was first formulated by 
Rubinovitz et al. (1993). A heuristic algorithm is proposed for selecting the robots 
to perform the tasks on workstations with an objective of minimising the number of 
workstations for a given cycle time. In this case the deterministic execution time of 
tasks depends on the robots assigned to the station.

In advanced manufacturing systems, where humans and collaborative robots 
share the same workplace and can simultaneously perform tasks the human-collabo-
rative assembly line balancing and scheduling problem (HRCALBSP) arises. A few 
recent papers discuss the case when robots and workers can perform tasks on the 
same station separately or jointly.

Weckenborg et  al. (2020) developed a genetic algorithm for solving the 
HRCALBSP. In their solution, collaborative tasks can be performed by workers and 
robots jointly and in parallel. A mixed-integer program has been formulated to opti-
mise the assignment of collaborative robots to stations and the distribution of work-
load between human workers and robots in an assembly line. Koltai et  al. (2021) 
presented models for analysing the task assignment and cycle times of the assem-
bly lines when robots are added to the line, taking into consideration the possible 
interferences between the workers and robots. Dimény and Koltai (2022) proposed 
a MILP model to evaluate worker’s workload in partially automated assembly lines 
depending on the number of available robots. Dalle Mura and Dini (2019) proposes 
a genetic algorithm for ALB problems in case of human–robot collaborative work. 
The aim of the algorithm is the minimization of the assembly line cost and mini-
mization of the number of skilled workers on the line. A mathematical model and 
bee algorithm is presented by Çil et al. (2020) for solving the mixed-model assem-
bly line balancing problem whith physical human–robot collaboration. Stecke and 
Mokhtarzadeh (2022) developed a mixed-integer linear programming model, a 
constraint programming model, and a Benders decomposition algorithm to analyse 
advantages of collaborative robots in assembly lines.

A mixed-integer programming model for balancing assembly lines under consid-
eration of ergonomic and economic objectives and the availability of novel tech-
nologies like exoskeletons is developed and presented by Weckenborg et al. (2022). 
Battaïa and Dolgui (2022) offers a comprehensive review on new line balancing 
trends and formulations.

The ALBP in general is a complex and well-known combinatorial optimisa-
tion problem. The ALB problem was first formulated as a linear programming 
(LP) model by Salveson (1955). Bukchin and Raviv (2018) showed that constraint 
programming (CP) formulation outperformes mixed-integer linear programming 
(MILP) formulation for medium to large problem instances when solving the SALB 
problem. The assembly line balancing related optimisation problems and possible 
strategies have been extensively discussed in the literature (see for example, Scholl 
1993; Thomopoulos 2014). Besides a taxonomy of line balancing problems, Battaïa 
and Dolgui (2013) present solution approaches used to solve ALBPs.

The solution approaches of ALBPs can be classified into two main groups: 
exact methods and approximate methods (Topaloglu et  al. 2012). The key differ-
ence between exact and approximate methods is the proven optimality of the exact 
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methods. Approximate metods like heuristic and meta-heuristic algorithms can pro-
vide acceptable good solutions within reasonable computational time.

The exact methods result in a proven optimal solution and can be found either 
using a problem specific exact method or with a generic solution using standard 
solvers. In the first case, the goal is to design a problem specific algorithm that 
makes use of the special characteristics of the assembly process. Generic solutions 
take advantage of existing general solvers. With generic solutions like CP or MILP 
the goal is to find the most appropriate model for the problem and adjust to the 
requirements by modifying the objective function or adding constraints.

Dedicated exact methods in many cases are more efficient and can cope with 
larger problems, generic solutions have the advantage of easier implementation and 
faster adaptation to changes related to the constraints to be applied (Battaïa and Dol-
gui 2013).

In this paper two generic exact methods, mixed integer linear programming 
(MILP) and constraint programming (CP) to minimise the number of workers in 
three types of assembly line balancing problems are compared. In the first model 
only workers are available. In the second model, each station is either completely 
human operated or automated; thus, an allocation problem (SALB with resource 
selection) is solved. In the third model at most one worker and one robot executes 
tasks assigned to stations. In this case, the execution order of tasks within the station 
must also be considered, making the problem an allocation and scheduling problem 
(MALBP-SW model). In all three cases the objective is to minimise the number of 
workers required.

3 � Mathematical descriptions of the problems

In this section the mathematical formulation of the three problems (SALB, SALB 
with resource selection and MALBP-SW) using two approaches (MILP and CP) is 
presented.

The three models have the following common attributes:

•	 All activities can be executed by human workers,
•	 The processing of tasks with robots is limited to a predefined set of tasks,
•	 Task times are deterministic for each type of resource separately,
•	 The precedence relations of tasks are defined,
•	 The maximum allowed cycle time is defined.

Notations used in the paper are summarised in Table 1.
The mathematical model in Table 2 contains the MILP formulation of the three 

models. Objective function (1) and constraints (2), (3), (4), (5) and (6) form the 
model for minimising the number of workers when only workers can be assigned to 
station (MILP1).

The generated model is equal to the SALBP1 model. As of constraint (2), (3) 
and (4) all tasks are allocated to a station and workforce type in such way that the 
total processing time on any of the station does not exceed the predefined Tc cycle 
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time while precedence relations among tasks are satisfied. As of constraint (5) 
tasks can only be allocated to workers. Constraint (6) defines the minimum num-
ber of workers required as the maximum station value to which task is allocated.

Objective function (1) and constraints (2), (3), (4), (7), (8), (9), (10), and (11) 
form the model for minimising the number of workers when each station is either 
completely human operated or automated (MILP2). As of constraint (7) each task 
must be allocated to a workforce type with ability to execute the task. As of con-
straint (8) exactly one type of workforce is allocated to each station.

Table 1   Notation used in the paper

Indices
 i, k Index of tasks (1,… , I),
  j Index of workstations (1,… , J),
 w Index of workforce types ({H (human worker), R (robot)}),
 l Index of final tasks,

Parameters:
 I Number of tasks,
 J Maximum number of workstations,
 N∗ Minimum number of stations (the result of the station number minimisation model)
 tiw Time necessary to perform task i  using workforce type w (task time),
 Tc Cycle time of the assembly line,

Sets:
 W Set of workforce types containing two elements: worker and robot,{H,R},
 L Set of final tasks, i ∈ L , if task i  does not precede any other task,
 Pi Set of indices of those tasks which must be finished before task i  is started
 NAw Set of tasks for which resource type w has no ability,
 WAi Set of workforce types which have ability to execute task i ;{w|i ∉ NAw}

Decision variables:
 xijw 0–1 Decision variable; if xijw = 1 then task i  is assigned to station j using workforce 

type w, otherwise xijw = 0,
 xei xei ∈ {1, .., J} ; if xei = j then task i  is assigned to station j,
 yik 0–1 Decision variable; if yik = 1 then task i  and k are assigned to the same station 

and i  is executed before k,
 ujw 0–1 Decision variable; if ujw = 1 then workforce type w is used on station j,
 uej uej ∈ {H,R} ; if uej = w then workforce type w is assigned to station j,
 si Continuous decision variable: start time of task i  on the respective station,
 ei Continuous decision variable: end time of task i  on the respective station,
 ai Main activity related to each task, with decision variables

ai.present , ai.start , ai.end,ai.length
 aijw Activity related to executing task i  on station j using workforce type w , with deci-

sion variables aijw.present , aijw.start , aijw.end , aijw.length . Exactly one activity 
will be present for all (j,w) combinations of station and workforce type

 rjw Sequential resource needed for activities
N Objective function variable for the number of workers used
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Constraint (9) and (10) defines the relation between the allocation of tasks to sta-
tions and workforces to the allocation of workforces to stations. Tasks can only be 
allocated to a station and workforce type if the same workforce type is allocated to 
the station. If a task is allocated to a station and workforce type, the workforce type 
should also be allocated to the station. The objective value N is the equal to the 
number of stations with workers allocated to them as defined by constraint (11).

Objective function (1) and constraints (2), (3), (4), (9), (10), (11), (12), (13), 
(14), (15), (16), (17), (18), (19), (20) and (21) form the model for minimising the 
number of workers when at most one worker and one robot can be allocated to a 
station and task are executed at the stations either sequentially by the same work-
force type or in parallel by a worker and a worker (MILP3).

As of constraint (12) at least one workforce type is allocated to a station. In 
this model an execution precedence variable yik is introduced for tasks with no 
precedence relation predefined. Constraints (13), (14) and (15) define the con-
straints related to these variables. No task can precede itself (13), for all pair of 
tasks with no predefined precedence an execution precedence exists (14), and the 
execution precedence is defined by the station number for tasks allocated to dif-
ferent stations and with no predefined precedence relation between them (15).

Table 2   MILP formulations of the three models

MILP1 MILP2 MILP3

Min(N) x x x (1)
∑

j,w xijw = 1 ∀i x x x (2)
∑

j,w j
�
xijw − xkjw

�
≥ 0 ∀(i, k)|k ∈ Pi x x x (3)

∑
i xijwtiw ≤ Tc ∀(j,w) x x (4)

xijw = 0 ∀(i, j,w)|w = R x (5)
N ≥

∑
l j ∗ xljw ∀(j,w) x (6)

xijw = 0 ∀(i, j,w)|i ∈ NAw x (7)
∑

w ujw = 1 ∀j x (8)
∑

i xijw ≤ I ∙ ujw ∀(i,w) x x (9)
∑

i xijw ≥ ujw ∀(i,w) x x (10)
N =

∑
j ujH x x (11)

∑
w ujw ≥ 1 x (12)

yii = 0 ∀i x (13)
yik + yki = 1 ∀(i, k)|k ∉ Pi, i ∉ Pk, i ≠ k x (14)
yik ≥

∑
j1,w�j1<j xij1w + xkjw − 1 ∀(i, k, j)|k ∉ Pi, i ∉ Pk, i ≠ k x (15)

ei ≥ 0;si ≥ 0 ∀i x (16)
ei = si +

∑
j,w xijwtiw

∀i x (17)
ei ≤ Tc ∀i x (18)
si ≥ ek − Tc

�
2 −

∑
w

�
xijw + xkjw

��
∀(i, k, j)|k ∈ Pi x (19)

sk ≥ ei − Tc
(
3 − yik − xijw − xkjw

)
∀(i, k, j,w)|k ∉ Pi, i ∉ Pk, i ≠ k x (20)

sk ≥ si − Tc
(

3 − yik −
∑

w xijw −
∑

w xkjw
)

∀(i, k, j)|k ∉ Pi, i ∉ Pk, i ≠ k x (21)
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Constraints (16), (17) and (18) define key properties of the start and end time of 
each activity. All start and end times are positive values (16), end time is equal to 
the start time plus the processing time (17) and the predefined cycle time is greater 
or equal to the end time of any of the tasks (18).

Additional constraints are defined for pairs of tasks allocated to same station by 
constraints (19), (20) and (21). A task may begin only after all of its preceding tasks 
allocated to the same station have already been completed (19). Two constraints are 
defined for pairs of tasks allocated to the same station with no precedence relation 
between them. First, any task scheduled to take place in front of another task must 
be completed before the other can be started on the same station as of constraint 
(20). Secondly, any task scheduled in front of another task and allocated to a differ-
ent workforce type must be started earlier than the other task as of constraint (21).

Table  3 contains the constraint programming formulation counterpart of the 
MILP1, MILP2, MILP3 models. Objective function (22) and constraints (23) and 
(24) form the CP1 model for minimising the number of workers when only work-
ers are available on stations. This is the constraint programming formulation of the 
SALBP-1 problem. This formulation describes the problem as a bin packing prob-
lem where preceding tasks must be allocated to bins numbered lower or equal to the 
bin number of succeeding task. The bin packing constraints are defined by constraint 
(23). The precedence relation is defined by constraint (24).

Objective function (22) and constraint (24), (25), (26) and (27) form the CP2 
constraint programming model for minimising the number of workers when workers 
and robots are also available, but only one workforce type can be assigned to a sta-
tion. This is the CP formulation counterpart of the MILP2 model. In this formulation 

Table 3   CP formulation of the three models

CP1 CP2 CP3

Min(N) x x x (22)
Bin Packing (j;Tc;(i);xei;ti,N) x (23)
xei ≤ xek ∀(i, k)|k ∈ Pi x x (24)
uexei ∈ WAi x (25)
∑

i

�
xei = j

�
∙ ti,uej ≤ Tc ∀j x (26)

N =
∑

j

�
uej = H

�
x (27)

aijw.length = ti,w ∀(i, j,w) x (28)
∑

j,w j
�
aijw.present − akjw.present

�
≥ 0 ∀(i, k)|k ∈ Pi x (29)

aijH .end ≤ Tc ∀(i, j,w) x (30)
Alternate

(
ai;(j,w);aijw

)
∀i (31)

Sync
(
ai;(j,w);aijw

)
∀i x (32)

End Before Begin(aijH ;akjR) ∀i, k, j|k ∈ Pi, k ∉ NAR x (33)
EndBefore Begin(aijR;akjH) ∀i, k, j|k ∈ Pi, i ∉ NAR x (34)
Sequential Resource(rjw) ∀(j,w) x (35)
Activity Resource Need(aijw;rjw) ∀(j,w) x (36)
N =

∑
j Exists(i�aijH .present) x (37)
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element variables are used to capture the decision related to the allocation of tasks 
to workstations and resources. As of constraint (25), tasks can only be allocated to a 
station that has workforce type allocated with ability to execute the task. Constraint 
(26) assures that the total processing time on any of the station does not exceed the 
predefined Tc cycle time, considering the workforce type dependent execution time. 
Constraint (27) defines the minimum number of workers required as the number of 
stations with workers assigned to it.

Objective function (22) and constraints (28), (29), (30), (31), (32), (33), (34), 
(35), (36) and (37) form the CP3 constraint programming model for minimising the 
number of workers when at most one worker and one robot is assigned to a station. 
This is the constraint programming counterpart of the MILP3 model. When both 
workers and robots can execute tasks on the same station the execution order of the 
tasks scheduled to the same station must be also considered. This turns the problem 
into an allocation and scheduling problem. The CP3 formulation uses activities with 
start, end, lengths, present variables and sequential resources related to each station 
and workforce type combination. A mandatory ai and a set of optional aijw activity 
is defined for each task. The optional activities describe the potential allocations of 
tasks to stations and workforce types. Constraint (28) defines the length of the activ-
ities as the execution time required considering the workforce type used. Constraint 
(29) assures that the precedence relations defined are kept. Constraint (30) assures 
that the total processing time on any of the station does not exceed the predefined Tc 
cycle time and all activities are finished earlier than Tc . According to constraint (31), 
for each task i each activity ai has exactly one manifestation as aijw . Constraint (32) 
requires that ai activity start, end and lengths are defined by chosen aijw activity start, 
end and length. Constraint (33) and (34) dictates that activities with precedence rela-
tion among them and allocated to the same station but different resources must keep 
the defined execution order. According to constraint (35) activities allocated to the 
same station and workforce type can only be executed sequentially. Constraint (36) 
defines the resource need of activities aijw . Finally, constraint (37) defines the mini-
mum number of workers required as the number of stations with workers assigned 
to it.

4 � Comparison of the computational performances

The computational performance of the presented models was evaluated using bench-
mark datasets from Scholl (1993); each dataset is referred to by its name. Tasks in 
these problems are denoted by integer numbers. As these datasets represent scenar-
ios where only one workforce type was available, the following assumptions were 
made:

Each task can be performed by workers. Robots can perform tasks numbered 1, 3, 
4, 6, 7, 11, 19, 20, 22, 26, 27, 29, 32, 33, 35, 40, and 46 to 75 where such task exists.

The execution of tasks by a robot is considered slower than when executed by 
a worker. The task time of robotic operation is 150% of the task time of workers 
operation. Proper rounding is applied to get integer values for all task times.

The complexity of the datasets is described by the following indicators:
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Shortest task duration (STD): the minimum value of all the task times.
Longest task duration (LTD): the maximum value of all the task times.
Order strength (OS): the percentage of the number of arcs in the transitive closure of 
the precedence graph related to the maximal number of arcs in an acyclic graph with 
I number of nodes.
Time variability ratio (TV): the ratio of the longest task duration to the shortest task 
duration.

Computational time was evaluated when using a laptop computer with 1.8  GHz 
Intel i7 processor and 16 GB of RAM. The models were build using AIMMS 4.90, 
MILP models were solved using CPLEX 22.1 solver, while CP models were solved 
using CP Optimizer 22.1.

Table 4 details the results and computation times related to the three models defined 
in Sect. 3. The bold face numbers in the table are the optimal values of the respective 
objective functions. During the computation, the optimal solution of case I was used as 
a warm start for case II and the optimal solution of case II was used as a warm start for 
the case III calculation. When the required computational time exceeded 10 min, the 
gap percentage after 10 min of computation and the solution (in parenthesis) when it 
differs from the optimal solution can be found in the corresponding “CPU time” row.

Analysing the results and computational time, the following characteristics can 
be observed:

Case I is equally rapidly solved for the datasets tested both using MILP and CP 
formulation.

In some cases, the Case II model is more difficult to solve for the CP formulation 
and in four instances (Arcus1, Kilbridge, Tonge, Mukherjee) the optimal value was 
not found during the 10 min run while the MILP formulation was able to quickly 
find solution for each dataset.

The Case III problem is much more complex and requires that a special schedul-
ing problem be solved. The MILP formulation was not able to find an optimal solu-
tion within the 10-min run for datasets Arcus1, Lutz3, Kilbridge, Tonge, Mukherjee. 
The computation time required to solve the other datasets was higher than solv-
ing the problem with the CP formulation except for the Roszieg dataset which was 
solved easily by both formulation.

To sum up, the presented computational data indicate that MILP formulations 
are more suitable for more complex assembly line allocation problems. For solv-
ing assembly line allocation and scheduling problems, the CP formulation could 
be more efficient. Another advantage of using CP formulation is the easy definition 
and readability of the model, which makes modifications easier to implement when 
required.

5 � Conclusions

In this paper, the possibility of using two generic approaches (mixed-integer linear 
programming and constraint programming) to find the exact optimum arrangement 
of partially automated assembly lines was investigated and compared with the basic 
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setup of having one workforce type. The two generic approaches were applied to 
three cases. In the basic case (case I) no automation was allowed, and the SALB1 
problem was solved, so as to minimise the number of workers required. In case II, 
partial automation of certain tasks was possible, but stations were either completely 
automated or manual. In case III, at most one worker and one robot was assigned 
to each station and tasks within the station were executed either sequentially using 
the same workforce type or in parallel by a worker and a robot. The worker and the 
robot assigned to the same station can work on two different tasks at the same time. 
In case III, the execution order of activities at the station must also be taken into 
consideration, making the problem an allocation and scheduling problem. Besides 
the scheduling aspect, the fact that the complexity of the problem increases signifi-
cantly must also be taken into consideration.

It can be noted that while the MILP models are built step by step, extending the 
formulation with additional variables and constraints, the CP formulation requires 
different modelling archetypes for the three cases (bin packing problem, allocation 
problem, scheduling problem).

As line configurations become more complex generic modelling approaches 
have the advantage of easier adaptability to the changing requirements. The present 
model formulation shows that both approaches can be used for formulating special 
cases of assembly line balancing problems. However, computational analysis shows 
that MILP formulations could better fit for allocation problems, while the CP for-
mulation performs better when the scheduling aspect of the problem must also be 
considered.
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