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Abstract
Optimization problems are often subject to various kinds of inexactness or inaccu-
racy of input data. Here, we consider multiobjective linear programming problems,
in which two kinds of input entries have the form of interval data. First, we suppose
that the objectives entries are interval values, and, second, we suppose that we have
an interval estimation of weights of the particular criteria. These two types of interval
data naturally lead to various definitions of efficient solutions. We discuss six mean-
ingful concepts of efficient solutions and compare them to each other. For each of
them, we attempt to characterize the corresponding kind efficiency and investigate
computational complexity of deciding whether a given solution is efficient.

Keywords Multiobjective linear programming · Interval analysis · Robust
optimization · Weighted scalarization

1 Introduction

Consider a multiobjective linear programming problem

max Cx subject to Ax ≤ b, (1)

where A ∈ R
m×n , b ∈ R

m and C ∈ R
p×n . We suppose that the feasible set is

nonempty. Throughout the paper, inequalities ≤ and < are understood entrywise.
Recall that a feasible solution x∗ is called efficient if there is no other feasible

solution x such that Cx ≥ Cx∗ and Cx �= Cx∗. One of the basic methods to solve (1)
is to employ a weighted sum scalarization, which has the form of a linear program
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max λTCx subject to Ax ≤ b. (2)

It is known (Ehrgott 2005; The Luc 2016) that each efficient solution is an optimal
solution of (2) for some λ > 0, and conversely each optimal solution of (2) with
λ > 0 is efficient to (1). Thismeans that scalarizationswith positiveweight completely
characterize efficient solutions.

In this paper we suppose that the objective function coefficients are not exact, but
we have deterministic lower and upper bounds for the exact values. That is, we know
only an interval matrix C comprising the exact value (for more general uncertainty
sets see, e.g., Dranichak and Wiecek 2019). By definition, an interval matrix is the set
of matrices

C = [C,C] = {C ∈ R
p×n; C ≤ C ≤ C},

where C,C ∈ R
p×n , C ≤ C are given matrices. We will also use the notion of the

midpoint and the radius matrices, which are defined, respectively, as

Cc := 1

2
(C + C), C� := 1

2
(C − C).

Similar notation is used for interval vectors, considered as one-column interval matri-
ces, and for interval numbers. Interval arithmetic is described, e.g., in the textbooks
(Hansen and Walster 2004; Moore et al. 2009).

Interval-valued linear programming problems are well studied in the single-
objective case (González-Gallardo et al. 2021; Garajová et al. 2019; Mohammadi
and Gentili 2021; Mostafaee and Hladík 2020), but there are considerably less works
in the multiple-objective case. We remind two basic concepts of efficiency studied
in the context of interval multiobjective programming (Bitran 1980; Henriques et al.
2020; Ida 1996; Inuiguchi and Kume 1989; Inuiguchi and Sakawa 1996; Oliveira and
Antunes 2007). A feasible solution x∗ is possibly efficient if it is efficient for at least
one C ∈ C , and it is necessarily efficient if it is efficient for every C ∈ C . Necessarily
efficient solutions are very robust, but the drawback is that it might happen that there
is no such solution. It is also computationally demanding to check for necessarily
efficiency (Hladík 2012) even though there are various sufficient conditions (Hladík
2008) that can be employed. The recent approaches utilize maximum regret tech-
niques; see (Rivaz and Yaghoobi 2013, 2018; Rivaz et al. 2016). In contrast, possibly
efficiency is polynomially decidable (both checking possibly efficiency of a given
solution (Inuiguchi and Sakawa 1996) and checking if there is at least one possibly
efficient solution (Hladík 2017)), and there are typically many of them.

It is often difficult for a user to give precise weights to objectives. It is more natural
for the user to provide us with a range of possible weights. Thus we suppose that
intervals for possible weights are given in addition, too. In particular, we consider
weights λ ∈ λ = [λ, λ], where λ > 0. The interval vector of weights naturally
introduces other solution concepts and gives a decision maker flexibility to choose
the right degree of robustness and the model that fits the interpretation of the interval
entries. We will discuss these concepts in the next section.
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Fig. 1 Relations between
various definitions of efficiency
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Various concepts of efficiency.
The goal of this paper is to discuss the possible definitions of robust efficiency for
interval objectives C and interval weights λ. A feasible solution x∗ is called:

• (I)-efficient if ∃λ ∈ λ ∃C ∈ C such that x∗ is an optimal solution to (2);
• (II)-efficient if ∃λ ∈ λ ∀C ∈ C such that x∗ is an optimal solution to (2);
• (III)-efficient if ∀C ∈ C ∃λ ∈ λ such that x∗ is an optimal solution to (2);
• (IV)-efficient if ∀λ ∈ λ ∃C ∈ C such that x∗ is an optimal solution to (2);
• (V)-efficient if ∃C ∈ C ∀λ ∈ λ such that x∗ is an optimal solution to (2);
• (VI)-efficient if ∀λ ∈ λ ∀C ∈ C we have that x∗ is an optimal solution to (2).

Based on the definition, we immediately get some relations between these concepts.
Figure 1 shows which kind of efficiency implies the other and which are incomparable
in general. Obviously, (I)-efficiency is the least robust concept, whereas (VI)-efficient
solutions are the most robust solutions. On the other hand, those more robust solutions
need not exist.

Roadmap
In Sect. 2, we characterize the particular concepts of efficiency for a basic solution x∗.
We also thoroughly investigate computational complexity of the problem. An illus-
tration by examples is provided in Sect. 3. In Sect. 4, we discuss extensions to an
arbitrary feasible solution, and we also touch the problem how to find a suitable x∗.
Notation.
In denotes the identity matrix of size n, 0m,n stands for the zero matrix of size m × n,
Ai∗ denotes the i th row and A∗i the i th column of a matrix A. We use e = (1, . . . , 1)T

for the vector of ones of a convenient length. The diagonal matrix with entries s =
(s1, . . . , sn)T is denoted by diag(s).

2 Concepts of efficiency for a basic solution

In this section, we assume that x∗ is a basic feasible solution. We also suppose that
x∗ is nondegenerate. If it is not the case, we restrict to a particular optimal basis only.
All the results remain valid, however, the conditions need not be so strong (the basis
stable region is smaller than the region of optimality of x∗ in general).

Suppose that x∗ corresponds to a basis B and denote by AB the restriction of matrix
A to the basic rows. Then the tangent cone to the feasible set at x∗ is described by
ABx ≤ 0. Denoting D := (A−1

B )T , then the normal cone to the feasible set at x∗ is
characterized by Dy ≥ 0; see (Nožička et al. 1988; Rockafellar andWets 2004). Thus
x∗ is efficient if and only if there is λ such that

DCT λ ≥ 0, λ > 0. (3)
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716 M. Hladík

Table 1 List of possibilities for
a basic solution

Case Quantification Complexity

(I) ∃λ ∈ λ ∃C ∈ C Polynomial and P-complete

(II) ∃λ ∈ λ ∀C ∈ C Polynomial and P-complete

(III) ∀C ∈ C ∃λ ∈ λ Co-NP-complete

(IV) ∀λ ∈ λ ∃C ∈ C Co-NP-complete

(V) ∃C ∈ C ∀λ ∈ λ Polynomial and P-complete

(VI) ∀λ ∈ λ ∀C ∈ C Strongly polynomial

Table 1 summarizes the concepts and their computational complexity.

2.1 Case (I): ∃� ∈ � ∃C ∈ C

This is the least robust concept and relates to possibly efficiency. Indeed, if λ is
sufficiently close to zero, then each possibly efficient solution is (I)-efficient for some
λ and thus both notions coincide. Similarly to possibly efficiency, (I)-efficiency is
polynomially decidable, too.

Proposition 1 (I)-efficiency of x∗ is characterized by feasibility of the linear system

Dy ≥ 0, CT λ ≤ y ≤ C
T
λ, λ ≥ λ ≥ λ (4)

with respect to variables y ∈ R
n and λ ∈ R

p.

Proof By (3), x∗ is (I)-efficient iff there is C ∈ C such that the linear system

DCT λ ≥ 0, λ ≥ λ ≥ λ

is feasible. Introducing an additional variable y ∈ R
n we have an equivalent system

Dy ≥ 0, y = CT λ, λ ≥ λ ≥ λ.

By the characterization of solvability of interval systems (Fiedler et al. 2006; Hladík
2013; Oettli and Prager 1964), (I)-efficiency of x∗ equivalently reads (4). 	


Let y∗, λ∗ be a feasible solution to (4). By adapting the approach from Fiedler et al.
(2006); Hladík (2013), we can construct matrix C̃ ∈ C such that x∗ is an optimal
solution to (2) with respect to C̃ and λ∗. For each i = 1, . . . , n define

di := y∗
i − (CT

c )i∗λ∗
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Then the i th column of C̃ is defined

C̃∗i :=
{

(Cc)∗i if (CT
�)i∗λ∗ = 0,

(Cc)∗i + di
(CT

�)i∗λ∗ (C�)∗i otherwise.

It is easy to verify that C̃T λ∗ = y∗, whence DC̃T λ∗ = Dy∗ ≥ 0.

2.2 Case (II): ∃� ∈ � ∀C ∈ C

Proposition 2 (II)-efficiency of x∗ is characterized by feasibility of the linear system

(
DCT

c − |D|CT
�

)
λ ≥ 0, λ ≤ λ ≤ λ (5)

with respect to variables λ ∈ R
p.

Proof Let λ ∈ λ. Then x∗ is optimal to (2) for each C ∈ C iff

DCT λ ≥ 0 ∀C ∈ C,

or, in other words,

min
C∈C DCT λ ≥ 0. (6)

For each i ∈ {1, . . . , n},

(DCT λ)i =
n∑
j=1

p∑
k=1

Di jCkjλk,

and by basic properties of interval analysis (Moore 1966;Moore et al. 2009; Neumaier
1990) we have that its minimum on C ∈ C is

min
C∈C(DCT λ)i =

∑
j,k

(
Di j (Cc)k jλk − |D|i j (C�)k jλk

) = (
DCT

c λ − |D|CT
�λ

)
i .

Therefore (6) equivalently reads

DCT
c λ − |D|CT

�λ ≥ 0.

Since λ can be chosen arbitrarily from λ, we get that x∗ is (II)-efficient iff (5) is
feasible. 	


If system (5) is feasible, then each solution serves as a certificate of (II)-efficiency
of x∗. More concretely, let λ∗ be a feasible solution of (5). Then λ∗ is that vector
of weights such that x∗ is optimal with respect to each C ∈ C . We can verify it a
posteriori by checking that v ≥ 0 for v := (DCT )λ∗ evaluated by interval arithmetic.
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718 M. Hladík

2.3 Case (III): ∀C ∈ C ∃� ∈ �

For s ∈ {±1}n we denote by Cs ∈ C the matrix Cs :=Cc +C� diag(s). Then in each
column of Cs , either all entries are the right-end points of the intervals, or all entries
are the left-end points of the intervals.

Proposition 3 We have that x∗ is (III)-efficient if and only if for every s ∈ {±1}n the
linear system

D(Cs)
T λ ≥ 0, λ ≤ λ ≤ λ (7)

is feasible with respect to variables λ ∈ R
p.

Proof Let C ∈ C. Then x∗ is an optimal solution to (2) for some λ ∈ λ iff the linear
system

D−1y = CT λ, y ≥ 0, λ ≤ λ ≤ λ

is feasible. By the Farkas lemma, the dual system

D−T u ≥ 0, −Cu + v − w ≥ 0, λ
T
v − λTw ≤ −1, v, w ≥ 0 (8)

should be infeasible. Thus x∗ is not (III)-efficient iff there is C ∈ C such that (8)
is feasible. By the characterization of weak solvability of interval linear inequalities
(Fiedler et al. 2006; Gerlach 1981; Hladík 2013) it is true iff there is s ∈ {±1}n such
that

D−T u ≥ 0, −Csu + v − w ≥ 0, λ
T
v − λTw ≤ −1, v, w ≥ 0

is feasible. By the Farkas lemma again, we arrive at (7). 	

In other words, the proposition states that instead of checking

∀C ∈ C ∃λ ∈ λ : x∗ is optimal

it is sufficient to check

∀Cs ∃λ ∈ λ : x∗ is optimal.

Thus we reduced infinitely many instances C to only instances Cs , s ∈ {±1}n .
If x∗ is not (III)-efficient, then (7) is infeasible for some s ∈ {±1}n . The corre-

sponding cost matrix Cs is a certificate of (III)-inefficiency – there is no λ ∈ λ for
which x∗ would be optimal.

By Bitran (1980), solution x∗ is necessarily efficient if and only if it is efficient
only with respect to matricesCs , s ∈ {±1}n . This reduces the problem to 2n instances.
The above characterization of (III)-efficiency requires solving 2n linear systems, too.
It can hardly be better than exponential since the problem is provably intractable.
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Proposition 4 (III)-efficiency of x∗ is co-NP-complete to check.

Proof Let C be given and construct λ such that λ = e and λ is sufficiently close to
zero. Then x∗ is (III)-efficient iff it is necessarily efficient since each efficient solution
is an optimal solution to (2) for some λ > 0. However, necessarily efficiency is known
to be NP-hard even for basic nondegenerate solutions (Hladík 2012).

The statement that it is sufficient to consider λ small enough follows from the
following reasoning. Solution x∗ is necessarily efficient iff it is efficient with respect
tomatricesCs , s ∈ {±1}n . For each of these 2n cases, there is a correspondingweighted
sum scalarization, so we can consider λ to be the minimum of them. Moreover, it has
a polynomial size, so we can set a lower bound in advance; cf (Schrijver 1998).

Proposition 3 then implies that s ∈ {±1}n is a certificate of (III)-inefficiency of x∗,
so the problem belongs to class co-NP. 	


2.4 Case (IV): ∀� ∈ � ∃C ∈ C

For s ∈ {±1}p we denote by λs ∈ λ the vector λs := λc + diag(s)λ�. Geometrically,
λs is a vertex of the box λ in space Rp.

Proposition 5 We have that x∗ is (IV)-efficient if and only if for every s ∈ {±1}p the
linear system

CT λs ≤ D−1y ≤ C
T
λs, y ≥ 0 (9)

is feasible with respect to variables y ∈ R
n.

Proof Let λ ∈ λ. Then x∗ is optimal to (2) for some C ∈ C iff

CT λ = D−1y, y ≥ 0, C ∈ C

is feasible. Equivalently, by avoiding the interval matrix,

CT λ ≤ D−1y ≤ C
T
λ, y ≥ 0. (10)

Weneed to check that this system is solvable for eachλ ∈ λ. Letλ1, λ2 ∈ λ and suppose
that the system has the corresponding solutions y1, y2. Then for any α ∈ [0, 1] we
have

CT (αλ1 + (1 − α)λ2) ≤ D−1(αy1 + (1 − α)y2) ≤ C
T
(αλ1 + (1 − α)λ2),

so αy1 + (1 − α)y2 ≥ 0 is a solution for αλ1 + (1 − α)λ2 ∈ λ. This means that the
set of λ’s for which (10) is feasible is a convex set. Therefore, it is sufficient that the
system is feasible for vertices of the box λ only. 	


The above characterization reduces the problem to solving 2p linear systems. Thus it
is exponential in p, but not in n. Thereforewe can effectively solve even large problems
provided the number of criteria is low. Biobjective linear programs in particular are
easy to solve.
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720 M. Hladík

Corollary 6 Checking (IV)-efficiency of x∗ is a polynomial problem provided p is fixed.

If x∗ is not (IV)-efficient, then (9) is infeasible for some s ∈ {±1}p. The corre-
sponding vector of weights λs then serves as a certificate of (IV)-inefficiency – there
is no C ∈ C for which x∗ would be optimal.

Proposition 7 (IV)-efficiency of x∗ is co-NP-complete to check.

Proof We will use a reduction from the NP-complete problem of checking feasibility
of the system

|Mx | ≤ e, eT |x | > 1

on a set of non-negative positive definite rational matrices M ∈ R
n×n ; see (Fiedler

et al. 2006; Hladík 2012). Substituting x ′ := Mx leads to system

|x ′| ≤ e, eT |M−1x ′| > 1.

Next, we substitute z := 1
2 (x

′ + 3e) to obtain

z ∈ [1, 2]n, eT |M−1(2z − 3e)| > 1.

Its infeasibility says that for every z ∈ [1, 2]n we have

eT |M−1(2z − 3e)| ≤ 1.

Now, we rewrite it as follows by using additional variables u ∈ R
n

eT u ≤ 1, u ≥ 0, M−1(2z − 3e) ≤ u, −u ≤ M−1(2z − 3e). (11)

We claim that its feasibility is equivalent to feasibility of

u, v, w ≥ 0, (12a)

M−1(2z − 3e) ≤ u − v ≤ αeeT z + αe, (12b)

−αeeT z − αe ≤ 2v − u ≤ M−1(2z − 3e), (12c)

0 ≤ eT u + w ≤ 1 (12d)

with respect to variables u, v ∈ R
n , w ∈ R, where α > 0 is a sufficiently large

constant of a polynomial size. If z, u solves (11), then z, u, v, w solves (12), where
v = 0 and w = 0. Conversely, if z, u, v, w solves (12), then z, u solves (11).

Thus, we reduced the co-NP-complete problem of checking feasibility of (12) to
the form of (10), where

λ :=
(
z

1

)
∈

(
[1, 2]n

1

)
=: λ, y :=

⎛
⎜⎝
u

v

w

⎞
⎟⎠ , D−1 :=

⎛
⎜⎝

In −In 0n,1

−In 2In 0n,1

eT 01,n 1

⎞
⎟⎠ ,
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CT :=
⎛
⎜⎝

2M−1 −3M−1e

−αeeT −αe

01,n 0

⎞
⎟⎠ , C

T :=
⎛
⎜⎝

αeeT αe

2M−1 −3M−1e

01,n 1

⎞
⎟⎠ .

Notice that indeed D−1 is nonsingular and C ≤ C . Proposition 5 implies that the
problem belongs to class co-NP because it gives a certificate of (IV)-inefficiency in
the form of s ∈ {±1}p. 	


2.5 Case (V): ∃C ∈ C ∀� ∈ �

Proposition 8 (V)-efficiency of x∗ is characterized by feasibility of the linear system

Fλc − Mλ� ≥ 0, M ≥ F, M ≥ −F, CT ≤ D−1F ≤ C
T

(13)

with respect to variables M, F ∈ R
n×p.

Proof Let C ∈ C . Then DCT λ ≥ 0 for every λ ∈ λ iff

DCT λc − |DCT |λ� ≥ 0.

Substituting M := |DCT |, we can write it as

DCT λc − Mλ� ≥ 0, M ≥ ±DCT .

Using yet another substitution F := DCT , we have D−1F = CT and so the condition
reads

Fλc − Mλ� ≥ 0, M ≥ ±F, D−1F = CT .

Therefore the problem of finding a suitable C ∈ C can be formulated as (13). 	

Let M∗, F∗ be a feasible solution to (13). Then x∗ is (V)-efficient and M∗, F∗ give

the following certificate of (V)-efficiency: C∗ := (D−1F)T . For this cost matrix, x∗ is
an optimal solution to (2) for every λ ∈ λ. Moreover, we can a posteriori verify (V)-
efficiency of x∗ by calculating v := (D(C∗)T )λ by interval arithmetic and checking
whether v ≥ 0.

2.6 Case (VI): ∀� ∈ � ∀C ∈ C

Proposition 9 (VI)-efficiency of x∗ is characterized by the condition

v ≥ 0, where v := (DCT )λ (14)

is computed by interval arithmetic.
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Proof Due to the basic properties of interval arithmetic (Moore 1966; Moore et al.
2009; Neumaier 1990), v = (DCT )λ gives the smallest interval vector (the so called
interval hull) containing the set

{DCT λ; λ ∈ λ, C ∈ C}.
Therefore (14) follows. 	


Condition (14) is easy to verify. It takes only O(pn2) number of arithmetic opera-
tions, so the complexity depends on the dimension, but not on the size of input data.
Therefore the problem of checking (VI)-efficiency of x∗ is strongly polynomial.

If x∗ is not (VI)-efficient, then vi < 0 for some i ∈ {1, . . . , n}. We will show how
to construct a particular instance C ∈ C and λ ∈ λ, for which x∗ is not optimal. Let
s ∈ {±1}n be the sign vector of Di∗, that is, s j = 1 if Di j ≥ 0 and s j = −1 otherwise.
Then the smallest value of Di∗CT λ on C ∈ C and λ ∈ λ is attained for C−s = Cc −
C� diag(s). Similarly, let s′ ∈ {±1}p be the sign vector of Di∗C−s . Then the smallest
value of Di∗CT−sλ is attained for λ−s′ := λc − diag(s′)λ�. Moreover, Di∗CT−sλ−s′ =
vi < 0. Therefore, C−s and λ−s′ serve as a certificate of (VI)-inefficiency, and this
certificate has a special form with the entries being endpoints of the interval entries of
λ and C.

2.7 Further results

For (VI)-efficiency we have a close form arithmetic formula to check it. We also
observed that (I), (II) and (V)-efficiency can be checked by means of linear program-
ming. Linear programming is, however, among the hardest polynomial problem (so
called P-complete, see Greenlaw et al. 1995) and hard to parallelize. Thus it is a natural
question whether these kinds of efficiency are P-complete, too. We show that this is
the case, so a closed-form formula does not seem to exist.

Proposition 10 Let C be fixed. Checking whether there is λ ∈ λ such that x∗ is an
optimal solution to (2) is a P-complete problem.

Proof Vector x∗ is an optimal solution to (2) for some λ ∈ λ iff the linear system

DCT λ ≥ 0, λ ≤ λ ≤ λ (15)

is feasible. It is known (Dobkin et al. 1979) that it is a P-complete problem to check
feasibility of the system

Ax ≤ b, 0 ≤ x ≤ e,

where A ∈ {0, 1,−1}k×� and b ∈ Z
k . Substituting x ′ := x + e, we obtain system

Ax ′ ≤ b + Ae, e ≤ x ′ ≤ 2e.

Thus we put D := Ik+1, C := (−A | b + Ae)T , λ := (eT , 1)T and λ := (2eT , 1)T ,
and the problem is reduced to feasibility of (15). 	
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As a consequence, checking (I), (II) and (III)-efficiency is P-complete, too, even
for the problems with real C and D = In .

As a necessary condition, we can use the following simple (strongly polynomial)
test: By interval arithmetic compute v := (DCT )λ. If vi < 0 for some i ∈ {1, . . . , n},
then there cannot exist λ ∈ λ for which x∗ is an optimal solution.

Proposition 11 Let λ > 0 be fixed. Checking whether there is C ∈ C such that x∗ is
an optimal solution to (2) is a P-complete problem.

Proof By (13), solution x∗ is an optimal solution to (2) for some C ∈ C iff the linear
system

Fλ ≥ 0, CT ≤ D−1F ≤ C
T

(16)

is feasible in variable F ∈ R
n×p. Again we use the fact that it is a P-complete problem

to check feasibility of the system

Ax ≤ b, 0 ≤ x ≤ e, (17)

where A ∈ {0, 1,−1}k×� and b ∈ Z
k . Each solution of this system satisfies Ax ≥

−� · e. Put

λ = 1, F :=
(
x
y

)
, D−1 :=

(
A Im
In 0n,m

)
, CT :=

(−� · e
0

)
, C

T :=
(
b
e

)
.

Notice that matrix D−1 is indeed nonsingular. Then (16) has the form

x, y ≥ 0, −� · e ≤ Ax + y ≤ b, 0 ≤ x ≤ e.

Variable y is redundant, so the system is equivalent to (17). Thus the problem is
reduced to feasibility of (16). 	


As a consequence, checking (I), (IV) and (V)-efficiency is P-complete, too, even
for the problems with real one criterion and λ = 1.

Again, we can use a simple test as a necessary condition: By interval arithmetic
compute v := (DCT )λ. If vi < 0 for some i ∈ {1, . . . , n}, then there cannot exist
C ∈ C for which x∗ is an optimal solution.

3 Examples

Example 1 Consider the problem (1) with data

C =
([5, 6] [−1, 1]

[0, 1] [7, 8]
)

, A =

⎛
⎜⎜⎝

1 1
0 1

− 1 0
0 −1

⎞
⎟⎟⎠ , b =

⎛
⎜⎜⎝
10
5
0
0

⎞
⎟⎟⎠ , λ = ([1, 2], [1, 2])T ,

(18)
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Fig. 2 (Examples 1 and 3) The
feasible set is in dark gray, the
normal cone at x∗ in light gray,
and the two interval objective
vectors are depicted as boxes
filled by lines

1 2 3 4 5 6 7 8 9 10 11 12

1
2
3
4
5
6
7
8
9

10
11
12
13
14

0

x∗

x1

x2

C1∗

C2∗

and consider solution x∗ = (5, 5)T ; see Fig. 2. The basis associated to x∗ is B = {1, 2},
and the corresponding matrix D = (A−1

B )T reads

D =
(

1 0
− 1 1

)
.

It turns out that x∗ is (I), (II), (III), (IV) and (V)-efficient, but not (VI)-efficient. (II)-
efficiency is certified by λ = (1, 2)T computed from (5); for these weights, solution
x∗ is an optimal solution to (2) for each C ∈ C . This is easily observed by calculating
(DCT )λ = ([5, 8], [5, 12])T , which is nonnegative. (V)-efficiency is certified by the
objective matrix

C =
(
5 1
0 8

)
(19)

computed from (13) using C := (D−1F)T , where F is a particular solution. Then x∗
is an optimal solution to (2) for each λ ∈ λ since (DCT )λ = ([5, 10], [0, 12])T is
nonnegative. Weaker types of (I), (III) and (IV)-efficiency then follow automatically.
Solution x∗ is not (VI)-efficient since (DCT )λ = ([5, 14], [−8, 12])T is not non-
negative. A particular instance for which x∗ fails to be an optimal solution to (2) is
constructed as follows. Since D2∗ = (−1, 1), we set s := (−1, 1) and

C−s =
(
6 −1
1 7

)
.

Since D2∗CT−s = (−7, 6), we put s′ := (−1, 1) and λ−s′ = (2, 1)T is the correspond-
ing vector of weights. One can verify that (DCT−s)λ−s′ = (13,−8)T .
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Fig. 3 (Example 2) The feasible
set is in dark gray, the normal
cone at x∗ in light gray, and the
two interval objective vectors are
depicted as boxes filled by lines

1 2 3 4 5 6 7 8 9 10 11 12

1
2
3
4
5
6
7
8
9

10
11
12
13
14

0

x∗

x1

x2

C1∗

C2∗

Example 2 Now, let us change the coefficient C12 = [−1, 1] to C12 = [−1, 0]; see
Fig. 3. Solution x∗ remains (I), (II) and (III)-efficient. (II)-efficiency is still certified by
λ = (1, 2)T and by checking the condition (DCT )λ = ([5, 8], [5, 11])T ≥ 0. In con-
trast to the previous example, x∗ is not (IV), (V) and (VI)-efficient. (IV)-inefficiency of
x∗ is certified by s = (1,−1)T and the corresponding weights λs = (2, 1)T . We have
(DCT )λs = ([10, 13], [−8,−2])T , so there cannot exist C ∈ C for which x∗ is opti-
mal. Notice, however, that this test is only a sufficient condition for (IV)-inefficiency;
in view of Proposition 11 there can hardly be such a simple test, and we have to verify
nonexistence of C ∈ C by means of linear programming in general.

Example 3 Eventually, in the third example, consider the original interval matrix C
from (18), but we change the interval vector of weights to λ = ([3, 4], [2, 3])T . In
this setting, x∗ is (I), (IV) and (V)-efficient, but not for the other types of efficiency.
(V)-efficiency is certified by matrix C in the form (19) and the condition (DCT )λ =
([15, 20], [0, 12])T ≥ 0. (III)-inefficiency is certified by the cost matrix

C =
(
6 −1
1 7

)
.

To show that then there is no λ ∈ λ for which x∗ is optimal can be checked by linear
programming. In view of Proposition 10, there is probably no close-form expression,
however, the following sufficient condition helps: (DCT )λ = ([20, 27], [−16,−3])T ,
so it is nonnegative for no λ ∈ λ.

Example 4 Here, we apply the methodology to a classical transportation problem.
Consider the bicriteria problem from Murad et al. (2010) (see also Hladík and Sitarz
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Table 2 (Example 4) The input data for the transportation problem with two criteria

Suppliers Warehouses Availabilities

W1 W2 W3 W4 W5 W6

S1 (0, 0) (9, 1) (12, 3) (15, 4) (18, 5) (21, 6) 4350

S2 (12, 3) (9, 2) (0, 0) (9, 2) (12, 3) (15, 4) 5340

S3 (15, 4) (13, 3) (9, 2) (0, 0) (9, 3) (12, 4) 5320

S4 (22, 5) (20, 5) (17, 3) (13, 2) (11, 2) (9, 2) 4017

Requirements 2900 2624 3560 4213 3729 4011

(2013)) with four main stores (suppliers) providing goods to six mill stones (ware-
houses). We have to transport goods from suppliers to warehouses. There are two
criteria which have to be minimized: the transportation costs and the transportation
deteriorations. The input data are displayed in Table 2. Notice that we have to add a
dummy supplier to make the problem feasible.

Suppose that the cost coefficients are not known precisely and the recored values
have accuracy 5%. That is, we get the interval cost matrix C such that Cc = C is the
cost matrix given in Table 2 andC� = 0.05|C |. Next, suppose that the decision maker
prefers the first objective function about 2 to 3 times more than the second one. This
brings us the interval vector of weights λ = ([2, 3], [1, 1])T .

In this setting, it seems that the concept of (II)-efficiency is the most appropriate
one. The reason is that the resulting efficient solution would be robust with respect to
variations of the cost coefficients, while taking the advantage of choosing admissible
weights.Moreover, in contrast to (III)-efficiency, this concept is polynomially solvable.

Consider an efficient solution

x∗ =

⎛
⎜⎜⎜⎜⎝
2900 1450 0 0 0 0
0 1174 3560 0 606 0
0 0 0 4213 1107 0
0 0 0 0 6 4011
0 0 0 0 2010 0

⎞
⎟⎟⎟⎟⎠ ,

which is the optimal solution of the weighted sum scalarization with midpoint values,
that is, with cost matrix C and weights λc = (2.5, 1)T .

By the calculations it turns out that x∗ is (II)-efficient. System (5) has a solution
λ = (2, 1)T , for instance. Therefore, the decision maker can be sure that the point x∗
is efficient and optimal for the weighted sum scalarization with λ = (2, 1)T , and this
is true even when any cost coefficient is subject to an arbitrary perturbation up to 5%
of the nominal value, simultaneously and independently of other coefficients.

Notice that provided the cost coefficients may vary up to 10% of their nominal
values, then x∗ is no more (II)-efficient. The break point is about 9.375%.
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4 Extensions

4.1 General case of x∗

Let x∗ be a feasible solution and define the index set of active constraints

P := {i; (Ax∗)i = bi }.

Analogously as for the basic solution, we use AP to denote the restriction of matrix A
to the rows indexed by P . By The Luc (2016) (or using optimality conditions in linear
programming for (2)) we have that x∗ is efficient for a particular realization C ∈ C if
and only if the system

AT
P y = CT λ, y ≥ 0, λ > 0 (20)

is feasible. If it is the case, then λ is the corresponding vector of weights and y is an
optimum of the dual problem.

In the following, we discuss the particular six concepts of efficiencies introduced
at the beginning of the paper, but now for a general feasible solution x∗. Table 3 gives
an overview of the computational complexity issues. We see that the situation is more
pessimistic now.

Case (I): ∃λ ∈ λ ∃C ∈ C.
To characterize (I)-efficiency of x∗, we need to characterize solvability of (20) with
respect to C ∈ C and λ ∈ λ. Similarly as in the proof of Proposition 1 we obtain that
(I)-efficiency of x∗ is equivalent to feasibility of the linear system

CT λ ≤ AT
P y ≤ C

T
λ, y ≥ 0, λ ≥ λ ≥ λ.

Case (II): ∃λ ∈ λ ∀C ∈ C.
Here we need to find λ ∈ λ such that the system (20) is solvable for each C ∈ C.
Using the theory of interval systems (Fiedler et al. 2006; Hladík 2013) (and the so
called strong solvability), the problem is reduced to solvability of (20) for matrices of
type Cs , s ∈ {±1}n . Therefore, x∗ is (II)-efficient if and only if the system

AT
P ys = CT

s λ, ys ≥ 0, s ∈ {±1}n, λ ≤ λ ≤ λ

Table 3 List of possibilities for
a general solution

Case Quantification Complexity

(I) ∃λ ∈ λ ∃C ∈ C Polynomial and P-complete

(II) ∃λ ∈ λ ∀C ∈ C Co-NP-complete

(III) ∀C ∈ C ∃λ ∈ λ Co-NP-complete

(IV) ∀λ ∈ λ ∃C ∈ C Co-NP-complete

(V) ∃C ∈ C ∀λ ∈ λ Co-NP-complete

(VI) ∀λ ∈ λ ∀C ∈ C Co-NP-complete
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is feasible in variables λ and ys , s ∈ {±1}n . In contrast to the case of a basic solution
x∗, we now encounter an exponentially large system. We can hardly make better since
this kind of efficiency is intractable even for problems with one objective function
(Hladík 2012).

Case (III): ∀C ∈ C ∃λ ∈ λ.
In this case, we need to check that the system

AT
P y = CT λ, y ≥ 0, λ ≥ λ ≥ λ

is solvable for each C ∈ C. Again, using the results on strong solvability of interval
systems (Fiedler et al. 2006; Hladík 2013) we get that x∗ is (III)-efficient if and only
if for each s ∈ {±1}n the system

AT
P y = CT

s λ, y ≥ 0, λ ≤ λ ≤ λ

is solvable. Notice the difference from the previous case – therein, we have one large
system, whereas herein we have many small systems.

Case (IV): ∀λ ∈ λ ∃C ∈ C.
Let λ ∈ λ. The point x∗ is optimal to (2) for some C ∈ C if and only if the system

CT λ ≤ AT
P y ≤ C

T
λ, y ≥ 0 (21)

is feasible. Thus we need to check feasibility of the above system for each λ ∈ λ. Since
the system describes a convex polyhedral set, it is sufficient to check for feasibility of
the vertices of λ only. Therefore, x∗ is (IV)-efficient if and only if (21) is feasible for
each λ such that λi ∈ {λi , λi }, i = 1, . . . , p.

This characterization is exponential in p, but not in n. So the complexity is the
same as for a basic solution x∗.

Case (V): ∃C ∈ C ∀λ ∈ λ.
Let C ∈ C. How to check that (20) is solvable for each λ ∈ λ? Basically, we need to
check {CT λ; λ ∈ λ} ⊆ {AT

P y; y ≥ 0}. Since both sets are convex, it is sufficient to
verify CT λ ∈ {AT

P y; y ≥ 0} for the vertices of λ only. Denote λs := λc + diag(s)λ�.
Now, x∗ is (V)-efficient if and only if the system

AT
P ys = CT λs, ys ≥ 0, s ∈ {±1}p, C ≤ C ≤ C

is solvable in variables C and ys , s ∈ {±1}p.
This characterization is exponential in p, but not in n (in contrast to the case of a

basic solution x∗, which is polynomially decidable). Again, we can hardly improve
the complexity since the problem is co-NP-hard: Take C := In a real matrix and then
(V)-efficiency reduces to necessary efficiency with respect to one objective function
λTCx = λT x , which is an co-NP-hard problem (Hladík 2012).
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Case (VI): ∀λ ∈ λ ∀C ∈ C.
Since this case includes checking for necessary efficiency of a general feasible solution,
it is again co-NP-hard (Hladík 2012). So in contrast to the case of a basic solution,
complexity increased rapidly. This is also reflected in the exponential characterization
that we present below.

Using a similar argument as for the previous case of (V)-efficiency, we need to
check that for each C ∈ C and each s ∈ {±1}p the system

AT
P y = CT λs, y ≥ 0

is solvable. Using similar ideas as for (III)-efficiency, we obtain that this system is
solvable for each C ∈ C if and only if it is solvable for each matrix of type Cs′ ,
s′ ∈ {±1}n . Therefore we arrive at the final characterization of (VI)-efficiency of x∗
that is equivalent to solvability of the system

AT
P y = CT

s′ λs, y ≥ 0

for each s ∈ {±1}p and each s′ ∈ {±1}n .

4.2 How to find x∗?

So far, we assumed that a feasible solution x∗ is given. This is a typical situation: A
feasible solution is calculated and a decision maker needs to check for its robustness.
If x∗ is not provided, we can compute it using a suitable heuristic—for example as
an optimum of a weighted sum scalarization of the midpoint values of the interval
coefficients. In general, however, determining x∗ is a hard problem. Even more, as
we observed in the previous sections, such a solution need not exist if we choose
too restrictive concept of robustness. The good news is that we can at least design a
fail-safe method for (I)-efficiency.

(I)-efficiency.
Here, we present a method that computes a (I)-efficient solution or states there is
no one. Basically, we need to find λ ∈ λ and C ∈ C such that the weighted sum
scalarization

max λTCx subject to Ax ≤ b

has an optimal solution. Optimality of the scalarization is equivalent to feasibility of
the dual LP problem. That is, the system

CT λ = AT y, y ≥ 0

has a solution with respect to variable y. As C varies in C , the vector CT λ attains any

value in the interval vector [CT λ,C
T
λ]. Thus we come to the system

CT λ ≤ AT y ≤ C
T
λ, y ≥ 0, λ ≤ λ ≤ λ.
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This is a linear system in y, λ and any solution yields an appropriate weighted sum
scalarization.

5 Conclusion

We introduced several concepts of efficient solutions inmultiobjective linear program-
ming with interval costs and interval vectors of weights. Choosing the right model
depends on the decision maker and also on what kind of uncertainty is modelled by
intervals. Sometimes, we need to take into account all possible values from interval
data, and sometimes we can choose the most convenient scenario. This results in six
meaningful combinations that were discussed in detail and characterized by appropri-
ate conditions.We investigated computational complexity of testing the corresponding
kinds of efficiency. It turned out that four of them are polynomially decidable bymeans
of linear programming or interval arithmetic, and two of them are intractable.

Acknowledgements The author was supported by the Czech Science Foundation Grant P403-22-11117S.

References

Bitran GR (1980) Linear multiple objective problems with interval coefficients. Manage Sci 26:694–706.
https://doi.org/10.1287/mnsc.26.7.694

Dobkin DP, Lipton RJ, Reiss SP (1979) Linear programming is log-space hard for P. Inf Process Lett
8:96–97. https://doi.org/10.1016/0020-0190(79)90152-2

Dranichak GM, Wiecek MM (2019) On highly robust efficient solutions to uncertain multiobjective linear
programs. Eur J Oper Res 273(1):20–30. https://doi.org/10.1016/j.ejor.2018.07.035

Ehrgott M (2005) Multicriteria optimization. 2nd ed. Springer, Berlin. https://doi.org/10.1007/3-540-
27659-9

Fiedler M, Nedoma J, Ramík J et al (2006) Linear optimization problems with inexact data. Springer, New
York. https://doi.org/10.1007/0-387-32698-7

GarajováE,HladíkM,RadaM (2019) Interval linear programming under transformations: optimal solutions
and optimal value range. Cent Eur J Oper Res 27(3):601–614. https://doi.org/10.1007/s10100-018-
0580-5

Gerlach W (1981) Zur Lösung linearer Ungleichungssysteme bei Störung der rechten Seite und der
Koeffizientenmatrix. Math Operationsforsch Stat Ser Optim 12:41–43. https://doi.org/10.1080/
02331938108842705

González-Gallardo S, Ruiz AB, Luque M (2021) Analysis of the well-being levels of students in Spain
and Finland through interval multiobjective linear programming. Math 9(14). https://doi.org/10.3390/
math9141628

Greenlaw R, Hoover HJ, Ruzzo WL (1995) Limits to parallel computation: P-completeness theory. Oxford
University Press, New York. https://doi.org/10.1093/oso/9780195085914.001.0001

Hansen ER, Walster GW (2004) Global optimization using interval analysis, 2nd edn. Marcel Dekker, New
York. https://doi.org/10.1201/9780203026922

HenriquesCO, InuiguchiM, LuqueMet al (2020)New conditions for testing necessarily/possibly efficiency
of non-degenerate basic solutions based on the tolerance approach. Eur J Oper Res 283(1):341–355.
https://doi.org/10.1016/j.ejor.2019.11.009

Hladík M (2008) Computing the tolerances in multiobjective linear programming. Optim Methods Softw
23(5):731–739. https://doi.org/10.1080/10556780802264204

Hladík M (2012) Complexity of necessary efficiency in interval linear programming and multiobjective
linear programming. Optim Lett 6(5):893–899. https://doi.org/10.1007/s11590-011-0315-1

HladíkM (2013)Weak and strong solvability of interval linear systems of equations and inequalities. Linear
Algebra Appl 438(11):4156–4165. https://doi.org/10.1016/j.laa.2013.02.012

123

https://doi.org/10.1287/mnsc.26.7.694
https://doi.org/10.1016/0020-0190(79)90152-2
https://doi.org/10.1016/j.ejor.2018.07.035
https://doi.org/10.1007/3-540-27659-9
https://doi.org/10.1007/3-540-27659-9
https://doi.org/10.1007/0-387-32698-7
https://doi.org/10.1007/s10100-018-0580-5
https://doi.org/10.1007/s10100-018-0580-5
https://doi.org/10.1080/02331938108842705
https://doi.org/10.1080/02331938108842705
https://doi.org/10.3390/math9141628
https://doi.org/10.3390/math9141628
https://doi.org/10.1093/oso/9780195085914.001.0001
https://doi.org/10.1201/9780203026922
https://doi.org/10.1016/j.ejor.2019.11.009
https://doi.org/10.1080/10556780802264204
https://doi.org/10.1007/s11590-011-0315-1
https://doi.org/10.1016/j.laa.2013.02.012


Multiobjective linear programming problems... 731

Hladík M (2017) On relation of possibly efficiency and robust counterparts in interval multiobjective linear
programming. In: Sforza A, Sterle C (eds) optimization and decision science: methodologies and
applications, springer proceedings in mathematics & statistics, vol 217. Springer, Cham, pp 335–343.
https://doi.org/10.1007/978-3-319-67308-0_34

Hladík M, Sitarz S (2013) Maximal and supremal tolerances in multiobjective linear programming. Eur J
Oper Res 228(1):93–101. https://doi.org/10.1016/j.ejor.2013.01.045

Ida M (1996) Generation of efficient solutions for multiobjective linear programming with interval coeffi-
cients. In: Proceedings of the SICE Annual Conference SICE’96, Tottori, pp 1041–1044. https://doi.
org/10.1109/SICE.1996.865405

Inuiguchi M, Kume Y (1989) A discrimination method of possibly efficient extreme points for interval
multiobjective linear programming problems. Trans Soc Instrum Control Eng 25(7):824–826. https://
doi.org/10.9746/sicetr1965.25.824

Inuiguchi M, Sakawa M (1996) Possible and necessary efficiency in possibilistic multiobjective linear
programming problems and possible efficiency test. Fuzzy Sets Syst 78(2):231–241. https://doi.org/
10.1016/0165-0114(95)00169-7

Mohammadi M, Gentili M (2021) The outcome range problem in interval linear programming. Comput
Oper Res 129:105–160. https://doi.org/10.1016/j.cor.2020.105160

Moore RE (1966) Interval analysis. Prentice-Hall, Englewood Cliffs
Moore RE, Kearfott RB, Cloud MJ (2009) Introduction to Interval Analysis. SIAM, Philadelphia. https://

doi.org/10.1137/1.9780898717716
Mostafaee A, Hladík M (2020) Optimal value bounds in interval fractional linear programming and rev-

enue efficiency measuring. Cent Eur J Oper Res 28(3):963–981. https://doi.org/10.1007/s10100-019-
00611-6

Murad A, Al-Ali A, Ellaimony E et al (2010) On bi-criteria two-stage transportation problem: A case study.
Transp Probl 5(3):103–114

Neumaier A (1990) Interval methods for systems of equations. Cambridge University Press, Cambridge.
https://doi.org/10.1017/CBO9780511526473
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