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Abstract
When scheduling the starting times for treatment appointments of patients in hospi-
tals or outpatient clinics such as radiotherapy centers, minimizing patient waiting time
and simultaneously maximizing resource usage is crucial. Significant uncertainty in
the treatment durations makes scheduling those activities particularly challenging. In
addition to the treatments themselves, also preparation times and exiting times have
to be considered, which are uncertain as well. To address and analyze this type of
problems, the current study develops a model for planning appointment times under
uncertain activity durations for a medical unit with a single “core resource” (in our
application case a radiotherapy beam device), several treatment rooms, and required
preparation and exiting phases for each patient. We employ a novel buffer concept
based on quantiles of duration distributions and introduce a reactive procedure that
adapts a pre-determined baseline schedule to the actual patient flow. For heuristically
solving the resulting stochastic optimization model, a combination of a Genetic Algo-
rithm and Monte Carlo simulation is proposed. A case study uses real-world data on
activity durations gathered from an ion beam therapy facility in Austria. Experimental
results comparing different variants of the method are carried out. In particular, com-
parisons of the stochastic optimization approach to a simpler deterministic approach
are given.
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1 Introduction

The “global cancer burden” is projected to exceed 27million new cancer cases per year
by 2040, which exceeds the estimated figures of 2018 (the most recent estimate of 18.1
million cases) by a factor of 1.5, as indicated in the 2020 world cancer report (Wild
et al. 2020). This immense rise together with the general pressure to rationalize health
care expenses requires health care facilities such as radiotherapy centers to manage
machines and resources more efficiently (Tancrez et al. 2013). Radiation therapy, or
short radiotherapy, is a commonly used treatment for patients diagnosed with cancer
(in addition to or instead of surgery and chemotherapy) with the goal of killing tumor-
ous cells while sparing surrounding healthy tissue. In general, radiotherapy treatment
appointments are planned a few days or weeks in advance and emergency patients
who need to receive treatment immediately are rare. Nevertheless, real-world data
uncovers high uncertainty in treatment durations for radiotherapy appointments, even
though medical physicists are able to accurately estimate the planned irradiation dura-
tion during the intense treatment planning process. Uncertainty is a key challenge in
any appointment scheduling process (Gupta and Denton 2008), but the underlying
uncertainty in radiotherapy treatment durations has not yet been considered in the
radiotherapy appointment scheduling literature (see Sect. 2).

As has been shown in previous studies (Kreitz et al. 2016, e.g.), waiting time is one
of the main factors influencing patient satisfaction. Waiting time to the first treatment
appointment (i.e., the start of the recurring treatment process) has been addressed as a
crucial objective in several academic papers on radiotherapy appointment scheduling,
but daily waiting time between the planned treatment start and the actual time when
treatment is performed has not been addressed so far in this area. Since many patients
are treated consecutively in a treatment facility, a delay of one single patient typically
affects the starting times of several successive patients and can even causewaiting time
for all upcoming patients on a given day. Practitioners tend to focus on the optimization
of resource usage solely, due to high fixed costs associated with machines and staff,
such that they prefer tight schedules. The variability in the actual treatment durations,
however,may then lead to resource conflicts and hence delays, an effect that aggravates
the tighter the schedule is planned (Gupta and Denton 2008). This suggests an explicit
consideration also of waiting times when developing a planning method.

Thus, in order to enhance patient satisfaction and wellbeing, we propose an opti-
mization model that takes both patient waiting time and resource usage into account
and increases robustness during the execution of the schedule by considering the
stochasticity of the activity durations. We show that for the highly constrained and
stochastic problem of radiotherapy appointment scheduling in special ion beam facil-
ities where only one beam resource is available, it is beneficial to insert activity time
buffers. Our proposed buffer concept is based on quantiles of probability distributions
and can thus be applied to any distribution of treatment durations.

The decision to be optimized in our approach consists of three components: we
determine a treatment plan specifying the days on which each patient should receive
treatments, a priority list of patients for determining the daily schedules, and a value
for the buffer parameter which controls the size of the time buffers. From these three
components, we compute a baseline schedule including buffer times. During actual
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execution of the baseline schedule, modifications of starting times may become neces-
sary in view of the stochastic nature of durations. To gradually compute the modified
schedule from the baseline schedule while the true activity durations are revealed one
after the other in the course of a current day, we use a dynamic procedure which we
call “reactive procedure”. The treatment plan, the patient priority list and the buffer
parameter are (heuristically) optimized by a Genetic Algorithm (GA) in the planning
phase based on the current data on patients, their treatment requirements and their
preferred time windows for treatment. As the objective function in our optimization
problem is an expectation of a complex random expression, we need a way to eval-
uate its value and use the Sample Average Approximation (SAA) technique for this
purpose. This essentially results in applying the principle of Monte Carlo simulation.

This article is organized as follows: Sect. 2 reviews related work on radiotherapy
scheduling, stochastic appointment scheduling, and general strategies to deal with
uncertainty. Section 3 presents a formulation of a general optimization problem of
which the stochastic radiotherapy appointment scheduling problem addressed in our
application is a special case. Section 4 is dedicated to the proposed solution methodol-
ogy: we specify the structure of the overall optimization approach, describe the buffer
concept, present the reactive procedure, and explain the GA as well as the used SAA
technique. In Sect. 5 we analyze data on appointment durations gathered from an
ion beam facility in Austria, and fit distributions to the different activity categories.
The results of our intensive computational tests are given in Sect. 6. Finally, Sect. 7
concludes and proposes some possible directions for further research.

2 Related work

Radiotherapy Appointment Scheduling The specific problem of scheduling radiother-
apy appointments has been addressed in the literature since 2006 (Petrovic et al.
2006), and variants of the problem have been modeled mathematically and solved
using heuristics such as greedy randomized adaptive search (Petrovic and Leite-Rocha
2008) or GAs (Petrovic et al. 2009; Petrovic and Castro 2011). Vieira et al. (2016)
provide a broad overview of both radiotherapy treatment scheduling and resource
planning. Maschler et al. (2017a, b) and Vogl et al. (2018a, b) address specific deter-
ministic, long-term scheduling problems that arise in ion-beam facilities in which
multiple rooms are supplied by only one beam resource. They build deterministic
baseline schedules by applying different metaheuristic search techniques. However,
they completely neglect patient waiting time as a major factor of schedule quality and
focus entirely on deterministic resource usage optimization. In the present work, we
deal with the same setting, but treat it in a short-term, stochastic environment.

Uncertainty in relation to radiotherapy scheduling is addressed by two papers:
Sauré et al. (2012) identify effective policies for allocating demand to still unknown
patients using aMarkov decision process in an effort to minimize the time that patients
must wait before the treatment starts. Legrain et al. (2015) also address uncertainty
related to the arrival of patients to radiotherapy facilities and develop a hybrid online
stochastic optimization algorithm to tackle the stochasticity. However, to the best of
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our knowledge, none of the existing studies on radiotherapy scheduling considers
stochastic activity durations, which we investigate in this paper.

Stochastic Appointment Scheduling Problems Stochasticity in appointment scheduling
problems can be of a twofold nature: First, the patients to be treated may not be known
in advance and instead get successively revealed during the planning horizon. For
example, emergency patients need to be immediately treated, and planned patients
do not always show up for their appointments. Second, the treatment duration may
be subject to uncertainty (Gupta and Denton 2008). We concentrate on this latter
aspect. Ahmadi-Javid et al. (2017) review optimization studies that consider random
appointment durations (or “service times”). For the special problem of operating room
scheduling, Cardoen et al. (2010) consider studies that incorporate uncertain procedure
durations. A more recent review by Samudra et al. (2016) also includes a section
dedicated to uncertainty.

Belien and Demeulemeester (2004) propose models for building robust cyclic
surgery schedules when the procedure duration is stochastic. Robustness also plays
an important role in the work by Hans et al. (2008), who use advanced optimization
techniques combined with historical data on surgery durations to improve capacity
utilization. Denton et al. (2007) conclude that sequencing patients according to the
expected variance of their activity duration achieves the best results when the schedul-
ing involves a single server. However, following this strategymight not be beneficial in
highly constrained settings. In our case, the preferred timewindowswould render such
a simple strategy ineffective, because a lot of constraint violations would be produced.
Kaandorp and Koole (2007) propose a local search procedure to optimize a weighted
average of patient waiting time and doctor idle time. They assume the activity duration
to be exponentially distributed. Their objective function looks similar to our setting,
yet our problem is much more constrained, involving aspects like predefined patient
treatment patterns and preferred time windows.

Koeleman and Koole (2012) show that different service time distributions lead
to different optimal baseline schedules when a local search algorithm is used and
emergency arrivals are included into consideration. Begen et al. (2012) propose a
sampling-based approach to address the problem of discrete random appointment
durations, which produces a near-optimal solution with high probability in polynomial
time. Erdogan andDenton (2013) present two stochastic models considering uncertain
durations, as well as no-shows. Tancrez et al. (2013) take uncertainty in operating
room planning on a more strategic decision-making level into account and present
a Markov process which allows to evaluate the impact of stochasticity on various
performance measures. The approach of Kemper et al. (2014) to schedule patients for
any convex loss function and any service time distribution entails that customers should
be scheduled in non-decreasing order of their scale parameter. Finally, Berg et al.
(2014) propose three solution methods to address the two-stage stochastic problem
of scheduling patient appointments on a single stochastic server, extending work by
Denton et al. (2007).

Methodological Approaches to Address Stochasticity in Scheduling Problems Many
approaches deal with uncertainty in project and appointment scheduling, as summa-
rized by Herroelen and Leus Herroelen and Leus (2005) in their overview of literature
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pertaining to reactive, stochastic, fuzzy, and proactive scheduling approaches. They
mention the stochastic resource-constrained project scheduling problem (SRCPSP) as
a paradigmatic problem formulation for scheduling under uncertainty and outline the
most usual strategy to tackle with the SRCPSP, namely to apply a dynamic schedul-
ing policy that makes decisions at certain points in time, such as the termination of an
activity, based on the current state of the project. (We adopt the concept of a scheduling
policy in the form of our reactive procedure.) What remains to be done when follow-
ing this general approach is the optimization of parameters or input variables for the
scheduling policy. Considering the stochasticity of essential variables, this leads to a
stochastic optimization problem.

VanDeVonder et al. (2005) thoroughly analyze the impact of buffers in projectman-
agement, and this researchgrouphas also consideredvarious combinations of proactive
and reactive approaches (Davari and Demeulemeester 2017; Demeulemeester et al.
2008; Van De Vonder et al. 2006, 2007, e.g.).

The classical approaches to stochastic combinatorial optimization problems are
based on two- or multi-stage mathematical programming, or on dynamic program-
ming.However, formany real-world problemsof this type, thesemethods are infeasible
due to their size and the limited running time. Metaheuristics then offer good alter-
natives for solving problems marked by uncertainty. A survey of metaheuristics for
solving stochastic combinatorial optimization problems (SCOPs) given by Bianchi
et al. (2009) lists three possible ways to compute objective functions for SCOPs: (1)
if closed-form expressions for expected values are available, compute the objective
function exactly; (2) if closed-form expressions are not available or their repeated
evaluation is too time consuming, use ad hoc, fast approximations; and (3) if the
problem is too complex in terms of dependencies, estimate the objective function by
simulation. We consider the latter approach, because we address a highly constrained
problem with extensive probabilistic dependencies. This variant also is known as
Sample Average Approximation and was applied successfully to SCOPs by Kleywegt
et al. (2002) as well as Mancilla and Storer (2012). Finally, Juan et al. (2015) review
simheuristics—typically an extension of metaheuristics by the integration of simula-
tion in the optimization procedure—and identify multiple subcategories of this term,
depending on how much time is spent on simulation and optimization. Their general
scheme for solving SCOPs includes a fast simulation process and few replications to
estimate the quality of the solution during the optimization (Bianchi et al. 2009).

The contribution of the present paper is threefold: First, we address stochastic activ-
ity durations in radiotherapy appointment scheduling (or related applications involving
a core resource, preparation and exiting activities, and assigned facilities) by a stochas-
tic optimization approach. We do not only maximize resource usage when building
schedules, but additionally strive for minimizing patient waiting time. Secondly, we
present a buffer concept relying on quantiles of activity duration distributions. Third,
wepropose a reactive procedure thatmimics the decisionprocess of the humandecision
maker during the execution of a baseline schedule, and embed it into the stochastic
optimization framework. For the numerical solution of the optimization model, we
use a Genetic Algorithm, based on objective function evaluations obtained by Sample
Average Approximation (and thus Monte Carlo simulation).

123



1244 R. Braune et al.

3 Problem statement

This section contains a thorough description of the problem at hand. We shall first
describe the problem in a more general form to show its fairly broad range of applica-
bility.1 Then, we will specify the particular features of the model for our case study,
the radiotherapy appointment scheduling case described in detail in Sect. 5. The sym-
bols and abbreviations used throughout this article are listed in Tables 8 and 9 in the
Appendix.

3.1 The general model

We assume a medical unit consisting of L treatment rooms and one core resource; the
latter can be personnel, a medical device, or whatever. Treatments for a given set of
patients are to be scheduled on certain days of a planning period consisting of D days
in total. The set of patients is denoted by P .

Patient p ∈ P needs Np treatments (1 ≤ Np ≤ D) during the planing period, each
treatment on a different day. For each p ∈ P , the number Np is assumed as given in
advance. Moreover, we assume that for each patient p ∈ P , a set of feasible treatment
patterns is given. A treatment pattern is a vector x = (x1, . . . , xD) with xd ∈ {0, 1}
(d = 1, . . . , D), where xd = 1 if the patient is treated on day d and 0 otherwise. The
set of feasible treatment patterns x for p ∈ P is denoted by Xp ⊆ {0, 1}D . For each
x ∈ Xp, the binary vector x contains the same number Np of bits with value 1.

A treatment plan is a matrix X = (xpd)p∈P,d=1,...,D , defining the treatment pattern
for each patient. The treatment plan X is called feasible if xp ∈ Xp for each patient
p ∈ P , where xp = (xp1, . . . , xpD). Let X denote the set of all feasible treatment
plans.

The L treatment rooms are heterogeneous (allowing for different kinds of treat-
ments) and each patient p ∈ P is assumed to be assigned already in advance to a
specific treatment room, based on medical considerations. This assignment does not
change during the period of D days. A basic feature of our model is that we suppose
each treatment to consist of three phases: (a) a preparation phase, (b) a core treatment
phase during which the core resource is needed in an exclusive way (it cannot be used
for another treatment during this time), and (c) an exiting phase. While going through
these three phases, the patient does not leave the room.

In addition to the decisions on the days when to treat each patient, appointment
times for the start of the treatments have to be determined and communicated to the
patients. As far as possible, these times should respect the preferences of the patients p
which are given by a ready time rp (earliest appointment time) and a due time τp (latest
appointment time) for each patient p ∈ P .

For eachpatient p, each treatment phase i = 1, 2, 3, and eachdayd ∈ D, theactivity
duration Θpid describes the time needed for carrying out the corresponding treatment
activity (p, i, d). Taking sources of uncertainties discussed in the next subsection into
account, we assume that the activity duration Θpid is not precisely known in advance.

1 The application range probably even extends beyond health care applications, but we shall keep our
terminology oriented to health care for the sake of a better understanding.
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Rather than that, we model the variables Θpid as random variables and assume that
their joint distribution D can be estimated. This is contrary to a simpler version of
the model investigated by Vogl et al. (2018b) where deterministic activity durations
are assumed. Note that although the realizations of the random variables modeling the
activity durations are day-specific, they follow the same day-independent distributions.

As it is typical for the difference between deterministic and stochastic scheduling,
completely different solution methods are needed for the stochastic case. The main
difficulty of the stochastic case in our situation is that starting times of activities cannot
be determined anymore in advance, since they have to depend on the realizations of
the random variables Θpid . As a consequence, a “solution” to the problem cannot
be described anymore by a treatment plan plus a static vector of starting times for
treatment activities.Rather than that, a solution consists of a schemewhichwe shall call
“design”, from which the actual starting times are generated in two steps (one taking
place before the planning period, the other during the execution of the treatments).
Parts of this design are the treatment plan and a priority list determining in which
sequence patients are inserted into the schedule to be constructed. Priority lists can in
fact be seen as priority policies, as discussed extensively byMöhring and Stork (2000).
A priority policy is used at each decision point during scheduling to decide which job
(or patient, in our case) to choose from a set of eligible ones. It is commonly defined
as a linear ordering of the entities to be scheduled. In the context of the problem at
hand, it is simply given as a permutation of patient indices.

Moreover, when determining appointment times, we do not base them on expected
activity durations, but include buffer times. The sizes of the buffers are a matter of
optimization as well. We shall control them by a single parameter β called buffer
parameter; larger values of β entail larger buffer sizes. The precise way how β influ-
ences the buffer sizes can be chosen in a problem-specific way. We propose a special
dependence between buffer parameter and buffer sizes for our concrete application
below.

From treatment plan, priority list and buffer parameter, a “baseline schedule” is
computed. During the execution, actual starting times are generated “on-the-fly” using
the baseline schedule and the current realizations of the random activity durations,
which turns the baseline schedule into an actual schedule.

Let us now describe the approach outlined above in more formal terms. Formally, a
design is a triple Z = (X , π, β), where (1) X ∈ X is a feasible treatment plan, (2) the
permutation π ∈ Π is a priority list of patients (Π denotes the set of all permutations
of patient indices), and (3) β ∈ [0, 1] is the buffer parameter.

Our general framework requires the specification of two procedures sched
(“schedule construction”) and react (“reactive procedure”) for the particular appli-
cation under consideration. We shall specify them in Sects. 4.1 and 4.2 for the case of
our radiotherapy application. The general strategy of the approach is the following:

First of all, from a given design Z = (X , π, β), a baseline schedule Sbas is derived
by the application of the schedule-construction procedure sched:

Sbas = sched(Z) = sched(X , π, β).
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This is carried out before the beginning of the planning period. The baseline schedule
Sbas contains “planned” starting times for all activities,where buffer times have already
been included. The baseline schedule also defines the appointment times announced
to the patients.

In view of the randomness of the variables Θpid , it is not sure whether Sbas can be
executed as it is, considering that certain buffer times may be exceeded. This makes
the above-mentioned modification during the execution of the schedule necessary. We
carry it out by the application of the reactive procedure react, which takes Sbas
and the durations Θpid , as they are gradually revealed during the planning period,
and determines from this input the actual schedule S(ω). Therein, ω stands for the
influence of randomness. Thus, with Θ = Θ(ω) representing the collection of the
random activity durations Θpid , the actual schedule results from the design by

S(ω) = react(Sbas,Θ(ω)) = react(sched(X , π, β),Θ(ω)).

Finally, for obtaining an optimization problem, an objective function has to be
defined. Suppose that a cost function F is given that evaluates each actual schedule S
by a cost value F(S). In our context, the evaluation by F includes both the economic
usage of the core resource (the overall time span the core resource is needed should
be minimized by means of elimination of idle times) and the waiting times of the
patients (which should be minimized as well). We shall specify the cost function for
our concrete application in precise formal terms below.

Since the realized schedule S(ω) depends on the influence of randomness, the cost
function value F(S(ω)) is a random variable as well. We take its expected value
E[F(S(ω))] as our objective function. In this way, we get an evaluation of any chosen
design Z = (X , π, β) by a function f :

f (Z) = E[F(S(ω))] = E[F(react(sched(X , π, β), Θ(ω)))]. (1)

The aim of our optimization approach is to find a design that will produce minimal
expected cost during execution. This produces the following stochastic optimization
problem:

min E [F (react(sched(X , π, β), Θ(ω)))] (2)

s.t. X ∈ X (3)

π ∈ Π (4)

0 ≤ β ≤ 1 (5)

Obviously, this is a mixed-integer stochastic optimization problem. Note that although
react is a dynamic procedure, the problem above is not a dynamic optimization
problem anymore since we fix the procedure react in advance. Note further that
while β appears as a decision variable similar to X and π in formulation (2)–(5), it is
in fact a hyperparameter of our proposed approach to solve the minimization problem
given by Eq. (2) and is thus determined and fixed before the search for an optimal
treatment plan and priority list takes place.
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3.2 Application: radiotherapy scheduling

In our application study, we deal with appointment scheduling in an ion beam facility,
in which one particle beam device serves multiple treatment rooms. This device is
our core resource, it represents the main bottleneck of the scheduling problem. In our
specific setting, we schedule patients in L = 3 treatment rooms, one with a vertical,
one with a horizontal and one with a 90 degree flexible beam angle. The particle beam
in ion therapy consists of either protons or carbon ions, and switching between those
particle types demands a set-up time of a few minutes (in our case about 3 min). The
beam is accelerated to two-thirds the speed of light in a linear accelerator, followed
by multiple circulations through a synchrotron. As soon as the beam has reached its
designated speed, it gets dispatched to one of the available treatment rooms and the
patient waiting inside the room is treated. The beam device can only serve one room
at a time.

This facility layout is related to the one described by Vogl et al. (2018b), who
solve the long-term deterministic appointment scheduling problem, striving to maxi-
mize overall resource usage. This long-term optimization, however, does not consider
uncertainty in appointment durations. Therefore, we go beyond that existing work
by the stochastic optimization approach described above. The considerably increased
computational complexity of this approach makes it necessary that we do not solve
the long-term problem as a whole, but rather decompose it into short-term planning
problems for D = 5 days each, corresponding to a week from Monday to Friday.

During the five days of our planning horizon, each patient p ∈ P must attend a
predefined number Np of irradiation treatments in a predefined treatment room. The
constraints defining feasible treatment patterns are based on medical considerations
and were provided by the ion beam facility:

(a) Patients finishing treatment in the given week have between 2 and 5 irradiation
treatments left (the initial treatment plan over the long-term planning horizon forbids
a final week with a single left treatment). They must engage in a treatment activity on
each day starting on Monday until the number of missing treatments is met. Hence,
there is no flexibility in the treatment pattern for these patients.

In our notation, this means that for a patient p finishing treatment in the given week,
Xp is one of the four singleton sets {(1, 1, 0, 0, 0)}, {(1, 1, 1, 0, 0)}, {(1, 1, 1, 1, 0)} or
{(1, 1, 1, 1, 1)}.

(b) Patients starting their treatment in the given week need to receive between 3
and 5 treatments. The idea is to let those patients commence their treatments as late
as possible, to ensure a transition to the next week without breaks. Consequently,
the first treatment day is Wednesday, Tuesday, or Monday, for 3, 4 and 5 treatments,
respectively.

Thus, for such a patient, Xp is one of the three singleton sets {(0, 0, 1, 1, 1)},
{(0, 1, 1, 1, 1}, or {(1, 1, 1, 1, 1)}.

(c) All other patients have either 4 or 5 treatments scheduled in the current week.
If patient p gets 5 treatments, then Xp is the singleton {(1, 1, 1, 1, 1)}. If patient p

gets 4 treatments, an earliest weekday d(p) for the treatment break is pre-defined.
Hence, for such a patient, Xp is the set
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{(x1, . . . , x5) ∈ {0, 1}5 |
5∑

d=1

xd = 4 and xd = 1 for d < d(p)}.

A daily treatment (DT) consists of three sub-activities: in-room preparation of the
patient, irradiation, and post-irradiation exiting. All these three sub-activities occupy
the predefined treatment room; in addition, the irradiation also blocks the beam for
the exclusive use of the current patient p.

There are multiple reasons that might cause disruptions to the daily executed base-
line schedule, making the radiotherapy appointment durations highly stochastic: (1)
The in-room preparation might take considerably longer than expected if the posi-
tioning of the patient (i.e., the verification that the patient lies on the treatment bench
correctly) fails and a second attempt is necessary. Furthermore, patients are sometimes
less mobile and need additional help when entering the room. (2) If a patient moves
during the irradiation or needs a break, the irradiation needs to be either interrupted or
even aborted. An interruption leads to an extension of the planned activity duration;
aborting the irradiation leads to a shorter than planned activity. (3) Machine error or
room unavailability might cause an activity to take longer than expected. For example,
a room might need to be cleaned after a patient exit, which delays the start of the next
patient’s treatment in the same room.

Hence, we consider the actual activity durations of the preparation (i = 1), irra-
diation (i = 2) and exiting (i = 3) activities for each patient p and each day d
as random variables Θpid , in accordance with the general model introduced in the
previous subsection. The distribution D of these random variables will be estimated
in Sect. 5 for our specific application instance from data on patients that have been
treated throughout one complete year.

The cost function F(S) is composed of three terms that are weighted by parameters
λ1, λ2 and λ3. All three components of the objective function are measured in minutes
and need to be minimized. The components are: (i) The actual beam active time for
each day d, denoted by ϕd , which is defined by the finishing time of day d’s last
activity on the beam resource. This component measures the economic use of the
beam resource. (ii) The time window violations, denoted by γpd , which are caused
by treatment appointments that are scheduled past their due time (latest time) τp on
day d and are measured by the amount of excess of the appointment times over the
times τp. (iii) The actual waiting time of all patients p ∈ P .

The patient waiting time consists of two parts: (i) pre-preparation waiting time,
denoted by δpd , which reflects any delay in the start of the preparation activity, and
(ii) pre-beam waiting time, denoted by ρpd , which gives the time span between the
completion of the in-room preparation activity and the actual start of the irradiation
activity.

Thus, in total,

F(S) = λ1 ·
D∑

d=1

ϕd + λ2 ·
D∑

d=1

n∑

p=1

γpd + λ3 ·
D∑

d=1

n∑

p=1

(δpd + ρpd), (6)
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Fig. 1 Exemplary Planned Baseline Schedule and Actually Executed Schedule (white: preparation times;
dark gray: irradiation times; medium gray: exiting times; light gray: pre-beam waiting times)

where patients p ∈ P have been indexed by p = 1, . . . , n = |P|. Recall that the cost
function is not applied to the baseline schedule Sbas , but to the schedule S = S(ω)

produced by the reactive procedure while processing the actual realizations of the
random activity durations. In particular, the variables ϕd , δpd and ρpd occurring in (6)
are random variables, as they depend on the random durations; the overall cost is
therefore a random variable as well. Its expected value gives the objective function
according to Eq. (1).

The two types of waiting times, resulting from deviations of the actual activity
durations from the planned ones, are visualized in Fig. 1. Patient P1’s irradiation
treatment took longer than expected, which delayed P2’s irradiation activity. However,
when P2 started the in-room preparation, the delay of P1 was not foreseeable, and P2
had to wait for the start of the irradiation activity. In addition, P1’s exit was extended.
Therefore, P4 could not enter room 1 on time, leading to a delayed start of P4’s
preparation activity. Note that P3’s preparation started later than expected as well,
consideringP3was supposed to start preparation by the timeP1finished the irradiation.
The delay of P1’s irradiation finish has a direct impact on P3’s preparation starting
time. Section 4.2 details different reactions to deviations from the baseline schedule.

4 Methodology

Let us now turn to the question how the generic model architecture from Sect. 3 can
be treated numerically. For this purpose, five components have to be specified: (1)
the concept for computing buffer sizes from the buffer parameter β, (2) the procedure
sched, computing a baseline schedule Sbas from a given design Z , (3) the reactive
procedure react, determining “on the fly” the actual schedule S(ω) from the base-
line schedule Sbas and the current realizations of the activity durations Θpid , (4) the
way how the expected value in the objective function of (2) is evaluated, and (5) the
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Fig. 2 Treatment plan X and
patients priority list π for the
radiotherapy application case,
n = 15 patients

algorithm for performing the optimization (or: heuristic optimization, if the problem
cannot be solved to optimality).

From a chronological perspective, the following steps are taken:

1. At the beginning of a week, a design has to be determined that remains fixed
throughout that week. The true activity durations are of course not known in
advance, but the underlying distributions are given as an input.

2. From day to day, actual decisions on the starting times have to be derived from
the design and the actual observations. The realizations of the random variables
representing the activity durations are revealed successively over each day and
processed by the reactive procedure react, turning a baseline schedule into an
actual schedule.

4.1 Buffer concept and schedule generation procedure

To create robust baseline schedules, we include time buffers (Van De Vonder et al.
2005) in the planned activity durations. The planned activity duration for activity
(p, i, d) including the time buffer, denoted by tpid , is governed by a global buffer
parameter β ∈ [0, 1] and is defined as the β-quantile of the marginal distribution
Dpid of the corresponding activity duration Θpid . In other words, tpid is that value
for which P(Θpid ≤ tpid) = β. Since β = 0.5 gives the median of the corresponding
activity duration, only values β ≥ 0.5 make sense in view of the aim of increasing
robustness. We chose the determination of the buffer sizes through a quantile because
the β parameter can be applied to different distributions without the need of rescaling
the value of β.

The schedule generation procedure sched takes a design, i.e., a treatment plan X ,
a patients priority list π , and a buffer β, and computes from this input a baseline
schedule Sbas . A concrete example for X and π is shown in Fig. 2.

Algorithm 1 shows the pseudocode of the schedule generation procedure sched.
The planned starting times of the activities, s̄ pid , are determined according to a strategy
first suggested by Vogl et al. (2018a). For each day, treatments of patients are inserted
sequentially into the schedule. The sequence of insertions for a specific day is given
by the global patient sequence π , except that any patients who do not have a planned
treatment on that particular day get removed from the daily list. The three appointment
phases (in-room preparation, irradiation, and exiting) need to be scheduled without
idle time when constructing the baseline schedule. That is, we can fix the starting time
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Algorithm 1: Solution Generation Algorithm.
1 for day d = 1, . . . , D do
2 Set pointer to the first patient p on list π ;
3 repeat
4 if patient p gets a treatment on day d (xpd = 1) then
5 Determine activity durations tpid (including buffer times) using buffer parameter β;
6 s̄ p1d ← rp ;
7 repeat
8 s̄ p2d ← s̄ p1d + tp1d ; s̄ p3d ← s̄ p2d + tp2d ;
9 if resulting schedule is infeasible then

10 s̄ p1d ← s̄ p1d + 1
11 end
12 until s̄ p1d is a feasible starting time;
13 Schedule appointment for patient p at s̄ p1d ;
14 if s̄ p1d > τp then
15 γpd ← s̄ p1d − dp
16 end
17 end
18 Proceed to the next patient p on list π (if there is still one);
19 until patient list π processed;
20 end

of the preparation activity and deduce the other starting times from that value. The
earliest time when the preparation activity for a patient p can start is the ready time rp
of the patient-specific time window [rp, τp]. It is examined if rp is a feasible starting
time across all required resources over all activity phases. If yes, we fix the starting
time and block the resources accordingly. If not, we increment the planned starting
time until we find a feasible insertion position. If the final starting time for patient p
is larger than the corresponding due time qp, we record a penalty γpd in the objective
function.

This approach differs from pure chronological scheduling in that we can fill “holes”
in the schedule, as was proven to be beneficial by Vogl et al. (2018a) in a deterministic
and static setting. Holes might occur if a patient with a later ready time appears early
in the patient list, or if two patients are assigned successively to the same treatment
room, creating idle time for the beam resource. In this second scenario, we might
schedule another patient who requires a different treatment room in the interim and
thereby minimize beam idle time.

4.2 The reactive procedure

Asalready anticipated inSect. 3.1, the procedurereactdetermines an actual schedule
S(ω) based on a baseline schedule Sbas and random activity durations. In this context,
it is assumed that the random variables Θpid , corresponding to the activity durations,
are not realized up front, but rather revealed successively during the execution of the
reactive procedure. By adopting this scheme, the procedure tries to mimic a human
planner, who also has to deal with longer (or shorter) patient preparation, irradiation
or exit times as they occur. However, this is not the only reason for the specific design
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of the procedure. It was an initial requirement of the ion beam facility’s managers
to make it flexible and generic enough to be able to incorporate day-time dependent
probability distributions and/or correlation between treatment times of subsequent
patients. In essence, the reactive procedure not only provides the “true” durations and
thus the starting and completion times of activities, it also allows for a preponement
of activities in case the sampled durations of preceding activities are smaller than
projected in the baseline schedule. A detailed description of the reactive procedure is
given in Appendix D.

4.3 Solution evaluation

In view of the complexity of the functions sched and react, it seems hopeless
to look for an analytic representation of the objective function of (2) as a function
of the design (X , π, β). Therefore, we resort to Monte Carlo simulation in order to
get a sufficiently precise approximation of the expected value occurring in (2). The
simulation method approximates an expected value with respect to a distribution D
by an average over a sample of randomly selected realizations drawn from D or
from a related distribution. If the distribution is not changed during sampling (the
latter is done, e.g., in the so-called importance sampling method), the weights of the
realizations in the computation of the average are to be chosen as identical, which is
the option we implemented.

It is obvious that the accuracy of the approximation is the better, the larger the
sample size is. We shall work with different sample sizes, depending on the needed
precision of the estimate (for details, see Sect. 5).

The formula for the estimation of the objective function value of a given
design (X , π, β) is shown in Eq. (7) below. A number H of sets of realizations of
random variables, i.e., activity durations Θpid , p ∈ P , i = 1, 2, 3, d = 1, . . . , D, are
generated i.i.d. from distribution D. Note that activity index i = 1 corresponds to the
in-room preparation, i = 2 to the irradation and i = 3 to the post-irradiation exiting.
For each set h, specified by concrete realizations Θh

pid of the activity durations, we
apply the reactive procedure react to the baseline schedule sched(X , π, β) and
the durationsΘh

pid , and compute the three terms in the objective function Eq. (6). This
produces the following SAA estimate:

F̄ = 1

H

( H∑

h=1

[
λ1 ·

D∑

d=1

ϕh
d + λ2 ·

D∑

d=1

n∑

p=1

γpd + λ3 ·
D∑

d=1

n∑

p=1

(δhpd + ρh
pd)

])
. (7)

Therein, ϕh
d denotes the actual beam finishing time in the hth realization, and δhpd and

ρh
pd are the corresponding actual waiting times. Note that the time window violations,

γpd , can already be calculated directly from the baseline schedule and do therefore
not depend on the sampling procedure.

Equation (7) produces an unbiased estimate of the objective function value. We
abbreviate the described evaluation strategy by STO. A disadvantage is that evalua-
tion strategy STO is computationally expensive already for a medium-sized number
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of realizations. Therefore, we also investigated two faster ways of getting estimates
(though not unbiased ones anymore) of the true objective function value:

1. A deterministic approach (DET) to the problem approximates actual beam active
time by the deterministic beam active time of the baseline schedule Xbas . Potential
waiting times of patients are not taken into consideration at all. Consequently, this
approach systematically underestimates the true objective function value. On the
other hand, as the buffer increases, waiting times will diminish in general, possibly
making the deterministic approach more competitive.

2. A quasi-deterministic variant thatwe call “waiting time estimation strategy” (WTE)
approximates actual beam active time again by the deterministic beam active time
ϕ̂d of the baseline schedule. However, we do not neglect waiting times inWTE, but
estimate actual waiting time by leveraging the observed correlation between idle
time on the beam resource (excluding set-up time to particle type switches) and
actual patient waiting time. Using this correlation, we can estimate patient waiting
time by fitting a linear regression of the form

(waiting time) = A + B × (baseline schedule idle time). (8)

The data for this regression is gathered during the heuristic optimization from
some specific intermediate schedules (created by the heuristic) and evaluating the
sample averages of waiting times for those schedules. The regression gets updated
regularly during the execution of the algorithm.

4.4 The (Meta-)heuristic solution approach

We apply a GA metaheuristic, as implemented successfully for various radiother-
apy scheduling problems (Petrovic et al. 2009; Petrovic and Castro 2011; Vogl et al.
2018a, b), all of which deal with deterministic variants of the problem presented here.
We modify the GA variant published in Vogl et al. (2018b), which relies on the off-
spring selectionGA introduced byAffenzeller andWagner (2004), such that it operates
on the problem-specific solution encoding of a “design”, as presented in Sect. 3.1. Note
that the patient priority list as a part of a design is held constant across all days of
the planning horizon. On the one hand, allowing for individual patient sequences per
day would increase the problem’s combinatorics dramatically, leading to excessive
running times of the GA. On the other hand, in view of the desired adherence to
time windows, synchronizing the patient sequences on successive days is at least not
unreasonable.

The pseudocode of the used variant of the GA is shown in Appendix B of this
paper. The offspring selection process of the GA favors individuals that outperform
the fitness of at least one of their parents, where the fitness of an individual is given in
our radiotherapy application by Eq. (1), with F defined by Eq. (6) and approximated
by Eq. (7). The number of reproductive steps to build the next generation of individuals
is limited.

The designs forming the initial population within the GA are generated in a ran-
domized greedy fashion. For each patient p we choose a random treatment pattern xp
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from the set Xp of feasible treatment patterns. This produces a treatment plan X . The
priority list π is either purely randomized or sorted according to the due times τp of
the patients, with slight random variations. The initial value of β, finally, is chosen at
random between 0.5 and 0.99.

Selection of individuals is done using the rank selection operator. Additionally,
a fixed percentage of best individuals of the current generation survive, i.e., they
are included in the next generation (“elitism”). The used crossover operators should
preserve feasibility of the solutions generated from two parent solutions. Hence, we
use the well-known position-based crossover for the patient priority list. The treatment
plan is simply inherited by either parent #1 or parent #2 according to a random choice.
The value of β is inherited from one of the parents in the same way. To create more
diverse descendants, we use mutation operators applied to all three parts X , π and β

of the design Z : (i) the treatment pattern xp of a single random patient p is reset and
newly generated, (ii) a randomly chosen patient shifts to a random new position in the
priority list, and (iii) β is multiplied by a random number between 0.75 and 1.25.

5 Case study and data analysis

This sectionpresents the practical casewe faced.To estimate the underlyingprobability
distributions of durations of the three radiotherapy activities (preparation, irradiation,
and exiting), we analyzed real-world data from 113 patients and 2270 irradiation
appointments. The data was collected in a newly opened ion-beam therapy center in
Wiener Neustadt, Austria, among patients treated in 2017.

The main problemwas to find a good compromise between distribution models that
precisely reproduce the available past data, which would lead to over-fitting, and very
general distribution models on the other hand, which would lead to under-fitting. We
found that widely used distribution types for activity durations such as the lognormal
distribution or the beta distribution yielded only a very poor fit with our data. That is
why we searched for distribution types that better represent our data. We used Easyfit
5.62 as a dedicated software tool for this purpose.

It was assumed that the preparation and exiting activities of all patients follow the
same family of distribution functions. The best-fitting family of distribution functions
for these two types of activities turned out to be that of Burr distributions, with the
general probability density function

f (x) = a · k · (
x

b
)a−1 · 1

b · (1 + ( xb )a)k+1 (9)

and the concrete parameter values shown in Table 10 (see Appendix C). Here, b is a
scale parameter, and a and k are shape parameters. The resulting density functions are
shown in Fig. 5 of Appendix C.

For the irradiation activities, we conjectured that a different family of distribution
functions might probably give a better fit, and that the concrete parameters of the pdf

2 http://www.mathwave.com/easyfit-distribution-fitting.html.
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Fig. 3 Distribution of Duration of Irradiation Activity for 4 Patient Groups

might heavily depend on patient characteristics. Therefore, we clustered the patients
into four groups according to treatment complexity and planned activity durations,
and applied Easyfit to each of these groups. It turned out that in this case, the Dagum
distribution, also known as the emphInverse Burr distribution, achieves the best fit.
Again, the parameter values can be found in Appendix C (Table 10). A graphical
representation of the four density functions is shown in Fig. 3.

King (2017) provides details on the families of Burr and Dagum distribution func-
tions. All distributions are asymmetric and right-skewed, reflecting the comparably
large probability of outliers that exhibit considerably higher duration than the expected
values.

6 Results

This section provides results of extensive computational tests on randomly generated
problem instances of varying sizes. In Sect. 6.1, we begin with a brief description
of the randomly generated instances, optimization parameters, and environment used
for the computational study. Then, Sect. 6.2 addresses the problem of determining the
optimal buffer parameter β, and Sect. 6.3 thoroughly compares the solution evaluation
procedures from Sect. 4.3 on the different buffer parameter values β and objective
function weights. Finally, Sect. 6.4 compares our GA approach to simple rules of
thumb that might be used by a human planner.

6.1 Experimental setup of computational tests

To generate instances for the computational tests, we use data from MedAustron (see
Sect. 5). We analyze test instances where patients are randomly assigned to the four
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Table 1 Classes of Patients and Corresponding Treatment Patterns

Class Np Pattern Instances

1–8 (%) 9–16 (%)

1 5 (1, 1, 1, 1, 1) 44 20

2 3 (0, 0, 1, 1, 1) 4 7

3 2 (1, 1, 0, 0, 0) 6 6

4 3 (1, 1, 1, 0, 0) 6 6

5 4 (1, 1, 1, 1, 0) 4 8

6 4 Earliest break Thursday 6 10

7 4 Earliest break Wednesday 8 12

8 4 Earliest break Tuesday 10 14

9 4 Earliest break Monday 12 16

groups described in Sect. 5 according to the following probabilities: with probability
43%, 29%, 22% and 6%, a patient is assigned to group 1 to 4, respectively. A sequence-
dependent set-up time of 3 min is considered if two patients with different beam types
(protons or carbon ions) are scheduled sequentially on the beam resource.We randomly
assign the beam type to patients, such that 50% receive proton therapy and the other
50% are irradiated with carbon ions. The distribution of patients among the three
treatment rooms is assumed to be balanced, with a probability of 33% for each room.

For the required number of treatments and the corresponding treatment pattern,
we distinguish nine patient classes. The associated treatment patterns (cf. Sect. 3) are
shown in Table 1. We generated 16 random instances. Instances 1 through 8 select
patients from the nine classes according to the first column of probabilities in Table 1,
whereas instances 9 to 16 use the second column.

The instance size varies from 30 to 100 patients. The ready times for the daily
treatments and the time window length are chosen randomly, where the average length
of the time window slightly increases with the ready time: the average time window
length for the first half of the day is 276 min, and it increases to 360 min for the second
half of the daily planning horizon. Furthermore, we assume that 20% of patients do not
have timewindowpreferences.We testmultiple combinations of the objective function
weights λ1, λ2, λ3 for the actual beam active time, the time window violations, and
the actual patient waiting time, respectively, including the balanced case λ1 = λ2 =
λ3 = 1.0 and two cases favoring exploitation of beam capacity over patient-centered
waiting time and time window violations, namely, λ1 = 1.0, λ2 = λ3 = 0.5 and
λ1 = 1.0, λ2 = λ3 = 0.1.

For the GA from Sect. 4.4, we use the following parameters which have proven
to be beneficial in preliminary tests: the population size is 100, the mutation rate is
10%, and the elite segment is 1% of the population. We aim to build 70% of the new
population from children who meet the defined success criterion, while the number
of reproductive steps is limited to 500 (if we fail in building a new population within
this limit, we fill up the population with random children).
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All algorithms were implemented in C++, and the experiments were carried out
on the Vienna Scientific Cluster (VSC3) equipped with compute nodes with two Intel
Xeon E5-2650v2, 2.6 Ghz, and 8 core CPUs each. The runs consisted of two phases,
which will be described below. The CPU time for in phase 1 was chosen as n/10 h,
where n indicates the number of patients in the corresponding instance. The CPU time
in phase 2 was 3600 s.

6.2 Phase 1: optimal buffer determination

As discussed in Sect. 4.1, the value β of the buffer parameter has an essential influence
on the performance of the approach and is therefore part of the decision. In principle,
β could be (heuristically) optimized by our GA together with the other components of
the design Z = (X , π, β) specifically for each new week, based on the actual instance
parameters for the current week, such as the exact number of patients per group, the
assigned treatment patterns, time windows, etc. However, since the distribution of
patient characteristics does not essentially change from week to week, this procedure
is not the most efficient one. In preliminary experiments, we observed that the optimal
value of β turned out as very stable under different instances generated according
to the distribution described in Sect. 6.1, as long as the total number of patients and
the weights in the objective function were kept fixed. Therefore, it saves computation
time and does not deteriorate the results if the value of β is considered as a strategic
decision, made only once for a larger number of weeks in which no essential change
in the distribution of patient characteristics is to be expected, whereas the choices of
X and π (and thus of the baseline schedule) are operational decisions to be made at
the beginning of each week for the current data. In the current subsection, we deal
with the strategic decision on β, and will turn to the operational decision in the next
subsection.

The main advantage of considering the choice of β as a strategic decision is that
a much larger runtime can be devoted to a decision that has not to be repeated each
week. We exploit this by creating larger samples of size 1000 during the evaluation of
the objective function when applying the evaluation procedure STO from Sect. 4.3 in
the context of the heuristic optimization of β, increasing in this way the precision of
the estimate. For the operational (i.e., weekly) planning, a smaller samples size will
be used in order to be fast. In these latter computational runs, the value of β is not
varied anymore by the GA, but “frozen” to the pre-determined value from the strategic
computation.

In the strategic run, we executed the GA with computation times of 3, 5, 7, and
10 h for four different instance sizes n, namely 30, 50, 70, and 100 patients. Table
2 summarizes the findings for the patient mix described in Sect. 6.1 for different
values of n and the vector (λ1, λ2, λ3) of objective function weights indicated above
(characterized by λ3). It can be seen that for a given vector (λ1, λ2, λ3), only small
differences over the instance sizes n result. For each line, we find clear outliers in both
theminimum andmaximum optimized buffer parameter. Yet the inter-quartile range is
generally small, leading us to conclude that the optimal buffer sizes are approximately
0.66 to 0.70 for λ3 = 0.1, 0.78 to 0.80 for λ3 = 0.5, and 0.80 to 0.83 for λ3 = 1.0.
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Table 2 Statistics of optimized
buffer parameters β∗ for 16
random instances with patient
mix probabilities
{43%, 29%, 22%, 6%}; 16
replications per instance

λ3 n Mean Min 25% 50% 75% Max

0.1

30 0.69 0.52 0.68 0.70 0.71 0.74

50 0.67 0.52 0.66 0.68 0.70 0.73

70 0.67 0.50 0.64 0.68 0.70 0.75

100 0.66 0.58 0.64 0.66 0.69 0.73

0.5

30 0.80 0.76 0.79 0.80 0.81 0.84

50 0.79 0.74 0.79 0.80 0.80 0.83

70 0.79 0.74 0.78 0.79 0.80 0.81

100 0.78 0.71 0.77 0.79 0.79 0.82

1.0

30 0.83 0.78 0.82 0.83 0.84 0.86

50 0.82 0.75 0.82 0.82 0.83 0.85

70 0.81 0.75 0.80 0.82 0.82 0.85

100 0.80 0.72 0.79 0.80 0.81 0.84

To investigate the dependence of the optimal buffer parameters on the patient mix,
we also generated instances with artificial patient mixes. Again, each instance ran
16 times with different random seeds. Table 3 presents the average optimized buffer
parametersβ∗ for different patientmixes and instance sizes. The instanceswith patients
from groups 3 ({0%, 0%, 100%, 0%}) and 4 ({0%, 0%, 0%, 100%})—which feature
the largest variance and simultaneously the highest expected activity durations—result
in the smallest optimal buffers. Especially for patient group 4, beam active time
increases drastically with a higher buffer percentile. This effect gets smaller as λ3,
the weight of waiting time in the objective function, increases and the importance of
the beam active time simultaneously diminishes.

The optimized buffer parameters β∗ of the other arbitrarily chosen patient mixes
only slightly deviate from the optimized buffers that result from the patient mix we
observed in the real-world data sets.

6.3 Phase 2: schedule optimization

The second part of our computational study focuses on the comparison of the differ-
ent approaches DET, STO and WTE, respectively, to approximate the true objective
function, i.e., the expected costs (see Sect. 4.3). For STO, preliminary test have shown
that setting H = 100 during the intermediate evaluations in the GA yields a good
compromise between evaluation accuracy and running time limits. In order to be
able to compare the final results produced by the three approaches on safe grounds,
we perform objective function evaluations based on 1,000,000 realizations of activ-
ity durations. Table 4 reports the average results for overall expected costs (i.e., the
weighted objective), beam active duration, waiting times, and penalties for time win-
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Table 5 Results of the Wilcoxon–Mann–Whitney test on a pairwise comparison of methods STO, DET
and WTE

λ3 β STO vs. DET STO vs. WTE WTE vs. DET

STO DET Equal STO WTE Equal WTE DET Equal

0.5

0.50 16 0 0 16 0 0 12 0 4

0.60 16 0 0 16 0 0 14 0 2

0.66 16 0 0 16 0 0 13 0 3

0.68 16 0 0 16 0 0 13 0 3

0.70 16 0 0 16 0 0 11 0 5

0.78 1 5 10 1 9 6 4 1 11

0.80 0 14 2 0 14 2 1 1 14

0.83 0 16 0 0 16 0 0 0 16

0.90 0 16 0 0 16 0 0 0 16

dow violations, for λ1 = 1.0, λ2 = 0.5 and λ3 = 0.5. Some general patterns can be
observed.

First, the waiting time is the smallest for the stochastic optimization variant STO, as
expected. DET andWTEmay produce extremely large waiting times, especially when
the buffer parameter β is small. The advantage of STO diminishes with an increasing
buffer parameterβ, asmight be expected.The larger the buffer parameter, the longer the
planned activity duration, and the smaller the probability that a patient will take longer
than the planned duration. Secondly, the beam active time increases with growing
buffer parameter β, yet the increase is surprisingly small. Third, the penalty term is
almost negligible for most instances. However, for very large buffer parameter values,
the total planned waiting time becomes so large that the time windows preferred by the
patients cannot be respected anymore, leading to a significant penalty in the objective
function. A buffer parameter of 0.90 or larger would only be optimal if the waiting
time weight in the objective function were extremely high, which is not realistic in
practice. Similar effects can be noticedwhenmodifying the objective functionweights,
as shown in Appendix E for λ2 = λ3 = 0.1 (see Table 11) and λ2 = λ3 = 1.0 (see
Table 12).

To assess the quality of the three approaches, we also performed statistical tests.
The well-known Wilcoxon-Mann-Whitney test was applied to pairwise combinations
of methods DET, STO and WTE. For each combination of β and λ3 and for each of
16 random instances, we analyzed 16 runs of the respective methods with different
seeds. We chose a significance level of α = 0.05. Table 5 shows the results of the
significance tests for 100 patients (λ3 = 0.5). The values in the table indicate the
number of instances in which one of the methods is significantly better, or where the
tests reveal no significant difference among methods, respectively. The full table with
results from the significance tests also for λ3 = 0.1 and λ3 = 1.0 is provided in
Appendix E (Table 13).
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Fig. 4 Average Results for 100 Patients from Table 12, Graphically

When comparing the behavior of the three solution approaches, we can identify
different patterns for different regimes of the buffer parameter β: (1) For small β, the
stochastic approach STO has a clear advantage, in that it considers the waiting time of
the patients directly by applying Sample Average Approximation to the evaluation of
each solution candidate in the population. This effect gets stronger with a larger wait-
ing time weight in the objective function (see Table 4). (2) Using the optimized buffer
parameter values (phase 1), the picture changes slightly, and all solution approaches
lead to comparable results. A small advantage accrues to the WTE approach, which
performs slightly better than DET on average, followed by STO. However, the differ-
ences among the three approaches are rarely statistically significant in this buffer size
regime. (3) A higher than optimal β favors DET over other approaches (though not
statistically significantly, as Table 5 shows).

Although the stochastic STO approach usually does not provide superior results
for operational (weekly) planning problems for optimized buffer sizes, relative to the
two other approaches, it is required to solve the strategic problem of determining the
optimal buffer parameter itself. For this purpose, it cannot be replaced by the other
approaches.

Figure 4 shows the evolution of mean waiting times and beam active times, depend-
ing on the buffer parameter β. Again, we see that the different solution approaches
DET, STO, and WTE differ substantially in the waiting times for small β. The larger
the buffer parameter, the more similar the results.

6.4 Comparison to simple rule-based approaches

To be able to better assess the results achieved by the GA, as discussed in Sect. 6.3, we
compare them to simple rule-based approaches that could also be employed by a human
planner. The first rule, referred to as the “latest starting time” (LST) rule, has already
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Table 6 Performance of simple rule-based approaches for generating patient sequences (100 patients,
β = 0.8)

Method Avg. Objective Beam-on Waiting Penalty

Best GA 10,830 8746 1905 180

ERT 77,476 9208 1607 66,661

LST 13,949 9372 1682 2895

Rand. LST 17,675 9434 1586 6654

Random 91,430 9593 1389 80,447

LDV 81,285 10,164 1263 69,859

been described in Sect. 4.4 in the context of the GA’s initial population. It creates a
patient sequence by simply sorting the patients in non-decreasing order of their latest
starting times. In case the same room is occupied by two directly consecutive patients,
the decoder would account for this through its “hole-filling” strategy. The LST rule
also exists in a randomized version, constructing the patient sequence in a stepwise
manner. At each step, the patient for the next sequence position is randomly chosen
from a list of patients with the ten smallest latest starting times among all remaining
ones. To account for the beam-on time, it might be beneficial to schedule the patients
in a sequence that causes the least idle time on the beam resource. Again, this is done
in an iterative fashion, based on the patients’ earliest availabilities. We refer to this
rule as the “earliest release time” (ERT) rule. A completely different approach is to
rank the patients according to their treatment time variance in non-decreasing order.
The idea of this “least duration variance” (LDV) rule is to move patients with highly
varying treatment durations to later times of the day. The stable time windows are
ignored, however. Finally, we take a look at purely randomized patient sequences, to
get a glimpse of what is actually the absolute baseline performance.

Table 6 summarizes the results obtained by the rules described above and compares
them to the best solution obtained by the GA under the same experimental conditions.
The computational evaluation was conducted using a set of 16 instances with 100
patients (see Sect. 6.1), objective function weights λ1 = λ2 = λ3 = 1.0, a buffer
parameter β = 0.8 and a sample size of 1000000. It can be observed that the two LST-
based rules perform best among the simple rules from an overall perspective. The other
rules achieve exactly what they were designed for, with obvious side effects: LDV is
in fact able to achieve the lowest waiting time, but entails also the second highest time
window violation penalties. A similar effect arises for ERT which in turn leads to the
lowest beam on time.

6.5 Linkage to chance-constrained programming

From the facility’s management perspective, it might be desirable to guarantee, or at
least advertise a certain level of service or reliability. Still considering the patients’
waiting time as the most crucial factor, this could be about trying to keep it within
a certain range. A threshold value or upper bound on this waiting time might reflect
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Table 7 Average waiting time
and threshold violation penalties
for instances with 100 patients
and various combinations of
buffers and waiting time
thresholds

Buffer Threshold Waiting Thr. Penalty

0.6 10 4980 172,459

0.6 20 4172 31

0.7 10 2728 8197

0.7 20 2813 0

0.8 10 1699 0

a “bearable” time span that patients are still willing to spend in the waiting area of
the facility before getting too impatient. It is not always necessary to ensure ultimate
adherence to that threshold value for all patients, especially under uncertainty. Rather,
it is common to define a certain probability by which the threshold can be exceeded.
This is usually covered by chance-constrained programming (CCP) (Geletu et al.
2013; Shylo et al. 2013; Deng et al. 2019, see,e.g.). However, due to the complexity
of the second stage decisions, involving non-linear decision making by the reactive
procedure described in Sect. 4.2, we currently see no way of capturing this part of our
approach in a classical, analytical stochastic programming formulation. Therefore,
also the implementation of chance constraints in the conventional sense appears out of
reach.Nevertheless,we try to cover the reliability aspect by adopting a slightly different
approach by modifying the objective function such that a “stochastic threshold” can
be considered.

We define a threshold value W for the average (total) waiting time of a patient and
count the number of cases in which that threshold value is exceeded (across a sample
of size H ). The corresponding relative quantity can be interpreted as the probability
of violating the mean waiting time upper bound constraint. To limit that probability to
a predefined value, denoted by α, we modify the existing, sampling-based objective
function F in the following fashion:

F̃ = 1

H

( H∑

h=1

[
λ1 ·

D∑

d=1

ϕh
d + λ2 ·

D∑

d=1

n∑

p=1

γpd

])
+

M ·
⎧
⎨

⎩
1

H
·

H∑

h=1

I

⎛

⎝ 1

D · n
D∑

d=1

n∑

p=1

(δhpd + ρh
pd) ≥ W

⎞

⎠ − α

⎫
⎬

⎭

+
, (10)

where I is an indicator function, yielding the value 1 if the expression passed as an
argument evaluates to “true” and 0 otherwise. The parameter M is a penalty cost
coefficient that is also provided as a constant. When embedding the overall objective
function F̃ in our GA, we gradually increase M during the run of the GA to even
more strongly enforce the creation of “feasible” solutions. Given a particular value α,
a solution is called feasible if the proportion of the sample violating the waiting time
upper bound W stays below α. Table 7 shows an analysis of GA runs using objective
function F̃ (Eqn. (10)). It is based on 16 instances with 100 patients (16 independent
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runs per instance), α = 0.01, β ∈ {0.6, 0.7, 0.8}, M = 10000, and waiting time
thresholds (W ) of 10 and 20 min, respectively.

It can be observed that it is not possible to ensure that in less than 1% of the cases
the threshold value for β = 0.6 and β = 0.7 and W = 10 is exceeded. Being able
to ensure average waiting times of less than 10 min with a probability of 99%, as it
is the case when setting β = 0.8, might be an appealing goal, also from a practical
perspective. We think that this confirms once more the effectiveness of the buffer
approach also in this quite specific setting.

7 Conclusion

The present study confirms the importance of considering stochastic activity durations,
well-known in the literature on appointment scheduling, for the case of radiotherapy
scheduling. In this context, an issue complicating the schedulingprocess is the presence
of pre-treatment and post-treatment activities, the durations of which are stochastic as
well. In total, this gives rise to a stochastic decision processwith complex dependencies
resulting from the precedence constraints at the patients’ level on the one hand, and
from the fact that the beam resource is shared by multiple competing treatment rooms
on the other hand.

To account for possible variations in activity durations and to produce more robust
baseline schedules, we rely on a buffer parameter describing the quantile of the fitted
distribution to which the planned activity durations are to be enlarged. The determi-
nation of the optimal buffer size itself requires stochastic sampling, as the objective
function value in our model (the mathematical expectation of a quantity resulting
from a complex scheduling procedure) cannot be computed analytically. In an attempt
to save computation time at least in the course of the (heuristic) optimization of the
schedule on the operational level of weekly planning, we also investigate two alter-
natives to stochastic sampling, namely a deterministic variant that completely ignores
waiting time, and a quasi-deterministic variant that estimates the expected waiting
time of a schedule through linear regression. Our numerical results suggest that if the
buffer size has already been adjusted optimally, then on the operational decision level,
stochastic sampling can be replaced by the faster regression-based approach without
loss of solution quality.

Our approachmight also be applicable to similar settings in other ion beam facilities,
as long as only one beam resource is involved. The number of treatment rooms, on
the other hand, can be arbitrary. Especially the buffer concept is quite generic, since
it is independent of the fitted distribution(s).

We plan to continue studying more advanced techniques to estimate actual waiting
times by identifying appropriate features of the baseline schedule. In particular, more
sophisticated regression approaches from machine learning domains may be helpful.
Solving the underlying problem to optimality using two-stage stochastic programming
would be another interesting stream of research, which, however, would possibly
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require a more stylized reactive scheduling strategy to make the expected cost of the
recourse action representable by explicit mathematical expressions.
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A Symbols and abbreviations

Tables 8 and 9 list all symbols and abbreviations used throughout the paper and in the
appendix. The tables are split into four parts: Sets, input data, variables that are fixed
when building a (deterministic) baseline schedule (Table 8), and random variables,
which are either drawnduring the executing of the reactive procedure or can be deduced
from those randomly drawn variables when applying the reactive procedure (see Table
9).

Table 8 Sets, input data, and baseline schedule variables to describe the radiotherapy appointment schedul-
ing problem

Notation Description

P Set of all patients, p ∈ {1, . . . , n}
{1, . . . , D} Set of days in the planning horizon, d ∈ {1, . . . , D}
I Set of activities, i ∈ {1, 2, 3}
R General set of resources, index r ∈ {1, . . . , R}
Rpi Set of required resources for activity i and patient p

RRoom Set of room resources

RBeam Set including the beam resource

H Set of realizations, h ∈ {1, . . . , H}
β Buffer parameter, 0.5 ≤ β ≤ 1.0

tpi Planned duration of activity i of patient p including possible buffer, input

u pqr Setup time between patient p and patient q on resource r , input

Np Number of daily treatment sessions for patient p in the planning horizon, input

λ1, λ2, λ3 Objective function weights for beam time, time window penalties and waiting time,
respectively, input

rp Daily release time of patient p, input

qp Daily due time for patient p, input

Apd Forced treatment day for patient p on day d, binary input

s̄ pid Planned starting time for patient p’s activity i on day d, variable fixed in baseline schedule
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Table 8 continued

Notation Description

spidr Planned starting time for patient p’s activity i on day d at resource r , variable fixed in
baseline schedule

f̂d Planned finish time of last activity on the beam resource on d, variable fixed in baseline
schedule

γpd Time window violation for patient p on day d, variable fixed in baseline schedule

ypqdr Binary variable indicating immediate successor of patient q, namely patient p, on day d and
resource r , fixed in baseline schedule

apd Binary variable indicating whether a DT takes place on day d for patient p, fixed in baseline
schedule

Table 9 Random variables of the radiotherapy appointment scheduling problem

Notation Description

Θ
(h)
pid Actual duration of activity i of patient p on day d (in realization h), random variable

σ̄pid Actual starting time for patient p’s activity i on day d, calculated through reactive procedure

f (h)
d Actual finish time of last activity on the beam resource on d (in realization h), calculated

through reactive procedure

δ
(h)
pd Pre-preparation waiting time for patient p on day d (in realization h), calculated through

reactive procedure

ρ
(h)
pd Pre-irradiation waiting time for patient p on day d (in realization h), calculated through

reactive procedure
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B Genetic algorithm with offspring selection as proposed in Affen-
zeller andWagner (2004)

Algorithm 2: GA with Offspring Selection (Affenzeller and Wagner 2004)
1 P0 ← CreateInitialPopulation();
2 sbest ← argminp∈P0

(ObjVal(p));

3 i ← 0;
4 repeat
5 Pi+1 ← GetElites(Pi );

6 CB ← ∅;
7 while |Pi+1| < 0.7 · |Pi | ∧ |Pi+1| + |CB | < 5 · |Pi | do
8 p1 ← PerformSelection(Pi );
9 p2 ← PerformSelection(Pi );

10 c ← Crossover(p1,p2);
11 c ← Mutate(c);
12 if ObjVal(c) < min(ObjVal(p1),ObjVal(p2)) then
13 Pi+1 ← Pi+1 ∪ {c};
14 else
15 CB ← CB ∪ {c};
16 end
17 end
18 while |Pi+1| < |Pi | do
19 c ← ChooseRandomElement(CB );
20 Pi+1 ← Pi+1 ∪ {c};
21 CB ← CB \ {c};
22 end
23 if argminp∈Pi+1

(ObjVal(p)) < ObjVal(sbest ) then
24 sbest ← BestOfPopulation(Pi+1);
25 end
26 i ← i + 1;
27 until termination criterion met;

C Detailed distribution fitting results

Fig. 5 Distribution of the durations of preparation and exiting activities
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Table 10 Properties of fitted distributions for preparation (Pre), irradiation (Irr), and exiting (Ex) activities

Act. Dist Group %P k a b Mean Stdev CV 25% 50% 75%
Pre Burr – 100% 0.2 13.4 10.3 15.1 8.9 0.6 11.0 12.9 16.3

Irr Dagum 1 43% 1.4 4.1 10.0 12.3 5.8 0.5 8.8 11.1 14.3

Irr Dagum 2 29% 1.3 7.7 14.5 15.6 3.7 0.2 13.3 15.2 17.4

Irr Dagum 3 22% 0.6 10.1 21.6 20.3 4.4 0.2 17.6 20.2 22.8

Irr Dagum 4 6% 1.5 3.8 21.4 27.7 14.1 0.5 19.3 24.7 32.3

Ex Burr – 100% 0.6 5.3 3.9 5.2 3.2 0.6 3.6 4.5 5.9

“Act.” gives the activity type, “Dist” describes the distribution family, “Group” is the patient group and,
“%” is the corresponding probability of a patient belonging to the given group according to estimates by the
facility. Whereas “k,” “a,” and “b” are the distribution parameters, “mean,” “stdev,” and “CV” the mean,
standard deviation, and coefficient of variation of the distribution, respectively. The columns “25%,” “50%,”
and “75%” include the quartiles of the distribution

DA detailed look on the reactive procedure

Algorithm 3 shows the functional principle of the reactive procedure. For a given day
d ∈ {1, . . . , D}, it schedules the patients’ activities in a chronological manner, in non-
decreasing order of their planned start times. For this purpose, a queue is used as central
data structure. Once an activity is dequeued, first its actual start time is determined.
Depending on the type of the activity, this step is more or less complicated. In fact,
it is quite simple for exit activities, because they are assumed to start as soon as the
room is available and the irradation activity has finished. The course of action taken
for the irradiation activities is similar, with one exception: a setup (changeover) time
may have to be considered, subject to whether a beam switch is required between the
preceding irradiation and the current one. The setup time required to switch the beam
between two patients q and p is denoted by uqp.

The determination of an activity’s preparation start time requires slightly more
effort. Let p denote the current patient (at index position j) and q the patient occurring
immediately before p in the patient priority list (sequence) π , i.e., q = π[ j−1]. The
actual logic for the computation of the preparation start time σ̄p1d is encapsulated
in procedure SetPreparationStartTime (see Algorithm 4). A very important
assumption in this context is the arrival time of the patients, which, according to the
facility, can be expected to be 15 min before their planned starting time. This permits
a preponement of activities for which we distinguish two different cases:

• Case 1 The planned preparation start time s̄ p1d of the current patient p is larger
than the actual irradiation start time σ̄q2d of its predecessor q and the irradiation
of q has in fact been started earlier than planned. Then the preparation activity
of p can be preponed as well. Figure 6 depicts the idea of this approach: the
amount by which the preparation of p is started earlier is simply determined as
Δ = s̄q2d − σ̄q2d .

• Case 2 The planned preparation start time s̄ p1d of the current patient p is larger
than the actual preparation start time σ̄q1d of its predecessor q and the preparation
of q has in fact been started earlier than planned. Also in this case, p’s activity can
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Algorithm 3: Outline of procedure react
In : A baseline schedule Sbas , providing planned start times s̄ pid for all

activities, a vector Θ of partially revealed random activity durations and a
day index d.

1 init activity queue Q ← ((π[1], 1));
2 init activity pointers for patients h[p] ← 1, for all p ∈ P;
3 init earliest resource starting times wr ← 0, for all r ∈ R;
4 σ̄pid ← ∞, for all p ∈ P , i = 1, 2, 3, d ∈ D;
5 j ← 1 ; /* Current position in patient sequence */
6 while Q.si ze() > 0 do
7 (p, i) ← Q.dequeue();
8 if i = 1 then
9 q ← π[ j−1];

10 SetPreparationStartTime( j , p, q, s̄, σ̄ , w, r );
11 Sample Θp1d from prep. time distribution;
12 wμ(p) ← σ̄p1d + Θp1d ;
13 else if i = 2 then
14 σ̄p2d ← max(w0 + uqp, σ̄p1d + Θp1d);
15 Sample Θp2d from irradiation time distribution;
16 w0 ← σ̄p2d + Θp2d ;
17 else
18 σ̄p3d ← max(wμ(p), σ̄p2d + Θp2d);
19 Sample Θp3d from exit time distribution;
20 wμ(p) ← σ̄p3d + Θp3d ;
21 end
22 if j < n and h[π[ j+1]] ≤ 3 then
23 p′ ← π[ j+1] ; /* Check next patient in sequence */
24 i ′ ← h[p′];
25 if s̄ p′i ′d < σ̄pid + Θpid then
26 TryEnqueue(Q, h, p’, i’);
27 TryEnqueue(Q, h, p, i + 1);
28 else
29 TryEnqueue(Q, h, p, i + 1);
30 TryEnqueue(Q, h, p’, i’);
31 end
32 else TryEnqueue(Q, h, p, i + 1)
33 if i = 3 then j ← j + 1
34 end

be preponed by the same amount as q, that is, Δ = s̄q1d − σ̄q1d , as shown in Fig.
7.

After an activity’s start time has been calculated, its actual duration is sampled
from the corresponding probability distribution, yielding a realization of the respective
random variable Θpid . Then an update of the associated room’s earliest availability
time wr is performed, where μ(p) denotes the room patient p is assigned to and w0
the earliest availability time of the beam resource. After this, the procedure checks
whether the next activity of the successor patient p′ = π[ j+1] can be scheduled next
from a chronological perspective. Note that an array h is used to keep track of each
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Algorithm 4: Outline of procedure SetPreparationStartTime
In : A position index j , patient indices p and q, and vectors s̄, σ̄ , w and r for planned start times,

(partially) set actual start times, earliest room availabilies, and earliest patient availabilities,
respectively

1 if j = 1 then
2 σ̄p1d ← s̄ p1d ;
3 else
4 if s̄ p1d > σ̄q2d and σ̄q2d < s̄q2d then
5 σ̄p1d ← max(s̄ p1d − (s̄q2d − σ̄q2d ), wμ(p), rp);
6 else if s̄ p1d > σ̄q1d and σ̄q1d < s̄q1d then
7 σ̄p1d ← max(s̄ p1d − (s̄q1d − σ̄q1d ), wμ(p), rp);
8 else
9 σ̄p1d ← max(s̄ p1d , wμ(p), rp);

10 end
11 end

Algorithm 5: Outline of procedure TryEnqueue
In : A queue Q, activity pointers h, a patient index p and an activity index i

1 if i ≤ 3 and i ≥ h[p] then
2 Q.enqueue(p, i);
3 h[p] ← h[p] + 1;
4 end

patient’s next (unprocessed) activity. If the start time check succeeds, the successor
patient’s activity is added to the processing queue, immediately followed by the next
activity of the current patient. Otherwise, these two activities are enqueued in reverse
order. If the current patient p is the last patient in the priority list, or if all activities
of the successor patient are either already scheduled or currently queued, only the
current patient’s next activity is enqueued (if possible). Procedure TryEnqueue (see
Algorithm 5) accomplishes all associated checks and updates: the provided activity
index i is checked for validity in the sense that it has to correspond to an unprocessed
activity. Note that an activity is considered as processed as soon as it enters the queue
and therefore the activity “pointer” h[p] for that patient is increased right after the
enqueuing operation.

Figure 8 depicts the decision process of the reactive procedure using an example
that allows for early starts of preparation activities. Patient P1’s preparation takes less
time than scheduled, so P1 starts its irradiation as early as possible. For patient P2,
case 1 applies: We prepone P2’s preparation activity by the same amount that P1’s
irradiation is preponed (here, 5 min). The same strategy applies to P3. The decision
about the potential preponement of P4 is more difficult though, because by the time
P4’s preparation could start, P3’s preparation is still ongoing. However, P3 started
preparation 5min early, so we suggest preponing P4’s preparation by the same amount
(Case 2). Finally, P2’s exiting activity took longer than expected. Therefore P5’s
preparation is delayed by 5 min.
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Fig. 6 Early start of a
preparation activity subject to a
potentially preponed
predecessor beam activity

Fig. 7 Early start of a preparation activity subject to a potentially preponed predecessor preparation activity

Fig. 8 Visualization of Reactive Procedure. Top: Baseline schedule including planned activity starting
times. Bottom: Actual executed schedule with activity durations and starting times. White: preparation
times; dark gray: irradiation times; medium gray: exiting times
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In practice, preponing patients by more than 15 min is rarely possible, because they
are unlikely to have arrived at the facility so early. Therefore, the sequence of patients
cannot be changed without causing some waiting time or stress.

E Additional result tables

Table 11 Average results of 16 randomly generated instances and 16 replications for each instance

Exp. objective Beam, λ1 = 1.0 Waiting, λ3 = 0.1 Penalty, λ2 = 0.1

Pat. β DET STO WTE DET STO WTE DET STO WTE DET STO WTE

30 0.50 2778 2694 2781 2396 2453 2399 3817 2392 3812 6 16 7
30 0.60 2676 2657 2674 2419 2466 2419 2557 1904 2554 7 9 5
30 0.66 2633 2635 2631 2445 2474 2447 1872 1597 1839 10 9 7
30 0.68 2623 2630 2622 2459 2484 2459 1638 1443 1623 5 9 8
30 0.70 2619 2627 2616 2474 2497 2473 1439 1295 1425 9 10 8
30 0.80 2678 2700 2681 2610 2634 2612 657 626 649 27 28 33
30 0.90 3049 3077 3051 2996 3025 2999 317 305 314 214 208 208

50 0.50 4709 4315 4704 3809 3890 3808 8984 4200 8934 19 57 18
50 0.60 4396 4259 4391 3827 3919 3831 5660 3348 5575 32 49 27
50 0.66 4247 4228 4248 3861 3940 3867 3814 2818 3767 53 62 43
50 0.68 4221 4220 4216 3888 3956 3890 3275 2571 3210 54 69 49
50 0.70 4195 4212 4192 3914 3978 3915 2750 2266 2717 61 80 60
50 0.80 4273 4320 4276 4152 4204 4156 1057 1009 1047 155 150 149
50 0.90 4908 4988 4917 4794 4873 4802 475 450 471 674 693 672

70 0.50 7125 6146 7089 5427 5534 5452 16968 5983 16358 6 133 7
70 0.60 6463 6049 6449 5449 5578 5465 10120 4631 9825 16 81 18
70 0.66 6156 6020 6144 5512 5615 5511 6408 4000 6306 24 52 23
70 0.68 6082 6022 6067 5544 5640 5542 5341 3767 5211 35 50 33
70 0.70 6023 6009 6013 5579 5664 5579 4402 3396 4309 37 57 38
70 0.80 6127 6198 6134 5964 6040 5973 1468 1398 1453 158 177 163
70 0.90 7137 7298 7150 6908 7048 6920 628 588 623 1661 1912 1671

100 0.50 10878 8860 10681 7891 7980 7940 29865 8570 27398 2 227 5
100 0.60 9574 8736 9498 7863 8053 7901 17108 6739 15964 10 89 10
100 0.66 8965 8648 8944 7926 8086 7952 10374 5570 9904 14 54 14
100 0.68 8825 8671 8815 7990 8139 8013 8327 5282 8000 19 43 18
100 0.70 8722 8664 8711 8055 8181 8068 6644 4776 6403 27 52 32
100 0.80 8883 8975 8892 8646 8733 8658 2032 1951 2012 345 461 322
100 0.90 10624 10939 10645 10002 10169 10019 843 798 838 5370 6905 5421

λ3 = 0.1, optimization time limit of 1 h. Bold numbers represent the best solutions per line. Lines with
optimal buffer parameters are in gray
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Table 12 Average results of 16 randomly generated instances and 16 replications for each instance

Exp. objective Beam, λ1 = 1.0 Waiting, λ3 = 1.0 Penalty, λ2 = 1.0

Pat. β DET STO WTE DET STO WTE DET STO WTE DET STO WTE

30 0.50 6209 4265 5866 2399 2616 2696 3809 1636 3167 0 13 2
30 0.60 4983 3874 4838 2422 2654 2660 2561 1211 2177 0 9 1
30 0.70 3915 3509 3889 2478 2679 2557 1437 826 1332 0 4 0
30 0.78 3356 3296 3338 2580 2696 2583 774 596 753 2 4 2
30 0.80 3275 3252 3262 2616 2701 2618 654 545 639 5 7 5
30 0.83 3220 3220 3212 2698 2756 2700 510 450 498 12 15 14
30 0.90 3456 3483 3451 3026 3068 3029 310 284 304 120 130 118

50 0.50 12743 7207 11239 3815 4109 4484 8927 3031 6746 1 68 9
50 0.60 9520 6376 8617 3846 4186 4455 5670 2141 4151 5 49 11
50 0.70 6684 5716 6529 3929 4247 4176 2725 1423 2323 29 46 30
50 0.78 5453 5374 5412 4115 4300 4137 1258 984 1195 80 90 80
50 0.80 5327 5306 5298 4178 4310 4185 1042 886 1009 106 110 105
50 0.83 5263 5296 5250 4304 4416 4316 801 715 775 158 166 158
50 0.90 5803 5895 5789 4851 4938 4852 462 428 456 490 529 481

70 0.50 22369 10605 18078 5439 5813 6376 16928 4619 11664 1 173 38
70 0.60 15490 9150 13232 5467 5925 6341 10020 3132 6872 4 93 19
70 0.70 9941 8185 9531 5602 6037 6106 4325 2096 3410 14 51 15
70 0.78 7729 7632 7682 5918 6147 5949 1757 1409 1676 55 76 57
70 0.80 7529 7530 7488 5999 6192 6017 1448 1229 1392 83 110 79
70 0.83 7419 7508 7398 6199 6355 6210 1082 975 1050 138 178 138
70 0.90 8861 9334 8884 6978 7129 6998 611 563 601 1273 1642 1286

100 0.50 37421 15382 28795 7899 8372 9071 29522 6778 19666 0 232 58
100 0.60 24600 13428 20141 7898 8532 9078 16702 4782 11031 0 113 32
100 0.70 14576 11801 13699 8123 8681 8844 6451 3083 4849 2 37 6
100 0.78 11125 11055 11024 8594 8887 8660 2440 1971 2281 91 197 82
100 0.80 10880 10989 10830 8712 8946 8746 1989 1727 1905 179 316 180
100 0.83 10871 11142 10852 9019 9193 9035 1469 1357 1428 384 592 389
100 0.90 15607 17397 15783 10088 10275 10111 828 780 819 4692 6342 4853

λ3 = 1.0, optimization time limit of 1 h. Bold numbers represent the best solutions per line. Lines with
optimal buffer parameters are in gray
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Table 13 Wilcoxon–Mann–
Whitney test to pairwise
compare methods STO, DET
and WTE for 16 random
instances with 100 patients

STO vs. DET STO vs. WTE WTE vs. DET

λ3 β STO DET Equal STO WTE Equal WTE DET Equal

0.1
0.50 16 0 0 16 0 0 12 0 4
0.60 16 0 0 16 0 0 7 0 9
0.66 16 0 0 16 0 0 2 0 14
0.68 15 0 1 14 0 2 1 0 15
0.70 10 0 6 10 0 6 2 0 14
0.78 0 13 3 0 11 5 0 1 15
0.80 0 13 3 0 13 3 0 2 14
0.83 0 15 1 0 14 2 0 0 16
0.90 0 16 0 0 16 0 0 2 14

0.5
0.50 16 0 0 16 0 0 12 0 4
0.60 16 0 0 16 0 0 14 0 2
0.66 16 0 0 16 0 0 13 0 3
0.68 16 0 0 16 0 0 13 0 3
0.70 16 0 0 16 0 0 11 0 5
0.78 1 5 10 1 9 6 4 1 11
0.80 0 14 2 0 14 2 1 1 14
0.83 0 16 0 0 16 0 0 0 16
0.90 0 16 0 0 16 0 0 0 16

1.0
0.50 16 0 0 16 0 0 15 0 1
0.60 16 0 0 16 0 0 15 0 1
0.66 16 0 0 16 0 0 16 0 0
0.68 16 0 0 16 0 0 15 0 1
0.70 16 0 0 16 0 0 14 0 2
0.78 14 2 0 10 2 4 12 0 4
0.80 8 4 4 1 8 7 12 0 4
0.83 0 12 4 0 16 0 8 0 8
0.90 0 16 0 0 16 0 0 1 15

16 replications per run. Significance level is α = 0.05. Entries show
the number of instances where either of the two pairwise compared
methods is significantly better than the other method. Column “equal”
lists the number of instances where neither of the methods performed
better than the other. Lines with optimal buffer parameters in gray
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