
Vol.:(0123456789)

Central European Journal of Operations Research (2021) 29:425–445
https://doi.org/10.1007/s10100-020-00695-5

1 3

A hybrid evolutionary algorithm for the offline Bin Packing
Problem

Istvan Borgulya1 

Received: 27 September 2019 / Accepted: 27 June 2020 / Published online: 15 July 2020
© The Author(s) 2020

Abstract
In this paper we present an evolutionary heuristic for the offline one-dimensional
Bin Packing Problem. In this problem we have to pack a set of items into bins of the
same capacity, and the objective is to minimize the number of bins used. Our algo-
rithm is a hybrid evolutionary algorithm where an individual is a feasible solution,
and it contains the description of the bins. The algorithm works without recombina-
tion; it uses two new mutation operators and improves the quality of the solutions
with local search procedures. The mutation operators’ work is based on a relative
pair frequency matrix, and, based on this matrix, we know the frequency of every
pair of items i.e. how often they are included in the same bin in the best solutions.
The frequency matrix helps to pack items into subsets of items; these subsets are the
bins in our problem. The algorithm was tested on well-known benchmark instances
from the literature and was compared with both evolutionary and state-of-the-art
algorithms. Our algorithm achieved a valuable result with the difficult hard28 test
set, and in most of the test problems it reached the optimum.

Keywords  Local search · Bin packing · Evolutionary algorithm

1  Introduction

In the offline one-dimensional Bin Packing Problem (BPP) we have a set of n items
and an unlimited number of bins. Every bin’s capacity is c > 0 and every item i (i = 1,
2, …, n) has a size si > 0 and si ≤ c. The goal is to pack the items into the minimum
number of bins with the capacity of the bins not exceeded: for every bin k

∑

i∈bin(k)

si ≤ c.

 *	 Istvan Borgulya
	 borgulya.istvan@ktk.pte.hu

1	 University of Pecs Hungary, Rakoczi ut 80, 7621 Pecs, Hungary

http://orcid.org/0000-0002-0503-6630
http://crossmark.crossref.org/dialog/?doi=10.1007/s10100-020-00695-5&domain=pdf

426	 I. Borgulya

1 3

BPP belongs to the ‘cutting & packing’ problems. There are many industrial and
logistic applications of BPP such as loading trucks with weight limitations, stock-
cutting problems where the bins correspond to standard lengths of some material
(cable, paper) from which items must be cut (Coffman et al. 1996).

BPP is NP-hard (Garey et al. 1979), and many exact, heuristic and meta-heuristic
algorithms have been published to solve it. It was, in fact, solved exactly using dynamic
programming, LP relaxation, branch-and-bound, branch-and-price and constraint pro-
gramming methods (see e.g. Delorme et al. 2016). The exact methods can give the opti-
mal solution, and we can use them to solve small BPP cases in a reasonable time.

The approximation algorithms, heuristics and meta-heuristics are not guaranteed
to find the optimal solution, but their running time is short. The first group of meth-
ods comprise the approximation algorithms which had their performances mathe-
matically analysed. The most successful are the First-Fit Decreasing and Best-Fit
Decreasing methods.

The heuristic methods are search algorithms that are able to find the global opti-
mum only with a high degree of probability. They are usually repeated and so produce
best and average results. The common heuristic methods are improved versions of the
approximation algorithms, versions with local searches and heuristics generated with
genetic programming (Burke et al. 2006). There are meta-heuristics for BPP also. We
can find simulated annealing, tabu search, variable neighbourhood search and weight
annealing (e.g. Alvim et al. 2004; Buljubašić and Vasquez 2016; Fleszar and Hindi
2002; Loh et al. 2008). Some methods use evolutionary techniques: ant colony opti-
mization, evolutionary strategy and genetic algorithms (e.g. Bugger et al. 2004; Falk-
enauer 1996; Quiroz-Castellanos et al. 2015; Stawowy 2008). There are also hyper-
heuristics combined with simulated annealing or genetic algorithms (e.g. Jiang et al.
2011; López-Camacho et al. 2011) and parallel grouping genetic algorithms also (e.g.
Dokeroglu and Cosar 2014; Kucukyilmaz and Kiziloz 2018). A possible evolution-
ary method for BPP is the estimation of distribution algorithm (EDA) also (regarding
EDA see e.g. Pelikan et al. 1999). The EDA estimates a probability distribution from
a set of solutions and usually updates the estimated distribution in every generation.
The new solutions are generated using the probability distribution (this is the sam-
pling). For 3D BPP with various bin sizes we found a method, which applies an EDA
(Cai et al. 2013). For one-dimensional BPP no similar EDA exists.

In this paper, our motivation was to build an evolutionary algorithm (EA) for
BPP which gives a better result than the earlier evolutionary techniques and solves
the difficult hard28 test set successfully. For this we planned to use a relative pair
frequency matrix. From this matrix (RPFM) we know the frequency of every pair
of items also how often they are members of the same bin in the best solutions. On
this basis we can pack items into subsets of items; these subsets are the bins in our
problem. Higher values of frequency mean better pairs of items in the same bin. The
RPFM is a modified version of the ECM matrix of the knapsack problems (see Bor-
gulya 2019). (See RPFM in Sect. 2.)

For permutation problems we can also find models where there is a matrix based on
variable pairs. (These include the Travelling salesman, Flow shop, Linear ordering and
Quadratic assignment problems.) There is also a model based on consecutive variable
pairs for permutation-based EDA (Cerebio et al. 2012). The edge histogram model

427

1 3

A hybrid evolutionary algorithm for the offline Bin Packing…

estimates a probabilistic model that learns the adjacency of variables in the selected
individuals at each generation (Tsutsui et al. 2003). The matrix of this model gives at
every variable the probability of the nearest neighborhood variables in a permutation.
The sampling generates a permutation based on the matrix. We use RPFM in another
way. With our RPFM model we can generate subsets of items searching for appropri-
ate pairs of items, and the permutation of the items is not important in a subset.

The basic features of our EA were:

•	 The individual contains a feasible solution—the bins with their items.
•	 In every generation we select one individual for descendent.
•	 In the individual we select fully filled and almost full bins into a special set (FB).
•	 We use two new mutation operators based on a relative pair frequency matrix.

The mutation operators work only on the not full bins of the descendent; the FB
bins are not modified.

•	 We use local searches to improve the results and modify the bins in FB.
•	 The algorithm is terminated if the running time limit is reached. The best solu-

tion will be the result.

In planning our EA we used first the mutation operators without local search pro-
cedures. Based on the test results, our EA could solve the not difficult instances opti-
mally and, with the optimal number of bins plus one extra bin, the other instances.
To improve the result, we next used local search procedures also. The EA applied
repeatedly a group of local searches, 8–10 such searches consecutively (see local
searches in Sect. 3.2). In most problems we reached the optimum. Our goal, how-
ever, was to solve the difficult hard28 test set optimally also. Using local searches
our algorithm solved all instances of hard28 optimally without the extra bin.

Our contribution, therefore, is a new hybrid EA for BPP (named HEA) and its
key features are:

•	 We use a relative pair frequency matrix to select items into subsets.
•	 Based on this relative pair frequency matrix, we can construct bins and solutions.
•	 We use two new mutation operators based on this matrix.
•	 In the individual we isolate the fully filled and almost full bins into a special set,

these bins not being modified by mutations.

The remainder of our paper is organized as follows: Sect. 2 describes some
important elements of the algorithm; Sect. 3 gives the main steps of the hybrid HEA
algorithm. The computational results are reported in Sect. 4, and the conclusions
form Sect. 5.

2 � Preliminaries

Let us first examine some important elements of our algorithm. They are the fullness
of a bin, the structure of the individual, the fitness function, the RPFM model, the
bin-packing procedure, the initial population and the Unified Computational Time.

428	 I. Borgulya

1 3

2.1 � Fullness of a bin

For the operation of the HEA, we defined a fullness proportion limit (fpl). The val-
ues of fpl can be 0.99, 0.999 or 0.9999. If the fullness proportion of a bin from the
individual is higher than fpl we say that the bin is full and belongs to the set of
full bins (FB). The other bins of the individual belong to the group of not full bins
(NFB).

HEA applies two mutation operators based on the RPFM (see mutation in
Sect. 3). Both mutation operators work only on NFB of the descendent, and so the
use of the FB set can improve the speed of the algorithm. If the FB set is empty, the
running time of a generation is longer. Only local searches can modify the FB bins
in every generation. These local searches keep these bins in FB; the bins remain
fully filled bins and the fullness proportions of the bins do not decrease.

2.2 � The structure of the individual

Every individual of the population contains the description of the bins. The individ-
ual contains all the important data: the number of bins, the number of items in each
bin, the identification numbers of the items and the fullness proportion of the bin. If
the fullness proportion of a bin is higher than fpl the bin belongs to the FB set—oth-
erwise to the NFB set. The size of the individuals can be different.

2.3 � Fitness function

The fitness function gives the quality of the packing that is given in the individual. It
is used for comparing the packaging quality of individuals. We chose a fitness func-
tion based on (Burke et al. 2006; Falkenauer 1996). Our fitness function is

where nb is the number of bins, Fk is the sum of the sizes of the items packed into
the bin k (k = 1,2 ,…, nb) and c is the capacity of a bin.

2.4 � The RPFM model

With the relative pair frequency matrix we can estimate the probability that the ith
and the zth items used to be in the same bin. Based on RPFM we can group items
into subsets; these subsets are the bins in our problem. If there are items in a bin, we
can search other items into the bin. We can accept other items if the estimated prob-
abilities of all ith and jth items—where the ith is an already stored item in the bin
and the jth is another item—are satisfactorily high.

Our starting point is the ECM matrix and technique from Borgulya (2019).
Recently we have modified this technique in the following way: we have to know
the frequency of every pair of items—how often they are in the same bin in the best

f = nb −

nb
∑

k=1

(Fk∕c)
2

429

1 3

A hybrid evolutionary algorithm for the offline Bin Packing…

individuals. As “best individuals” we take the best 20% of the population based on
fitness values.

Let RPFM be an n ×  n matrix that stores the relative frequencies of the differ-
ent pairs. Every item has a row and a column in the matrix. RPFM is a symmetric
matrix since, if the ith and the jth items are a pair in a bin, then the jth and the ith
items are also a pair in the same bin. In every pair the items are different, and so the
values of the main diagonal in the matrix are null. The upper or lower triangular
matrixes of RPFM give the frequency values. Using, for example, the upper trian-
gular matrix without the main diagonal, we can reduce the elements of RPFM: there
are n * (n − 1)/2. In this case we can store the triangular matrix in a vector. The sizes
of the problems are limited in our program by the possible size of a vector in our
computer and the maximum size of this vector depends on the other declarations
too (our program could manage problems with a maximum n = 18,000 items. If n is
higher than the possible maximum value of n, the program gives an error message).
We will use the upper triangular matrix of RPFM in the description.

RPFM is updated throughout the evolution process using the ”best individuals”.
We update RPFM after every kgenth generation (e.g., kgen = 10). The updating pro-
cess is as follows:

Let ΔRPFM be a similar triangular matrix to RPFM. It will be a working matrix
during the update. Let RPFMij be the collected relative frequency of the ith and the
jth item (a pair) in common bins until a given genth generation. We can update the
elements of the RPFM matrix with the element of ΔRPFM

where ΔRPFMij is the relative frequency of the ith and the jth items in common bins
based on the ”best individuals” of the genth generation and α denotes some relaxa-
tion factors (e.g., α = 0.2). Algorithm 1 gives this process and Fig. 1 gives an exam-
ple of the update of RPFM.

We use the RPFM matrix to estimate the probability of pairs of items. The
formula

RPFMij = (1 − �) ∗ RPFMij + � ∗ �RPFMij

430	 I. Borgulya

1 3

prij = RPFMij∕

n
∑

t=1

RPFMit

Fig. 1   Example of the update of RPFM 

431

1 3

A hybrid evolutionary algorithm for the offline Bin Packing…

gives the estimated probability that the ith and the jth items are in the same bin. If
prij is high the two items will be probably together in a bin.

2.5 � Bin‑packing procedure

Our algorithm is a bin-oriented heuristic which constructs solutions by packing one
bin at a time (see Fleszar 2002). It constructs an initial solution or constructs bins
from subsets of items. Let Q be the working set of the bin-packing procedure and
the items for packing are in Q. Bin-packing constructs from the items of Q new bins
using a similar technique to the sampling technique of an EDA.

Bin-packing selects items for the bins and constructs one bin at a time. For every
bin it selects a new set of items from the not yet selected items of Q. Algorithm 2
gives this process and Fig. 2 gives an example of Bin-packing.

2.6 � Initial population

We generate the individuals of the initial population with the Bin-packing pro-
cedure. In the first steps of the algorithm the elements of the matrix are 0, and
so the Bin-packing procedure is not able to use the RPFM matrix to select items.
With every bin it chooses an item at random (this is the first element in the bin)
and, after repair1 and repair2 procedures, can fill the bin. The resulted bins are
random, feasible individuals as the initial population.

432	 I. Borgulya

1 3

2.7 � Unified computational time

The methods of the comparative results section were executed on different
machines, and so ″we calculated appropriate scaling factors to compare their
running times. For this purpose, we used the CPU speed estimations provided in
the SPEC standard benchmark″ (https​://www.spec.org/cpu20​06/resul​ts/cint2​006.
html) (Buljubašić and Vasquez 2016). Based on the SPEC standard, we obtained
CPU speeds for the different processors. With the CPU speeds we can calculate
appropriate scaling factors to compare the running times of the different comput-
ers. We chose the CPU speed of the computer of a method as a reference, and the
scaling factors are at a CPU: CPU speed/ reference CPU speed. Multiplying the
CPU time of a processor by its scaling factor, we obtain a Unified Computational
Time (UCT) for comparing their running times. (See Buljubašić and Vasquez
2016; Quiroz-Castellanos et al. 2015).

3 � The HEA algorithm

Our HEA generates only one descendent in every generation. First comes the initial
population based on RPFM, and next, in every generation it selects an individual for
descendent, applies a mutation operator and improves the result with local searches
(LS).

For certain tasks, the algorithm might be ‘’stuck’’ at one of the local optima.
To enable escape towards a potential global optimum, the algorithm generates
new, additional individuals. A new individual is also a descendent and can help to
improve the capability and the speed of the algorithm to find the global optimum.
Thus, new descendants are periodically inserted in the population until the maxi-
mum size of the population is reached.

Fig. 2   Example of Bin-packing 

https://www.spec.org/cpu2006/results/cint2006.html
https://www.spec.org/cpu2006/results/cint2006.html

433

1 3

A hybrid evolutionary algorithm for the offline Bin Packing…

The operation of HEA is as follows:

Input The algorithm reads the instance and the values of the parameters
(described in Sects. 4.1 and 4.2). Every item has a unique identification number.
Selection. The algorithm selects an individual based on truncation selection. In
this, only the best tp percentage of the population are considered as a potential
parent.
Mutation The algorithm applies the mutation based on the pm parameter. If pm
=0, it applies mutation1; if pm =1, it applies mutation2 and if pm =0.5, it applies
mutation1 with probability 0.5 and also with probability 0.5 applies mutation2
(see Sect. 3.1).
Local searches The algorithm applies local searches LSn times on the descend-
ent, and LSm times on the best individual. The local searches improve the fullness
of the bins, or increase the diversity of the population (see Sect. 3.2).
Reinsertion This is a crowding technique that compares the descendent with the
parent. The descendent may replace the parent if the descendent is better. If the

434	 I. Borgulya

1 3

descendent is an additional individual, the new descendent is inserted without
any further analysis into the population.
Stopping criterion The algorithm is terminated if the running time limit is
reached.

3.1 � Mutation

There are two mutation operators: mutation1 and mutation2.

Mutation1  The mutation1 is a swap of items between two NFB bins. The first bin
has to have more than two items; otherwise it does not consider the bin. (If there
is no appropriate bin, mutation1 is finished). The mutation is based on the RPFM,
and so it selects the ith and the jth items from the given bin with the largest prij and
selects at random another kth item from the bin. If the ith and kth items are in the
same bin of the best individual, mutation1 is finished. Otherwise it chooses the zth
item with the largest priz probability from a different bin, if the swap does not violate
the capacity of the bins and swaps the kth zth items between the bins.

It repeats mutation1 on the descendent it times, where it is a random integer from
[1, n/2].

Mutation2  The second mutation operator uses the Bin-packing procedure to gener-
ate new bins in the descendent. First it deletes the NFB bins and stores their items in
a Q set. Next it constructs bins from the items of Q with the Bin-packing procedure.
If there are bins in FB they will be elements of the descendent also.

Figure 3 shows examples of mutation1 and mutation2

3.2 � Local searches

The algorithm improves the descendent with a group of LSs. It applies the LSs from
the group one after the other (e.g. LS1+ LS2 + LS3) and repeats the group LSn or
LSm times. It repeats the group LSn times at every descendent, and LSm times at the
best solution. It applies every local search from the group with pls probability.

Usually the FB bins do not influence the search; the algorithm can find the
optimal solution based only on the items of NFB. We may arrive at an NFB that
does not permit finding the optimal solution, and so we allow the swapping of
items among the FB and NFB bins with the help of local search procedures.
These local searches keep these bins in FB; they remain fully filled bins and the
fullness proportion of the bins does not descend.

There are 10 local search procedures: LS1, LS2, …, LS10. LS1, LS2, LS3, LS4
and LS5 swap the items between FB and NFB, whilst the other LS6, …, LS10
work on NFB and try to improve the solution with various moves. The algorithm
applies at every descendent LSn time the following group: LS1, LS2, LS4, …,
LS10; at the best individual LSm times it applies the following group: LS1, LS2,
LS3, LS4, LS7, LS9.

435

1 3

A hybrid evolutionary algorithm for the offline Bin Packing…

Local searches between FB and NFB.

•	 LS1 procedure This tries to swap every item pair from a random bin of FB with
1 to 3 NFB items. First it copies all items from the NFB bins to a vector VITEM.
Between all possible item pairs from the FB bin and items from VITEM the pro-
cedure searches for an appropriate swap where the FB bin remains fully filled. At
the end the procedure constructs a new NFB from the items of VITEM based on
RPFM.

•	 LS2 procedure This tries to swap every item pair from one of all possible FB
bins with 1 item from an NFB bin. The procedure searches for appropriate swaps
where the fullness proportions of the FB bins do not descend.

Fig. 3   Examples of mutation

436	 I. Borgulya

1 3

•	 LS3 procedure This tries to swap every item pair from one of all possible FB
bins with 2 items from an NFB bin. The procedure searches for appropriate
swaps where the fullness proportions of the FB bins do not descend.

•	 LS4 procedure This tries to swap every item from one of all possible FB bins
with 2 items from an NFB bin. The procedure searches for appropriate swaps
where the fullness proportions of the FB bins do not descend.

•	 LS5 procedure To improve the fullness of the bins it tries to insert one item to
every FB bin where the fullness proportion < 1. It inserts the items from the NFB
bins where the fullness proportion < = 0.9.

Local searches of NFB.

•	 LS6 procedure To improve the fullness of the bins it tries to insert 1–1 items to
every NFB bin where the fullness proportion > 0.9. It inserts the items from the
NFB bins where the fullness proportion < = 0.9.

•	 LS7 procedure This chooses all possible NFB bin pairs. For each pair of bins it
creates a new bin pair by re-arranging their contents, aiming to reach a higher
fullness than the maximum fullness of the two original bins. Creating the new
bins, the procedure uses blocks from 1 to 3 items. If in the new bin pair there is
no higher fullness, the procedure does not accept the new bin pair.

•	 LS8 procedure This chooses all neighbouring bin pairs from NFB and every pair
it tries to swap with a new bin pair sampling RPFM. (If the process generates
more than two bins, the algorithm does not accept the bins and skips the swap.)

•	 LS9 procedure This chooses a random NFB bin, tries to improve its fullness and
tries to achieve smaller fitness. LS9 performs swaps between the random bin and
other bins. For this, the algorithm searches bins with smaller fullness than the
random bin, builds pairs with the random bin and tries a 1–1 item swap between
the bins. It accepts a swap if the fullness of the random bin is larger and the fit-
ness is smaller after the swap.

•	 LS10 procedure For all possible bin pairs from NFB:

•	 This tries to improve the fitness, swapping 1 item with 2 items between the
bins of the pair. It accepts a swap if the fitness value is improved. Next.

•	 It tries to improve the fitness, swapping 2 items with 2 items between the bins
of the pair. It accepts a swap if the fitness value is improved. Next.

•	 it tries to improve the fitness, swapping 1 item with 1 item between the bins
of the pair. It accepts a swap if the fitness value is improved.

4 � Experimental results

The HEA algorithm was implemented in C++. It was executed on iMAC with an
Intel Core i5 2.5 GHz processor with 16 GB of RAM, running the MacOS Sierra
10.12.2 operating system.

We tested our algorithm on benchmark instances that are used in general in pub-
lications. The instance sets are available at http://or.dei.unibo​.it/libra​ry/bppli​b. The

http://or.dei.unibo.it/library/bpplib

437

1 3

A hybrid evolutionary algorithm for the offline Bin Packing…

test sets are as follows: the U and T test sets of Falkenauer; three sets (set-1, set-2,
set-3) of Scholl, Klein and Jürgens; the gau test set of Wäscher and Gau; two test
sets (was-1, was-2) of Schwerin and Wäscher and the hard28 test set of Schoenfield.
The description of the problem instances is available in Table 1. The table gives the
test sets (sets), the number of instances in a set (Num), the numbers of items in the
instance (n), the capacity (cap), the range of item size (item size) and the range of
optima.

4.1 � Parameter selection

We analysed the process of HEA to determine how the parameter values affect con-
vergence. From the 1615 test instances we chose 68 for parameter selection. They
are the U1000 instance groups of U, the T60 instance group of T and the hard28
data set.

Because our algorithm has a similar structure and parameters to our earlier
algorithm in Borgulya (2019), we could accept the earlier parameter values.
These parameters are the population size (tin and tmax parameters), the fre-
quency of checks (kgen parameter), the generation in the first stage (itt parameter)
and of the truncation selection (tp). The accepted parameter values are tin = 5,
tmax = 30, itt = 5, kgen = 5 and tp = 0.1.

Table 1   Description of the problem instances

Sets Num n cap item size Range of optima

U U120 20 120 150 [20, 100] [46, 52]
U200 20 200 [99, 106]
U500 20 500 [196, 207]
U1000 20 1000 [393, 411]

T T60 20 60 1000 [250, 500] 20
T120 20 120 40
T249 20 249 83
T501 20 501 167

set-1 720 {50, 100,
200, 500}

{{100, 120, 150}} [1, 100] [15, 373]

set-2 480 {50, 100,
200, 500}

1000 [13, 627] [6, 172]

set-3 10 200 100000 [20,000, 35,000] [55, 57]
was-1 100 100 1000 {{150, 200}} 18
was-2 100 120 1000 {{150, 200}} [21, 22]
gau 17 [57, 239] 10,000 [2, 7332] [11, 28]
hard28 28 {160, 180, 200} 1000 [1, 800] [58, 84]
total 1615

438	 I. Borgulya

1 3

For the time limit there are various values in the literature. Using our algo-
rithm, we found that a duration of 60 CPU seconds is sufficient in 95% of the
test problems. If n > 150 or the instances are harder, the problems can be time-
consuming. In these cases, we use 300 CPU seconds. Hence the time limit is 60
or 300 s (timeend = 60 or timeend = 300).

The parameter values of FB, and of LSs are new parameters in HEA.

•	 Fullness proportion limit (fpl). We tested three values of fpl: 0.99, 0.999 and
0.9999. These values are appropriate for the instances.

•	 LSn, LSm, pls parameters of the local searches. pls is the probability of every
local search. At every descendent pls can be 0.5 or 1, and at the best individual
pls is 1. The values of the LSn, LSm and pm parameters we analysed together, and
Table 2 shows the results. At the selected test instances, we tried different combi-
nations of the parameter-values. The table shows the number of instances where
optimal solutions were found (opt_f). We can conclude the following:

•	 without LS we can solve only a few instances optimally,
•	 for LSn, LSm we found more appropriate values if pm =0.5. The best results

we achieved at the pm =0.5, LSn = 15, LSm = 30 values, but we have good
results at many instances with the values pm =0.5, LSn = 2, LSm = 2 also.

Our goal was to give appropriate parameter values that will be good for every
test set, for every instance. These parameters can be tin = 5, tmax = 30, itt = 5,
kgen = 5, tp = 0.1, fpl = 0.99, pls =0.5 or 1, pm =0.5, LSn = 15, LSm = 30 and
timeend = 60 or timeend = 300.

4.2 � Computation experience

HEA was run 10 times on each test instance of the test sets, and we provide the best
results for every instance. Table 3 gives a summary of the results.

Table 3 shows the names of the test sets (sets), the number of instances in a test
set (inst), the number of instances from the set where optimal solutions were found

Table 2   The results with
different parameter values

Mutation, local search parameters opt_f

U1000 T60 hard28

pm =0, LSn = 0, LSm = 0 2 0 5
pm =1, LSn = 0, LSm = 0 0 0 5
pm =0.5, LSn = 0, LSm = 0 2 0 5
pm =0.5, LSn = 2, LSm = 0 20 2 14
pm =0.5, LSn = 0, LSm = 2 20 8 14
pm =0.5, LSn = 0, LSm = 30 20 17 16
pm =0.5, LSn = 2, LSm = 2 20 14 18
pm =0.5, LSn = 15, LSm = 15 20 18 23
pm =0.5, LSn = 15, LSm = 30 20 20 28

439

1 3

A hybrid evolutionary algorithm for the offline Bin Packing…

(opt_f) and the average running time to the best solutions (time) (CPU time in sec-
onds). We see in the table that HEA did not solve optimally only four instances.
These instances are: N3C3W4_C, N4C3W4_S from set-1 and HARD2, HARD3
from set-3. In these cases the four instances were solved with plus 1–1 extra bin.

We now can give more detailed results of the hard28 set. This is the most difficult
test set based on the publications. In fact, most heuristics proposed for the BBP,
including the best performers, cannot solve to optimality more than 5 instances from
the hard28 set (Buljubašić and Vasquez 2016).

In Table 4 we show the results of every instance. In the table we see the instance
name (instance), n (n), the optimal values (or the lower bound) (opt), the number of
optimal solutions found at an instance in 10 runs (Hits) and the running time to the
best solution (time) (CPU time in seconds). HEA solved every instance of hard28
optimally. If in a run HEA did not find the optimum, the result was larger only by
one extra bin. (There were 173 extra bins in the 10 run.) Fig. 4 shows the conver-
gence behaviour of HEA on hard28. We ran 6 instances 5–5 times. Figure 4 gives
the average number of bins at 1, 5, 10, 15, 20, 40, 50, 85, 100, 105, 130 s during the
execution time of HEA. We can see that HEA found in the case of each instance
– and already in the first seconds – the optimum or optimal number of bins plus one
extra bin.

4.3 � Comparative results

(a)	 Comparing HEA to the best evolutionary algorithms.
	  For a comparison of the results we chose two EAs: the C-BP (Singh and Gupta

2007) and the CGA-CGT (Quiroz-Castellanos et al. 2015). C-BP is a combined
method: a genetic algorithm and a perturbation MBS heuristic together. It was
executed on a Pentium IV processor at 2.4 GHz with 512 MB RAM and was
implemented in C. CGA-CGT is a genetic algorithm and was executed on an
Intel Core2 Duo processor E6300 1.86 GHz. It was implemented in C++.

Table 3   The results for the test
sets

Sets Inst. opt_f Time

U 80 80 1.48
T 80 80 1.89
set-1 720 718 3.09
set-2 480 480 0.18
set-3 10 8 1.95
was-1 100 100 0.34
was-2 100 100 0.47
gau 17 17 0.39
hard28 28 28 19.02
Total 1615 1611

440	 I. Borgulya

1 3

Table 4   The results of HEA on the hard28 set

Instance n opt Hits Time Instance n opt Hits Time

BPP119 200 77 10 1.53 BPP531 200 83 1 72.10
BPP13 180 67 9 4.46 BPP561 200 72 9 0.67
BPP14 160 62 10 0.02 BPP60 160 63 6 10.94
BPP144 200 73 9 0.76 BPP640 180 74 2 53.05
BPP175 200 84 10 1.37 BPP645 160 58 10 2.15
BPP178 200 80 2 16.75 BPP709 180 67 9 1.55
BPP181 180 72 2 70.95 BPP716 180 76 10 0.02
BPP195 180 64 10 3.25 BPP742 160 64 2 180.37
BPP359 180 76 10 1.02 BPP766 160 62 5 73.16
BPP360 160 62 7 27.17 BPP781 200 71 10 0.91
BPP40 160 59 6 2.96 BPP785 180 68 7 1.78
BPP419 200 80 1 42.31 BPP814 200 81 1 14.27
BPP47 180 71 3 85.43 BPP832 160 60 8 6.58
BPP485 180 71 2 20.98 BPP900 200 75 2 23.90

Fig. 4   Convergence behaviour of HEA on six instances of hard28 

441

1 3

A hybrid evolutionary algorithm for the offline Bin Packing…

 The methods of the comparative results section were executed on different
machines, and so we calculated appropriate scaling factors to compare their UCT
running times. We chose the CPU speed of the computer of CGA-CGT as a refer-
ence, and the scaling factors used are available in Table 5.

Table 6 shows the comparison. The table gives the name of the test sets (sets),
the number of instances in a test set (inst), the number of instances from the set
where optimal solutions were found (opt_f) and UCT times. We see the results
of the three methods. They are very similar, and only with the hard28 test set are
larger differences found. HEA is the best with hard28 and among the methods has
the best result with the 1611 total number of optimal solutions.

If we examine the running times of the U, T, …, gau test sets, CGA-CGT is the
fastest EA. Our HEA is the third and 5 times slower than CGA-CGT. However, at
the hard28 set we cannot compare times, as only HEA solved the hard instances
successfully.

(b)	 Comparing HEA to the state-of-the-art methods.
	  For comparison of the results we chose three state-of-the-art methods: the

Belov (from Delorme et al. 2016), the P-SAWMBS (Fleszar and Charalambous

Table 5   Computer speed
measures

Method Processor CPU
speed

Scaling
factor

P-SAWMBS Intel core2 Q8200 2.33 GHz 18.3 1.48
CGA-CGT​ Intel core2 duo CE6300 1.86 GHz 12.3 1
CNS-BP Intel i7-3770 3.4 GHz 53.8 4.37
Belov Intel Xeon 3.1 GHz 65.8 5.34
C-BP Pentium IV 2.4 GHz 11.5 0.93
HEA Intel core i5 2.5 GHz 30.5 2.47

Table 6   A comparison of the
best evolutionary algorithms

Sets Inst. C-BP CGA-CGT​ HEA

opt_f UCT​ opt_f UCT​ opt_f UCT​

U 80 79 0.68 80 0.23 80 3.66
T 80 80 0.04 80 0.41 80 4.67
set-1 720 719 0.29 720 0.35 718 7.63
set-2 480 480 0.04 480 0.12 480 0.44
set-3 10 10 0.86 10 1.99 8 4.82
was-1 100 100 0.00 100 0.00 100 0.84
was-2 100 100 0.00 100 1.07 100 1.16
Gau 17 15 4.05 16 0.27 17 0.96
hard28 28 – – 16 2.40 28 46.98
Total 1615 1584 1602 1611

442	 I. Borgulya

1 3

2011) and CNS_BP (Buljubašić and Vasquez 2016). Belov is an exact branch-
and–price method, the best method among 15 exact methods on the above prob-
lem sets (based on Delorme et al. 2016). It was executed on an Intel Xeon 3.10
GHz processor with 8Gbyte RAM and was implemented in C++. P-SAWMBS
is a variable neighbourhood search variant and was executed on Intel PC Core2
at 2.33 GHz processor with 2 GB RAM. It was implemented in C. CNS_BP is a
tabu search and was executed on an Intel Core i7-3770 CPU 3.40 GHz processor
and was implemented in C++.

Table 7 shows the comparison. The first column gives the name of the test sets;
the second shows the instance number within the test set. The opt_f column shows
the number of instances from the set where optimal solutions were found by the
methods, and the UCT​ column gives the comparable running times of the meth-
ods. Comparing the opt_f values we found larger differences only with the hard28
test set. The other test sets were solved successfully or only with 1–2 mistakes.
P-SAWMBS had a mistake in the U and the gau test sets and HEA had 2–2 on the set-
1 and gau sets. Belov had a time limit of 60 s and used only subsets of the instances
at the U, set-1 and set-2 sets (the stars show). It solved the T sets with 23 mistakes
(If the time limit were 10 min Belov successfully solved all the instances).

The hard28 was the most difficult test set. P-SAWMBS could find the optimum
only in 5 cases, CNS_BP in 25 cases. HEA and Belov solved the hard28 set in all
cases, and so HEA is the best heuristic method on the hard28 set. Considering the
total number of optimal solutions, we can conclude that the results of CNS_BP and
HEA are similar; they have 3–4 mistakes and are the best heuristic methods.

Comparing running times, we have a different result. P-SAWMBS has the short-
est running time with most of the test sets: on U, T, set-1, set-2, was-1, was-2 and
gau. On the set-3 set CNS_BP is the fastest method and P-SAWMBS is the second
fastest method. On these test sets the HEA is the third based on running time. At
the hard28 set we can compare only Belov and HEA, because only they solved

Table 7   A comparison with state-of-the-art methods

Sets Inst. Below P-SAWMBS CNS-BP HEA

opt_f UCT​ opt_f UCT​ opt_f UCT​ opt_f UCT​

U 80 (74*) 74 0.00 79 0.00 80 0.30 80 3.66
T 80 57 131.90 80 0.00 80 0.09 80 4.67
set-1 720 (323*) 323 0.00 720 0.02 720 0.32 718 7.63
set-2 480 (244*) 244 1.60 480 0.00 480 0.14 480 0.44
set-3 10 10 75.30 10 0.24 10 0.08 8 4.82
was-1 100 100 5.34 100 0.00 100 0.00 100 0.84
was-2 100 100 7.48 100 0.02 100 0.00 100 1.16
gau 17 17 0.53 16 0.06 17 11.70 17 0.96
hard28 28 28 38.98 5 0.36 25 31.50 28 46.98
total 1615 (976*) 953 1590 1612 1611

443

1 3

A hybrid evolutionary algorithm for the offline Bin Packing…

the hard instances successfully. Fleszar and Charalambous reported that their P-
SAWMBS method could not solve more instances in the hard28 set to optimal-
ity than the First Fit Decrease procedure (5 out of the 28), even after drastically
increasing the maximum number of iterations in their algorithm (Buljubašić and
Vasquez 2016). So, in this case Belov is the faster method.

Our goal was to build an EA for the problem, which gives better results than
the earlier evolutionary techniques. The comparison between CGA-CGT​ and our
algorithm shows that CGA-CGT​ is faster than our evolutionary algorithm, but in
general HEA has better results, has fewer fault (Table 8 gives the execution times
in UCT of the compared methods).

Can we reduce running times? Based on the parameter selection, we use the
parameter values appropriate for solving both the easy and the hard problems also
(pm = 0.5, LSn = 15, LSm = 30). However, in Table 2 we can see that we can
solve the easier problem with fewer repetitions of local searches. E.g. at U1000
we can solve the problems successfully with the pm =0.5, LSn = 15, LSm = 30 and
with the pm = 0.5, LSn = 2, LSm = 0 parameter values also. The average running
time to the best solution in the first case is 4.58 s and in the second case is 0.54
s. We obtained the results about 8 times faster in the second case. Hence, if we
abandon the idea of common parameter values, with the easier problems we can
reduce the number of repetitions of the local searches, and the average running
times will be shorter. For this we should organize a hyperheuristic, where the
appropriate values of the parameters will be searched for every problem.

5 � Conclusion

In this paper we have presented a hybrid evolutionary algorithm for the BPP.
Our algorithm, HEA, uses two new mutation operators and 10 local searches to
improve the solutions. A relative pair frequency matrix helps to construct bins
and the mutation operators and some of the local searches use this matrix also.
Our test results are good. On the hard28 test set our algorithm outperforms the
earlier heuristics; it found the optimal solution for all instances. Based on our

Table 8   Execution times in UCT of the methods compared

C-BP CGA-CGT​ HEA Below P-SAWMBS CNS-BP

U 0.68 0.23 3.66 0.00 0.00 0.30
T 0.04 0.41 4.67 131.90 0.00 0.09
set-1 0.29 0.35 7.63 0.00 0.02 0.32
set-2 0.04 0.12 0.44 1.60 0.00 0.14
set-3 0.86 1.99 4.82 75.30 0.24 0.08
was-1 0.00 0.00 0.84 5.34 0.00 0.00
was-2 0.00 1.07 1.16 7.48 0.02 0.00
gau 4.05 0.27 0.96 0.53 0.06 11.70
hard28 – 2.40 46.98 38.98 0.36 31.50

444	 I. Borgulya

1 3

tests, we can conclude that, among the evolutionary algorithms, HEA produces
the best results. Among the meta-heuristics, CNS_BP and HEA have similar
performances.

HEA is also appropriate for the solution of other types of BPP. As our next prob-
lem, we are now working on the BPP with conflict using a modified version of HEA.

Acknowledgements  Open access funding provided by University of Pécs.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​mmons​.org/licen​
ses/by/4.0/.

References

Alvim ACF, Ribeiro CC, Glover F, Aloise DJ (2004) A hybrid improvement heuristic for the one-dimen-
sional Bin Packing Problem. J Heuristics 10(2):205–229

Borgulya I (2019) An EDA for the 2D knapsack problem with guillotine constraint. CEJOR
27(2):329–356

Bugger B, Doerner KF, Hartl RF, Reimann M: AntPacking—an ant colony optimization approach for the
one-dimensional bin packing problem. In: Gottlieb J, Raidl GR (eds) EvoCOP 2004, LNCS 3004,
pp 41–50 (2004)

Buljubašić M, Vasquez M (2016) Consistent neighborhood search for one-dimensional bin packing and
two-dimensional vector packing. Comput Oper Res 76:12–21

Burke EK, Hyde MR, Kendall G (2006) Evolving bin packing heuristics with genetic programming.
In: Parallel problem solving from nature—PPSN IX, vol 4193. Springer, Heidelberg, pp 860–869
LNCS

Cai Y, Chen H, Xu R, Shao H, Li X (2013) An estimation of distribution algorithm for the 3D Bin Pack-
ing Problem with various bin sizes. In: Yin H et al (eds) IDEAL 2013, LNCS, vol 8206, pp 401–408

Cerebio J, Irurozki E, Mendiburu A, Lozano JA (2012) A review on estimation of distribution algorithms
in permutation-based combinatorial optimization problems. Prog Artif Intell 1:103–117

Coffman EG, Garey MR, Johnson DS (1996) Approximation algorithms for bin packing: a survey. In:
Hochbaum D (ed) Approximation algorithms for NP-hard problems. PWS Publishing, Boston, pp
46–93

Dokeroglu T, Cosar A (2014) Optimization of one-dimensional bin packing problem with island parallel
grouping genetic algorithms. Comput Ind Eng 75:176–186

Delorme M, Iori M, Martello S (2016) Bin packing and cutting stock problems: mathematical model and
exact algorithms. Eur J Oper Res 255:1–20

Falkenauer E (1996) A hybrid grouping genetic algorithm for bin packing. J Heuristics 2:5–30
Fleszar K, Charalambous C (2011) Average-weight-controlled bin-oriented heuristics for the one-dimen-

sional bin-packing problem. Eur J Oper Res 210:176–184
Fleszar K, Hindi KS (2002) New heuristics for one-dimensional bin-packing. Comput Oper Res

29:821–839
Garey MG, Johnson DS (1979) Computers and intractability. A guide to the theory of NP-completeness.

Freeman, New York
Jiang H, Zhang S, Xuan J, Wu Y (2011) Frequency distribution based hyper-heuristic for the Bin-Pack-

ing Problem. In: Merz P, Hao JK (eds) EvoCOP 2011, LNCS vol, 6622. Springer, Heidelberg, pp
118–129

Kucukyilmaz T, Kiziloz HE (2018) Cooperative parallel grouping genetic algorithm for the one-dimen-
sional bin packing problem. Comput Ind Eng 125:157–170

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

445

1 3

A hybrid evolutionary algorithm for the offline Bin Packing…

Loh K, Golden B, Wasil E (2008) Solving the one-dimensional bin packing problem with a weight
annealing heuristic. Comput Oper Res 35:2283–2291

López-Camacho E, Terashima-Marín H, Ross P (2011) A hyper-heuristic for solving one and two-dimen-
sional bin packing problems. In: Proceedings of the 13th annual conference companion on genetic
and evolutionary computation, pp 257–258

Pelikan M, Goldberg DE, Cant´u-Paz E: BOA (1999) The Bayesian optimization algorithm. In: Proceed-
ings of the genetic and evolutionary computation conference (GECCO-99), pp 525–532

Quiroz-Castellanos M, Cruz-Reyes L, Torres-Jimenez J, Gómez C, Héctor S, Huacuja JF, Alvim ACF
(2015) A grouping genetic algorithm with controlled gene transmission for the bin packing problem.
Comput Oper Res 55:52–64

Stawowy A (2008) Evolutionary based heuristic for bin packing problem. Comput Ind Eng 55:465–474
Singh A, Gupta AK (2007) Two heuristics for the one-dimensional bin-packing problem. OR Spectrum

29:765–781
Tsutsui S, Pelikan M, Goldberg DE (2003) Using edge histogram models to solve permutation problems

with probabilistic model-building genetic algorithms. Technical report, IlliGAL Report No 2003022

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

	A hybrid evolutionary algorithm for the offline Bin Packing Problem
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Fullness of a bin
	2.2 The structure of the individual
	2.3 Fitness function
	2.4 The RPFM model
	2.5 Bin-packing procedure
	2.6 Initial population
	2.7 Unified computational time

	3 The HEA algorithm
	3.1 Mutation
	3.2 Local searches

	4 Experimental results
	4.1 Parameter selection
	4.2 Computation experience
	4.3 Comparative results

	5 Conclusion
	Acknowledgements
	References

