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Abstract
In this study, a logistics network is modeled as a network with heterogeneous nodes
as G(S, D, E), where S is a set of nodes with supply features, D is a set of nodes with
demand features, and E is a set of connections indicating the linkages between the
nodes. Thus, the model of logistics routings is considered to have distinct operating
features, such that the supply and demand sources are both considered. In addition,
multiple supply routes for a demand source are considered; that is, items can be deliv-
ered frommultiple supply sources via different routes to a demand source. This ensures
the efficiency of the logistics routings and enhances customer satisfaction. Flexible
delivery paths between a pair of supply and demand nodes are considered. Here,
logistics routes are designed and updated with their relevant service times for various
scenarios of different capacities of the supply sources and volumes of the demand
sources. Lastly, an industrial case study is presented to demonstrate the effectiveness
of the proposed modeling approach.

Keywords Logistics planning · Logistics scheduling · Supply chain network ·
Supply and demand · Network theory

1 Introduction

Logistics links geographically distant markets together, transporting items to people
all over the world. The primary goal of logistics is to get the Right product to the
Right place, at the Right time, at the Right price, and at the Right cost (Lam et al.
2008). Following this 5R strategies, it helps organizations to create a high-quality,
customer-focused logistics (Jain and Raghavan 2009; Kovačić et al. 2015; Jiang et al.
2016; Saez-Mas et al. 2018; Lam 2019). A high-quality and customer-focused logis-
tics facilitates the creation of time and place utility by moving items from one place
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to another, it is a vital component of world trade and economic growth, and it has a
major impact on the financial performance of global business. According to a report
published by the Council of Supply ChainManagement Professionals (Kearney 2016),
business logistics cost in the United States rose to USD1.48 trillion in 2015, a 2.6%
increase from the previous year. This figure far exceeds the amount spent on other
business functions, such as information management. For a market with low logistics
costs, a firm can enhance the competitiveness of its products in the global business
market and enable importers to introduce a variety of industry and consumer items
to new markets. Cost-effective logistics also helps organizations access lower-priced
materials globally, achieve competitive product landed costs, improve demand fulfill-
ment opportunities, and achieve global economies of scale. In addition, their service
capabilities and customer satisfaction can be enhanced through efficient and effective
logistics. Logistics services truly add value to global business, with a firm’s logistics
function playing a strategically important role in its success.

This importance of the logistics function has led to several studies on logistics-
related problems. One of the major approaches to examining such problems employs
the concept of the vehicle routing problem (VRP) and its extensions. The VRP is a
combinatorial optimization problem of graph theory. A graph G(V , E) consists of a
set of vertices V and a set of edges E . The problem seeks to minimize the transport
logistics cost by identifying routes with respect to customer demand under certain
constraints (Pillac et al. 2013). Some studies have focused on the delivery of customer
demand within a specified service time, such as the earliest and latest delivery times
in the logistics routing (Ros-McDonnell et al. 2012; Qi et al. 2015). Here, items are
delivered from a central depot to customers who have placed orders, and the objective
is to minimize the cost of delivery. The proposed algorithms commonly try to identify
the route or determine the most efficient way to cover a complete network (Golden
et al. 2008). The service time can be a predefined fixed period within which items
need to reach a customer, such that delivery times beyond this period are invalid. In
this approach, logistics routes are usually designed such that items are delivered by a
single logistics fleet within a fixed period, where customer demand must be within the
capacity of the fleet (Righini and Salani 2006). This approach reflects the increasing
importance of just-in-time production systems and the tight coordination required in
distribution and logistics operations. For example, amaximum route duration timemay
be fixed for a logistics route (Mourgaya andVanderbeck 2006; DeOliveira et al. 2016),
where the time between the nodes can be decomposed into individual time intervals
(Lam and Ip 2019). Then, the delivery and pickup times are fixed (Fügenschuh 2006),
including a fixed latest delivery time (Ros-McDonnell et al. 2012; Koc et al. 2015;
Qi et al. 2015) that incorporates some idle time. In contrast to the predefined fixed
period approach, other approaches choose to relax the period by applying penalty costs
(Hashimoto et al. 2006). This increases the flexibility of delivery and can reduce the
logistics cost without having a negative effect on customer satisfaction (from early
or late delivery). For example, late deliveries may have penalties that significantly
exceed those for early delivery, and in many practical situations, customers may have
a preference for a delivery time. This approach provides a flexible alternative logistics
plan. For example, the latest delivery time can be set by the customer, where late
delivery is accepted if a penalty cost is applied (Ghoseiri and Ghannadpour 2010), and
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the earliest delivery time can change within certain constraints (Tan et al. 2007). In
addition, this approach is preferable when the number of delivery vehicles is limited
and demand is uncertain (Asl et al. 2012; Khebbache-Hadji et al. 2013).

Multi-depot vehicle routing problemwith timewindows (MDVRP-TW) is an exten-
sion of classical VRP; multiple vehicles start from multiple depots and return to their
original depots at the end of their assigned tours (Carlssony et al. 2010; Kaur 2013).
In general, the aim of MDVRP is to increase the efficiency of delivery, and its objec-
tive is to minimize the total delivery distance or time spent in serving all customers.
In addition, Heuristic approaches are mainly adopted to solve the MDVRP, such as
genetic algorithms, simulated annealing, and tabu search method (Mirabi et al. 2010;
Tricoire et al. 2013; De Grancy and Reimann 2015). MDVRP implicates multiple
depots instead of only one. In the conventional VRP, each vehicle is assigned with
the same number of customer nodes, but in MDVRP, the same number of vehicles
is assigned to each depot (Kaur 2013). In most of the logistics cases, demands vary
at the customer nodes. A logistics routing in MDVRP results in a set of daisy-chain
network configurations that minimize the maximum latency between a depot and a
customer (Kaur 2013), i.e. every customer has a demand which varies stochastically,
then vehicles are assigned to the customers and one customer is served by only one
vehicle. The objective ofMDVRP is generally done bymaking clusters based upon the
distance of cluster from the depot (Giosa et al. 2002; Saez-Mas et al. 2018). Although
these approaches to routing problems have received much attention, service times are
still the dynamic factor that affect logistics practices.

The vehicle routing problem with backhauls (VRPB) is another extension of the
classical vehicle routing problem where customers can receive items from a deport
and return items back to the depot simultaneously; customers who require deliveries
are regarded as linehaul customers while customers who require pickups are regarded
as backhaul customers. The VRPB was introduced by Deif and Bodin (1984). In their
modeling, the customers are partitioned into linehaul and backhaul customers. Items
have to be loaded at the depot and firstly delivered to linehaul customers, then followed
by the backhaul customers and the pickup items have to be transported to the depot.
Toth andVigo (2002) provided overviews on the standardVRPB.VRPB is particularly
useful in solving distribution problems, such as food is delivered to supermarkets
(linehaul customers) while food is also collected in distribution center from suppliers
(backhaul customers) (Oesterle andBauernhansl 2016; Lin et al. 2017;Walmart 2019).
In the VRPB, it is generally a problem of determining a set of vehicle routes visiting
all customers (both linehaul and backhaul customers) such that (1) one vehicle is
responsible for one route that starts and finishes at a depot with a minimum distance
and minimum cost; (2) the total number of items for linehaul customers and from
backhaul customers should within the capacity of the vehicle; (3) linehaul customers
are firstly visited then followed by backhaul customers; (4) each customer is visited by
exactly one vehicle; and (5) each routemust contain at least one linehaul customer. The
VRPB has several variants. Parragh et al. (2008a, b) reviewed and classified the VRPB
variants. Similarly, Koç and Laporte (2018) provide a comprehensive review onVRPB
variants and extension. The time-windows VRPB is one of the VRPB variants that
applies a specific time for each customer (Thangiah et al. 1996). In the time-window
VRPB, the linehaul customers have their delivery time while the backhaul customers
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have their pickup time (Reimann and Ulrich 2006). The multi-depot VRPB is another
VRPB variant that considers several depots for delivery or pickup and each depot
serve its own clustered customers (Salhi and Nagy 1999). In the multi-depot VRPB,
it aims to minimize the distance and travel time in a route (Bektas and Laporte 2011;
Chávez et al. 2016). The mixed VRPB is a VRPB variant that releases the visiting
sequence restriction (Wade and Salhi 2002), i.e. backhaul customers can be visited
before linehaul customers. In the mixed VRPB, cost can be saved by incorporating
a control on the mix of customers on routes, and customers are allowed to receive
and send items simultaneously (Ropke and Pisinger 2006; Tütüncü et al. 2009). The
heterogeneous fleet VRPB is a VRPB variant that describes the composition of fleet in
theVRPB,where the fleet size or fleet type can be varied (Tavakkoli-Moghaddam et al.
2006; Salhi et al. 2013). TheVRPB is NP-hard since it extends the VRP; heuristics and
exact method solutions are applied for standard VRPB or its variants. The common
objective function for problem formulation is to minimize the total cost, and loading
constraints are considered in VRPB (Oesterle and Bauernhansl 2016; Lin et al. 2017).
For example, degree constraints for the customer nodes, degree constraints for the
depot, connectivity and capacity constraints, precedence constraints, minimum total
demand, and feasible routes.

Transshipment operation is another approach for the transportation of goods. The
classical transshipment problem is introduced by Orden (1956), where besides origins
and destinations, a set of additional intermediate vertices corresponding to transship-
ment centers/facilities are existed. In transshipment problem, transportation of goods
can either transport directly from a given origin to a specific destination or through
an intermediate facilities (Zäpfel and Wasner 2002; Lapierre et al. 2004; Berman and
Wang 2006; Musa et al. 2010; Üster and Agrahari 2010). The transshipment prob-
lem allows only shipments that go directly from a supply point to a demand point
(Winston 1994), which determines an optimal shipping plan from origins to destina-
tions so as to minimize the total transportation cost, inventory and storage cost. The
transshipment problem models the flows of a single commodity or multi-commodity
over a transshipment network; the commodities are differentiated by their physical
characteristics. Transshipment problem with multiple origins and time window struc-
tures for single commodity or multiple commodities are considered in the literature
(Wieberneit 2008; SteadieSeifi et al. 2014; Guastaroba and Speranza 2016). Lim et al.
(2005) studied a transshipment problem with multiple facilities where a hard time
window is associated with each origin and destination. Shipping schedules with travel
cost and capacity are considered in their study, and each intermediate facility in the
transshipment network has a maximum inventory holding capacity and an associated
storage cost. Chen et al. (2006) studied a multi-commodity transshipment problem
where hard time windows are associated with origins and destinations, and consid-
ered the storage capacity and cost. Marjani et al. (2012) extended Chen et al. (2006)’s
study by allowing shipments between transshipment centers, initial and final invento-
ries can be the intermediate facilities, and time windows can be violated. Similarly,
Miao et al. (2012) studied a transshipment problem with preferred service and hard
time windows; penalty is incurred if the destination is not visited within the preferred
service time window.
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For the vehicle routing and transshipment studies or their extensions in the liter-
ature, they address specific variants of the problem. The definition and analysis of
some common variants that capture the main features is an important research direc-
tion. Possible examples are MDVRP/VRPB variants with time windows, VRPB with
heterogeneities in network, intermediates vertices in transshipment, multiple supply
sources, flexibility delivery. Therefore, this study introduces a model to generalize the
classical transportation model; it is a formalism embedding to existing concepts. The
model includes multiple supply nodes, multiple products in logistics routes, options
for merging logistics routes, and options for grouping of products; certain routes and
products can be combined and it takes into account earliness/tardiness in delivery based
on user preferences. This study thus contributes to the modeling and optimization of
logistics routings, following the time windows approaches. The study contributes to
the literature in four ways. First, the logistics network is modeled as a network with
heterogeneous nodes, G(S, D, E), where S is a set of nodes with supply features, D
is a set of nodes with demand features, and E is a set of connections indicating the
linkages between the nodes. The nodes in the network are considered to have dis-
tinct operating features, such that the sources of supply and demand are both taken
into account within a specified service time. Second, the proposed approach considers
multiple supply routes for a source of demand. In other words, items can be delivered
from multiple supply sources via different routes to a demand source, enhancing the
efficiency of the logistics routings and customer satisfaction. Third, the delivery path
is not fixed, a pair of supply and demand nodes can be varied in different delivery
scenarios. Here, logistics routes are designed with their relevant service times for var-
ious scenarios of different capacities of the supply sources and volumes of the demand
sources. Fourth, this study provides an alternative approach to solve logistics problem.
Fifth, the proposed approach is applied to a case study to illustrate the effectiveness of
themodel. Unlike theMDVRP-TWorVRPB approach that considers the relationships
between depots and customers in clusters, the proposed approach applies the supply
and demand nodes concept to link the relationships between the supply sources and the
demand sources. In the MDVRP-TW or VRPB, the approach determines the logistics
routes for several vehicles frommultiple depots to a set of customers (Kaur 2013; Koç
and Laporte 2018); the nature of nodes are depots and customers only. In contrary, this
study considers the supply capability of a supply node to fulfill demands from demand
nodes; the nature of a supply node is manufacturers/distribution centers/depots and the
nature of a demand node is intermediated depots/customers. In addition, the supply
nodes may have the features of VRPB that some depots may receive demand from
other depots; however, the supply from a supply node to a demand node is without
cluster boundary as in MDVRP-TW or VRPB.

The remainder of the paper proceeds as follows. In Sect. 2, the background of the
logistics routings problem is described. The modeling approach used to optimize the
logistics routings is discussed in Sect. 3, and an industrial case study is presented in
Sect. 4. Finally, Sect. 5 concludes the paper.
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Fig. 1 The relationship between MDCs and CDPs (demand/intermediate)

2 Problem description

The general logistics problem considered in this study includes manufactur-
ers/distribution centers (MDCs) and customers. MDCs encompass all activities in
fulfilling customer demand, and these activities are associated with the flow and trans-
formation of goods from raw materials. In real-world situations, most manufacturers
are integrated with their distribution centers, where some processing or assembly
takes place at the distribution centers rather than at the manufacturer. Thus, the roles
of manufacturers and distribution centers are interchangeable in modern supply chain
management. Therefore, the two roles are integrated as an MDC that supports and
fulfills a customer demand point (CDP). Thus, the MDC processes or assembles items
or semi-products into final products to fulfill the demand of the CDP. Items can be
supplied from multiple MDCs to multiple designated CDPs. Therefore, from a net-
work perspective, the logistics network is represented as a graph G(S, D, E), where
S is a set of nodes with supply features (i.e., MDCs), D is a set of nodes with demand
features (i.e., CDPs), and E is a set of connections indicating the linkages between the
nodes. The relationship between the MDCs and CDPs is illustrated in Fig. 1, where
an MDC acts as a supply entity and a CDP acts as a demand entity.

In general, the process in supply chain logistics is initiated by a customer order. The
order triggers corresponding actions in the MDC, such as determining the cost of the
item and the required bill of materials, transport cost, service time, and so on. After
completing the order according to the customer’s specification, the MDC sends the
items/final products to the CDP according to some designed logistics route. Therefore,
it is assumed that the role ofMDCs are identical in fulfilling customer orders, grouping
items, and taking responsibility for transporting the items to the CDPs. The logistics
routes start at a designated MDC and items may be transported via various CDPs on
the route before reach a designated CDP, the logistics route then return back to a supply
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node/a depot after ending its work. Costs and time are the twomajor factors considered
for the logistics routes in this study. The costs refer to logistics costs such as transport
costs from the MDC to the CDP, or from multiple MDCs to multiple CDPs. A virtual
cost is also included, which is the minimal cost for the logistics fleet to travel from
the ending demand point to any supply/depot point. Time refers to, for example, the
time taken to transport an item from an MDC to a CDP (or between multiple MDCs
and CDPs). The overall logistics cost is influenced by the locations and numbers of
intermediate CDPs, supply or demand capacity, number of routes available from an
MDC to a CDP within a specified service time, and the number of routes for the
logistics fleet to return from a CDP to an MDC. Thus, the overall logistics cost is
assumed to be composed of the transport cost, any penalties imposed for early or late
delivery, and a virtual cost for the logistics fleet to return to any supply/depot point
after ending its work.

3 Determining the logistics routings

The logistics routings are determined from a network perspective, and the objective is
tominimize the overall logistics cost. The following parameters and decision variables
are used to determine the logistics routes.

Model parameters

S A set of supply nodes (i.e., MDC)
D A set of demand nodes (i.e., CDP)
ski , i � 1, 2, . . . , ni The supply of node ni ∈ S for item k � 1, 2, . . . , nk

dkj , i � 1, 2, . . . , n j The demand of node n j ∈ D for item k � 1, 2, . . . , nk

Ri j A set of routes between a designated starting supply node and a designated
ending demand node

ri j A route between a designated starting supply node i and a designated ending
demand node j , ri j ∈ Ri j

Ei j A set of connections indicating the linkages between nodes

ei j A connection between a pair of i and j nodes, ei j ∈ Ei j

Ci j The transport cost between a pair of i and j nodes, ei j ∈ Ei j

Ti j The transport time between a pair of i and j nodes, ei j ∈ Ei j

Ii or I j The idle time in a node,i or j
X A set of items (semi-product/product)
αt The predefined earliest time to serve a demand node t
βt The predefined latest time to serve a demand node t

α
′
t The user defined earliest time to serve a demand node t

β
′
t The user defined latest time to serve a demand node t

Pα The unit time earliness penalty cost to a demand node t
Pβ The unit time tardiness penalty to a demand node t
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3.1 Modeling the nodes in logistics routings

Cost and time are considered in the logistics routings in this study. A logistics route
starts at a supply source (MDC), and then may pass through one or more CDPs
before reaching the final designated CDP that placed the original order. The supply
source MDC and the designated CDP are regarded as the original node and the final
node, respectively. All other CDPs located between the original and the final node are
regarded as intermediate nodes on the route.

In defining the original supply node (i.e., the starting node), the node should have
neither a preceding node nor a preceding connection to another node in the logistics
routing (i.e., the number of preceding node |ni−1| � 0 and the number of preceding
connection

∣
∣ei−1,i

∣
∣ � 0). Similarly, the designated demand node (i.e., the final node)

should have neither a succeeding node nor a succeeding connection to another node in
the logistics routing (i.e., the number of succeeding node

∣
∣n j+1

∣
∣ � 0 and the number

succeeding connection
∣
∣e j+1, j

∣
∣ � 0). In addition, according to Wang and Ip (2009),

the demand of a node can be supplied by different methods. Thus, in modeling the
connection ei j between the nodes, different supply and demand connection types are
considered: the supply from serially connected node(s) (Figs. 2 and/or 3), supply
from multiple nodes connected in parallel (Fig. 4), and supply from multiple nodes
connected in serial or parallel (Fig. 5).

The first connection type (serially connected node(s)) is modeled as a connection
between two nodes where one node serves as a supply node and the other serves as
a demand node (Fig. 2). In this type of connection, the demand of a demand node is
fulfilled by a single source of supply from a supply node. However, some intermediate
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Supply
Node

Supply
Node

Demand
Node

Supply
Node Intermediated

Node

Fig. 5 Supply from multiple nodes connected in serial or parallel

serially connected nodes may exist between the supply and demand nodes in the
logistics routing (Fig. 3), such that the number of connections is greater than one (i.e.,
∣
∣ei j

∣
∣ ≥ 1). These intermediate nodes might be supply or demand nodes, but their

supply or demand availability is assumed to be zero because they serve as transitional
nodes here, and are not the origin of either the supply r the demand in the logistics
routing.

The second connection type (multiple nodes connected in parallel) is modeled as
a connection where some intermediate parallel-connected nodes exist between the
supply and demand nodes in the logistics routing (Fig. 4). In this type of connection,
different alternative paths exist between the supply and demand nodes, such that the
supply from node ni has different ways of reaching the demand node n j . The supply
or demand availability of the intermediate nodes is again assumed to be zero, and only
the capacity of the intermediate nodes is considered in determining a logistics routing.

The third connection type of supply from multiple nodes connected in serial or
parallel is modeled as multiple nodes that serve as supply nodes to a single demand
node. Some intermediate nodes may exist between the supply and demand nodes in
the network (connected in serial or parallel). In this type of connection, the demand
from the demand node is fulfilled by multiple supply nodes with different supply
availabilities (Fig. 5). Because there are multiple supply nodes and their connections
to the demand node can be serial or parallel, the supply capacities of all relevant supply
nodes are considered when determining a logistics routing.

With regard to the transport cost Ci j of a logistics routing, it is assumed that the
notations of transporting an item x from a supply node to an intermediate node is
the same as that from an intermediate node to another intermediate node/designated
demand node. Similarly, the same notation is used for the transport time of item x
from a supply node to an intermediate node or from an intermediate node to another
intermediate node/designated demand node, namely, Ti j . However, the nature of the
nodes differs according to the source of supply or demand (i.e., MDC or CDP). The
conceptual relationships among transport costs, transport time, and logistics routings
are illustrated in Fig. 6.

In logistics routings, a possible route ri j is a route that transports an item x from a
supply source of an MDC to its designated CDP. However, the item may transported
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Fig. 6 The conceptual relationship among transport costs, transportation time, logistics routing

via several CDPs as intermediate nodes. Thus, it is a two-float decision on whether to
transport item x via the logistics route ri j from a supply node ni , ri j ∈ R, that is,

ri j �
{

1, for transporting item x from a supply node ni via ri j , ri j ∈ R
0, otherwise

.

(1)

In determining a logistics routing, the transportation of item x begins at a supply
source of an MDC. The item then travels from the MDC to the CDP with transport
time Ti j , where a certain amount of idle time Ii or I j is required to process the item at
node ni or node n j . This processing may include loading and unloading or checking
and confirming the status of the item, and so on. Therefore, the actual beginning time
(BT ) for the logistics routing is defined as:

BT (x) �
s

∑

i�1

d
∑

j�1

Ti j ri j +
s

∑

i�1

d
∑

j�1

Ii ri j , (2)

In addition, a penalty function (PF) is defined as.

PF(x) �

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∞, f or BT ≤ α
′
t

PCα(αt − BT ), f or α
′
t ≤ BT < αt

0, f or αt ≤ BT ≤ βt

PCβ

(

BT − β
′
t

)

, f or βt < BT ≤ β
′
t

∞, f or β
′
t < BT

(3)

In deliver items to customer, αt and βt are the predefined service period while
α

′
t and β

′
t are the maximum service period with penalty costs for a logistics routing

(i.e., within α
′
t ↔ αt and βt ↔ β

′
t ). No penalty is imposed if the items reach the

final designated CDP within the predefined service time, that is, between αt and βt .
However, a penalty may be incurred if the predefined period is violated. Therefore, a
penalty cost of PCα or PCβ will be charged if the items reach the final designated
CDP earlier or later, respectively, than the predefined service time. The relaxations are
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User
defined �me
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Fig. 7 Timeline boundary for logistics routings

within the user-defined periods; otherwise, the relaxations are infinite if beyond the
user-defined periods. An illustration of the timeline boundary for logistics routings is
illustrated in Fig. 7.

In determining a logistics routing, the objective is to minimize the overall logistics
cost with respect to the logistics route for the items. Therefore, the approach contains
threemajor parts related tominimizing the overall logistics cost:minimize the transport
cost between the MDCs and CDPs; minimize the penalty cost for early delivery;
and minimize the penalty cost for tardiness. Therefore, the optimization model is
formulated as follows:

min

⎧

⎨

⎩

s
∑

i�1

d
∑

j�1

Ci jri j + PCαmax(0, αt − BT ) + PCβmax(0, BT − βt )

⎫

⎬

⎭
(4)

Subject to :
∑

i�1

∑

j�1

ri j ≥ 1, for ∀i ∈ S, ∀ j ∈ D, ∀x ∈ X (5)

ri j ∈ {0, 1}, for ∀i ∈ S, ∀ j ∈ D, ∀x ∈ X (6)

si � d j ≥ 0, for ∀i ∈ S,∀ j ∈ D (7)

α
′
t ≤ BT < αt , for ∀t ∈ T (8)

βt < BT ≤ β
′
t , for ∀t ∈ T (9)

αt , α
′
t , βt , β

′
t ≥ 0, for ∀t ∈ T (10)

Tocalculate theoverall logistics cost for transporting item x , the costs are aggregated
according to the unit transport cost between nodes, that is, the cost of transporting the
item from a supply node to an intermediate node, the cost of transporting the item
among intermediate nodes, the cost of transporting the item from an intermediate node
to the designated demand node, and a virtual cost for the logistics fleet to return to any
supply/depot point after ending its work. Additionally, different items can be grouped
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and transported through some intermediate nodes to thefinal designateddemandnodes,
so the transport cost between a pair of nodes is considered. For the service time, it
is assumed that the penalty costs for earliness and tardiness can satisfy the customer
requirementswithout having anegative impact on the overall logistics cost. Thepenalty
cost for earliness/tardiness is based on the unit time per unit volume for which the item
is earlier/later than the predefined time required for transportation to the designated
CDP. The PF(x) and the timeline shown in Fig. 7 show that when delivery occurs
earlier than the predefined time for serving the customer (α

′ ≤ BT < α), the value of
(α − BT ) is positive and greater than zero. Then, the penalty cost for earliness depends
on the unit time for earliness. On the other hand, when delivery occurs later than the
predefined time for serving the customer (β < BT ≤ β

′
), the value of (BT − β)

is positive and greater than zero. Then, the penalty cost for tardiness depends on the
unit time for tardiness. The constraint

∑

i�1
∑

j�1 ri j ≥ 1, for∀i ∈ S, ∀ j ∈ D
ensures that the demand of a node can be served by at least one supply node in a
route. The constraint ri j ∈ {0, 1}, for ∀i ∈ S,∀ j ∈ D defines the binary decision
variable on whether to transport the item on a particular route. The variable takes the
value zero for a null/negative decision and one for a positive decision. The constraint
si � d j ≥ 0, or ∀i ∈ S,∀ j ∈ D ensures that the supply of items from a node is
equal to the demand of the items in the next node, which means all customer demand
in the CDPs is fulfilled. This constraint also defines the non-negative integer variables.
The constraints α

′
t ≤ BT < αt , for ∀t ∈ T and βt < BT ≤ β

′
t , for ∀t ∈ T

define the earliness and tardiness, respectively, of the logistics routings, and ensure
that the respective penalty costs apply to a delivery times in the correct periods. The
constraints αt , α

′
t , βt , β

′
t ≥ 0, for ∀t ∈ defines the non-negative integer variables.

4 An industrial case study

The proposed modeling approach is applied to solve a logistics routing problem of a
company and its supply chain. The company is a leader in a large-scale retail business
that have an independently developed and wide-ranging product lineup; high-quality
products that are recognized worldwide. This case study considers the company’s five
factories located in Asia that manufacture products using a make-to-order approach.
Thus, all supply chain logistics processes are induced by a customer order. Customer
can place orders at one of the factories. The factory then evaluates the order and
determines whether it has the capacity to fulfill the order. If the factory does not have
sufficient capacity to do so, the order is passed to one of the other four factories. If
the order is accepted by a factory, it orders the necessary materials or semi-products
from its suppliers, and then manufactures the products according to the customer’s
specifications. Once the products finish the assembly or production processes, the final
product is transported to the customer directly from the factory by its own logistics
fleet. The simplified business process flow of the company, including its suppliers and
customers, is illustrated in Fig. 8.

The company is both a manufacturer and a distributor in the supply chain, which
means it produces final products for customers and transports these products to the
customers. Therefore, when determining logistics routings, the company’s factories
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24 (Factory-Warehouse) Inform Sales about the Available Schedule / 25 (Factory-Warehouse) 
Release SI/DN / 26 (Factory-Warehouse) Release PO (for produc�on) / 27 (Factory-Warehouse) 
Check Inventory and Schedule / 28 (Factory-Warehouse) Double Check Available Inventory / 29 
(Factory-Warehouse) Inform Sales about the Available Schedule / 30 (Factory-Warehouse) IQC (Raw 
Materials) / 31 (Factory-Warehouse) GRN (Raw Materials) / 32 (Factory-Warehouse) Inventory 
Control (Raw Materials) / 33 (Factory-Warehouse) GRN (End Products) / 34 (Factory-Warehouse) 
IQC (End Products) / 35 (Factory-Warehouse) Inventory Control (End Products) / 36 (Factory-
Warehouse) Prepare Samples and QA Reports / 37 (Factory-Warehouse) Prepare End Products 38 
(Factory-Produc�on) Material Shortage (Non-Produc�on Relate) /39 (Factory-Produc�on) Release 
Purchase Requisi�on / 40 (Factory-Produc�on) Produc�on (*refer to Manufacturing Process) 41 
(Factory-Produc�on) Material Shortage (Produc�on Relate) / 42 (Factory-Produc�on) Release P.O. 
for Goods Re-delivery (Op�onal) / 43 (Factory-Produc�on) Release Purchase Return (for Goods 
Return) / 44 (Factory-Produc�on) Nego�ate with Vendor / 45 (Factory-Produc�on) Receive SO / 
Signed PO / 46 (Factory-Produc�on) Receive Purchase Requisi�on / 47 (Factory-Produc�on) 
Prepare/ Approve/ Issue PO / 48 (Factory-Others) Deliver /Re-deliver from Vendor / 49 (Factory-
Others) Release SO/ Sign and Return PO / 50 (Factory-Others) Receive PO

1 (Customer) Request Quota�on 
/ 2 (Customer) Request Samples / 
3 (Customer) Receive SO (Upon 
Request) / 4 (Customer) Receive 
Samples and Reports / 5 
(Customer) Return AF or in other 
formats or NA / 6 (Customer) 
Send out and Receive Vendor 
Survey Report / 7 (Customer) 
Release Purchase Order / 8 
(Customer) Receive SO (Upon 
Request) / 9 (Customer) Receive 
Purchased Items / 10 (Factory-
Sales) Receive Quota�on Request 
/ 11 (Factory-Sales) Reply 
Quota�on with Specifica�on / 12 
(Factory-Sales) Receive Samples

13 (Factory-Sales) Fill Documents & Generate SO# / 14 (Factory-Sales) Release SO to 
Customer (Op�onal) / 15 (Factory-Sales) Send out Samples and Reports / 16 (Factory-
Sales) Receive AF / Return Vendor Survey Report / 17 (Factory-Sales) Receive PO & 
Generate SO# / 18 (Factory-Sales) Release SO to Customer (Op�onal) / 19 (Factory-
Sales) Release SI/DN / 20 (Factory-Warehouse) Match Internal P/N or Create new P/N / 
21 (Factory-Warehouse) Check Inventory & Schedule / 22 (Factory-Warehouse) Release 
PO (for produc�on) / 23 (Factory-Warehouse) Double Check Available Inventory

Fig. 8 The simplified business process flow in the case studied company

are represented asMDCs and customers are represented as CDPs. It is assumed that the
five factories are identical, differing only in terms of their locations in order to achieve
economies of scale. In terms of the general practices of the company and its factories,
the transportation time is predefined in the MDCs, such that the items of an order are
transported from the sourceMDC to the final designated CDP immediately, according
to the service time before the logistics delivery. This practice seems good from a
business perspective in that the company can serve its customers as soon as possible.
However, it usually results in extremely high overall transportation costs because it is
costly to use the maximum capacity of the logistics fleet to fulfill orders. In addition,
the transportation service times are not flexible enough to allow customers to choose
their own times or schedules to receive items from MDCs. Thus, a high logistics cost
is a major problem arising from the current practice.

4.1 Data for the logistics routings

The data used to determine the logistics routings are extracted from the company’s
database. Historical data are chosen because they are the de facto data without any
external treatment. The data cover 3-month periods, because this is the period in
which most of the orders/jobs are completed, and include the number of customer
orders, demand quantity, supply cost, and item types. The performance reports of
the company in the studied period are also extracted from the company’s database to
enable us to compare these with the results of using the proposed modeling approach.
The case study includes 18 CDPs in the studied period, with the relevant data extracted
from the database. The network structure between the 18 CDPs and the five MDCs
is illustrated in Fig. 9. Five CDPs are mainly associated with MDC1, four CDPs are
mainly associated with MDC2, and three CDPs are mainly associated with each of
MDC3, MDC4, and MDC5.
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Fig. 9 The network structure between the 18 CDPs and the five MDCs in the case study

In manipulating the extracted data, the transport cost of an item from an MDC to a
CDP is based on the number of items being transported, eachwith its own unit transport
cost. The numbers of items transported are determined by counting the number of
completed customer orders in the database. The unit transport cost is predefined in the
company’s management system for financial calculations, and includes relevant costs
such as export/import tax payments, depot handling costs, and so on. Therefore, the
unit transport costs are extracted from the database directly. TheMDCsupply volume is
equal to themaximumvolumeof items fromMDCs toCDPs in a round, and is extracted
based on the “customer order completed” field in the database. Similarly, the CDP
demand volume is determined by extracting the number of customer orders received in
the “customer order received” field and the corresponding number of items requested.

In determining the travel time, it is assumed that MDCs send items to CDPs only
after the items have finished the assembly or production processes. Thus, the starting
time for transportation is the date/time that the items are loaded onto the logistics
fleet. Similarly, the ending time for the transportation between the source MDC and
the CDP is the date/time that the items are unloaded at the CDP. Customers digitally
sign amobile device connected to the central management system to confirm they have
received the items,which updates the “customer order completed” field in the database.
When transporting items via several intermediates, the transport times are determined
in a similar way, except that the starting time for the next CDP transport route is the
ending time of the previous CDP route. An example of the date/time format transfor-
mation for three grouped customer orders (C0001, C0002, and C0003) with traveling
routes MDC–CDP1(C0001)–CDP2(C0002)–CDP3(C0003) is illustrated in Table 1.

Currently, full payment or a 70% deposit is required in advance from the customer
when purchasing items from the company. Therefore, as discussed with the project
manager of the company, the penalty costs for earliness and tardiness are set to 0.03%
of the deposit, which amounts to about USD 25.2 unit cost per time per unit of volume.
In addition, the extracted data show that the total customer demand forMDC1,MDC2,
MDC3, MDC4, and MDC5 are 3710, 3733, 3757, 3708, and 3743 units, respectively.
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Table 1 An example of the
date/time format transformation

Level Order# Actions Completed Date/time

0 C0001 Loading in
MDC

Yes 05/18 09:30:05

0 C0002 Loading in
MDC

Yes 05/18 09:30:05

0 C0003 Loading in
MDC

Yes 05/18 09:30:05

1 C0001 Unloading &
signed in
CDP1

Yes 05/19 11:45:15

1 C0002 Unloading &
signed in
CDP2

No –

1 C0003 Unloading &
signed in
CDP3

No –

2 C0002 Unloading &
signed in
CDP2

Yes 05/19 12:15:09

2 C0003 Unloading &
signed in
CDP3

No –

3 C0003 Unloading &
signed in
CDP3

Yes 05/19 14:32:38

Raw data manipulation

Starting date/time for MDC–CDP1 (C0001) 05/18 09:30:05

Ending date/time for MDC–CDP1 (C0001) 05/19 11:45:15

Starting date/time for CDP1–CDP2 (C0002) 05/19 11:45:15

Ending date/time for CDP1–CDP2 (C0002) 05/19 12:15:19

Starting date/time for CDP2–CDP3 (C0003) 05/19 12:15:19

Ending date/time for CDP3–CDP3 (C0003) 05/19 14:32:38

Total time duration for MDC–CDP1 26 h 15 min 10 s

Total time duration for CDP1–CDP2 00 h 30 min 04 s

Total time duration for CDP2–CDP3 02 h 17 min 19 s

The traveling time for MDC–CDP1* 94510 s

The traveling time for CDP1–CDP2* 1804 s

The traveling time CDP2–CDP3* 8239 s

The customer demand and service times for each CDP in the studied period are sum-
marized in Table 2.

4.2 Optimizing the logistics routings

The logistics routings involve numerous routes between MDCs and CDPs. In general,
this is a combinatorial optimization problem in grouping and routing the items/final
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Table 2 The customer demand and service times for each CDP

Period Order point Supply source Volume demand Service time

I CDP2 MDC1 1640 [− 7200, + 3600]

CDP8 MDC2 1716 [− 9000, + 3600]

CDP12 MDC3 1886 [− 5400, 0]

CDP14 MDC4 1599 [− 7200, + 3600]

CDP18 MDC5 1402 [− 9000,0]

II CDP3 MDC1 1096 [+ 1800, + 7200]

CDP7 MDC2 911 [− 9000, + 5400]

CDP10 MDC3 1044 [+ 1800, + 7200]

CDP15 MDC4 1196 [− 7200, + 7200]

CDP17 MDC5 1262 [− 5400,0]

III CDP1 MDC1 268 [− 43,200, + 7200]

CDP5 MDC1 589 [− 7200, + 14,400]

CDP4 MDC1 117 [+ 3600, +7200]

CDP9 MDC2 949 [0, + 14,400]

CDP6 MDC2 157 [− 7200, + 7200]

CDP11 MDC3 827 [− 9000, 3600]

CDP13 MDC4 913 [− 21,600, + 3600]

CDP16 MDC5 1070 [+ 43,200, + 7200]

products from the MDCs to the CDPs, where a route may include several CDPs as
intermediate nodes. In addition, a penalty function is included to determine the penalty
costs for earliness and tardiness (i.e., within α

′
t ↔ αt and βt ↔ β

′
t ). Thus, the problem

is basically an NP-hard problem with a polynomial-time algorithm, which means the
solution time and complexity grow exponentially as the problem size increases. The
computational results for the case study are obtained using genetic algorithm and
compare these results to the exact solutions on the values of the objective functions
proposed in this study.Thegenetic algorithmwas coded inC, compiledusingMicrosoft
visual C ++ complier, and tested on a 3.60 GHz i7 computer. For obtaining the exact
solutions, AMPL Plus with CPLEX solver was used in the same computer. Table 3
shows the solution values for genetic algorithm and exact solution. The corresponding
optimized logistics routes are presented in Fig. 10a–c.

In genetic algorithm, the parameter setting for crossover probability is 0.9; crossover
type is one-point crossover; chromosomemutation probability is 0.1; random selection
probability is 0.1; and the termination condition is the best fitness unchanged after 500
generation. In the optimized result of unit cost, the genetic algorithm and exact solution
results are the same, and the logistics routings are identical in both genetic algorithm
and exact solution. However, the required computation time is very different between
genetic algorithm and exact solution; the exact solution approach required about 60
times as much time as the genetic algorithm approach for the problems. In the case
study, the number of supply nodes is five and the number of demand nodes is 18; it
is a type of mid-size problem. In mid-size problem, genetic algorithm solutions and
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Table 3 Comparison of the results of the logistics routings

Studied period Genetic algorithm Exact solution Actual practice

Results (unit
cost)*

Time (s) Results (unit
cost)*

Time (s) Results (unit
cost) *

I Transport cost
between
MDCs and
CDPs

638416.00 106.6 638416.00 6651.8

Penalty cost for
tardiness for
CDP8 and
CDP12

27231.12 106.6 27231.12 6651.8 Delayed delivery

Monthly
logistics cost

665647.12 106.6 665647.12 6651.8 988443.6

II Transport cost
between
MDCs and
CDPs

377810.00 103.2 377810.00 6211.9

Penalty cost for
earliness for
CDP3 and
CDP10

26964.00 103.2 26964.00 6211.9 Delayed delivery

Monthly
logistics cost

404774.00 103.2 404774.00 6211.9 442822.1

III Transport cost
between
MDCs and
CDPs

255925.00 95.7 255925.00 5653.9

Penalty cost for
earliness for
CDP4 and
CDP6, and for
tardiness for
CDP9

30819.60 95.7 30819.60 5653.9 Delayed delivery

Monthly
logistics cost

286744.60 95.7 286744.60 5653.9 440299.6

*Virtual cost for the logistics fleet to return to any supply/depot point after ending its work is excluded

exact solutions can be obtained; however, it is difficult to obtain exact solutions as the
number of nodes further increases. It is thus clear that the genetic algorithm produces
results within a very short computation times.

Owing to a restriction of the company’s management system, the monthly logistics
costs with remarks can only be extracted (e.g., whether deliveries were delayed).
Thus, a detailed cost breakdown for each transportation step and the penalty costs
for earliness or tardiness are not available. The comparison in Table 3 shows that the
optimized results can fulfill all customer orders in the studied period. In addition, the
proposed model has a positive treatment effect in terms of minimizing the overall
logistics costs and providing routes that satisfy the customer demand without having a
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Fig. 10 a The logistics routes for the case study in Period I. b The logistics routes for the case study in
Period II. c The logistics routes for the case study in Period III

negative effect on the overall logistics costs or causing significant delays. Furthermore,
the financial records of the company’s management system show that the 18 CDPs are
major customers whose orders account for approximately 57% of the annual revenue.
The results show that adopting the proposed logistics routings approach would reduce
the logistics costs by about 40%, thus increasing the revenue of the company.
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5 Conclusion

This study introduces a modeling approach to generalize the classical transportation
model. This study considers a logistics network with heterogeneous nodes of distinct
operating features—supply and demand. The network is modeled as G(S, D, E),
where S denotes the supply sources, D denotes the demand sources, and E represents
the connections between the two. Also, the model is a formalism embedding to exist-
ing concepts that include multiple supply nodes, multiple products in logistics routes,
options for merging logistics routes, and options for grouping of products. The objec-
tive of the logistics routing in this study is to minimize the overall logistics costs by
optimizing the routes for item delivery; certain routes and products can be combined
and it takes into account earliness/tardiness in delivery based on user preferences. In
this study, a logistics route starts at a supply source of manufacturer/distribution cen-
ter (MDC), and then may pass through one or more customer demand points (CDP)
before reaching the final designated CDP that placed the original order; intermediate
node(s) exists between the supply source and the final designated demand point. Cost
and time are considered in the logistics routings in this study. The modeling approach
is based on variables for transport costs between MDCs and CDPs, time windows for
delivery, penalty costs for earliness, and penalty costs for tardiness. The model is also
applied in an industrial case study. The computational results indicate that the mod-
elling approachminimizes the overall logistics costs and can fulfill all customer orders.
The proposed routes between MDCs and CDPs are effective in satisfying the demand
in designated CDPs. The proposed modeling approach contributes to our knowledge
of alternative models for logistics problems, and so provides meaningful results for
academics and industry practitioners.

This study applies the supply and demand nodes concept to link the relationships
between the supply sources and the demand sources, so the approach ismainly focused
on node-to-node relationship. In order to make the proposed modeling approach to be
more mature in generalize the classical transportation model, next step in this study
will involve modeling the logistics route from an integrated node-to-link and/or link-
to-node relationship and other types of heterogeneous nodes in logistics network, so
breakdown cost for individual items can be revealed in a logistics route. Further work
will also investigate the actual cost for the logistics fleet to return to any supply/depot
point after ending its work, and it is worth to consider minimizing the traveling cost
from the ending demand point to any supply or to a depot point. Additional industrial
case studies will also be conducted to further validate the formalism of the model to
an existing transportation concept.
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