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Abstract
This study focuses on investigating the best layouts of a unit-load warehouse for
single-command operation. We propose a model for unit-load warehouses having a
single cross aisle and multiple pickup & deposit (P&D) points located at the front side
of the warehouse. The model is constructed in continuous space for single-command
travel and allows the cross aisle and picking aisles to take any angle between 0 and
π. We then search for the best aisle arrangements that minimize the expected single-
command distance from a given varying number of P&D points under randomized
storage policy. Additionally, we introduce three material flow policies to investigate
the effect of usage density of P&D points on the design. We also investigate the
effects of shape ratio on angles of aisles in the best designs. Last, we also solved a
problem instance with unsymmetrically allocated P&D points to show how to use our
proposed models. Therefore, we present that warehouses with width to depth ratio
3:1 are good for high number of P&D points. We also show that the best designs
provide more savings in travel over the equivalent traditional design if flows are more
concentrated around the central P&D point. The best-found designs also present that
the single-command distance can be reduced to 8–20% based on the characteristics of
the unit-load warehouse.
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1 Introduction

As global trade and e-commerce increases, warehousing becomes increasingly impor-
tant for supply chain management due to increasing importance of responsiveness.
Therefore, many companies get closer to their customer by opening new warehouses.
However, many of them still goes with traditional storage blocks and arrangement of
aisles that actually have greater impact on efficiency of warehouse operations such
as receiving, put-away and especially order-picking (Scholz and Wäscher 2017). Two
unspoken and hidden assumptions of traditional warehouse layouts were put forward
by Gue and Meller (2009) such that (1) picking aisles are arranged parallel to each
other while (2) cross aisles are placed perpendicular to the picking aisles as shown in
Fig. 1. Gue and Meller (2009) then proposed two non-traditional warehouse layouts
that offer reduction on average single-command distance (10–20%) over traditional
layouts. Themain principle behind of the newnon-traditional layouts and the reduction
on travel distance is to obtain the Euclidean distance, which is the shortest distance
between given two points, between the pick-up and deposit (P&D) point and a storage
location. Even though this phenomenon was first introduced by White (1972) in a
warehouse layout problem, this became alive in Gue and Meller (2009)’s Flying-V
and Fishbone designs.

After Gue and Meller (2009)’s pioneering study, Pohl et al. (2009) and Pohl et al.
(2011) showed that Fishbone designs also offer improvements in travel distance for
the dual-command operations and turnover-based storage in unit-load warehouses.
Öztürkoğlu et al. (2012) took non-traditional aisle studies further and provided optimal
layouts with one, two and three angled cross aisles that minimize single-command
travel distance. In addition, they showed that the Chevron, the optimal one-cross aisle
design, provides the same amount of reduction on travel as the Fishbone. In the mean-
time, Öztürkoğlu et al. (2012) also shared one of the implications of non-traditional
aisles in warehousing industry. Additionally, Cardona et al. (2012), Clark and Meller
(2013), Bortolini et al. (2015), Venkitasubramony and Adil (2016), and Bortolini et al.
(2019) studied on the Flying-V and Fishbone designs to show their effectiveness.

Cardona et al. (2012) identified the optimal angle for the diagonal cross aisles
in the Fishbone design to demonstrate the robustness of original Fishbone design to
varying warehouse dimensions. Clark and Meller (2013) embedded the vertical travel
dimension into travel time models of Flying-V and Fishbone to investigate the robust-

Fig. 1 Representation of traditional warehouse designs
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ness of their layout. Bortolini et al. (2015) reported that inserting one additional cross
aisle into the Flying-V design reduced the single-command travel distance, although
there was loss of storage space due to the inserted angled aisles. Venkitasubramony
and Adil (2016) showed that the Fishbone layout reduces pick distance more when
product demand is highly skewed rather than uniform demand. Bortolini et al. (2019)
inserted angled cross aisles into traditional layouts and showed that the position of the
angled aisles are insensitive to demand curve in class-based storage policy.

Different from the previously mentioned studies, Gue et al. (2012), Galvez and
Ting (2012), Öztürkoğlu et al. (2014), Öztürkoğlu (2015, 2016), Mesa (2016) and
Öztürkoğlu et al. (2018) considered multiple P&D points where a picker receives a
pallet for put-away, an order list for picking, or a shrink-wrap machine is located
for packaging. Gue et al. (2012) demonstrated that Flying-V designs still reduces
single-command distances when multiple P&D points are located on the front of the
warehouse, but not as much as with one centrally-located P&D point. Galvez and Ting
(2012) presented several efficient locations for multiple P&D points in the Fishbone
and rotated Fishbone designs for reducing the single- and dual-command travel dis-
tances. Öztürkoğlu et al. (2014) developed new non-traditional aisle designs that have
multiple P&D points where they are located on the sides of the warehouses under four
scenarios. Öztürkoğlu (2015, 2016) relaxed the limitations on the number of multiple
P&D points on the designs proposed by Öztürkoğlu et al. (2014) to investigate how the
number of P&D points affects the orientation of the angled aisles. Mesa (2016) pro-
posed the diamond-shape layout with two P&D points for unit-load warehouses. Mesa
(2016) showed that the diamond-shape layout has lower single-command distance than
the equivalent traditional design and the design C1 which is developed by Öztürkoğlu
et al. (2014). All of the abovementioned studies about multiple P&D points assumed
uniformusage of the P&Dpoints.Different from these studies,Öztürkoğlu et al. (2018)
analyzed expected-single command travel distances under two different material flow
policies in the Chevron design inserting multiple P&D points on the front. The authors
showed that the Chevron presents decreasing savings on distance over equivalent tra-
ditional designs as the number of P&D points increases. Additionally, Chevron, as
expected, performs better when flows are denser around the center than distributed.

Table 1 lists and categorizes the abovementioned studies according to some design,
methodological and operational criteria. First, we categorized them according to the
number of P&D points used in those studies. Second, the type of developed models to
calculate travel distance in a layout is considered. Some studies developed analytical
models to calculate distance and provided travel distance functions. However, some
studies developed the network of the layouts and calculated distances on the network
of nodes and edges. We also categorized them according to the types of layouts that
they studied. Fixed layouts refer that the studied layouts do not change throughout the
study. In the semi-fixed layout studies, only one type of aisle, either cross or picking,
is assumed to be variable. If a study is categorized under variable layout, angles of all
types of aisles are assumed to be variable. As seen in the table, there are a few non-
traditional aisle studies with multiple P&D, although there are many with single P&D
point. Additionally, the multiple P&D studies are either the lack of an analytical model
or variable layouts. Therefore, this study aims to fill the these gaps in the warehousing
literature (see the last row in Table 1 for the characteristics of this study.) The next
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section highlights the differences between the previous studies and this study, as well
as its contribution to the literature.

In addition to the above-mentioned studies on unit-load warehousing, there are
several non-traditional aisle studies on order-picking warehouses such as Dukic and
Opetuk (2008), Çelik and Süral (2014), Henn et al. (2013), Öztürkoğlu and Hoşer
(2018, 2019) and Öztürkoğlu and Mağara (2019). Because these studies are out of
scope of this manuscript, we leave their details to readers.

1.1 Scope and contribution of this study

As seen in Table 1, the majority of the previous non-traditional aisle studies assumed
single P&D point. However, it is very common to have multiple P&D points in ware-
houses in practice, especially in larger ones to avoid congestion and facilitate flow
through receiving and shipping docks. Therefore, this study focuses on non-traditional
warehouse layouts with multiple P&D points.

Even though some studies considered multiple P&D points, they focused on fixed
designs such as Flying-V in Gue et al. (2012), Diamond-shape in Mesa (2016) and
Chevron in Öztürkoğlu et al. (2018). The other important limitations of multiple P&D-
point studies are the lack of analytical models and the assumption of uniform usage of
P&D points. Although Öztürkoğlu et al. (2014) and Öztürkoğlu (2015, 2016) looked
for the optimal values of cross andpicking aisles’ angles, theydid not provide analytical
distance models for general use. Additionally, except for the Öztürkoğlu et al. (2018),
all of these studies supposed uniform usage of P&D points. Thus, there is no study in
the literature that provide an analytical model of expected single-command distance
in non-traditional aisle designs in which (1) aisles are not fixed, (2) any number of
P&D points might be located on the front, (3) the P&D points might have any usage
rate, and (4) the layout could be any size. Hence, this study aims to present optimal
layouts for different warehouse design parameters. To make this study’s contribution
clearer, the following discussions point out the similarities and differences from the
closest relevant studies.

(1) Although Öztürkoğlu et al. (2014) looked for optimal aisle designs with multiple
P&D points; the main limitation of that study is the lack of analytical model.
Öztürkoğlu et al. (2014) developed a constructive aisle model to design any non-
traditional layout in a discrete space and evaluate its cost; however, it is not easy to
use it for experiments because of the complexity of the model and the burdening
computational time. Similarly, Öztürkoğlu (2015, 2016) also used Öztürkoğlu
et al. (2014)’s model. They did not provide any analytical travel distance model.
Hence, themain difference between those and this study is themodeling approach.

(2) In this study, we develop analytical distance models in warehouses using con-
tinuous space approach similar to Öztürkoğlu et al. (2012, 2018). Öztürkoğlu
et al. (2012) developed models for travels from only one centrally located P&D
point. In those models, the starting point of the angled cross aisles are assumed
to be fixed at the P&D point. However, we relax the assumption of fixed start
point of the cross aisle in this study. Additionally, we develop travel distance
models from each P&D point that can be located anywhere on the front of the
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warehouse, which makes the models more complicated. Even though Öztürkoğlu
et al. (2018) developed travel models for multiple P&D points, the biggest limi-
tation of this study is the fixed design, which is Chevron. Öztürkoğlu et al. (2018)
analyzed the changes in expected single-command distance in Chevron withmul-
tiple P&D points that might have different usage. The biggest difference between
that and our study is that we search for the optimal aisle configuration using the
new travel distance functions from multiple P&D points. We introduce different
material flow policies from Öztürkoğlu et al. (2018).

The rest of the paper is organized as the followings. In the next section, we first
discuss the assumptions of our warehouse design problem. We then introduce our
problem and develop its model step by step under the assumption of continuous space.
After introducing sub problems we provided their travel distance functions. Next, we
present our proposed solution algorithm, which is Particle Swarm Optimization, to
solve our problem. In order to represent some practical aspects, we then introduce
three different material flow policies that determine usage rates of P&D points. In
Sect. 5, we solved our problem with varying number of P&D points, warehouse shape
ratios and flow policies. After we presented our observations, we concluded the paper
with several practical insights.

2 The continuous warehouse layout problemwithmultiple P&D
points

Previous studies showed that continuous space models can be used as a good approx-
imation of discrete space models. For example, Venkitasubramony and Adil (2016)
reported that the gap between continuous and discrete models of single-command dis-
tance in the Fishbone design is within 2.5%. Öztürkoğlu et al. (2012) found that the
gap between discrete and continuous models decreases as warehouse size increases.
While the gap in the Chevron design is around 4% for small warehouses, it falls to
around 2% for large warehouses. We therefore assume that the continuous warehouse
space in our models allows us to derive analytical travel distance expressions because
of its good approximation and strength to consider various travel paths in a flexible
layout problem where aisles and racks can be arranged freely.

2.1 Assumptions

The generic warehouse layout we consider in this study is shown in Fig. 2 while
Table 2 describes the model parameters and variables used to define the warehouse
layout given in Fig. 2. We made the following design assumptions to develop the
layout and its model.

(i) The warehouse has a rectangular shape.
(ii) There are cross aisles on both front and rear of the warehouse but no cross aisles

on the right and left walls, in contrast to Öztürkoğlu et al. (2014), in order to
accommodate racks against these walls. Therefore, travel is not allowed along
the right and left sides of the warehouse (see Fig. 3a).
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Fig. 2 The warehouse model in
continuous space

Table 2 Layout parameters and model variables

Layout parameters

L Width of warehouse

H Depth of warehouse

Sr Shape ratio, Sr � L/H

a Distance between two consecutive P&D points

n Number of P&D points

Pi Location of ith P&D point

Ui The usage rate of ith P&D point

m Originating point of angled cross aisle, 0 ≤ m ≤ L

β Angle of cross aisle

γR Angle of the diagonal, which is the line going through m to the upper right-most corner, on the

right region; γR � Tan−1
(

H
L−m

)

γL Angle of the diagonal, which is the line going through m to the upper left-most corner, on the left

region; γL � π − Tan−1
(
H
m

)

αR Angles of picking aisles in the right region

αL Angles of picking aisles in the left region

Fig. 3 Feasible and unfeasible travel routes (blue arrows) along the right and left sides of the warehouse
(color figure online)
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(iii) There is one angled cross aisle to facilitate travel between picking aisles. It can
emerge from anywhere on the front cross aisle where incoming and outgoing
materials flow. It is also assumed to terminate on the rear cross aisle to prevent
unfeasible travel paths along the sides of thewarehousewith respect to the angles
of the picking aisles.

(iv) The angled cross aisle divides the storage area into right and left regions with
respect to the position of the cross aisle. In each region, the picking aisles are
arranged parallel to each other.

(v) P&D points are equidistantly and symmetrically located with respect to the
centrally-located P&D point on the front cross aisle. This assumption can be
easily relaxed (see Sect. 5.2 for the details).

In Fig. 2, the bold red lines represent the fixed front, and rear cross aisles while the
double red line represents the angled cross aisle. The dashed lines originating from m
represent the diagonals on the right and left sides while the thin lines emerging from
m are “central picking aisles” in the left and right regions. Thus, there is an infinite
number of picking aisles parallel to the central picking aisles in the regions. Because
of assumption (iii) above, the angle of the cross aisle can take any value between
γR < β < γL . Because m is not fixed, which will be explained later, γR and γL
change depending on m. P&D points can be located anywhere between 0 ≤ pi ≤ L .
Because of assumption (v) above, the location of the i th P&D point is defined by

pi � L

2
− a(n − 1)

2
+ a(i − 1),∀i � 1, 2, 3, . . . , n.

2.2 The problem and themodel

The main goal of this study is to find the optimal angles of the angled cross aisle (β)
and picking aisles (αR andαL ), and the optimal location of the originating point of
the cross aisle (m) to minimize the expected travel distance in a unit-load warehouse
with multiple P&D points. Hence, the design can be represented by a vector of four
continuous variables S � {m, β, αR, αL}, for a given set of n P&D points, L , H , and
a. Since we assume that each storage location has equal probability of being visited
due to the randomized storage policy, the generally expected single-command travel
distance (E[D]) is the ratio of the total travel distance from all P&D points to every
available storage location on the right and left regions in a continuous warehouse
space, to its total storage area, as in Eq. 1.

E[D] �
∑n

i Ui

(∫
x∈AR

∫
y∈AR

f (x, y, pi ) +
∫
x∈AL

∫
y∈AL

f (x, y, pi )
)

H · L (1)

where (x, y) is the coordinate of a randomly chosen point in a region; AR and AL

are the areas of the right and left regions, respectively; and f (x, y, pi ) is the one-way
single-command travel distance to point (x, y) from pi .

As mentioned before, β can take any value between γR and γL . However, to avoid
duplication from symmetric designs and simplify the model, we let β take values
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Fig. 4 Symmetric cases of the angled cross aisle

Table 3 Definitions of the cases of the model

Case 1 π/2 ≤ αL ≤ γL & 0 ≤ αR ≤ γR Case 4 π/2 ≤ αL ≤ γL & β ≤ αR ≤ π/2

Case 2 γL ≤ αL ≤ π & 0 ≤ αR ≤ γR Case 5 γL ≤ αL ≤ π & γR ≤ αR ≤ β

Case 3 π/2 ≤ αL ≤ γL & γR ≤ αR ≤ β Case 6 γL ≤ αL ≤ π & β < αR < π/2

between γR ≤ β ≤ π/2 because of Proposition 1 below. Additionally, because of
assumption (ii) above, the angles of picking aisles on the right and left regions can
take values between 0 < αR < π/2 and π/2 < αL < π (see Fig. 3a for an example
of unfeasible travel when αR > π/2).

Proposition 1 There are always symmetric cases of β when γL ≥ β ≥ π/2 on the
interval of π/2 ≥ β ≥ γR when P&D points are symmetrically allocated around the
central P&D point.

Proof Suppose S and S′ are the respective two-solution vectors of S � (β, αR, αL ,m)

and S′ �
(
β ′, α′

R, α
′
L ,m′

)
,which result in expected travel distances E[D] and E

[
D′]

for the layouts given in Fig. 4a, b, respectively. Because we assume that P&D points
are distributed evenly around the centrally-located P&D point, let us draw a vertical
line through the central P&D point. Because of the mirror effect with respect to this
vertical line, there are always symmetric cases of β ′, α′

R, α
′
L andm

′. Therefore, E
[
D′]

is equal to E[D] when β ′ � π −β; α
′
R � π −αL ; α

′
L � π −αR ; m′ � L −m; γ

′
R �

π − γL ; γ
′
L � π − γR .

Similar to Öztürkoğlu et al. (2012), we divide our model into sub cases based on
possible aisle angles to derive cost (expected single-command distance) functions.
However, there are six cases in our model because of the complexity of the problem.
The respective cost fctions of each case, which are defined in Table 3, are described by
E[DC1], E[DC2], E[DC3], E[DC4], E[DC5], and E[DC6] respectively. To find the
optimal solution vector, we solve each of these cases separately before selecting the
variables of the case that gives the minimum expected travel distance: E[D] � min
{E[DC1], E[DC2], E[DC3], E[DC4], E[DC5], E[DC6]}.

To derive travel distance functions to a randompoint (x, y) in thewarehouse storage
area, it is divided into travel regions where the travel path to reach a location is the
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Fig. 5 Travel route regions in Case 1

same. Figure 5 illustrates four travel regions in Case 1 along with the example travel
paths. Region A is the area between the central picking aisle on the right and the
front cross aisle. Region B is the area between the central picking aisle on the right
and the angled cross aisle. Regions C and D are the counterpart regions of A and
B on the left respectively. For space reasons, region definitions for other cases and
their representations are given in the online appendix. In addition of these cases, the
relative position of the P&D points according to the central P&D point should also be
considered in developing travel distance functions because it causes different travel
routes. For instance, as shown in Fig. 5, if a worker travels from a P&D point located
on the right side of m (pi > m) to any point (x, y) in region B, the routing rule is (1)
travel along the front cross aisle until m; (2) travel along the angled cross aisle; (3)
travel along the appropriate picking aisle with angle αR . If a worker starts to travel
from a P&D point on the left ofm (pi < m), then that worker travels towards the right
rather than left along the front cross aisle. Even though the routes along the front cross
aisle are different, the distance on the front cross aisle can be described by a similar
function using absolute values for simplification.

Table 4 shows the portions of the travel distance equation to any (x, y) point from
any P&D point in each region. Finally, f A(x, y, pi ), fB(x, y, pi ), fC (x, y, pi ), and
fD(x, y, pi ) are the travel distance functions from the i th P&D point to (x, y) point in
regions A, B,C and D respectively, as defined in Table 4. For fB and fD , specifically,
the angles of lines going from m to (x, y) points in regions B and D are defined as
θ , as shown in Fig. 5. θ � Tan−1((x − m), y) is the angle defined by the front cross
aisle and a line between m and any (x, y) point on the right of m.

To obtain each case’s cost function, we calculate the total travel distance by inte-
grating the travel distance functions in Table 4 through the relevant sub regions under
the assumption of continuous space. While integrating these cost functions, according
to a travel region we use either the negative or the positive of the absolute functions
given in Table 4. To integrate our cost functions in sub regions, we use the appropriate
boundaries depicted in Fig. 6 with respect to the studied case. These boundaries are
also described in Table 5 in details.

Figure 7 shows the partitioned sub regions depicted in Fig. 5a that are used to
integrate the travel distance functions for Case 1 when pi ≥ m. Using these sub
regions’ definitions, Eq. 2 shows the expected travel distance (E[DRC1]) for Case 1

123



Aisle designs in unit-load warehouses with different flow… 333

Ta
bl
e
4
Po

rt
io
ns

of
th
e
tr
av
el
di
st
an
ce

eq
ua
tio

ns
fr
om

a
P&

D
po

in
tt
o
a

(x
,
y )

po
in
t

R
eg
io
n

D
is
ta
nc
e
al
on
g
th
e
fr
on
tc
ro
ss

ai
sl
e

D
is
ta
nc
e
al
on
g
th
e
an
gl
ed

cr
os
s
ai
sl
e

D
is
ta
nc
e
al
on
g
th
e
pi
ck
in
g
ai
sl
e

A
∣ ∣ ∣x

−
p i

−
y

T
an

(α
R
)

∣ ∣ ∣
–

y
Si
n (

α
R
)

B
| m

−
p i

|
y

Si
nθ

C
os

(β
−

θ
)
−

y
Si
nθ

Si
n (
B

−
θ
)
C
os

Si
n

(β
−

α
R
)

y
Si
nθ

Si
n (

β
−θ

)

Si
n (

β
−α

R
)

C
∣ ∣ ∣p

i
−

x
−

y
T
an

(π
−α

L
)

∣ ∣ ∣
–

y
Si
n (

π
−α

L
)

D
| m

−
p i

|
y

Si
nθ

C
os

(θ
−

β
)
−

y
Si
nθ

Si
n (

θ
−

B
)
C
os

Si
n

(α
L

−
β
)

y
Si
nθ

Si
n (

θ
−β

)

Si
n (

α
L
−β

)

123



334 Y. Kocaman et al.

Fig. 6 Main boundaries of cases

Table 5 Boundary definitions of computed subregions

Boundary Definition Equation

yPR Line segment of the central picking aisle on
the right region

yPR � (xPR − m)Tan(αR)

yPL Line segment of the central picking aisle on
the left region

yPL � (xPL − m)Tan(αL )

yC Line segment of the angled cross aisle yC � (xC − m)Tan(β).

yDR Line segment of the diagonal on the right
region

yDR � (xDR − m)Tan(γR )

yDL Line segment of the diagonal on the left
region

yDL � (xDL − m)Tan(γR )

yqL Line segment descending from upper left
corner with angle αL . This occurs when
αL < γL . Therefore, qL . is the intersect
of yqL and the front cross aisle

yqL �
(
xqL − qL

)
Tan(αL ) where

qL � H
Tan(π−αL )

yRi Rising line from the i th P&D point on the
right side of m with angle αR

yRi �
(
x Ri − pi

)
Tan(αL )

yLi Rising line from the ith P&D point on the
left side of m with angle αL

yLi �
(
xLi − pi

)
Tan(αR)

yL Intersection point of yLi and the left side of
the warehouse

yL � −pi T an(αL )

Fig. 7 Representation of lines
indicating borders of regions for
Case 1 if Pi ≥m

when pi ≥ m. Each integral of the travel distance functions in parenthesis shows the
order of total travel distances in sub regions A1, A2, A3, B1, B2, C , and D.
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Fig. 8 Partitioning of the warehouses for Case 1 if Pi <m

E[DRC1] � 1

H · L
n∑

i�1

Ui

⎛
⎜⎝

L∫

x�pi

yRi∫

y�0

f A(x, y, pi )dydx +

pi∫

x�m

yPR∫

y�0

f A(x, y, pi )dydx

+

L∫

x�pi

yPR∫

y�yRi

f A(x, y, pi )dydx

+

L∫

x�m

yDR∫

y�yPR

fB(x, y, pi )dydx +

H∫

y�0

xDR∫

x�xC

fB(x, y, pi )dxdy

+

H∫

y�0

yPL∫

x�0

fC (x, y, pi )dxdy +

H∫

y�0

xC∫

x�xPL

fD(x, y, pi )dxdy

⎞
⎟⎠ (2)

Similarly, we also develop the cost function when pi < m because of differences
in several travel routes compared to routes where pi ≥ m. This is necessary because
the boundaries of travel regionC change with respect to the relative position of a P&D
point to qL (see Table 5 for its definition) when αL < γL . We divide Case 1 for pi < m
into two partitions: pi ≥ qL and pi < qL (see Fig. 8).

The cost functions for pi ≥ qL and pi < qL are defined as E[DL1C1] and E
[DL2C1], and given in Eqs. 3 and 4, respectively. In these equations, the first four
terms are the same. These define total travel distances in region A, sub regions B1 and
B2, region D respectively. While the last term in Eq. 3 gives the total travel distance
for sub regions C1 and C2 in Fig. 8a, the last three terms in Eq. 4 show the total travel
distance in sub regions C1, C2, C3, and C4 in Fig. 8b, respectively.
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E
[
DL1C1

] � 1

H · L
n∑

i�1

Ui

⎛
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L∫

x�m

yPR∫
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L∫

x�m
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y�yPR
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+
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+

H∫

y�0
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fD(x, y, pi )dxdy +

H∫

y�0

xPL∫

x�0

fC (x, y, pi )dxdy

⎞
⎟⎠ (3)

E
[
DL2C1

] � 1

H · L
n∑

i�1

Ui

⎛
⎜⎝

L∫

x�m

yPR∫

y�0

f A(x, y, pi )dydx +

L∫

x�m

yDR∫

y�yPR

fB(x, y, pi )dydx

+

H∫

y�0

xDR∫

x�xC

fB(x, y, pi )dxdy

+

H∫

y�0

xC∫

x�xPL

fD(x, y, pi )dxdy

pi∫

x�0

yqL∫

y�0

fC (x, y, pi )dydx

+

qL∫

x�pi

yqL∫

y�0

fC (x, y, pi )dydx +

H∫

y�0

x PL∫

x�xqL

fC (x, y, pi )dxdy

⎞
⎟⎠ (4)

Finally, the expected travel distance in Case 1 is calculated using Eq. 5. For the
sake of the manuscript’s flow, the other cases and their cost functions are presented in
the online supplementary appendix.

E[DC1] �
⎧⎨
⎩

E[DL1C1]; pi < m and pi > qL
E[DL2C1]; pi < m and pi < qL
E[DRC1]; pi > m

⎫⎬
⎭ (5)

2.3 Cost in the traditional design

To provide an accurate comparison, we take the one-block warehouse design as a base
because of its superiority for single-command operations (Roodbergen and De Koster
2001). We provide the continuous space model for the expected single-command
distance in a one-blockwarehousewithmultiple P&Dpoints. Suppose that two random
points (xR, yR) and (xL , yL) are generated on the right and left sides of a P&D point,
respectively (see Fig. 9). Because of the rectilinear travel from the P&D point to these
random points, the travel distance functions on the right and left sides of the P&Dpoint
are DR � xR − pi + yR and DL � pi − xL + yL , respectively. Last, the expected travel
distance (E[T D]) from all P&D points in a one-block warehouse are given by Eq. 6:
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Fig. 9 One-block traditional aisle
layout model

E[T D] � 1

HL

n∑
i�1

Ui

⎛
⎜⎝

L∫

x�pi

H∫

y�0

DR dydx +

pi∫

x�0

H∫

y�0

DL dydx

⎞
⎟⎠ (6)

� 1

HL

n∑
i�1

Ui

(
1

4
H

(
L(2H + L) + a2(−1 − 2i + n)2

))
(7)

3 Particle swarm optimization algorithm

To search for the optimal solution vector (S � {m, β, αR, αL}), we use particle swarm
optimization (PSO) algorithm because it was specifically developed for continuous
and non-linear optimization by Kennedy and Eberhart (1995). Because our variables
are continuous and the cost functions are non-linear, this algorithm is appropriate for
our purpose.

The essence of the algorithm relies on observations of the social interactions of flock
of birds and schools of fish. In PSO, a population is composed of members, called
particles, and each particle is assumed to be connected to each other. Each particle
represents a solution and searches the multi-dimensional, non-linear cost function’s
spacewith a specific velocity.During the search, particles learn fromboth their ownand
the others’ experience. These two characteristics are described as individual learning
as a cognitive factor and social learning as a social factor, referring to local and
global search, respectively. While particles memorize their best previous position by
individual learning, they also share their best positions found so far with each other in
their neighborhood. Hence, the algorithm defines the previous best position of each
particle as pbest while the best position of the population, which is the best among all
particles, found so far is defined as gbest . A particle moves from its current position
to a new position by adjusting its velocity and direction using pbest and gbest .

In our implementation, we rely on the PSO algorithm presented byÖztürkoğlu et al.
(2014), who also applied it to a warehouse design problem. So, we adopted their nota-
tion to explain the proposed PSO algorithm. Let Xt

i include d dimensions (variables)
and denote the position of the ith particle at iteration t ; Xt

i � {
xti1, x

t
i2, . . . , x

t
id

}
, where

xtid is the position of the dth dimension of the ith particle. V t
i is the set of d velocities

of particle i at iteration t , V t
i � {

vti1, v
t
i2, . . . , v

t
id

}
. Each dimension of each particle

moves with velocity vtid in the search space. Pi is the best previous location that gives
the best fitness value of the ith particle and Pi � {pi1, pi2, . . . , pid} where pid is the
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best value of dimension d of the ith particle.G � {
g1,g2,...,gd

}
represents the best par-

ticle among all particles where gd is the best value of dimension d in G. Additionally,
learning coefficients c1 and c2 are used to control howmuch a particle is affected by its
previous location andby the population, respectively. Shi andEberhart (1998a, b) intro-
duced another coefficient called inertia weight (w) to balance the particles’ global and
local searches. This weight can be defined as a positive constant or a function of time if
a user prefers to change the importance of the global or local search over iterations. A
smallerw favors the local searchwhereas a largerw favors the global search. Theveloc-
ity and particle update functions are defined in our implementation as in Eqs. 8 and 9:

vtid � wt−1vt−1
id + c1rnd1

(
pid − xt−1

id

)
+ c2rnd2

(
gd − xt−1

id

)
(8)

xtid � vtid + xt−1
id (9)

where wt � wu − 1
N t is defined as a linear function of the number of iterations in

our implementation. In this equation, N is the maximum number of iterations that
an algorithm can run first, wu is the maximum value of the inertia weight, and wt is
the value of inertia weight at iteration t . Hence, the inertia weight decreases as the
algorithm runs over iterations to strengthen the local search. Additionally, rnd1 and
rnd2 are uniformly distributed random numbers [0,1] that influence movement toward
the individual or global best. In our implementation, there are 50 particles, which are all
connected in a single neighborhood. The algorithm stops after are determined number
of iterations ε. When the algorithm reaches εth iteration, it allows to search ε more
number of iterations. If the best solution is improved in the last ε iterations, another
ε number of iteration is added to the search process. If the best solution cannot be
improved in the last ε iterations, the algorithm is terminated and the best solution is
reported. In our algorithm, we take ε and ε as 10,000 and 500 iterations. Because Clerk
andKennedy (2002) recommended that c1+c2 � 4.1,we select c1 � c2 � 2.05 to give
equal importance to cognitive and social learning.BecauseShi et al. (1998a)mentioned
that PSO has the best chance of finding the global optimum when 0.8 < w < 1.2,
we select wu � 1.3 to give more weight to global search in the initial iterations. The
pseudo-code of the algorithm used in our study is presented in Table 6.

4 Material flow policies

As mentioned in Sect. 1, previous studies considering multiple P&D points (synony-
mously docks or input–output points) have assumed uniform usage of P&D points.
This might be generally true during high-demand seasons when all available docks are
busy almost all time. However, workers usually palletize and stretch-wrap the received
loads before the put-away operation. Furthermore, even if a warehouse receives appro-
priately palletized loads, workers should inspect them before put-away. If there are
fewer shrink-wrap machines than docks, stretch-wrap machines are distributed along
the receiving docks and sometimes assigned to a group of docks. In their daily sched-
ule, warehouses also assign specific docks for receiving and others for shipping. Some
warehouses even reserve some docks for specific suppliers because they are the closest
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Table 6 The pseudocode for the developed PSO algorithm

Fig. 10 Material flow policies (line lengths indicate the density of usage rate)

docks to the storage locations reserved for those suppliers. Thus, P&Dpointsmay have
varying usage rates over time. Therefore, in this section we introduce two newmaterial
flow policies that are assumed to represent actual usage of P&D points in a warehouse,
which we call “bell-shaped” and “inverted bell-shaped”. These two policies, and the
uniform flow policy, are shown in Fig. 10. In the uniform flow policy, it is assumed
that each P&D point is equally likely to be used. In the bell-shaped and inverted bell-
shaped policies, we assume that P&D points located symmetrically in relation to the
central P&D point have the same usage rate. Whereas the central P&D point is least
likely to be used in a bell-shaped policy, it is most likely to be used in the inverted
bell-shaped policy. Hence, the usage rates of P&D points decrease as they are located
further away from the center in inverted bell-shaped policy whereas the furthest P&D
points from the center are assumed to be the busiest points in a bell-shaped policy.
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Table 7 Usage rate of central and symmetric P&D points

Bell-shaped policy Inverted bell-shaped policy

U0 � rn U0 � r1

Ui � r(n−2i)+r(n−2i)+1
2 , ∀i � 1, 2, 3, . . . , n−1

2 Ui � r2i+r2i+1
2 , ∀i � 1, 2, 3, . . . , n−1

2

Because P&D points are symmetrically and equally-spaced in relation to the center
of the warehouse, there should always be an odd number of P&D points that are evenly
distributed around the central P&D point. We therefore refer to U0 as the usage rate

of the central P&D point. Similarly, Ui refers the usage rate of the
( n+1

2 ∓ i
)th

. P&D
point, represented by p n+1

2 ∓i , for all i � 1, . . . , (n − 1)/2. For instance,U1 refers the
usage rate of p4 and p6 in a warehouse with nine P&D points (see Fig. 10).

In the uniform policy, Ui � 1
n ,∀i � 0, . . . , n−1

2 . To generate usage rates in the
bell-shaped and inverted bell-shaped policies, we use Bender (1981)’s Pareto curve
model, as used by several previous studies to calculate the probability of visiting
storage locations in a warehouse under turnover-based storage (Pohl et al. 2011; Çelik
and Süral 2014). In our implementation, Bender (1981)’s model shows the cumulative
percentage of total material flows going through the P&D points. This cumulative
activity level of a P&D point is represented by F(x), as shown in Eq. 10:

F(x) � (1 + S)x

S + x
F(x) ≥ 0 and x ≤ 1, S ≥ 0 and S + x 	� 0; (10)

x is the fraction of the total number of P&D points used, so F(x) is a cumulative
distribution function defined for x ∈ [0, 1] · S is the shape parameter that shows the
skewness of the curve. Thus, we first calculate the activity level of each P&D point
i (ri ) for all n P&D points separately using Eq. 11. We then calculate the usage rate
of P&D points using the equations in Table 7 for the respective material flow policy.
For bell-shaped and inverted bell-shaped policies, except for the central P&D point,
we take the arithmetic average of symmetric P&D points’ activity levels to calculate
their usage rates:

ri � F

(
i

n

)
− F

(
i − 1

n

)
∀i � 1, 2, . . . , n where

n∑
i�1

ri � 1. (11)

5 Computational results

To determine the usage rates of the P&D points in both the bell-shaped and inverted
bell-shaped policies, we assume that 50% of the incoming and outgoing materials pass
through 20% of the P&D points. Thus, the shape parameter in Eq. 10 is 0.4. Table 8
shows the calculated usage rates for each P&D point in predetermined warehouse
layouts for both bell-shaped and inverted bell-shaped policies. For instance, if there
are 7 P&D points, the usage rate of the central P&D is 36.8% while the usage rates
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of the P&D points around the central one in both sides are 17.8%, 8.7%, and 5.1%,
respectively.

Although Francis (1967) showed that 2:1 is the optimal shape ratio for a one-
block traditional warehouse to minimize the expected single-command distance from
a centrally-located single P&D point, we also consider shape ratios of 1:1 and 3:1
to investigate their effects on both the warehouse layout and the expected single-
command distance. To provide equal warehouse capacities, the warehouse sizes for
the three shape ratios of 1:1, 2:1, and 3:1 are (70.71, 70.71), (100, 50), and (122.47,
40.82), respectively, using the notation of (L,H). We assume the gap between two
adjacent P&D points (a) is 5 (pallet) units to enable several trucks or containers to
park at the same time for loading or unloading. Therefore, a warehouse with shape
ratios of 1:1, 2:1, and 3:1 can have a maximum of 13, 19, and 23 P&D points on the
front cross aisle, respectively.

To provide an accurate comparison, we first solve the expected travel distance in a
traditional one-block design for the predetermined warehouse sizes and material flow
policies (see Table 12 in the appendix for its results). We then search for the optimal
aisle angles and starting points of the single cross aisle in each problem using the PSO
algorithm in the previous section. In order to test the robustness of the algorithm to
randomness, we also conducted five replications.

The best solutions for each problem instance constructed by the number of P&D
points, warehouse shape ratios, and material flow policies are shown in Table 12 in
the appendix. According to the best solutions, the single cross aisle always originates
from the middle of the front cross aisle, where m is 35.35, 50 and 61.2 at 1:1, 2:1 and
3:1 shape ratios, respectively, irrespective to the number of P&D points and material
flow policies. Additionally, the cross aisle always takes an angle of β � π/2. This
confirms to the Chevron design proposed by Öztürkoğlu et al. (2012). Moreover, the
best solution for a single P&D point in a warehouse with a 2:1 shape ratio under
each material flow policy is the Chevron design, which was previously found to be an
optimal design for randomized storage by Öztürkoğlu et al. (2012). These results also
validate our travel models and the optimization algorithm. That is the arrangement of
the cross aisle simply divides the storage area into two equal regions. Additionally,
the best angles for the picking aisles on the right and left sides of the cross aisle are
approximately symmetric with respect to the angled cross aisle. We think that the
following factors can explain these design characteristics in the best solutions: (1) the
P&D point is located at the center of the front cross aisle; (2) other P&D points are
symmetrically distributed around the first central P&D point; (3) usage rates of the
P&D points are symmetric around the central P&D point. These design characteristics
were also observed in previous studieswith similar design and operational assumptions
(Gue et al. 2012; Öztürkoğlu et al. 2014; Öztürkoğlu 2016). We can therefore easily
analyze the similarities of the best designs for each shape ratio considering the angle
of the picking aisles in the right region alone. Fig 11 presents changes in the angles of
the picking aisles in the right region for each P&D problem for a given material flow
policy and shape ratio. We also highlight the angle of the diagonal in the right region,
which runs from m to the upper right-hand corner of the rectangle warehouse shape,
as a base line to evaluate the obliquity of the picking aisles.
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(a) Shape ratio 1:1 (b) Shape ratio 2:1 (c) Shape ratio 3:1
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Fig. 11 Angle of picking aisles and diagonal on the right side of the angled cross aisle

Fig. 12 Effect of the angles of picking aisles on travel distance

Observation 1: The angles of picking aisles on the right increase as the number of
P&D points increase for a given material flow policy and shape ratio.

As the number of P&D points increases, newly added P&D points move away from
the center of the warehouse. Considering that the best angles of picking aisles are
less than π/2, the travel distance from the P&D point leftwards in the right region
is worse than the rectilinear distance (see example in Fig. 12a). Additionally, as new
P&D points are inserted, the area of the travel region that is accessed by traveling
rightwards from the P&D points decreases. Thus, the model increases the angle of
picking aisles in the best designs to avoid leftwards travel as the number of P&D
points increases. This is represented by the example in Fig. 12.

Let us consider two similar layouts where the angle of the picking aisles in Fig. 12a
is smaller than that in Fig. 12b. It is clear that the travel distance from P&D point pi
to location (x,y) in region S is shorter in Fig. 12b than in Fig. 12a.

Observation 2: The angle of the picking aisles on the right becomes greater than
the angle of the diagonal as the warehouse shape ratio increases.

While central picking aisles stay below the diagonal for a small number of P&D
points in a warehouse with shape ratio 1:1, they move above the diagonal as both
the shape ratio and the number of P&D points increase. As the shape ratio increases,
the length of the front cross aisle increases while the length of the vertical cross
aisle decreases. Hence, the model aims to increase the number of locations that can
be reached from the longer cross aisle by locating the central picking aisle above the
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Fig. 13 Effect of shape ratio on the angle of picking aisles according to the angle of the diagonal
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Fig. 14 Improvement of the best found aisle designs over the equivalent traditional designs under varying
material flow policies

diagonal for higher shape ratios. Thus, the model gets more benefit from a longer cross
aisle than a shorter one. Suppose that Fig. 13 represents two best solutions in equal-
capacity warehouses with different shape ratios and single P&D points. It is easy to see
that themodel first locates the central picking aisle close to the shorter cross aisle so that
the storage area (S) reachable from the longer cross aisle increases. It then facilitates
travel to locations in region S by using the longer cross aisle more with an appropriate
picking aisle angle. A similar observation was made and proved by Öztürkoğlu et al.
(2012) for a centrally-located, single-P&D-pointwarehouseswith various shape ratios.

Observation 3: Changes in the angles of picking aisles in the best designs increase
less under the inverted bell-shaped policy than other policies.

As Fig. 11 shows, the slopes of the increment in angles of the picking aisles in
the best designs increase over the flow policies in the order of bell-shaped, uniform,
and inverted bell-shaped policies. This can also be shown by computing the average
coefficient of variation of the picking aisle angles over the shape ratios: 0.06 for
inverted bell-shaped; 0.08 for uniform; and 0.1 for bell-shaped. Thus, the best designs
are more robust in terms of aisle orientations under an inverted bell-shaped policy than
other policies.

We compare the best designs and the equivalent traditional one-block designs
based on the improvement in the expected single-command distance, calculated by
100 × (

E[DTraditional ] − E
[
DBest− f ound

])/
E[DTraditional ]. Figure 14 shows the

percentage improvements of the best designs over the equivalent traditional design
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Fig. 15 Improvement of the best-found aisle designs according to the shape ratios

for each P&D problem under different material flow policies. As seen in Fig. 14, the
improvement decreases as the number of P&D points increases, irrespective of the
material flow policy. The reason for this is that travel patterns in the best designs are
close to rectilinear as in the traditional design because the angle of the picking aisles
in the right region increase with an increasing number of P&D points.

Observation 4: A warehouse with a 1:1 shape ratio and multiple P&D points has a
longer single-command travel distance than warehouses with 2:1 and 3:1 shape ratios
when there are symmetrically-distributed P&D points around the center of the front
cross aisle.

As the length of awarehouse increases, the distance fromall P&Dpoints to locations
close to the rear of the warehouse increases. Therefore, increasing width up to some
point should reduce single-command distances when P&D points are solely located
at the front of the warehouse. A similar observation was made and proved by Francis
(1967) and Bassan et al. (1980). They showed that a warehouse that is twice as wide
as its depth (2:1 shape ratio) is optimal for single-command operations when there
is a single and centrally-located P&D point at the front. Additionally, Thomas and
Meller (2014) showed that the optimal shape ratio is 2:1 for single-command travel
in a traditional one-block warehouse with multiple P&D points. However, our results
show that 2:1 warehouses do not always provide shorter single-command distances
than 3:1 warehouses for multiple P&D points. The results in Fig. 14 show that the
best warehouse designs with 3:1 shape ratios are slightly more efficient than the best
designs for 2:1warehouses if there aremore than 7 P&Dpoints at the front, irrespective
to the material flow policy.

Observation 5: The inverted bell-shaped material flow policy provides shorter
single-command travel distances than the uniform and bell-shaped policies if multiple
P&D points are symmetrically distributed around the central P&D point at the front.

Fig 15 shows that the best designs under the inverted bell-shaped policy are always
superior to the other best designs under the other flowpolicies, regardless of the number
of P&D points and the warehouse shape ratio. Moreover, the best designs under the
uniform policy are also superior to those under the bell-shaped policy.
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Fig. 16 The best found aisle designs for shape ratio 3:1 under inverted bell-shaped flow policy

These results show that increasing flow through P&D points close to the cen-
ter of the warehouse reduces the expected single-command distance. This result
might be expected because the central P&D point is the closest point to the cen-
troid of a rectangular area, which lies at intersection of two diagonals and is equal to
(H/2, L/2).

In conclusion, the best designs under the inverted bell-shaped policy reduce
expected single-command travel distances by 8 to 20% compared to the equivalent
traditional designwith a given shape ratio and P&Dpoints. For example, Fig. 16 shows
the best aisle designs developed under a 3:1 shape ratio and inverted bell-shaped policy
for different numbers of P&D points.
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5.1 The performance of the PSO algorithm

The developed PSO algorithm was coded in Java environment and run on a computer
with Intel® Core i7, 2.50 GHz and 8 GB RAM operating on MS Windows. In each
replicationwe changed the randomnumber generator’s seed and collected how long the
algorithm run until it was terminated and the last iteration where the best solution was
found, aswell as the best solution. In total, the algorithm solved 435 problems: (5 repli-
cations x 3 flows)x(7 + 10 + 12 P&D point-cases). Table 9 demonstrates the summary
of those results. As seen in the table, the PSO algorithmproduces very similar solutions
over replications (average Gap is 0.03% over all problems). The algorithm found the
best solutions in average of about 6000 iterations. In some problems (17 out of 435),
the algorithm is terminated around 11,000 iterations because they found their best solu-
tion around 10,500 iterations. This shows that our termination policy seems to work
appropriately. As expected, the computational time to solve the problem increases as
the number of P&D points increases. For instance, it takes 968 s (or 16.1 min) to solve
the problemwith 2:1 shape ratio and 19 P&Dpoints. To solve a similar problem, which
has two P&D points on the front and 2:1 shape ratio with a width of 19 aisles, took
1597.8 min by using the Öztürkoğlu et al. (2014)’s discrete constructive aisle model.
When comparing the computational burdening of our model with Öztürkoğlu et al.
(2014)’s model, we can easily confirm our discussion (number 1) in Sect. 1.1. Hence,
these results show that our model and the algorithm provide good solutions in reason-
able amount of time for the warehouse design problem with multiple P&D points.

5.2 The designs with unsymmetrical P&D points and irregular material flow rates

According to the observations and discussions made in the previous section, we can
simply say that the best designs with multiple P&D points under different material
flow policies through them, the best designs seem to have similar characteristics with
the Chevron. The main reason of this is that the P&D points are symmetrically dis-
tributed around the center, as well as their usage rates. However, some might ask
whether the best designs have still the similar characteristics when P&D points are
unsymmetrically-positioned and their usage rates are irregular. To answer that ques-
tion and to show how our model could be applied to unsymmetrical P&D allocation
with irregular flows, we generate one example problem instance with 3 P&D points.
In this problem instance, the active P&D points are the second, fourth and the sixth
nearest P&D points on the left side of the central P&D point. The usage rates of these
P&D points are assumed to be 40%, 20% and 40%, respectively. We then solve this
problem instance in the predefined three warehouse sizes.

The algorithm in Table 10 explains how to solve the new problem instance. This
algorithm is required to solve the new problem because the aforementioned cases and
the models were developed under the assumption of the symmetric P&D points and
flows around the center (see proposition 1). Here, we show that how these assump-
tions could be easily relaxed and our models could be used for unsymmetrical P&D
allocations with irregular flows.
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Table 10 The algorithm for calculating expected single-command travel distance for unsymmetrically-
located P&D points with irregular flows

Step 1: Place all P&D points that could be located on the front cross aisle such that they are
equidistantly (a) and symmetrically located with respect to the central P&D point

Step 2: Determine the maximum number of P&D points (n). Let P be a set of all P&D points: P �
{p1, p2, . . . ..pn}, where pi was defined to be the location of the ith P&D point in Table 2

Step 3: Let U be a vector of usage rates of the P&D points: U � {U1,U2, . . . ,Un}, where Ui was
defined to be the usage rate of the ith P&D point in Table 2.

Step 4: Determine the location of which P&D points are actually available in the warehouse or which
ones are utilized. Then assign their usage rates to the appropriate Ui parameters. Also,
assign 0 to all unused P&D points’ usage rates.

Step 5: Solve all of the cases and select the best solution for the determined E[D] � min{
E

[
DC1

]
, E

[
DC2

]
, E

[
DC3

]
, E

[
DC4

]
, E

[
DC5

]
, E

[
DC6

]}
.

Step 6: Let Û be the reversed vector of U : Û � {
Un ,Un−1, . . . ,U1

}

Step 7: Solve all of the cases and select the best solution for the determined Û · E[
D̂

] � min{
E

[
DC1

]
, E

[
DC2

]
, E

[
DC3

]
, E

[
DC4

]
, E

[
DC5

]
, E

[
DC6

]}
. This step is required in order

to cover cases π/2 ≤ β ≤ γL which was omitted because of the proposition 1. Solving the
existing cases with the reversed flows ensure to cover the whole solution space

Step 8: Choose the best solution that has the minimum of E[D] and E
[
D̂

]

Table 11 The new problems with unsymmetrical P&D points and irregular flows

Irregular Problems Locations of the active P&D points and their usages

Problem #1 U1:1 � {0, 0.40, 0, 0.20, 0, 0.40, 0, 0, 0, 0, 0, 0, 0}
Problem #2 U2:1 � {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.40, 0, 0.20, 0, 0.40, 0, 0, 0, 0}
Problem #3 U3:1 � {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.40, 0, 0.20, 0, 0.40, 0, 0, 0, 0, 0, 0}

According to the predefined warehouse sizes, we generated three problems because
each has different maximum number of P&D points. These problems are defined by
the vector of U as given in Table 11.

As seen in Fig. 17, the best solutions do not have similar characteristics with either
the Chevron or the other best solutions found in previous section. Because the active
P&D points are position on the left of the center and there is no flow through the
central P&D point, the cross aisle originates from the rightmost active P&D point.
The cross aisle is then positioned to rightwards to facilitate to travel to the right region
with an angled picking aisle. It seems that the cross aisle moves away from the upper
rightmost corner as the width of warehouse increases. The angles of picking aisles are
not symmetric anymore. As the angle of picking aisles on the right is very close to the
angle of its diagonal, the angles of picking aisles on the left is less than the angle of
its diagonal to alleviate some portion of the inefficient travel (worse than rectilinear
travel) from the P&D points to the left region. Similar to our previous observations,
warehouse with 2:1 shape ratio also superiors than the others while the warehouse
with 1:1 is still the worse. Last, these designs show that the locations of active P&D
points and their usages may generate unsymmetrical designs. Therefore, practitioners
should be aware of this and be careful when designing a warehouse.
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Fig. 17 The best solutions of the problems with unsymmetrical P&D points and irregular flows. The arrows
show the active P&D points and their representative usage rates

6 Summary and conclusion

In this study, we inserted a single cross aisle into a warehouse space to determine the
best aisle designs for single-commandoperationswithmultipleP&Dpoints. In contrast
to Öztürkoğlu et al. (2012), who proposed a Chevron design, we relaxed the position
of the single cross aisle. We divided the main design problem into six cases, where
the variables were position and angle of the cross aisle, and the angles of the picking
aisles, to efficiently develop the distance functions. The operational assumptions of
our model were (i) randomized storage policy, (ii) single-command operation, and
(iii) flow through multiple P&D points. We assumed that the P&D points, from where
incoming and outgoing pallets of products move, are at the front of the warehouse and
symmetrically distributed around the center. However, the proposed travel distance
functions and the model can also be used for unsymmetrical P&D point configurations
with irregular flowsWe presented an algorithm that shows how to solve the warehouse
design problem with unsymmetrical P&D points using our proposed model. During
the search for the best aisle designs, we also examined the effect of three warehouse
shape ratios and three material flow policies, called uniform, bell-shaped, and inverted
bell-shaped, that determine the usage rates of the P&D points.
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First, the best designs in the present study showed that the Chevron is still the best
for a warehouse with a 2:1 shape ratio and a single P&D point, irrespective of the
material flow policy. As the number of P&D points increases, while the cross aisle
still originates from the central P&D point at an angle of π/2 in the best designs, the
angles of the picking aisles on the right and left sides of the cross aisle approach π/2,
irrespective of the shape ratio and material flow policy. The best designs obtained
under the inverted bell-shaped policy were more robust than those under other flow
policies regarding changes in the angles of the picking aisles. While flow policies had
no significant effect on aisle design, warehouse shape ratios affected both aisle design
and distance savings compared to the equivalent traditional design. For instance, we
showed that a warehouse with a 1:1 shape ratio always has a higher expected single-
command distance than 2:1 and 3:1 shape ratios. Hence, this result suggests that
warehouse managers should expand their warehouses horizontally as long as the P&D
points are located on the front of the warehouse. Although the best designs with a
2:1 shape ratio provide short travel distances for few P&D points, those with a 3:1
shape ratio have slightly shorter single-command distances for more than 7 P&D
points. For instance, the best designs with 7 P&D points for 2:1 and 3:1 shape ratios
offered 12%, 10%, and 15% savings on the expected single-command distance over
the equivalent traditional design under uniform, bell-shaped, and inverted bell-shaped
policies, respectively.

The results also show that the inverted-bell shape policy leads shorter travel dis-
tances than the uniformandbell-shaped policies.Hence, this result suggestswarehouse
managers to concentrate their flows toward the center if there are symmetrically allo-
cated multiple P&D points on one side of the warehouse. Additionally, the managers
of the warehouses that implemented Fishbone-like designs highlighted several extra
benefits of non-traditional aisle designs. They mentioned that forklift-drivers easily
access to picking aisles from the P&D point because of the angled aisles, which pro-
vides 45-degree turn instead of 90-degree as in traditional layouts. The best proposed
designs in this study could also provide similar benefits to workers in industry, hence
it could increase productivity. Moreover, the proposed designs in this study has even
more advantages than Fishbone-like designs such that Chevron-like designs allow
direct access from any point on the front cross aisle to storage locations due to slanted
aisles. As a result, this study provides both many observations and a model for design-
ing pallet-in pallet-out warehouses, where single-command operation is fully utilized,
to answer the most commonly asked questions about non-traditional designs by ware-
house managers: “what if there are multiple P&D points?” (Meller and Gue 2009).

To extend this study, researchers could relax any of the abovementioned design
and operational assumptions (see them in Sect. 2 in details). Thus, researchers could
develop models to incorporate two angled cross aisles in warehouses, different stor-
age policies such as turnover or class-based like Bortolini et al. (2019), or different
locations of P&D points like Öztürkoğlu et al. (2014).

Appendix A

See Table 12.
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