
Central European Journal of Operations Research (2020) 28:963–981
https://doi.org/10.1007/s10100-019-00611-6

ORIG INAL ART ICLE

Optimal value bounds in interval fractional linear
programming and revenue efficiency measuring

Amin Mostafaee1 ·Milan Hladík2

Published online: 8 February 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
This paper deals with the fractional linear programming problem in which input data
can vary in some given real compact intervals. The aim is to compute the exact range
of the optimal value function. A method is provided for the situation in which the
feasible set is described by a linear interval system. Moreover, certain dependencies
between the coefficients in the nominators and denominators can be involved. Also,
we extend this approach for situations in which the same vector appears in different
terms in nominators and denominators. The applicability of the approaches developed
is illustrated in the context of the analysis of hospital performance.

Keywords Linear interval systems · Fractional linear programming · Optimal value
range · Interval matrix · Dependent data
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1 Introduction

Throughout the paper, we consider a fractional linear programming problem in the
form

min
pT x + qT1 y + c

pT x + qT2 y + d
, s.t. (x, y) ∈ M(A, B, b), (1)
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964 A. Mostafaee, M. Hladík

where M(A, B, b) is a convex polyhedral set described by linear constraints with
constraint matrices A and B, and the right-hand side vector b. This is a general model
since M(A, B, b) can be characterized by linear equations, inequalities or both. In
the subsequent sections, we will consider particular cases. We investigate the effects
of independent and simultaneous variations of (possible all) coefficients in prescribed
interval domains on the optimal value. In particular, we are interested in determining
the best and the worst optimal value.

State-of-the-art This problem iswell studied in linear programming (Černý andHladík
2016; Chinneck andRamadan 2000; Fiedler et al. 2006;Hladík 2012, 2014;Mostafaee
et al. 2016), but there are considerable less results in the nonlinear case. A general
approach to solving interval valued nonlinear programwas proposed in Hladík (2011),
and particular quadratic problems, e.g., in Li et al. (2015, 2016). A specific case of
generalized fractional linear programming with variable coefficients was investigated
inHladík (2010), and the case of intervals in the objective function inBorza et al. (2012)
and Effati and Pakdaman (2012). Some duality theorems in fractional programming
with (not only) interval uncertainty were stated in Jeyakumar et al. (2013). The related
problem of inverse fractional linear programming was studied, e.g., in Jain and Arya
(2013). In a fuzzy environment, fractional linear programming was discussed bymany
authors, including Chinnadurai and Muthukumar (2016) and Sakawa et al. (2001), for
instance.

Notation An interval matrix is defined as

A := {A ∈ R
m×k : A ≤ A ≤ A},

where A, A ∈ R
m×k , A ≤ A ≤ A, are given lower and upper bounds, and the

inequality is understood componentwise. The set of all m-by-k interval matrices is
denoted by IR

m×k . Interval vectors and real intervals are viewed as special cases of
interval matrices. For A ∈ IR

m×k , z ∈ {±1}m and s ∈ {±1}k , we define in accordance
to Fiedler et al. (2006) the matrix Azs ∈ A as follows

(Azs)i j :=
{
Ai j if zi = s j ,

Ai j if zi �= s j ,

For b ∈ IR
m and z ∈ {±1}m , we define the vector bz ∈ b as follows

(bz)i :=
{
bi if zi = −1,

bi if zi = 1.

Eventually, e = (1, . . . , 1)T denotes the vector of ones.
An interval fractional linear programming problem Let interval matrices A ∈

IR
m×k , B ∈ IR

m×(n−k) and interval vectors b ∈ IR
m , p ∈ IR

k , q1, q2 ∈ IR
n−k,

and interval scalars c, d ∈ IR be given. By an interval fractional linear program we
understand the family of problems (1), where A ∈ A, B ∈ B, b ∈ b, p ∈ p, q1 ∈ q1,
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Optimal value bounds in interval fractional linear… 965

q2 ∈ q2, c ∈ c, and d ∈ d. For a concrete setting of interval parameters, (1) is called
an instance of the interval program.

Notice that there is a common sub-vector p in the numerator and denominator of
the objective function in (1). This is important in the interval context since most of
the interval programming models assume independent interval parameters. Herein,
however, we have a correlation between the objective function coefficients caused
by double occurrence of p, which makes the model more general and also little bit
more difficult. In general, handling dependencies between interval parameters is a
very hard and challenging problem. Notice that considering both occurrences of p as
independent parameters makes the problem easier in the sense that we can rewrite the
problem to a classical interval linear programming problem using the Charnes–Cooper
transformation and employ the standard techniques from interval linear programming
(Hladík 2012). On the other hand, this relaxation of dependencies causes unnecessary
overestimation. That is why we investigate the problem with dependencies in this
paper.

The problem formulation Let us denote by

f (A, B, b, p, q1, q2, c, d) := inf

{
pT x + qT1 y + c

pT x + qT2 y + d
: (x, y) ∈ M(A, B, b)

}

the optimal value of the fractional linear program (1); infinite values are allowed, too.
The lower bound and the upper bound of the optimal value range [ f , f ] are defined
naturally as

f := inf f (A, B, b, p, q1, q2, c, d)

s.t. A ∈ A, B ∈ B, b ∈ b, p ∈ p, q1 ∈ q1, q2 ∈ q2, c ∈ c, d ∈ d,

f := sup f (A, B, b, p, q1, q2, c, d)

s.t. A ∈ A, B ∈ B, b ∈ b, p ∈ p, q1 ∈ q1, q2 ∈ q2, c ∈ c, d ∈ d.

The key problem studied in this paper is to compute the optimal value range [ f , f ].
Content In the following Sects. 2–4, we will consider two basic situations, when

M(A, B, b) is described respectively by linear equations and inequalities (with non-
negative variables). Section 5 is devoted to an application of the proposed techniques
in revenue efficiency measuring.

2 Equality constrained feasible set

In this section, we suppose that the interval fractional linear program (1) has equality
constraints

min
pT x + qT1 y + c

pT x + qT2 y + d
, s.t. Ax + By = b, x, y ≥ 0. (2)
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966 A. Mostafaee, M. Hladík

In order to derive our results, we have to state two natural assumptions on the
interval program.

(A1) For each instance of the interval parameters, the feasible set is nonempty.
(A2) For each instance of the interval parameters and for each feasible solution (x, y),

the denominator px + q2y + d > 0.

The property from Assumption (A1) is called strong feasibility of the feasible set.
It is known that checking this property is a co-NP-hard problem (Rohn 1998). Strong
feasibility can be verified either by an exponential method (Fiedler et al. 2006; Rohn
1981), or we can utilize a sufficient condition from Hladík (2013).

Concerning Assumption (A2), we have the following result.

Proposition 1 Assumption (A2) holds true if and only if pT x +q2T y+d > 0 for each
x, y such that

Ax + By ≤ b, Ax + By ≥ b, x, y ≥ 0. (3)

Proof By Fiedler et al. (2006) and Hladík (2013), the system (3) describes the union
of all feasible sets of (2) over all instances of interval parameters. From this the “only
if” part directly follows. The “if” part follows from the fact that

pT x + q2
T y + d ≤ pT x + qT2 y + d

for each p ∈ p, q2 ∈ q2 and d ∈ d. ��
By the above proposition, Assumption (A2) is satisfied if and only if

0 < min pT x + q2
T y + d s.t. Ax + By ≤ b, Ax + By ≥ b, x, y ≥ 0,

which requires just solving one linear programming problem.
The following theorem gives explicit formulae for computing the bounds of the

range of optimal values. Note that certain dependency between coefficient in the
objective function causes more difficulty to deal with.

Theorem 1 We have

f = inf{ f1(p), f1(p), f2(p), f2(p)}, (4)

f = sup
z∈{±1}m

{ f3(z), f4(z), f5(z), f6(z)}, (5)

where

f1(p) = inf

{
pT x + q1T y + c

pT x + q2T y + d
: Ax + By ≤ b, Ax + By ≥ b, x, y ≥ 0,

}
,

f2(p) = inf

{
pT x + q1T y + c

pT x + q2T y + d
: Ax + By ≤ b, Ax + By ≥ b, x, y ≥ 0

}
,
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and

f3(z) = sup
{
θ : p(θ − 1) + (Aze)

Tw ≤ 0, q2θ + (Bze)
Tw ≤ q1,

dθ − bzw ≤ c, θ ≥ 1, (θ, w free).
}
,

f4(z) = sup
{
θ : p(θ − 1) + (Aze)

Tw ≤ 0, q2θ + (Bze)
Tw ≤ q1,

dθ − bzw ≤ c, θ ≤ 1, (θ, w free).
}
,

f5(z) = sup
{
θ : p(θ − 1) + (Aze)

Tw ≤ 0, q2θ + (Bze)
Tw ≤ q1,

dθ − bzw ≤ c, θ ≥ 1, (θ, w free).
}
,

f6(z) = sup
{
θ : p(θ − 1) + (Aze)

Tw ≤ 0, q2θ + (Bze)
Tw ≤ q1,

dθ − bzw ≤ c, θ ≤ 1, (θ, w free).
}
.

Proof (i) To show (4), we first suppose that an optimal solution lies in the half-space
pT x + q1T y ≥ −c. Then for each q1 ∈ q1, q2 ∈ q2, c ∈ c and d ∈ d we have

pT x + qT1 y + c

pT x + qT2 y + d
≥ pT x + q1T y + c

pT x + q2T y + d
.

Based on Theorem 3.2 in Fiedler et al. (2006), we get

f = inf
p∈ p

inf

{
pT x + q1T y + c

pT x + q2T y + d
: Ax + By ≤ b, Ax + By ≥ b, x, y ≥ 0

}
.

(6)

For each p ∈ p and x ≥ 0, we have pT x ≤ pT x ≤ pT x . Since the objective

function of (6) is monotone with respect to z := pT x , the infimum is attained
either for z = pT x , or for z = pT x . This justifies the function f1(p).

If an optimal solution lies in the latter half-space pT x + q1T y ≤ −c, we proceed
analogously and obtain f2(p).

(ii) Similarly as in the previous part, to show (5) we consider two subcases. First,
suppose that an optimal solution lies in the half-space pT x + q1T y ≥ −c. We
derive

f = sup
A∈A, B∈B, b∈b, p∈ p, q1∈q1, q2∈q2, c∈c, d∈d

inf

{
pT x + qT1 y + c

pT x + qT2 y + d
,

s.t. Ax + By = b, x, y ≥ 0

}

= sup
p∈ p

sup
A∈A, B∈B, b∈b

inf

{
pT x + q1T y + c

pT x + q2T y + d
,

s.t. Ax + By = b, x, y ≥ 0

}
.
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968 A. Mostafaee, M. Hladík

Now, we apply the Charnes and Cooper transformation (Charnes and Cooper 1962)
to convert the fractional programming problem into an equivalent linear programming
problem, and obtain

f = sup
p∈ p

sup
A∈A, B∈B, b∈b

inf
{
pT x + q1

T y + c f :

pT x + q2
T y + d f = 1,

Ax + By = f b, x, y, f ≥ 0
}
.

Based on Theorem 3.2 in Fiedler et al. (2006), we have

f = sup
p∈ p

sup
z∈{±1}m

inf
{
pT x + q1

T y + c f :

pT x + q2
T y + d f = 1,

Azex + Bze y = f bz, x, y, f ≥ 0
}
.

This model is equivalent to

f = sup
z∈{±1}m

sup
p∈ p

inf
{
pT x + q1

T y + c f :

pT x + q2
T y + d f = 1,

Azex + Bze y = f bz, x, y, f ≥ 0
}
.

The inner program and the outer program have different directions for optimization. So
we will write the dual of the inner program instead (by Assumption (A1) the optimal
values of the primal and the dual problems are the same), and obtain

f = sup
z∈{±1}m

sup
p∈ p

sup
{
θ :

pθ + (Aze)
Tw ≤ p, q2θ + (Bze)

Tw ≤ q1,

dθ − bTz w ≤ c, (θ, w free).
}
.

Equivalently, we have

f = sup
z∈{±1}m

sup
p∈ p

sup
{
θ :

p(θ − 1) + (Aze)
Tw ≤ 0, q2θ + (Bze)

Tw ≤ q1,

dθ − bTz w ≤ c, (θ, w free).
}
.

Now, we have to consider two sub-models according to the sign of θ −1. If we restrict
to the case θ ≥ 1, then from the theory of interval linear inequalities (Fiedler et al.
2006; Hladík 2013) we have
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sup
p∈ p

sup
{
θ : p(θ − 1) + (Aze)

Tw ≤ 0, q2θ + (Bze)
Tw ≤ q1,

dθ − bzw ≤ c, θ ≥ 1, (θ, w free).
}

= sup
{
θ : p(θ − 1) + (Aze)

Tw ≤ 0, q2θ + (Bze)
Tw ≤ q1,

dθ − bzw ≤ c, θ ≥ 1, (θ, w free).
}
.

Similarly, under the restriction θ ≤ 1, we get

sup
p∈ p

sup
{
θ : p(θ − 1) + (Aze)

Tw ≤ 0, q2θ + (Bze)
Tw ≤ q1,

dθ − bzw ≤ c, θ ≤ 1, (θ, w free).
}

= sup
{
θ : p(θ − 1) + (Aze)

Tw ≤ 0, q2θ + (Bze)
Tw ≤ q1,

dθ − bzw ≤ c, θ ≤ 1, (θ, w free).
}
.

Combining both sub-models together, we obtain f3(z) and f4(z).
Provided an optimal solution lies in the half-space pT x + q1T y ≤ −c, we analo-

gously come across f5(z) and f6(z). ��
The above theorem says that f can be determined by solving 4 fractional linear pro-

gramming problems,whereas solving 2m+2 linear programming problems are required
to obtain f according to (5). Since real-valued fractional linear programming is easily
reduced to linear programming (Charnes and Cooper 1962), the computational cost is

– 4×LP for f ,

– 2m+2×LP for f ,

where LP is a computational cost for linear programming. Thus complexity for com-
puting f rises exponentially with respect to the number of equations. This is not
surprising as the problem of determining f is NP-hard even for interval linear pro-
grammingproblems (Fiedler et al. 2006;Hladík 2012).Notice that even the exponential
number of LP problems for f need not be a bad news in practice—we can solve effec-
tively high-dimensional problems provided the number of equations m is moderate.
We will see in the next section that inequality constrained problems are polynomially
solvable.

3 Inequality constrained feasible set

Herein, we suppose that the interval fractional linear program (1) has inequality con-
straints

min
pT x + qT1 y + c

pT x + qT2 y + d
, s.t. Ax + By ≤ b, x, y ≥ 0. (7)

In the real case, (7) can be transformed to the equality-constrained form (2). In the
interval-valued setting, however, such a transformation cannot be easily performed
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970 A. Mostafaee, M. Hladík

since it causes dependencies between interval parameters. Such situation iswell known
in interval linear programming; see Hladík (2012).

Again, we have to check whether Assumptions (A1) and (A2) are satisfied. It is
easy to see (cf. Fiedler et al. 2006; Hladík 2013) that the feasible set is feasible for
each instance of interval parameters if and only if the system

Ax + By ≤ b, x, y ≥ 0

is feasible. Hence, verification of Assumptions (A1) costs just solving one linear
program.

For checking Assumption 2, we have the following analogy of Proposition 1.

Proposition 2 Assumption 2 holds true if and only if pT x + q2T y + d > 0 for each
x, y such that

Ax + By ≤ b, x, y ≥ 0. (8)

Proof By Fiedler et al. (2006) and Hladík (2013), the system (8) describes the union
of all feasible sets of (7) over all instances of interval parameters. The rest of the proof
is the same as in the proof of Proposition 1. ��

The following theorem gives explicit formulae for computing the bounds of the
range of optimal values. In contrast to the previous case, inequality constrained prob-
lems are more easy to deal with. Only four real fractional linear programs are needed
to compute each of the end-points of the optimal value range [ f , f ].
Theorem 2 We have

f = inf{ f1(p), f1(p), f2(p), f2(p)}, (9)

f = sup{ f3(p), f3(p), f4(p), f4(p)}, (10)

where

f1(p) = inf

{
pT x + q1T y + c

pT x + q2T y + d
: Ax + By ≤ b, x, y ≥ 0,

}
,

f2(p) = inf

{
pT x + q1T y + c

pT x + q2T y + d
: Ax + By ≤ b, x, y ≥ 0

}
,

and

f3(p) = inf

{
pT x + q1T y + c

pT x + q2T y + d
: Ax + By ≤ b, x, y ≥ 0,

}
,

f4(p) = inf

{
pT x + q1T y + c

pT x + q2T y + d
: Ax + By ≤ b, x, y ≥ 0

}
,
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Proof (i) Suppose first that an optimal solution lies in the half-space pT x + q1T y ≥
−c. Then for each q1 ∈ q1, q2 ∈ q2, c ∈ c and d ∈ d we have

pT x + qT1 y + c

pT x + qT2 y + d
≥ pT x + q1T y + c

pT x + q2T y + d
.

From Fiedler et al. (2006) and Hladík (2013), we get

f = inf
p∈ p

inf

{
pT x + q1T y + c

pT x + q2T y + d
: Ax + By ≤ b, x, y ≥ 0

}
. (11)

For each p ∈ p and x ≥ 0, we have pT x ≤ pT x ≤ pT x . Since the objective

function of (11) is monotone with respect to z := pT x , the infimum is attained
either for z = pT x , or for z = pT x . Hence we come across f1(p).

If an optimal solution lies in the latter half-space pT x + q1T y ≤ −c, we analo-
gously obtain f2(p).

(ii) First, suppose that an optimal solution lies in the half-space pT x + q1T y ≥ −c.
By Fiedler et al. (2006) and Hladík (2013), the intersection of all feasible set of
(7) over all instances of interval parameters is given by the instance

Ax + By ≤ b, x, y ≥ 0.

Thus, we have

f = sup
p∈ p

inf

{
pT x + q1T y + c

pT x + q2T y + d
: Ax + By ≤ b, x, y ≥ 0

}
. (12)

By the monotonicity of the objective function of (12) with respect to z := pT x ,
we have that the supremum is attained either for z = pT x , or for z = pT x . Hence
we get f3(p). Similarly, we obtain f2(p) provided an optimal solution lies in the
opposite half-space pT x + q1T y ≤ −c.

��

For the same reasons as in the previous section, the computational cost of computing
the extremal optimal values is

– 4×LP for f ,

– 4×LP for f ,

where LP is a computational cost for linear programming.
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4 Extension

In this section, we consider fractional linear programming problem in the following
form:

min
pT x + qT1 y + c

qT2 x + pT y + d
, s.t. (x, y) ∈ M(A, B, b), (13)

Notice that common sub-vector p in the numerator and denominator appears in dif-
ferent terms, which is different from that of (1). Here, we again denote by

f (A, B, b, p, q1, q2, c, d) := inf

{
pT x + qT1 y + c

qT2 x + pT y + d
: (x, y) ∈ M(A, B, b)

}

the optimal value of the fractional linear program (13). Let A, B ∈ IR
m×k , b ∈ IR

m ,
p, q1, q2 ∈ IR

k , c, d ∈ IR be given, and consider the fractional linear program (13)
with input entries varying inside prescribed intervals. The following theorem gives
explicit formulae for computing the bounds of the range of optimal values when the
constraints are in the inequality form

min
pT x + qT1 y + c

qT2 x + pT y + d
, s.t. Ax + By ≤ b, x, y ≥ 0.

In contrast to fractional linear program (7), this case is more difficult to deal with. We
have to solve 2k+1 fractional linear programs to obtain the lower bound of optimal
value range. Notice that the results can be extended to the equality constraints in a
straightforward way.

Theorem 3 We have

f = inf
z∈{±1}k

{ f1(pz), f2(pz)}, (14)

f = sup{ f3, f4}, (15)

where

f1(p) = inf

{
pT x + q1T y + c

q2T x + pT y + d
: Ax + By ≤ b, x, y ≥ 0,

}
,

f2(p) = inf

{
pT x + q1T y + c

q2T x + pT y + d
: Ax + By ≤ b, x, y ≥ 0

}
,

and
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f3 = sup
{
θ + bTw : A

T
w + q2

T θ ≤ p, B
T
w + pT θ ≤ q1, dθ ≤ c,

w ≤ 0, p ∈ p, (θ free).
}
,

f4 = sup
{
θ + bTw : A

T
w + q2

T θ ≤ p, B
T
w + pT θ ≤ q1, dθ ≤ c,

w ≤ 0, p ∈ p, (θ free).
}
,

Proof (i) First assume that an optimal solution is located in the half-space pT x +
q1T y ≥ −c. In a similar way to the proof of part (i) of Theorem 1, we obtain

f = inf
p∈ p

inf

{
pT x + q1T y + c

q2T x + pT y + d
: Ax + By ≤ b, x, y ≥ 0

}
. (16)

The objective function of (16) can be written as follows:

pT x + q1T y + c

q2T x + pT y + d
= pi xi + α

pi yi + β

where α = ∑
j �=i p j x j + q1T y + c and β = ∑

j �=i p j y j + q2T x + d. Since
pi xi + α

pi yi + β
is monotone with respect to pi , the minimum is achieved at either p

i
or

pi . This process is continued until all of the components of p are vertices of p,
which leads to the function f1(pz); z ∈ {±1}k .
If an optimal solution lies in the latter half-space pT x + q1T y ≤ −c, we analo-

gously obtain f2(pz); z ∈ {±1}k .
(ii) First, suppose that an optimal solution lies in the half-space pT x + q1T y ≥ −c.

By Fiedler et al. (2006) and Hladík (2013), the intersection of all feasible set of
(7) over all instances of interval parameters is given by the instance

Ax + By ≤ b, x, y ≥ 0.

Thus, we have

f = sup
p∈ p

inf

{
pT x + q1T y + c

q2T x + pT y + d
: Ax + By ≤ b, x, y ≥ 0

}
.

Now, we apply the Charnes and Cooper transformation (Charnes and Cooper 1962) to
convert the fractional programming problem into an equivalent linear programming
problem, and obtain

f = sup
p∈ p

inf
{
pT x + q1

T y + c f :

q2
T x + pT y + d f = 1,

Ax + By ≤ b, x, y, f ≥ 0
}
.
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974 A. Mostafaee, M. Hladík

The inner program and the outer program have opposite directions for optimization.
So we write the dual problem of the inner program instead, and get

f = sup
p∈ p

sup
{
θ + bTw :

A
T
w + q2θ ≤ p,

B
T
w + pθ ≤ q1,

dT θ ≤ cT , w ≤ 0, (θ free)
}
.

Since the inner program and the outer program have the same objective for opti-
mization, we can combine the constraints of two programs and obtain the following
one-level nonlinear program:

f = sup
{
θ + bTw :

A
T
w + q2θ ≤ p,

B
T
w + pθ ≤ q1,

dT θ ≤ cT ,

p ∈ p, w ≤ 0, (θ free)
}
.

The above model is nonlinear due to nonlinear term pT θ.

Similarly, we obtain f4 provided an optimal solution lies in the latter half-space
pT x + q1T y ≤ −c. ��

By the above formulae, the computational cost of computing the extremal optimal
values is

– 2k+1×LP for f ,

– 2×LP for f ,

where LP is a computational cost for linear programming. Thus computation of f
is exponential w.r.t. the number of variables, but not w.r.t. the number of constraints.
Anyway, this intractability motivates further research on effective approximation of f .

5 Empirical illustration of revenue efficiencymeasures: assessment of
hospital activity

This section shows that the presented approach can be used to compute the bounds of
economic efficiency ranges in Data Envelopment Analysis (DEA). Interval DEA was
investigated by many authors, including Entani and Tanaka (2006), Hatami-Marbini
et al. (2014), He et al. (2016), Inuiguchi andMizoshita (2012), Jablonsky et al. (2004),
Khalili-Damghani et al. (2015) and Shwartz et al. (2016) among others.

Data envelopment analysis is a nonparametric approach to evaluate the efficiency
measure of a set of Decision Making Units (DMU) that consume multiple inputs to
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produce multiple outputs. Revenue efficiency (RE), as a DEA model, evaluates the
ability of a DMU to achieve maximal revenue at the current inputs. The concept of
RE followed from the seminal contribution of Farrell (1957), who originated many
ideas underlying efficiency measurement. The RE measure is achieved by dividing
the actual observed revenue by maximum output-mix (see for instance, Camanho and
Dyson 2005; Fang and Li 2013; Jahanshahloo et al. 2007a, b, 2008; Kuosmanen and
Post 2001, 2003; Mostafaee 2011; Mostafaee and Saljooghi 2010).

Suppose that we have a set of n DMUs consisting of DMUj , j = 1, 2, . . . , n, with
input-output vectors x j , y j , in which

x j := (x1 j , x2 j , . . . , xmj )
T , y j := (y1 j , y2 j , . . . , ys j )

T .

Define X = [x1, x2, . . . , xn] and Y = [y1, y2, . . . , yn] as m × n and s × n matrices
of inputs and outputs, respectively. Given exact output prices p = (p1, p2, . . . , ps),
REmeasure of DMUo can be computed by solving the following linear programming
problem

max
y,λ

pT y

pT yo
s.t. Xλ ≤ xo, Yλ ≥ y, eT λ = 1, λ ≥ 0. (17)

Let (λ∗, y∗) be an optimal solution. Then, the RE measure of DMUo is defined as
follows:

REo = pT yo
pT y∗

It is not difficult to show that 0 < REo ≤ 1.

Definition 1 DMUo = (xo, yo) is called revenue efficient iff REo = 1, and revenue
inefficient otherwise.

As we can observe, the RE measure of DMUs can be determined when the output
prices are exactly known. But in many practical applications, the prices cannot be
estimated accurately enough to make good use of economic efficiency concepts, and
only the lower and upper bounds of the prices can be estimated. When the data of the
price vector are uncertain and can be expressed in the form of ranges, the RE measure
calculated from the uncertain data should be uncertain, as well. The bounds typically
give a better approximation of true RE measures than a crisp value does.

Assume that the output price vector lies within bounded interval p = [p, p]. The
lower bound and the upper bounds of the RE measures of DMUo, [REo, REo], are
defined naturally as:

1

REo
= min

p∈ p
max
y,λ

pT y

pT yo
s.t. Xλ ≤ xo, Yλ ≥ y, eT λ = 1, λ ≥ 0, (18)

1

REo
= max

p∈ p
max
y,λ

pT y

pT yo
s.t. Xλ ≤ xo, Yλ ≥ y, eT λ = 1, λ ≥ 0. (19)
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Even though this problem is in essence an interval linear program, we cannot directly
use techniques from interval LP since there are dependencies caused by double occur-
rence of the interval vector p. In principle, Theorem 3 can be used to solve (18) and
(19), but the specific structure of this problem enables us to derive stronger results.
The following theorem gives an explicit formula for computing the bounds of RE
measures.

Theorem 4 We have

1

REo
= min

p̃,v≥0,η≥0,u0
xTo v − u0

s.t. p̃yo = 1, Xv − eu0 ≥ Y p̃, ηp ≤ p̃ ≤ ηp. (20)

1

REo
= max

z∈{±1}s max
y,λ

pTz y

pTz yo

s.t. Xλ ≤ xo, Yλ ≥ y, eT λ = 1, λ ≥ 0. (21)

Proof First we prove the upper bound formula. It is not difficult to see that constraint
Yλ ≥ y in (18) holds as equality at optimality, i.e., Yλ = y. Therefore, we have

1

REo
= min

p∈ p
max

λ

pT Yλ

pyo
s.t. Xλ ≤ xo, eT λ = 1, λ ≥ 0. (22)

The inner program and the outer program of (22) have opposite direction for optimiza-
tion. So, we will write the dual of the inner program instead. Notice that Assumption
(A1) holds true, and as a result the optimal values of the primal and the dual problems
are the same. Thus we obtain

1

REo
= min

p∈ p
min
v,u0

xTo v − u0 s.t. XT v − eu0 ≥ Y p

pT yo
, v ≥ 0, (u0 free). (23)

The inner program and the outer program of (23) have the same direction for opti-
mization (i.e., minimization), the constraints of two programs can be combined and
we obtain a one-level linear program

1

REo
= min

v,u0
xTo v − u0 s.t. Xv − eu0 ≥ Y p

pT yo
, v ≥ 0, p ≤ p ≤ p, (u0 free).

(24)

We set η = 1

pT yo
> 0. This implies ηpT yo = 1. By variable alteration p̂ = ηp,

the constraints of (24) are transformed to the following constraints

p ≤ p ≤ p ⇐⇒ ηp ≤ ηp ≤ ηp ⇐⇒ ηp ≤ p̂ ≤ ηp (25)
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and

Xv − eu0 ≥ Y p

pT yo
, p ≤ p ≤ p ⇐⇒ Xv − eu0 ≥ Y p̂, p̂T yo = 1, ηp ≤ p̃ ≤ ηp

(26)

Now, regarding (23)–(26), models (18) and (20) are equivalent, and the proof of the
first part is completed.

The proof of the second part is similar to that of Theorem 3, and is hence omitted.
��

Notice that due to a certain dependency of the output price vector (i.e., common
sub-vector p) in the numerator and the denominator of RE model, the upper bound
of RE is obtained by solving only one linear programming problem, which is easy
to solve by LP software, but 2s linear programming problems have to be solved to
compute the lower bound of the RE measures.

Example 1 In order to illustrate the ability of our proposed approach, we have utilized
the data set for 24 hospitals of Tehran city. Random sampling was used to select these
24 hospitals. This study is a cross sectional, the data field of library and information
collected through the use of doctoral dissertations and goes directly to the hospitals
and the University’s center for statistics. We use eight variables to form the data set as
inputs andoutputs. Four inputs include the number of hospital beds (NB), the number of
general practitioners and specialists (NEGM), the number of nurses (NN), the number
of other personnels (NOP), and four outputs include the number of ambulatory patients
in year (IP), the number of inpatients in year (OP), the number of surgeries (SRG),
and the average number of occupied beds in month (ANOB). The data are displayed
in Table 1.

Now, we illustrate RE measurement considering the situation that the exact output
prices at hospitals were not available. The hospitals were assessedwith the information
on the maximal and minimal bounds observed in their own hospitals. The price for
outpatients, inpatients, surgeries, and the average number of occupied beds lie in the
intervals [1.25, 1.80], [1.25, 1.80], [100, 600], [20, 25], respectively. Note that the
price of an item of outputs is expressed in terms of dollars and cents per unit. The
efficiency assessment requires the calculation of the upper and lower bounds for theRE
measure. These bounds correspond to theOptimistic RE and Pessimistic REmeasures.
Table 2 reports the results of the Optimistic RE and Pessimistic RE measures for all
hospitals analysed. These estimates were obtained by solving models (20) and (21),
respectively.

As can be seen, there are 16 extreme points for output prices:

(1.25, 1.25, 100, 20)T , (1.25, 1.25, 100, 25)T , (1.25, 1.25, 600, 20)T ,

(1.25, 1.25, 600, 25)T , (1.25, 1.8, 100, 20)T , (1.25, 1.8, 100, 25)T ,

(1.25, 1.8, 600, 20)T , (1.25, 1.8, 600, 25)T , (1.8, 1.25, 100, 20)T

(1.8, 1.25, 100, 25)T , (1.8, 1.25, 600, 20)T , (1.8, 1.25, 600, 25)T ,

(1.8, 1.8, 100, 20)T , (1.8, 1.8, 100, 25)T , (1.8, 1.8, 600, 20)T , (1.8, 1.8, 600, 25)T .
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Table 1 The input and output data of 24 hospitals

Hospitals (I)NB (I)NEGM (I) NN (I)NOP (O)IP (O)OP (O)SRG (O)RBP

Emam 528 608 732 651 230,151 17,357 13,074 3586.8

Valiasr 308 205 200 344 1725 15,501 13,943 5166.6

Bahrami 117 28 228 96 87,689 8304 1984 18,043.2

Arash 81 80 163 181 134,841 8332 6137 3419.4

Razi 69 70 89 95 247,554 2015 1796 2986.2

Shariati 494 145 531 810 174,409 20,729 13,859 2876.4

Farabi 204 46 325 484 437,430 37,407 44,868 3326.4

Markaz 272 72 285 239 145,662 15,467 7251 1560

Tebi Koodakan

Firoozgar 324 93 408 175 101,187 15,497 6614 10,224

Shahid 90 73 118 173 58,078 2768 4134 910.2

Mottahari

Sina 337 213 348 438 93,263 14,192 10,827 5940

Zanan Babak 96 72 152 85 71,693 7416 3578 11,314.8

Baharlo 207 61 214 380 165,331 13,397 4519 3366

Amir Aalam 174 121 199 242 181,370 9862 10,837 4966.2

Institute of cancer 193 162 230 149 72,410 8896 2739 4009.8

Ziaeian 99 71 140 104 273,287 6930 2865 645

Akbar Abadi 213 59 233 199 44,830 21,861 7268 2001

Alia Asghar 148 192 153 109 50,166 5345 1398 5074.5

Shafa 150 104 166 183 109,923 6355 11,066 4896

Yahyaian

Hashemi Nejad 128 65 189 207 71,936 8892 12,859 1824

Hazrate 110 24 149 148 51,018 10,462 10,552 2975.4

Fatemeh Zahra

Hazrate 701 298 831 335 204,884 35,339 17,854 9569.4

Rasul

Lolagar 81 52 115 79 183,601 7575 3256 1795.5

Shahid Fahmideh 30 16 50 101 400 14 0 1224

The second and the third columns of Table 2 report the lower and upper bounds of
RE measure of 24 hospitals. Also, the fourth column of Table 2 shows the extreme
points of output prices in which the lower bound of RE is attained. For instance,
the lower bound of RE of Amir Aalam hospital is 0.572399 and attained in extreme
point

p10 = (1.8, 1.25, 100, 25)T ,

where we associated p10 := p(1,−1,−1,1) etc.
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Table 2 Results of RE measurements

Hospitals Lower bound Upper bound Optimal pz

Emam 0.252533 0.339668 p14
Valiasr 0.501598 0.565374 p8
Bahrami 0.764213 1 p14
Arash 0.471692 0.672149 p14
Razi 0.662164 1 p10
Shariati 0.204112 0.333488 p14
Farabi 1 1 p1, . . . , p16
Markaz Tebi Koodakan 0.393522 0.409344 p14
Firoozgar 0.574606 0.615811 p14
Shahid Mottahari 0.281708 0.432454 p10
Sina 0.292734 0.293938 p6
Zanan Babak 0.821962 1 p14
Baharlo 0.240139 0.264111 p14
Amir Aalam 0.572399 0.595652 p10
Institute of cancer 0.311676 0.340523 p14
Ziaeian 0.692342 0.807473 p14
Akbar Abadi 0.409207 0.461675 p6
Alia Asghar 0.300066 0.344905 p14
Shafa Yahyaian 0.703957 0.839073 p2
Hashemi Nejad 0.666101 0.774617 p4
Hazrate Fatemeh Zahra 0.76827 1 p8
Hazrate Rasul 0.654394 0.665608 p14
Lolagar 0.807069 1 p14
Shahid Fahmideh 0.04098 1 p2

As seen in Table 2, only Farabi hospital is revenue efficient in both most and least
favourable situations, so it is revenue efficient for any instance of interval parame-
ters. The hospitals including Bahrami, Razi, Zanan Babak, Hazrate Fatemeh Zahra,
Lolagar, and Shahid Fahmideh are efficient in the most favourable situation and inef-
ficient in the least favourable situation as the RE of hospitals Bahrami, Razi, Zanan
Babak, Hazrate Fatemeh Zahra, Lolagar, and Shahid Fahmideh lie in the intervals
[0.764213, 1], [0.662164, 1], [0.76827, 1], [0.807069, 1], and [0.04098, 1], respec-
tively. The other hospitals are inefficient in both most and least favourable situation,
so we can be sure they are inefficient for any instance. Even though the output prices
are uncertain, we can conclude for efficiency or inefficiency for 18 of 24 hospitals.
Only six hospitals can be efficient or inefficient, depending on the concrete output
price vector.

6 Conclusion

The aim of the paper was to compute the exact bounds of the optimal objective values
in fractional programming problem whose input data can vary in some given real
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compact intervals. A method was proposed for situation in which the feasible set
is described by a linear interval system. Moreover, certain dependencies between the
coefficients in the nominators and denominators can be considered. Also, we extended
this approach for situations of double appearance of the same vector in different terms
in nominators and denominators. The applicability of the approach developed was
illustrated in the context of the analysis of hospital performance. The surprising point
here is that for 18 of 24 hospitals, we can make certain conclusions on efficiency
despite uncertain output prices.
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