
Central European Journal of Operations Research (2019) 27:815–834
https://doi.org/10.1007/s10100-018-0581-4

ORIG INAL PAPER

Spatial spillovers and European Union regional innovation
activities

Andrea Furková1

Published online: 18 September 2018
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
This paper explores the role of spatial spillovers in the innovation processes across
245 NUTS 2 European Union (EU) regions for the 2008–2012 period. The patent
applications at the European Patent Office were chosen as a proxy for innovative
activity. In the first step of the empirical analysis, the spatial pattern examination of
the innovative activity based on the selected global and local indicators for spatial
association confirmed the presence of a spatial dependence process in the distribution
of innovative activity. Next, we attempted tomodel the behaviour of innovative activity
at the EU regional level on the basis of extended regional knowledge production
model. Spatial econometric analysis indicated the relevance of internal innovation
inputs (R&D expenditure and human resources in science and technology) and we
also found out that, the production of knowledge by EU regions seems to be also
affected by spatial spillovers due to innovative activity performed in other regions.

Keywords EU regions · Research and development · Innovation activities · Spatial
spillover impacts · General Nesting Spatial econometric model

1 Introduction

In recent decades, many theoretical as well as empirical studies have highlighted the
role of technology as a key factor in the process of country and regional growth.
Also, most theories of economic growth regard knowledge and technological progress
as the main drivers of economic dynamics (Solow 1956; Romer 1986, 1990; Lucas
1988; Barro 1990; Rebelo 1991). Innovation and technological progress have played
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an important role not only in research but also in the agenda of economic policy
makers. There is now a general consensus that innovation and knowledge play a crucial
role in the competitiveness of companies and the process of economic development
of regions and countries. These ideas also form the basis of the European Union
(EU) strategic document “Europe 2020” (EuropeanCommission 2010)where research
and development are essential components of the so-called “Smart Growth”. “Smart
Growth: Developing an economy based on knowledge and innovation” is one of the
EU’s three priorities for the period 2010–2020.

Conte et al. (2009) states two main economic reasons why the EU governments
should actively stimulate investment in research and development (R&D). In the first
place, research and development are generally considered to be the main driver of
long-term economic development. The goal of R&D activities is to create new ideas
and innovations that can be transformed into commercially exploited innovations.
The second reason is that the private R&D investment is risky, with unclear results
and outcomes. The government’s role in R&D investing is therefore very important,
especially during economic crises.

Although knowledge diffusion has geographic components, the spatial aspect was
not explicitly taken into account in economic growth theory, and the role of spatial
effects was ignored (see e.g., Grossman and Helpman 1991; Lucas 1988; Romer 1986;
Romer 1990). In recent years, however, we have noted a great interest in analysing
whether states, countries (regions) with high (low) productivity levels are randomly
spread in space or concentrated in specific areas. In the spatial context, local economic
performance depends not only on the level of local inputs or potentially also on inputs in
neighbouring locations (Coe and Helpman 1995; Martin and Ottaviano 2001). Taking
into account spatial dependencies, asymmetries in relations and the interaction of
objects and data that are the subject of econometric modelling, spatial econometrics
is concerned. Also gravity approach can be applied for modelling spatial interaction
between spatial units. This approach is based on the gravity theory which can be
considered as a relational theory which describes the degree of spatial interaction
between two or more points in a manner analogous to physical phenomena (for more
details see e.g., Nijkamp and Reggiani 1992; Paas 2000; Bogataj and Drobne 2005;
Drobne and Bogataj 2005).

The main area of interest of spatial econometrics are spatial effects, namely spatial
autocorrelation and spatial heterogeneity. The term spatial dependence refers to spatial
autocorrelation, and the term spatial structure is related to spatial heterogeneity. Nowa-
days, spatial econometrics is adapted in theoretical econometrics and its popularity is
also growing in the area of empirical works. The main reason for this growing interest
is the shift in consideration from individual entities that take decisions in isolation
to take into account the mutual interaction of objects. Another important reason for
increased interest in spatial econometric tools is the better accessibility of geocoded
data that contain information about the location of spatial units (observations), e.g.,
address or latitude and longitude.

The lack of specialized technologies, geographic systems and software support
were among the reasons for the slow development of spatial econometrics. Over the
last two decades, there has been a significant expansion of specialized technologies,
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Geographic Information Systems (GIS) as well as software products for application
of spatial econometrics.

An important milestone in the history of spatial econometrics was the presenta-
tion of a “New Economic Geography” (NEG) theory. This approach is linked to the
works of Krugman (1991), Fujita et al. (1999), Ottaviano and Puga (1997) or Ven-
ables and Puga (1999). NEG models provide a framework for spatial analysis of
economic data when examining issues such as regional convergence, regional concen-
tration of economic activities and adjustment dynamics. Also, the number of empirical
studies on geographic aspects of knowledge and innovation activities has increased
(Jaffe et al. 1993; Feldman 1994; Feldman and Florida 1994; Audretsch and Feldman
1996; Anselin and Varga 1997; Anselin et al. 2000a, b; Acs et al. 2002). The inno-
vation process, the accumulation of knowledge as well as its dissemination are often
heavily localized into clusters of innovative companies, sometimes in close cooper-
ation with public institutions such as research centres and universities. Geographic
concentration of companies allows companies to exploit technological development,
share experiences with similar technologies, knowledge, etc. Most new technological
opportunities depend on the scientific knowledge that results from the research of
universities or research centres. The geographic proximity of companies and research
institutions makes it possible for scientific information to be translated into practice. It
is therefore clear that the localization of knowledge and the ability to absorb external
knowledge (absorption capacity) are two phenomena that are considered as key factors
in analysing the determinants of local technological progress and consequently local
economic growth.

Griliches (1979; Pake and Griliches 1980) proposed to analyse the determinants
of innovation activities through the Knowledge Production Function (KPF), finding
that the KPF model is better suited to describe the functional relationship between
technological progress and innovation inputs at the country/region economic sector
level than at company or firm level.

Regional analysis based on Regional Knowledge Production Function (RKPF) has
beenwidely used to assess the role of regional inputs in the process of innovation activ-
ities. According to the authors such as Audretsch and Feldman (2004), the knowledge
can not only have a local character, but knowledge can also be generated beyond the
boundaries of the analysed region, because there is no reason why the diffusion of
knowledge should be stopped, because of the borders of the region or the borders
of the state. Knowledge that is the output of one region can spread to other regions,
affecting their innovation activities, and geographic proximity allows for faster knowl-
edge diffusion. Such spatial interconnections motivate for the modified RKPF model
specification to capture the regional innovation activities that may potentially influ-
ence the innovation process in neighbouring regions. The study of Jaffe (1989) was
the first work in which the RKPF model took into account the spatial context. From
other studies dealing with the so-called knowledge spillover effects can be mentioned
the studies of e.g., Audretsch and Feldman (1996), Moreno et al. (2005a, b), Kumar
(2008), Khan (2012) and Charlot et al. (2015).

It is clear that one of the main objectives of R&D policy is to increase innovation
outcomes. However, the problem is how to measure the level of innovation activities
and technological progress, and to answer this question, what can be considered as
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innovative output, is not easy and can be represented in different ways. Based on the
RKPF concept, two types of indicators are usually considered: technological innova-
tion inputs (e.g., R&D expenditure and human capital) and technological innovation
outputs (e.g., scientific publications and citations, patents or new products).

The complexity of the innovation process is a relevant challenge for empirical
research, especially when quantitative approaches are applied. The aim of this paper
will be the verification of localized knowledge and absorption capacity roles in the
process of increasing innovation outputs of the EU regions. Empirical part of the paper
will include verification of two hypotheses:

Hypothesis 1 We hypothesize that the regional innovation process (represented by
patent applications) is influenced by innovation activities in neighbouring regions.

Testing the hypothesis 1 In order to test hypothesis 1, global and local spatial
autocorrelation statistics, namely global Moran’s I and local Getis–Ord statistics will
be used. These spatial autocorrelation statistics tools will allow us to detect potential
spatial dependencies at global and local levels and quantify the intensity and the type
of spatial dependencies as well.

Hypothesis 2 Does the location of the region matter in the regional innovation process
modelling? We hypothesize that there is global level of spillover innovation effects
among the EU regions, i.e., the changes in innovation inputs (R&D expenditure and
human resources in science and technology) in the ith region will affect the number of
patent applications not only the region itself but these changeswill also have significant
impacts on neighbouring regions with higher degree of neighbourhood.

Testing the hypothesis 2 Spatial econometricmodel (two versions)will be applied as
the hypothesis validation tool. Themodelswill be used to quantify and to test statistical
significance of the direct, indirect and total impacts of the selected innovative inputs.
Following spatial partitioning of these impacts and their statistical significance we
will try to answer the question what level of neighbourhood degree still matter in the
regional innovation process modelling.

2 Theoretical backrounds

The greatest attention within the spatial econometrics is focused on the estimation
of models with spatially autoregressive process, i.e., models that explicitly allow for
spatial dependence through spatially lagged variables. This group of models includes
the well-known SAR (Spatial Autoregressive) model, which in the simplest version
only assumes spatial spillover effects within the dependent variable. A generalized
version of this model is called General Nesting Spatial (GNS) model, which includes
all types of spatial interaction effects. The GNS model for cross-sectional data in
matrix form takes the following form:

y � ρWy + Xβ +WXγ + u

u � λWu + v, v ∼ N
(
0, σ 2

v IN
)

(1)
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where y denotesN ×1 vector of the observed dependent variable for allN locations,X
denotes aN ×kmatrix of exogenous explanatory variables (k represents the number of
explanatory variables), β is associated k ×1 vector of unknown parameters to be esti-
mated, v ∼ N

(
0, σ 2

v IN
)
isN ×1 vector of random errors, σ 2

v is random error variance,
IN isN dimensional unit matrix andW isN dimensional spatial weighting matrix (for
details concerning construction and different approaches see e.g., Chocholatá 2017).
Model (1) includes all types of interaction effects, namely endogenous interaction
effects among the dependent variable (Wy), the exogenous interaction effects among
the independent variables (WX) and the interaction effects among the disturbance term
of the different units (Wu). Hence k ×1 vector γ, parameters ρ and λ represent spatial
autoregressive parameters and their statistical significance, value and mathematical
character indicate the direction and the strength of spatial dependence. Other spatial
econometricsmodels can be obtained from theGNSmodel by imposing restrictions on
one or more of its parameters e.g., SEM—Spatial Error Model (Anselin 1988; LeSage
and Pace 2009), SARAR also called SAC or Cliff—Ord model (Kelejian and Prucha
1998), SDM—Spatial Durbin Model (Anselin 1988), SDEM—Spatial Durbin Error
Model (LeSage and Pace 2009) or SLX model (Spatial Lag v X) (Gibbons and Over-
man 2012).

Estimation of spatial autoregressive models requires special estimation methods.
The problem is caused for example by the presence of spatially lagged variableWy on
the right hand side of the regression equation (in GNS, SDM, SAR, SARAR models),
which causes problems with endogeneity (see the assumptions of the classical linear
model e.g., Ivaničová et al. 2012) and therefore the least squares method (OLS) is not
a suitable estimation method. The estimation of spatial econometric models is based
on familiar estimation econometric methods but they must be modified with respect
to spatial aspects: Maximum Likelihood (ML), two-stage least squares (2SLS), and
generalized moment method (GMM). The latest approaches use Bayesian’s MCMC
(Markov Chain Monte Carlo) estimation method (LeSage and Pace 2009). Review of
estimation methods can be found in Anselin and Rey (2014).

2.1 Direct, indirect and total impacts in spatial econometric models

Spatial econometric models are characterized by a complicated structure of spatial
dependencies between spatial units (such as districts, regions or states). Due to the
spatial dependence, the estimated parameters of the spatial econometric model contain
more information about relations between spatial units compared to the classical linear
regressionmodel. Let us consider the classical linear regressionmodel: y�∑ k

r=1xrβr

+u, where r denotes the rth explanatory variable. In this case, linear regression param-
eters have a straightforward interpretation as the partial derivative of the dependent
variable with respect to the explanatory variable. This stems from the linearity and
independence assumptions of observations in the model. Partial derivatives of yi with
respect to xir correspond to parameter of given variables, i.e., ∂yi

∂xir
� βr for ∀i, r

and this derivatives equal ∂yi
∂x jr

� 0 for j �� i and ∀r. These conclusions are not valid
in spatial models that contain spatial lags of explanatory variables and/or dependent
variables. The expected value of the dependent variable in the ith location is no longer
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influenced only by exogenous location characteristics, but also by the exogenous char-
acteristics of all other locations through a spatial multiplier (IN − ρW)−1 (for more
details see LeSage and Pace 2009). To demonstrate this effect, let us consider SDM
model in the following form:

y � ρWy + Xβ +WXγ + u (2)

After simple formula modification and adding a constant term into the model (2),
we get the following formula:

(IN − ρW)y � Xβ +WXγ + lNα + u (3)

where lN represents N ×1 vector of ones associated with the constant term α. Let us
consider next model adaptation:

y �
k∑

r�1

Sr (W)xr + V(W)lNα + V(W)u (4)

where

Sr (W) � V(W)(INβr +Wγr )

V(W) � (IN − ρW)−1 � IN + ρW + ρ2W2 + ρ3W3 + · · ·

The relation in (4) indicates that the partial derivatives ∂yi
∂x jr

for j �� i and ∀r is not
necessarily zero but equals:

∂yi
∂x jr

� Sr (W )i j (5)

The relation (4) indicates that own derivative for the ith location does not equal to the
parameter estimate but results in:

∂yi
∂xir

� Sr (W )i i �� βr (6)

The relationship (5) implies that changing the explanatory variable in a given spa-
tial unit can affect the dependent variable in other spatial units, as a consequence
of the simultaneous spatial structure in the SDM model (as well as in the GNS,
SAR, SARAR models). Changes in neighbouring location characteristics may cause
changes in the value of the dependent variable in particular region that will affect
the value of the dependent variable in neighbouring units. These impacts are dis-
persed within the system of locations under the consideration. Formula (5) quantifies
the indirect impact and direct impact is quantified by the formula (6). Direct impact
captures feedback loops where observation i affects observation j and observation
j also affects observation i as well as longer parts which might go from observa-
tion i to j to k and back to i. The derivatives in (6) equals the scalar Sr(W )ii what
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Table 1 Summary measures of direct, indirect and total impacts

Average total impacts (ATI) AT I � N−1lTNSr (W)lN

Average direct impacts (ADI) ADI � N−1tr(Sr (W))

Average indirect impacts (AII) AII �ATI −ADI

Source: own elaboration

Table 2 Overview of ADI , ATI and AII impact measures

SDM model (Wy,WX)/GNS model (Wy,WX, Wu)

Average total impacts (ATI) N−1lTN
(
IN − ρ̂W

)−1
(
IN β̂r +Wγ̂r

)
lN

Average direct impacts (ADI) N−1tr
((
IN − ρ̂W

)−1
(
IN β̂r +Wγ̂r

))

Average indirect impacts (AII) AII � ATI −ADI

SAR model (Wy)/SARAR model (Wy,Wu)

Average total impacts (ATI)
(
1 − ρ̂

)−1
β̂r

Average direct impacts (ADI) N−1tr
((
IN − ρ̂W

)−1
(
IN β̂r

))

Average indirect impacts (AII) AII � ATI −ADI

SLX model (WX)/SDEM model (WX, Wu)

Average total impacts (ATI)
(
β̂r + γ̂r

)

Average direct impacts (ADI) β̂r

Average indirect impacts (AII) γ̂r

OLS model/SEM model (Wu)

Average total impacts (ATI) β̂r

Average direct impacts (ADI) β̂r

Average indirect impacts (AII) 0

Source: own elaboration

is the diagonal element of the matrix Sr (W) � (IN − ρW)−1(INβr +Wγr ). Fol-
lowing a series expansion of the inverse term, this matrix can also be written as
Sr (W) � (

IN + ρW + ρ2W2 + ρ3W3 + · · ·)(INβr +Wγr ). From this matrix obvi-
ous feedback effects can be seen since this matrix contains e.g., matrix W2 which
reflects second order neighbours and contains non-zero elements on the diagonal.
The magnitude of these feedbacks depends on a number of factors such as the posi-
tion of the locations in space, the spatial interconnection of the regions as well as
the regression parameter values. The diagonal elements of the matrix Sr (W) provide
information about direct impacts, and non-diagonal elements of this matrix represent
indirect impacts. Since the matrix Sr (W) has theN ×N dimension and we are consid-
ering k explanatory variables, the total number of partial derivatives is k ×N2. LeSage
and Pace (2009) suggested a summary measures of these impacts (see Table 1). An
overview of the ATI, ADI , and AII impacts for spatial and non-spatial models is shown
in Table 2.
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In the context of indirect impacts, it is questionable whether these impacts have
local or global nature or in other words, whether it is local or global spatial spillover
effects (Anselin 2003). A key aspect in distinguishing these effects is the existence of
feedbacks in the spatial model. The local spatial spillover effects are characterized by
the absence of endogenous interactions and feedbacks. Endogenous interactionsmeans
that changes in the ith spatial unit activate a series of reactions in others, potentially
in all spatial units. The local spillover effect does not cause such a series of reactions
and concerns only neighbouring spatial units where this effect is extinguished. Models
with local spillover specifications include SLX and SDEMmodels where local spatial
spillover effects are taken into consideration through the WX term. The GNS, SAR,
SARAR, and SDM models are models with global spatial spillover effects because
they contain spatial lag variable Wy.

In order to draw inferences regarding the statistical significance of individual
impacts associated with changing the explanatory variables, the distribution of scalar
summary impact measures is required. For this purpose, simulation approaches are
applied which allow for the empirical distribution of model parameters, which is
constructed based on the use of a large number of simulated parameters from the mul-
tivariate normal distribution of the parameters implied by ML estimates (LeSage and
Pace 2009).

3 Data and empirical results

The spatial spillover analysis of the EU regional innovation activities was performed
based on the cross-sectional data set obtained from the regional Eurostat statistics
database (http://ec.europa.eu/eurostat/). The dataset includes 245 NUTS 2 (Nomen-
clature of Units for Territorial Statistics) EU regions from the 26 countries surveyed
for 2008–20121 period. Based on the RKPF concept, we have chosen patent applica-
tions from the European Patent Office (number per million inhabitants) as a proxy for
innovative output. Despite certain limitations associated with patent applications as
an indicator of innovation output, patent applications are considered to be an adequate
“representative” of innovation activities because the patent process is a demanding
procedure, and only innovations that are potentially of high value are considered. At
the beginning of the empirical analysis, we had to exclude 20 island regions of Cyprus,
Malta, France, Finland, Spain, Greece, Portugal and Italy from our sample of data in
order to avoid possible problems with isolated regions. Another data file reduction
had to be done due to missing data. We excluded 7 regions of Bulgaria, Germany
and Greece. Following other empirical analyses of the innovation activities of the EU
regions (e.g., Moreno et al. 2005a, b; Khan 2012; Kumar 2008), the more appropriate
spatial units are the EU regions at NUTS 2 level than at higher territorial level e.g.,
at national level. In our analysis, therefore, the spatial units are the EU regions at
NUTS 2 level. The geographic characteristics of these spatial units, in this case of
the spatial units—polygons, contain the .shp file obtained from the Eurostat webpage,

1 The year 2012 was the last published year of used statistics at the time of the analysis and the chosen
time span was determined mainly by the availability of data.
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which was subsequently corrected in the GeoDa2 software. The regions included in
our analysis are shown in Figs. 1 and 2 in form of quantile, natural breaks3 and box4

maps. Figure 1 shows the innovation activities of the regions in 2008 and 2012. Based
on the 2008 quantile map, the most intensive innovation activities are evident for the
initial period under review, especially in the regions of “western” Germany, Austria,
the Netherlands, Denmark and Luxembourg. Several regions with the most intensive
innovation activity can be found in northern Italy, France, Sweden, Finland and the
UK. On the contrary, the low level of innovation activity is associated with regions
of southern Europe such as the regions of Spain, Portugal, Greece and southern Italy.
The same, low intensity of innovation activities is also reported by most of the former
socialist countries. Compared to the year 2012, based on the Fig. 1 similar pattern
of regional innovation activities is evident as in 2008. However, with regard to the
level of innovation activities in 2008 and 2012, we see (Fig. 1) that in 2012 there was
a significant decrease in patent applications compared to 2008. While in 2008, the
average regional innovation output was 214.47 patents per million of inhabitants; in
2012, it was surprisingly only 85.91 patents per million of inhabitants. Since 2008, a
continuous decrease in the average value of patent applications is recorded (in brack-
ets): 2008 (214.47), 2009 (212.07), 2010 (211.93), 2011 (175.83) in 2012 (85.91).
This negative trend can be attributed to the financial crisis beginning in 2008.

Figure 1 also provides natural breaks maps for 2008 and 2012, which provides a
more adequate insight into the region’s innovative activities compared to the quantile
maps. In the quantile maps, there are many “dark” fields, i.e., many regions are per-
ceived as “top” regions in the field of innovative activities. In natural breaks maps, the
distribution of regions into four categories is uneven, which means that, for example,
the number of regions with the highest values is only 14 in 2008 and only 9 in 2012.
The regions with the highest innovation activity are mainly the regions of Germany,
Austria, Luxembourg, Sweden and Finland, the difference between 2008 and 2012
again being minimal. These “top” regions identified on the basis of natural breaks
maps are almost in accordance with the so-called outliers in the fourth quartile in the
box maps (Fig. 2). With regard to outliers in the first quartile, no extreme values of
this character were identified on the basis of the box map in 2008 and even in 2012.

The application of spatial econometrics tools is based on the construction of the
spatial weight matrix W and therefore the first step of the empirical analysis was
its construction. We have chosen several different approaches to constructing this
matrix but based on the preliminary analysis,5 just the following k—nearest neighbours
approach was applied. Based upon the arc distance (for more details see e.g., Anselin
and Rey 2014) the centroid distances from each unit i to all other units j �� i were
ranked as follows: di j(1) ≤ di j(2) ≤ · · · ≤ di j(244). Then for each k � 1, . . . , 244,
set Bk(i) � { j(1), j(2), . . . j(k)} contains k nearest neighbours to the unit i. For each

2 The empirical part of the paper was carried out in the GeoDa, GeoDa Space and R software packages.
3 Natural Breaks Maps are constructed on the basis of the Jenks Natural Breaks algorithm (see e.g., De
Smith et al. 2009).
4 The Box Map is an extended version of the Quartile Map, in which observations with extreme values in
the first and fourth quartile are displayed separately.
5 With respect to the goal of the paper this analysis is not presented here.
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2008 2012
Quantile map

Natural breaks map

Fig. 1 Natural breaks maps (four categories) for patent application in 2008 and 2012. Source: own calcu-
lations

given k, the elements of the matrix of weights to the nearest neighbours have the
following form:

wi j �
{
1, j ∈ Bk(i)
0, inak

(7)

The result of this approach is asymmetric matrix of spatial weights. We setK �8 what
ensured that each region has just eight neighbours and this associated spatial weight
matrix (W8KNN) was used in all parts of our analysis.

As a second part of our preliminary spatial dependence analysis of the innovative
activities of the EU regions selected ESDA (Exploratory Spatial Data Analysis) tools
were used. We assume that the regional innovation process (represented by patent
applications) is influenced by innovation activities in neighbouring regions. To ver-
ify this hypothesis, we used global and local spatial autocorrelation statistics, namely
globalMoran’s I and local Getis–Ord statistics calculated for the 2008 and 2012 years.
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2008 2012
Box map

Fig. 2 Box maps (four categories) for patent application in 2008 and 2012. Source: own calculations

2008 2012
2008 0.5933I = 2012 0.6002I =

Getis–Ord cluster map

Fig. 3 Moran’s I statistics and Getis–Ord cluster maps for patent application in 2008 and 2012. Source:
own calculations

The high values and statistical significance of bothMoran’s I statistics (see Fig. 3) con-
firmed the existence of positive spatial autocorrelation. Thus, similar patent application
values tend to be clustered across the space, i.e., regions with high (i.e., “high–high”
association) or low (i.e., “low–low”) values are clustered together.

In the next step of ESDA, we have identified clusters based on the local version of
Getis–Ord statistics that identified clusters based on concentration of patent applica-
tions values in neighbouring regions. These statisticwere calculated for all 245 regions,
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and based on graphical visualization, we can see statistically significant6 clusters, so
called hotspot and coldspot locations (see Fig. 3). A comparison of 2008 and 2012
Getis–Ord cluster maps imply very similar spatial process.

Taking into account spatial aspects of the EU innovation process involves a series
of logical steps. Selected ESDA tools applied in the previous section were the initial
step of the analysis that typically precedes the spatial effects specification tests in
the context of spatial regression models. Our ESDA results indicate the spatial inter-
connection of the regional innovation process. Another logical step is to specify the
spatial econometric model that would take into account the indicated spatial effects.
The basis of our analysis was an extended RKPFmodel (see e.g., Moreno et al. 2005a;
Furková 2016). While the basic RKPF model assumes that the innovation output in
the ith region is determined only by the innovation inputs of the region, the extended
version of this model contains additional economic and institutional factors as well
as variables taking into account the spillover effects of knowledge among regions. As
an innovative outcome, we will consider the PATAV variable representing the aver-
aged value of patent applications for 2011 and 2012 and the first innovative input is
represented by the RDE variable, expressed as total R&D expenditure in 2011 (in
% of GDP) and the second one is the HRST variable representing human resources
(university graduates) in science and technology in 2011 (% of active population). The
HRST variable captures the ability to generate new knowledge as well as the ability to
absorb external knowledge in the form of knowledge spillover effects. All data comes
from Eurostat regional statistics. The specification of spatial econometric model fol-
lowed the “from general to specific” strategy when the model selection process starts
with the model construction and estimation without spatial lagged variables and OLS
estimation. Thus, we start to estimate the following RKPF model in the form:

y � lNα + Xδ + u u ∼ N
(
0, σ 2

u IN
)

(8)

wherey denotes N×1vector of the observeddependent variable (PATAV in logarithmic
form), δ denotes (2 × 1) vector of parameters containing parameter β1 associated with
explanatory RDE variable (in logarithmic form) and parameter β2 associated with
explanatory HRST variable (in logarithmic form), X is N × 2 matrix of explanatory
variables, N × 1 dimensional vector u represents random errors vector and remaining
terms of model (8) were defined before. The model (8) does not take into account any
spatial aspects, the model can be estimated on the basis of OLSmethod. Consequently,
we will decide on the form of a suitable spatial econometric model based on spatial
autocorrelation statistics. The estimation results of model estimation (8) are given in
Table 3.

The statistical significance of the Moran’s I applied on the OLS residuals as well as
the LM test specification statistics (LMρ , LMλ and their robust versions—see Table 3)
confirmed the presence of spatial dependencies of the regional innovation process and
therefore the OLS estimation results can be misleading and we will not pay them
attention. However, the LM specification tests did not lead to the clear spatial version
of model (8), so we have decided to estimate multiple spatial versions, the estimation

6 Statistical inference was based on a random permutation procedure (for details see e.g., Getis 2010).
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Table 3 Estimation results—OLS, SAR and SDM models

OLS model SAR model SDM model
OLS SML SML

α −3.8969*** −2.3767*** −0.3846

β1(lnRDE) 0.9362*** 0.5167*** 0.4885***

β2(lnHRST) 2.1411*** 0.9698*** 1.3195***

γ1(W lnRDE) – – 0.0418

γ2(W lnHRST) – – 0.9572**

ρ(W lnPATAV) – 0.6840*** 0.7397***

Goodness of fit statistics

R2 0.6008 – –

AIC 656.326 458.22 455.86

SC 666.830 – –

lnL −325.163 −224.110 −220.929

Jarque–Bera 3.092 – –

Breusch–Pagan 4.256 – –

Koenker–Basset 4.841* – –

Spatial autocorrelation statistics

Moran’s I (residuals) 15.741*** – –

LMρ 229.541*** – –

Robust LMρ 64.454*** – –

LMλ 222.691*** – –

Robust LMλ 57.605*** – –

LM test – 2.8857* 0.0630

LR test – 202.11*** 111.82***

Symbols ***, **, * in all tables of the paper indicate the rejection of H0 hypotheses at 1, 5 and 10% level
of significance, respectively
AIC Akaike information criterion; SC Schwarz criterion; lnL logarithm of log likelihood function, A–K
Anselin–Kelejian, LR Likelihood Ratio, LM Lagrange Multiplier

results of the SAR and the SDM7 specifications are shown in Table 3. The choice
of SAR and SDM specifications has also been supported by our assumption of the
existence of global spillover effects in relation to modelling of regional innovation
activities. The SAR and SDMmodels allow spillover effects at the global level, which
means that changes in the ith region activate a series of responses in others, potentially
in all regions. The estimations of the SAR and the SDM model were based upon the
specification (9) and (10), respectively:

SAR specification: y � ρWy + lNα + Xδ + u (9)

SDM specification: y � ρWy + lNα + Xδ +WXω + u (10)

7 We do not report the results of other spatial versions of the model (8) due to insufficient space.
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where ρ is the spatial autoregressive process parameter, W is a spatial weight matrix
W8KNN defined before, ω denotes (2×1) vector of parameters containing the param-
eter γ 1 corresponding to the spatial lag of RDE variable and the parameter γ 2
corresponding to the spatial lag of HRST variable, the remaining model terms were
defined before. SAR model estimation was performed by SML (spatial ML) estima-
tor. The results are presented in Table 3. SML estimation of the model (9) produced
statistically significant estimates of the parameters of the selected innovation inputs
with the expected signs. The estimation of the spatial autoregressive parameter ρ is
statistically significant as well, and it confirms the adequacy of the explicit incorpo-
ration of the spatial lags of dependent variables into the model. In addition, this is
also confirmed by LR test. The LM test indicates estimate the problem with “residual”
spatial autocorrelation.

In the last column of Table 3 the estimation of the SDM model (10) results are
presented. This model contains not only a spatial lag of dependent variable but spatial
lags of explanatory variables WX are also considered. Again, the SML method was
used to estimate the model (10), apart from the estimations of γ 1 (associated with
RDE variable) and α, all parameters were statistically significant and the LM test did
not indicate the problem of remaining spatial autocorrelation.

As we have already mentioned, the parameter γ 1 corresponding to the spatial lag of
RDE variable is not statistically significant andwe could say that spatialRDE spillover
effects do not exist. However, this conclusionmay not be correct because the statistical
inference of the individual impacts associated with the changes in the explanatory
variables should be based on the summary measures of impacts of the SDM model
as well as the SAR model (see Table 2). Table 4 summarizes the cumulative impacts
of RDE calculated on the basis of the SAR and SDM estimates. Testing the statistical
significance of these cumulative impacts was based on a simulation approach (see
LeSage and Pace 2009).

Next, we will focus on illustrating the impacts associated with R&D expenditure,
i.e., with the RDE variable (see Tables 4 and 5). We can notice that, based on the
SAR model estimation, the average direct impacts does not match the estimate of the
parameter β1. The difference between the average direct impacts (0.5635) and the
value of the parameter estimate (0.5167) is 0.0468, which is the amount of feedback
that arises from the effects passing through the neighbouring regions, and is reversed
by the region itself. We also found positive feedback effects based on the SDMmodel
estimate. However, compared to the SAR model, these feedbacks are greater than or
equal to 0.0647 (0.5532–0.4885). This difference is caused by the spatial lag of RDE
variable in the SDM model, and then the quantification of the average direct impact
is affected by the value of parameter β1 and the parameter γ 1 as well (see Table 2).

Even greater differences are evident between the average indirect impacts of RDE
and theSDMestimate of parameterγ 1, this difference (1.4841–0.0418) is up to 1.4423.
It is also important to note that all of the RDE’s summary impacts (Tables 4 or 5) are
statistically significant, but the parameter γ 1is not statistically significant, and there-
fore, if we perceive estimate of parameter γ 1 as an indirect impact, our conclusions
regarding the RDE spillover effects would be wrong.

Also, to consider the sum of SDM model parameter estimate corresponding to
the RDE variable and its spatial lag variable as the average total impact can lead
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Table 4 Spatial partitioning of direct, indirect and total impacts of RDE—SAR and SDM models

Cumulative impacts of RDE

SAR model SDM model

Direct impact 0.5635*** 0.5532***

Indirect impact 1.0717*** 1.4841***

Total impact 1.6352*** 2.0372***

Spatial partitioning of RDE impacts

W-order Direct Indirect Total Direct Indirect Total

W0 0.5167*** 0 0.5167*** 0.4885*** 0.0418 0.5303

W1 0 0.3534*** 0.3534*** 0.0031 0.3892*** 0.3923***

W2 0.0239*** 0.2179*** 0.2417*** 0.0276*** 0.2626*** 0.2902***

W3 0.0089*** 0.1564*** 0.1654*** 0.0115*** 0.2031*** 0.2147***

W4 0.0056*** 0.1076*** 0.1131*** 0.0077*** 0.1511*** 0.1588***

W5 0.0032*** 0.0742*** 0.0774*** 0.0048*** 0.1127*** 0.1175***

W6 0.0019*** 0.0510*** 0.0529*** 0.0032*** 0.0837*** 0.0869***

W7 0.0012** 0.0350** 0.0362** 0.0021** 0.0622** 0.0643**

W8 0.0008** 0.0240** 0.0248** 0.0014** 0.0461** 0.0475**

W9 0.0005** 0.0165** 0.0169** 0.0010* 0.0342* 0.0352*

Σ 0.5626 1.0359 1.5985 0.5508 1.3867 1.9375

Source: own calculation in R

Table 5 Summary of direct, indirect and total impacts of RDE–SAR and SDM models

SAR model SDM model

β̂1 0.5167*** 0.4885***

Average direct impact (ADI) 0.5635*** 0.5532***

Difference ADI and β̂1 0.0468 0.0647

γ̂1 – 0.0418

Average indirect impact (AII) 1.0717*** 1.4841***

Difference AII and γ̂1 – 1.4423

Average total impact (ATI) 1.6352*** 2.0372***

β̂1 + γ̂1 – 0.5303

AII/ATI 0.66 0.73

ADI/ATI 0.34 3.27

Source: own calculation

to misleading conclusions. While the average total impacts is 2.0372, this impact if
we sum up the corresponding parameter values (β1 +γ 1) would be equal to 0.5303,
i.e., almost four times smaller. This great difference depends on the extent of indirect
impacts which can not be directly identified based on SDM parameter estimates. In
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the case of the SAR estimation, there are no such great differences, because this model
does not contain spatial lag of independent variables.

Average total impacts can be interpreted as elasticity since the variables in both
models were expressed in logarithmic form. For example, as for the SAR model
estimation and based on its average total RDE impact we can conclude that a 1%
increase in total R&D expenditure will cause an average of 1.6352% increase in
patent applications, while approximately 34% of this impact is attributed to direct
impact and 66% to indirect impact. These percentage shares, i.e., the ratios of direct
and indirect impacts to total impact is always the same in the SAR model for all
explanatory variables. The SDM also contains spatial lags of explanatory variables,
and that is why these ratios are not constant for all explanatory variables. From this
perspective, SDM model can be considered more realistic.

It is clear that changes in explanatory variables will have a greater impact on regions
with a lower degree of neighbourhood than on regions with higher degrees of neigh-
bourhood. Table 4 provides the spatial partitioning of the direct, indirect and total RDE
impact on the basis of the SAR and SDM models. Spatially partitioned (marginal)
direct, indirect, and total impacts are calculated for neighbourhood degrees 0 through
9. Based on the definition Sr (W) matrix for SAR and SDM models (see Sect. 2 and
LeSage and Pace 2009), it is possible to quantify the effect corresponding to each
degree of neighbourhood. For instance, the direct impact corresponding to the neigh-
bourhood W0 degree equals to the parameter β1 estimate according to the SAR and
SDMmodel as well. The indirect impact corresponding to this neighbourhood degree
is zero according to the SAR model but according to the SDM model, this impact is
no longer zero but equal to the estimate of parameter γ 1. This difference is due to the
presence of the spatial lag of RDE variable in the SDM model, or in other words due
to the different definition of the matrix Sr (W). The total marginal impact according to
both models is equal to the sum of the direct and indirect marginal impacts. From the
spatial partitioning of the direct impact we can further notice that, in the SAR model,
until we reach the ninth degree of neighbourhood, we will “explain” a substantial part
of the cumulative effect and that is 0.5626 of 0.5635 (see Table 4).We can also see that
the direct marginal impacts according to bothmodels quickly disappear with the grow-
ing degree of neighbourhood, while the indirect marginal impacts decreasemuchmore
slowly. The statistical significance8 of marginal impacts corresponding to all degree
of neighbourhood in both models suggests the need to investigate the decomposition
of the impacts of RDE even for several higher degrees of neighbourhood.

As for the second innovation input, HRST variable (human resources in science
and technology) has been chosen. The calculations of summary impact measures and
spatial partitioning of all impacts based on the SAR and SDMmodels have been done
(see Table 6), however with respect to the scope of the paper we will not interpret
these results.

8 Testing the statistical significance of marginal impacts corresponding to different levels of neighbourhood
was based on a simulation approach (see LeSage and Pace 2009).
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Table 6 Spatial partitioning of direct, indirect and total impacts of HRST–SAR and SDM models

Cumulative impacts of HRST

SAR model SDM model

Direct impact 1.0576*** 1.3225***

Indirect impact 2.0116*** 0.0693

Total impact 3.0693*** 1.3917

Spatial partitioning of HRST impacts

W-order Direct Indirect Total Direct Indirect Total

W0 0.9698*** 0 0.9698*** 1.3195*** −0.9572** 0.3623

W1 0 0.6634*** 0.6634*** −0.0699** 0.3379 0.2680

W2 0.0448*** 0.4090*** 0.4538*** 0.0430*** 0.1553 0.1982

W3 0.0168*** 0.2936*** 0.3104*** 0.0098 0.1368 0.1466

W4 0.0104*** 0.2019*** 0.2123*** 0.0076 0.1009 0.1085

W5 0.0060*** 0.1393*** 0.1452*** 0.0042 0.0760 0.0802

W6 0.0036*** 0.0957*** 0.0993*** 0.0027 0.0566 0.0594

W7 0.0022*** 0.0657*** 0.0679*** 0.0018 0.0421 0.0439

W8 0.0014** 0.0451** 0.0465** 0.0012 0.0313 0.0325

W9 0.0009** 0.0309** 0.0318** 0.0008 0.0232 0.0240

Σ 1.0560 1.9445 3.0005 1.3207 0.0029 1.3236

Source: own calculation in R

4 Conclusion

This paper was focused on spatial econometric analysis of the innovation activities
of the EU regions, emphasizing the importance of spatial regional interactions in
the innovation process modelling. Even the initial ESDA analysis based on the local
as well as global spatial autocorrelation statistics confirmed the assumption that the
regional innovation process (represented by patent applications) is not a spatially iso-
lated process but is also influenced by innovative activities in neighbouring regions.
Consequently, we constructed the RKPF model following SAR and SDM specifi-
cations. These models differ in the type of spatial autoregressive process, but both
models allow for global spillover effects, which we considered to be a more realistic
assumption for modelling innovative activities than to predict only the local level of
spillover effects. Based on the SML estimates of both models, it was possible to quan-
tify the summary measures of the direct, indirect and total impacts of the innovative
inputs under consideration (R&D expenditure and human resources in science and
technology). We also realized spatial partitioning of these impacts and quantified the
impacts corresponding to each degree of neighbourhood. Based on tests of statisti-
cal significance of summary impact measures as well as marginal impacts, we can,
for example, in connection with the R&D expenditure to draw the conclusion that
R&D expenditure changes in the ith region will affect the number of patent applica-
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tions not only the region itself but these changes will also have significant impacts on
neighbouring regions.We have found that marginal impacts are statistically significant
even at the level of the ninth degree of neighbourhood according to both models. We
also found that direct marginal impacts quickly disappear with the growing degree of
neighbourhood, while indirect marginal impacts are decreasing much more slowly.
The proportion of the average indirect impact on the average total impact compared
to the average direct impact proportion is significantly higher, based on both mod-
els. These results clearly confirmed the importance of the geographic location of the
regions, i.e., the significant role of spatial spillover effects in the process of modelling
innovative activities in the EU regions.

As we have already mentioned, ESDA analysis have confirmed our spatial autocor-
relation assumption of the regional innovation activities. But identified clusters based
on the local Getis–Ord statistics also invoke a question concerning another important
spatial aspect of the analysis. It would be appropriate to estimate the SAR and the SDM
specification of the RKPF model separately for spatial innovation regimes in order to
capture spatial heterogeneity of the EU regional innovation process. The problem of
the spatial heterogeneity can be perceived as a certain limitation of our study and we
suppose this topic will be the subject of our further research.
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