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Abstract
In several decision-making problems, alternatives should be ranked on the basis of
paired comparisons between them. We present an axiomatic approach for the uni-
versal ranking problem with arbitrary preference intensities, incomplete and multiple
comparisons. In particular, two basic properties—independence of irrelevant matches
and self-consistency—are considered. It is revealed that there exists no rankingmethod
satisfying both requirements at the same time. The impossibility result holds under
various restrictions on the set of ranking problems, however, it does not emerge in the
case of round-robin tournaments. An interesting and more general possibility result is
obtained by restricting the domain of independence of irrelevant matches through the
concept of macrovertex.

Keywords Preference aggregation · Paired comparison · Tournament ranking ·
Axiomatic approach · Impossibility

Mathematics Subject Classification 15A06 · 91B14

1 Introduction

Paired-comparison based ranking emerges in many fields of science such as social
choice theory (Chebotarev and Shamis 1998), sports (Landau 1895, 1914; Zermelo
1929; Radicchi 2011; Bozóki et al. 2016; Chao et al. 2018), or psychology (Thurstone
1927). Here a general version of the problem, allowing for different preference inten-
sities (including ties) as well as incomplete and multiple comparisons between two
objects, is addressed.
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498 L. Csató

The paper contributes to this field by the formulation of an impossibility theorem: it
turns out that two axioms, independence of irrelevant matches—used, among others,
in characterizations of Borda ranking by Rubinstein (1980) and Nitzan and Rubinstein
(1981) and recently discussed by González-Díaz et al. (2014)—and self-consistency
— a less known but intuitive property, introduced in Chebotarev and Shamis (1997)—
cannot be satisfied at the same time. We also investigate domain restrictions and the
weakening of the properties in order to get some positive results.

Our main theorem reinforces that while the row sum (sometimes called Borda or
score) ranking has favourable properties in the case of round-robin tournaments, its
application can be attacked when incomplete comparisons are present. A basket case
is a Swiss-system tournament, where row sum seems to be a bad choice since players
with weaker opponents can score the same number of points more easily (Csató 2013,
2017).

The current paper can be regarded as a supplement to the findings of previous
axiomatic discussions in the field (Altman and Tennenholtz 2008; Chebotarev and
Shamis 1998; González-Díaz et al. 2014; Csató 2018a) by highlighting some unknown
connections among certain axioms. Furthermore, our impossibility result gives math-
ematical justification for a comment appearing in the axiomatic analysis of scoring
procedures by González-Díaz et al. (2014): ’when players have different opponents
(or face opponents with different intensities), I I M1 is a property one would rather not
have’ (p. 165). The strength of this property is clearly shown by our main theorem.

The study is structured as follows. Section 2 presents the setting of the ranking
problem and defines some ranking methods. In Sect. 3, two axioms are evoked in
order to get a clear impossibility result. Section 4 investigates different ways to achieve
possibility through the weakening of the axioms. Finally, some concluding remarks
are given in Sect. 5.

2 Preliminaries

Consider a set of professional tennis players and their results against eachother (Bozóki
et al. 2016). The problem is to rank them, which can be achieved by associating a score
with each player. This section describes a possible mathematical model and introduces
some methods.

2.1 The ranking problem

Let N = {X1, X2, . . . , Xn}, n ∈ N be the set of objects and T = [
ti j

] ∈ R
n×n be

a tournament matrix such that ti j + t j i ∈ N. ti j represents the aggregated score of
object Xi against X j , ti j/(ti j + t j i ) can be interpreted as the likelihood that object Xi

is better than object X j . tii = 0 is assumed for all Xi ∈ N . Possible derivations of the
tournament matrix can be found in González-Díaz et al. (2014) and Csató (2015).

The pair (N , T ) is called a ranking problem. The set of ranking problems with n
objects (|N | = n) is denoted by Rn .

1 I I M is the abbreviation of independence of irrelevant matches, an axiom to be discussed in Sect. 3.1.

123



An impossibility theorem for paired comparisons 499

A scoring procedure f is an Rn → R
n function that gives a rating fi (N , T ) for

each object Xi ∈ N in any ranking problem (N , T ) ∈ Rn . Any scoring method
immediately induces a ranking (a transitive and complete weak order on the set of
N × N ) � by fi (N , T ) ≥ f j (N , T ) meaning that Xi is ranked weakly above X j ,
denoted by Xi � X j . The symmetric and asymmetric parts of � are denoted by ∼
and �, respectively: Xi ∼ X j if both Xi � X j and Xi � X j hold, while Xi � X j if
Xi � X j holds, but Xi � X j does not hold. Every scoring method can be considered
as a ranking method. This paper discusses only ranking methods induced by scoring
procedures.

A ranking problem (N , T ) has the skew-symmetric results matrix R = T − T 	 =[
ri j

] ∈ R
n×n and the symmetric matches matrix M = T + T 	 = [

mi j
] ∈ N

n×n such
thatmi j is the number of the comparisons between Xi and X j , whose outcome is given
by ri j . Matrices R and M also determine the tournament matrix as T = (R + M)/2.
In other words, a ranking problem (N , T ) ∈ Rn can be denoted analogously by
(N , R, M) with the restriction |ri j | ≤ mi j for all Xi , X j ∈ N , that is, the outcome of
any paired comparison between two objects cannot ’exceed’ their number of matches.
Although the description through results and matches matrices is not parsimonious,
usually the notation (N , R, M)will be used because it helps in the axiomatic approach.

The class of universal ranking problems has some meaningful subsets. A ranking
problem (N , R, M) ∈ Rn is called:

• balanced if
∑

Xk∈N mik = ∑
Xk∈N m jk for all Xi , X j ∈ N . The set of balanced

ranking problems is denoted by RB .
• round-robin if mi j = mk� for all Xi �= X j and Xk �= X�. The set of round-robin
ranking problems is denoted by RR .

• unweighted if mi j ∈ {0; 1} for all Xi , X j ∈ N . The set of unweighted ranking
problems is denoted by RU .

• extremal if |ri j | ∈ {0; mi j } for all Xi , X j ∈ N . The set of extremal ranking
problems is denoted by RE .

The first three subsets pose restrictions on the matches matrix M . In a balanced
ranking problem, all objects should have the same number of comparisons. A typical
example is a Swiss-system tournament (provided the number of participants is even).
In a round-robin ranking problem, the number of comparisons between any pair of
objects is the same. A typical example (of double round-robin) can be the qualification
for soccer tournaments like UEFA European Championship (Csató 2018b). It does not
allow for incomplete comparisons. Note that a round-robin ranking problem is bal-
anced, RR ⊂ RB . Finally, in an unweighted ranking problem, multiple comparisons
are prohibited.

Extremal ranking problems restrict the results matrix R: the outcome of a compar-
ison can only be a complete win (ri j = mi j ), a draw (ri j = 0), or a maximal loss
(ri j = −mi j ). In other words, preferences have no intensity, however, ties are allowed.

One can also consider any intersection of these special classes.
The number of comparisons of object Xi ∈ N is di = ∑

X j ∈N mi j and the maximal
number of comparisons in the ranking problem is m = maxXi ,X j ∈N mi j . Hence:

• A ranking problem is balanced if and only if di = d for all Xi ∈ N .
• A ranking problem is round-robin if and only if mi j = m for all Xi , X j ∈ N .
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500 L. Csató

• A ranking problem is unweighted if and only if m = 1.2

Matrix M can be represented by an undirected multigraph G := (V , E), where the
vertex set V corresponds to the object set N , and the number of edges between objects
Xi and X j is equal to mi j , so the degree of node Xi is di . Graph G is said to be the
comparison multigraph of the ranking problem (N , R, M), and is independent of the
results matrix R. The Laplacian matrix L = [

�i j
] ∈ R

n×n of graph G is given by
�i j = −mi j for all Xi �= X j and �i i = di for all Xi ∈ N .

A ranking problem (N , R, M) ∈ Rn is called connected or unconnected if its
comparison multigraph is connected or unconnected, respectively.

2.2 Some rankingmethods

In the following, some scoring procedures are presented. They will be used only for
ranking purposes, so they can be called ranking methods.

Let e ∈ R
n denote the column vector with ei = 1 for all i = 1, 2, . . . , n. Let

I ∈ R
n×n be the identity matrix.

The first scoring method does not take the comparison structure into account, it
simply sums the results from the results matrix R.

Definition 1 Row sum: s(N , R, M) = Re.

The following parametric procedure has been constructed axiomatically by Cheb-
otarev (1989) as an extension of the row summethod to the case of paired comparisons
with missing values, and has been thoroughly analysed in Chebotarev (1994).

Definition 2 Generalized row sum: it is the unique solution x(ε)(N , R, M) of the
system of linear equations (I + εL)x(ε)(N , R, M) = (1 + εmn)s(N , R, M), where
ε > 0 is a parameter.

Generalized row sum adjusts the row sum si by accounting for the performance
of objects compared with Xi , and adds an infinite depth to the correction as the row
sums of all objects available on a path from Xi appear in the calculation. ε indicates
the importance attributed to this modification. Note that generalized row sum results
in row sum if ε → 0: limε→0 x(ε)(N , R, M) = s(N , R, M).

The row sum and generalized row sum rankings are unique and easily computable
from a system of linear equations for all ranking problems (N , R, M) ∈ Rn .

The least squares method was suggested by Thurstone (1927) and Horst (1932). It
is known as logarithmic least squares method in the case of incomplete multiplicative
pairwise comparison matrices (Bozóki et al. 2010).

Definition 3 Least squares: it is the solution q(N , R, M) of the system of linear equa-
tions Lq(N , R, M) = s(N , R, M) and e	q(N , R, M) = 0.

Generalized row sum ranking coincides with least squares ranking if ε → ∞
because limε→∞ x(ε)(N , R, M) = mnq(N , R, M).

2 While mi j ∈ {0; 1} for all Xi , X j ∈ N allows for m = 0, it leads to a meaningless ranking problem
without any comparison.
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The least squares ranking is unique if and only if the ranking problem (N , R, M) ∈
Rn is connected (Kaiser and Serlin 1978; Chebotarev and Shamis 1999; Bozóki et al.
2010). The ranking of unconnected objects may be controversial. Nonetheless, the
least squares ranking can be made unique if Definition 3 is applied to all ranking
subproblems with a connected comparison multigraph.

An extensive analysis and a graph interpretation of the least squares method, as
well as further references, can be found in Csató (2015).

3 The impossibility result

In this section, a natural axiom of independence and a kind of monotonicity property is
recalled.Ourmain result illustrates the impossibility of satisfying the two requirements
simultaneously.

3.1 Independence of irrelevant matches

This property appears as independence in (Rubinstein 1980, Axiom III) and (Nitzan
andRubinstein 1981, Axiom5) in the case of round-robin ranking problems. The name
independence of irrelevant matches has been used by González-Díaz et al. (2014). It
deals with the effects of certain changes in the tournament matrix.

Axiom 1 Independence of irrelevant matches (I I M): Let (N , T ), (N , T ′) ∈ Rn be
two ranking problems and Xi , X j , Xk, X� ∈ N be four different objects such that
(N , T ) and (N , T ′) are identical but t ′k� �= tk�. Scoring procedure f : Rn → R

n is
called independent of irrelevant matches if fi (N , T ) ≥ f j (N , T ) ⇒ fi (N , T ′) ≥
f j (N , T ′).

I I M means that ’remote’ comparisons—not involving objects Xi and X j—do not
affect the order of Xi and X j . Changing thematchesmatrixmay lead to an unconnected
ranking problem. Property I I M has a meaning if n ≥ 4.

Sequential application of independence of irrelevant matches can lead to any rank-
ing problem (N , T̄ ) ∈ Rn , for which t̄gh = tgh if {Xg, Xh} ∩ {Xi , X j } �= ∅, but all
other paired comparisons are arbitrary.

Lemma 1 The row sum method is independent of irrelevant matches.

Proof It follows from Definition 1. ��

3.2 Self-consistency

The next axiom, introduced by Chebotarev and Shamis (1997), may require an exten-
sive explanation. It is motivated by an example using the language of preference
aggregation.
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Fig. 1 The ranking problem of
Example 1

Example 1 Consider the ranking problem (N , R, M) ∈ R4
B ∩ R4

U ∩ R4
E with results

and matches matrices

R =

⎡

⎢
⎢
⎣

0 1 1 0
− 1 0 0 1
− 1 0 0 1
0 − 1 − 1 0

⎤

⎥
⎥
⎦ and M =

⎡

⎢
⎢
⎣

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

⎤

⎥
⎥
⎦ .

It is shown in Fig. 1: a directed edge from node Xi to X j indicates a complete win of
Xi over X j (and a complete loss of X j against Xi ). This representation will be used
in further examples, too.

The situation in Example 1 can be interpreted as follows. A voter prefers alternative
X1 to X2 and X3, but says nothing about X4. Another voter prefers X2 to X3 and X4,
but has no opinion on X1.

Although it is difficult to make a good decision on the basis of such incomplete
preferences, sometimes it cannot be avoided. It leads to the question, which principles
should be followed by the final ranking of the objects. It seems reasonable that Xi

should be judged better than X j if one of the following holds:

�1 Xi achieves better results against the same objects;
�2 Xi achieves better results against objects with the same strength;
�3 Xi achieves the same results against stronger objects;
�4 Xi achieves better results against stronger objects.

Furthermore, Xi should have the same rank as X j if one of the following holds:

�5 Xi achieves the same results against the same objects;
�6 Xi achieves the same results against objects with the same strength.

In order to apply these principles, one should measure the strength of objects. It is
provided by the scoringmethod itself, hence the name of this axiom is self-consistency.
Consequently, condition �1 is a special case of condition �2 (the same objects have
naturally the same strength) as well as condition �5 is implied by condition �6.

What does self-consistency mean in Example 1? First, X2 ∼ X3 due to condi-
tion�5. Second, X1 � X4 should hold since condition�1 as r12 > r42 and r13 > r43.
The requirements above can also be applied to objects which have different opponents.
Assume that X1 � X2. Then condition �4 results in X1 � X2 because of X2 � X1,
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r12 > r21 and X3 ∼ X2 � X1 � X4, r13 = r24. It is a contradiction, therefore
X1 � (X2 ∼ X3). Similarly, assume that X2 � X4. Then condition �4 results in
X2 � X4 because of X1 � X3 (derived above), r21 = r43 and X4 � X2 ∼ X3,
r24 > r43. It is a contradiction, therefore (X2 ∼ X3) � X4. To summarize, only the
ranking X1 � (X2 ∼ X3) � X4 is allowed by self-consistency.

The above requirement can be formalized in the following way.

Definition 4 Opponent set: Let (N , R, M) ∈ Rn
U be an unweighted ranking problem.

The opponent set of object Xi is Oi = {X j : mi j = 1}
Objects of the opponent set Oi are called the opponents of Xi . Note that |Oi | = |O j |

for all Xi , X j ∈ N if and only if the ranking problem is balanced.

Notation 1 Consider an unweighted ranking problem (N , R, M) ∈ Rn
U such that

Xi , X j ∈ N are two different objects and g : Oi ↔ O j is a one-to-one corre-
spondence between the opponents of Xi and X j , consequently, |Oi | = |O j |. Then
g : {k : Xk ∈ Oi } ↔ {� : X� ∈ O j } is given by Xg(k) = g(Xk).

In order to make judgements like an object has stronger opponents, at least a partial
order among opponent sets should be introduced.

Definition 5 Partial order of opponent sets: Let (N , R, M) ∈ Rn be a ranking problem
and f : Rn → R

n be a scoring procedure. Opponents of Xi are at least as strong as
opponents of X j , denoted by Oi � O j , if there exists a one-to-one correspondence
g : Oi ↔ O j such that fk(N , R, M) ≥ fg(k)(N , R, M) for all Xk ∈ Oi .

For instance, O1 ∼ O4 and O2 ∼ O3 in Example 1, whereas O1 and O2 are not
comparable.

Therefore, conditions �1–�6 never imply Xi � X j if Oi ≺ O j since an object
with a weaker opponent set cannot be judged better.

Opponent sets have been defined only in the case of unweighted ranking prob-
lems, but self-consistency can be applied to objects which have the same number of
comparisons, too. The extension is achieved by a decomposition of ranking problems.

Definition 6 Sum of ranking problems: Let (N , R, M), (N , R′, M ′) ∈ Rn be two
ranking problems with the same object set N . The sum of these ranking problems is
the ranking problem (N , R + R′, M + M ′) ∈ Rn .

Summing of ranking problems may have a natural interpretation. For example, they
can contain the preferences of voters in two cities of the same country or the paired
comparisons of players in the first and second half of the season.

Definition 6 means that any ranking problem can be decomposed into unweighted
ranking problems, in other words, it can be obtained as a sum of unweighted ranking
problems. However, while the sum of ranking problems is unique, a ranking problem
may have a number of possible decompositions.

Notation 2 Let (N , R(p), M (p)) ∈ Rn
U be an unweighted ranking problem. The

opponent set of object Xi is O(p)
i . Let Xi , X j ∈ N be two different objects and

g(p) : O(p)
i ↔ O(p)

j be a one-to-one correspondence between the opponents of Xi and

X j . Then g(p) : {k : Xk ∈ O(p)
i } ↔ {� : X� ∈ O(p)

j } is given by Xg(p)(k) = g(p)(Xk).
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Fig. 2 The ranking problem of
Example 2

Axiom 2 Self-consistency (SC) (Chebotarev and Shamis 1997): A scoring proce-
dure f : Rn → R

n is called self-consistent if the following implication holds for
any ranking problem (N , R, M) ∈ Rn and for any objects Xi , X j ∈ N: if there
exists a decomposition of the ranking problem (N , R, M) into m unweighted ranking
problems—that is, R = ∑m

p=1 R(p), M = ∑m
p=1 M (p), and (N , R(p), M (p)) ∈ Rn

U
is an unweighted ranking problem for all p = 1, 2, . . . , m—in a way that enables
a one-to-one mapping g(p) from O(p)

i onto O(p)
j such that r (p)

ik ≥ r (p)

jg(p)(k)
and

fk(N , R, M) ≥ fg(p)(k)(N , R, M) for all p = 1, 2, . . . , m and Xk ∈ O(p)
i ,

then fi (N , R, M) ≥ f j (N , R, M), furthermore, fi (N , R, M) > f j (N , R, M) if

r (p)
ik > r (p)

jg(p)(k)
or fk(N , R, M) > fg(p)(k)(N , R, M) for at least one 1 ≤ p ≤ m and

Xk ∈ O(p)
i .

Self-consistency formalizes conditions�1–�6: if object Xi is obviously not worse
than object X j , then it is not ranked lower, furthermore, if it is better, then it is ranked
higher. Self-consistency can also be interpreted as a property of a ranking.

The application of self-consistency is nontrivial because of the various opportunities
for decomposition into unweighted ranking problems. However, it may restrict the
relative ranking of objects Xi and X j only if di = d j since there should exist a one-

to-one mapping between O(p)
i and O(p)

j for all p = 1, 2, . . . , m. Thus SC does not
fully determine a ranking, even on the set of balanced ranking problems.

Example 2 Let (N , R, M) ∈ R6
B ∩ R6

U ∩ R6
E be the ranking problem in Fig. 2: a

directed edge from node Xi to X j indicates a complete win of Xi over X j in one
comparison (as in Example 1) and an undirected edge from node Xi to X j represents
a draw in one comparison between the two objects.

Proposition 1 Self-consistency does not fully characterize a ranking method on the
set of balanced, unweighted and extremal ranking problems RB ∩ RU ∩ RE .
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Proof The statement can be verified by an example where at least two rankings are
allowed by SC , we use Example 2 for this purpose. Consider the ranking �1 such
that (X1 ∼1 X2 ∼1 X3) �1 (X4 ∼1 X5 ∼1 X6). The opponent sets are O1 =
{X2, X6}, O2 = {X1, X3}, O3 = {X2, X4}, O4 = {X3, X5}, O5 = {X4, X6} and
O6 = {X1, X5}, so O2 � (O1 ∼ O3 ∼ O4 ∼ O6) � O5. The results of X1 and
X3 are (0; 1), the results of X2 and X5 are (0; 0), while the results of X4 and X6
are (−1; 0). For objects with the same results, SC implies X1 ∼ X3, X4 ∼ X6 and
X2 � X5 (conditions�3 and�6), which hold in�1. For objects with different results,
SC leads to X2 � X4, X3 � X4, and X3 � X5 after taking the strength of opponents
into account (condition �2). These requirements are also met by the ranking �1.
Self-consistency imposes no other restrictions, therefore the ranking �1 satisfies it.

Now consider the ranking �2 such that X2 ≺2 (X1 ∼2 X3) ≺2 (X4 ∼2 X6) ≺2

X5. The opponent sets remain the same, but their partial order is given now as O2 ≺
(O4 ∼ O6), O2 ≺ O5, (O1 ∼ O3) ≺ (O4 ∼ O6) and (O1 ∼ O3) ≺ O5 (the
opponents of X1 and X2, as well as X4 and X5, cannot be compared). For objects with
the same results, SC implies X1 ∼ X3, X4 ∼ X6 and X2 ≺ X5 (conditions �3 and
�6), which hold in �2. For objects with different results, SC leads to X1 � X2 after
taking the strength of opponents into account (condition �2). This condition is also
met by the ranking �2. Self-consistency imposes no other restrictions, therefore the
ranking �2 also satisfies this axiom.

To conclude, rankings �1 and �2 are self-consistent. The ranking obtained by
reversing �2 meets SC , too. ��
Lemma 2 The generalized row sum and least squares methods are self-consistent.

Proof See (Chebotarev and Shamis 1998, Theorem 5). ��
(Chebotarev and Shamis 1998, Theorem 5) provide a characterization of self-

consistent scoring procedures, while (Chebotarev and Shamis 1998, Table 2) gives
some further examples.

3.3 The connection of independence of irrelevant matches and self-consistency

So far we have discussed two axioms, I I M and SC . It turns out that they cannot be
satisfied at the same time.

Example 3 Let (N , R, M), (N , R′, M) ∈ R4
B ∩R4

U ∩R4
E be the ranking problems in

Fig. 3 with the results and matches matrices

R =

⎡

⎢⎢
⎣

0 0 0 0
0 0 0 0
0 0 0 1
0 0 − 1 0

⎤

⎥⎥
⎦ , R′ =

⎡

⎢⎢
⎣

0 0 0 0
0 0 0 0
0 0 0 − 1
0 0 1 0

⎤

⎥⎥
⎦ , and M =

⎡

⎢⎢
⎣

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

⎤

⎥⎥
⎦ .

Theorem 1 There exists no scoring procedure that is independent of irrelevant matches
and self-consistent.
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(a) Ranking problem (N, R, M) (b) Ranking problem (N, R , M)´

Fig. 3 The ranking problems of Example 3

Proof The contradiction of the two properties is proved by Example 3. The opponent
sets are O1 = O3 = {X2, X4} and O2 = O4 = {X1, X3} in both ranking prob-
lems. Assume to the contrary that there exists a scoring procedure f : Rn → R

n ,
which is independent of irrelevant matches and self-consistent. I I M means that
f1(N , R, M) ≥ f2(N , R, M) ⇐⇒ f1(N , R′, M) ≥ f2(N , R′, M).

(a) Consider the (identity) one-to-one mapping g13 : O1 ↔ O3, where g13(X2) =
X2 and g13(X4) = X4. Since r12 = r42 = 0 and 0 = r14 > r34 = −1, g13
satisfies condition �1 of SC , hence f1(N , R, M) > f3(N , R, M).

(b) Consider the (identity) one-to-one mapping g42 : O4 ↔ O2, where g42(X1) =
X1 and g42(X3) = X3. Since r41 = r21 = 0 and 1 = r43 > r23 = 0, g42 satisfies
condition �1 of SC , hence f4(N , R, M) > f2(N , R, M).

(c) Suppose that f2(N , R, M) ≥ f1(N , R, M), which implies f4(N , R, M) >

f3(N , R, M). Consider the one-to-one correspondence g12 : O1 ↔ O2, where
g12(X2) = X1 and g12(X4) = X3. Since r12 = r21 = 0 and r14 = r23 = 0,
g12 satisfies condition �3 of SC , hence f1(N , R, M) > f2(N , R, M). It is a
contradiction.

Thus only f1(N , R, M) > f2(N , R, M) is allowed.
Note that ranking problem (N , R′, M) can be obtained from (N , R, M) by the

permutation σ : N → N such that σ(X1) = X2, σ(X2) = X1, σ(X3) = X4 and
σ(X4) = X3. The above argument results in f2(N , R′, M) > f1(N , R′, M), contrary
to independence of irrelevant matches.

To conclude, no scoring procedure can meet I I M and SC simultaneously. ��
Corollary 1 The row sum method violates self-consistency.

Proof It is an immediate consequence of Lemma 1 and Theorem 1. ��
Corollary 2 The generalized row sum and least squares methods violate independence
of irrelevant matches.

Proof It follows from Lemma 2 and Theorem 1. ��
A set of axioms is said to be logically independent if none of them are implied by

the others.
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Corollary 3 I I M and SC are logically independent axioms.

Proof It is a consequence of Corollaries 1 and 2. ��

4 How to achieve possibility?

Impossibility results, like the one in Theorem 1, can be avoided in at least two ways:
by introducing some restrictions on the class of ranking problems considered, or by
weakening of one or more axioms.

4.1 Domain restrictions

Besides the natural subclasses of ranking problems introduced in Sect. 2.1, the number
of objects can be limited, too.

Proposition 2 The generalized row sum and least squares methods are independent
of irrelevant matches and self-consistent on the set of ranking problems with at most
three objects Rn|n ≤ 3.

Proof I I M has no meaning on the set Rn|n ≤ 3, so any self-consistent scoring
procedure is appropriate, thus Lemma 2 provides the result. ��

Proposition 2 has some significance since ranking is not trivial if n = 3. However,
if at least four objects are allowed, the situation is much more severe.

Proposition 3 There exists no scoring procedure that is independent of irrelevant
matches and self-consistent on the set of balanced, unweighted and extremal ranking
problems with four objects R4

B ∩ R4
U ∩ R4

E .

Proof The ranking problems of Example 3, used for verifying the impossibility in
Theorem 1, are from the set R4

B ∩ R4
U ∩ R4

E . ��
Proposition 3 does not deal with the class of round-robin ranking problems. Then

another possibility result emerges.

Proposition 4 The row sum, generalized row sum and least squares methods are inde-
pendent of irrelevant matches and self-consistent on the set of round-robin ranking
problems RR.

Proof Due to axioms agreement (Chebotarev 1994, Property 3) and score consistency
(González-Díaz et al. 2014), the generalized row sum and least squares ranking meth-
ods coincide with the row sum on the set of RR , so Lemmas 1 and 2 provide I I M
and SC , respectively. ��

Perhaps it is not by chance that characterizations of the row sum method were sug-
gested on this—or evenmore restricted—domain (Young 1974;Hansson andSahlquist
1976; Rubinstein 1980; Nitzan and Rubinstein 1981; Henriet 1985; Bouyssou 1992).
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4.2 Weakening of independence of irrelevant matches

For the relaxation of I I M , a property discussed by Chebotarev (1994) will be used.

Definition 7 Macrovertex (Chebotarev 1994, Definition 3.1): Let (N , R, M) ∈ Rn

be a ranking problem. Object set V ⊆ N is called macrovertex if mik = m jk for all
Xi , X j ∈ V and Xk ∈ N\V .

Objects in a macrovertex have the same number of comparisons against any object
outside the macrovertex. The comparison structure in V and N\V can be arbitrary.
The existence of a macrovertex depends only on the matches matrix M , or, in other
words, on the comparison multigraph of the ranking problem.

Axiom 3 Macrovertex independence (MV I ) (Chebotarev 1994, Property 8): Let V ⊆
N be a macrovertex in ranking problems (N , T ), (N , T ′) ∈ Rn and Xi , X j ∈ V
be two different objects such that (N , T ) and (N , T ′) are identical but t ′i j �= ti j .
Scoring procedure f : Rn → R

n is called macrovertex independent if fk(N , T ) ≥
f�(N , T ) ⇒ fk(N , T ′) ≥ f�(N , T ′) for all Xk, X� ∈ N\V .

Macrovertex independence says that the order of objects outside a macrovertex is
independent of the number and result of comparisons between the objects inside the
macrovertex.

Corollary 4 I I M implies MV I .

Note that if V is a macrovertex, then N\V is not necessarily another macrovertex.
Hence the ’dual’ of property MV I can be introduced.

Axiom 4 Macrovertex autonomy (MV A): Let V ⊆ N be a macrovertex in ranking
problems (N , T ), (N , T ′) ∈ Rn and Xk, X� ∈ N\V be two different objects such that
(N , T ) and (N , T ′) are identical but t ′k� �= tk�. Scoring procedure f : Rn → R

n is
called macrovertex autonomous if fi (N , T ) ≥ f j (N , T ) ⇒ fi (N , T ′) ≥ f j (N , T ′)
for all Xi , X j ∈ V .

Macrovertex autonomy says that the order of objects inside a macrovertex is not
influenced by the number and result of comparisons between the objects outside the
macrovertex.

Corollary 5 I I M implies MV A.

Similarly to I I M , changing the matches matrix—as allowed by properties MV I
and MV A—may lead to an unconnected ranking problem.

Example 4 Consider a ranking problem with the comparison multigraph in Fig. 4. The
object set V = {X1,X2,X3} is a macrovertex as the number of (red) edges from any
node inside V to any node outside V is the same (two to X4, one to X5, and zero to
X6). V remains a macrovertex if comparisons inside V (represented by dashed edges)
or comparisons outside V (dotted edges) are changed.
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Fig. 4 The comparison
multigraph of Example 4

Macrovertex independence requires that the relative ranking of X4, X5, and X6
does not depend on the number and result of comparisons between the objects X1,
X2, and X3.

Macrovertex autonomy requires that the relative ranking of X1, X2, and X3 does
not depend on the number and result of comparisons between the objects X4, X5, and
X6

The implications of MV I and MV A are clearly different since object set N\V =
{X4, X5, X6} is not a macrovertex because m14 = 2 �= 1 = m15.

Corollary 6 The row sum method satisfies macrovertex independence and macrovertex
autonomy.

Proof It is an immediate consequence of Lemma 1 and Corollaries 4 and 5. ��
Lemma 3 The generalized row sum and least squares methods are macrovertex inde-
pendent and macrovertex autonomous.

Proof (Chebotarev 1994, Property 8) has shown that generalized row sum satisfies
MV I . The proof remains valid in the limit ε → ∞ if the least squares ranking is
defined to be unique, for instance, the sum of ratings of objects in all components of
the comparison multigraph is zero.

Consider MV A. Let s = s(N , T ), s′ = s(N , T ′), x = x(ε)(N , T ), x′ =
x(ε)(N , T ′) and q = q(N , T ), q′ = q(N , T ′). Let V be a macrovertex and Xi , X j ∈
V be two arbitrary objects. Suppose to the contrary that xi ≥ x j , but x ′

i < x ′
j , hence

x ′
i −xi < x ′

j −x j . Let x ′
k −xk = maxXg∈V (x ′

g −xg) and x ′
�−x� = minXg∈V (x ′

g −xg),
therefore x ′

k − xk > x ′
� − x� and x ′

k − xk ≥ x ′
g − xg ≥ x ′

� − x� for any object Xg ∈ V .
For object Xk , Definition 2 results in

xk = (1 + εmn)sk + ε
∑

Xg∈V

mkg(xg − xk) + ε
∑

Xh∈N\V

mkh(xh − xk). (1)
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Apply (1) for object X�. The difference of these two equations is

xk − x� = (1 + εmn)(sk − s�) + ε
∑

Xg∈V

[
mkg(xg − xk) − m�g(xg − x�)

]

+ ε
∑

Xh∈N\V

[mkh(xh − xk) − m�h(xh − x�)] . (2)

Note that mkh = m�h for all Xh ∈ N\V since V is a macrovertex, therefore (2) is
equivalent to

⎛

⎝1 + ε
∑

Xh∈N\V

mkh

⎞

⎠ (xk − x�) = (1 + εmn)(sk − s�)

+ ε
∑

Xg∈V

[
mkg(xg − xk) − m�g(xg − x�)

]
.

(3)

Apply (3) for the ranking problem (N , T ′):
⎛

⎝1 + ε
∑

Xh∈N\V

m′
kh

⎞

⎠ (
x ′

k − x ′
�

) = (1 + εmn)(s′
k − s′

�)

+ ε
∑

Xg∈V

[
m′

kg(x ′
g − x ′

k) − m′
�g(x ′

g − x ′
�)

]
.

(4)

Let Δi j = (x ′
i − x ′

j ) − (xi − x j ) for all Xi , X j ∈ V . Note that m′
kh = mkh for all

Xh ∈ N\V , m′
kg = mkg and m′

�g = m�g for all Xg ∈ V as well as s′
k = sk and s′

� = s�

since only comparisons outside V may change. Take the difference of (4) and (3)

⎛

⎝1 + ε
∑

Xh∈N\V

mkh

⎞

⎠ Δk� = ε
∑

Xg∈V

(
mkgΔgk − m�gΔg�

)
. (5)

Due to the choice of indices k and �, Δk� > 0 and Δgk ≤ 0, Δg� ≥ 0. It means that
the left-hand side of (5) is positive, while its right-hand side is nonpositive, leading to
a contradiction. Therefore only x ′

i − xi = x ′
j − x j , the condition required by MV A,

can hold.
The same derivation can be implemented for the least squares method. With the

notation Δi j = (q ′
i − q ′

j ) − (qi − q j ) for all Xi , X j ∈ V , we get—analogously to (5)
as ε → ∞ – ∑

Xh∈N\V

mkhΔk� =
∑

Xg∈V

(
mkgΔgk − m�gΔg�

)
. (6)
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But Δk� > 0, Δgk ≤ 0, and Δg� ≥ 0 is not enough for a contradiction now: (6)
may hold if

∑
Xh∈N\V mkh = 0, namely, Xk is not connected to any object outside

the macrovertex V as well as Δgk = 0 and Δg� = 0 when mkg = m�g > 0.
However, if there exists no object Xg ∈ N\V such that mkg = m�g > 0, then there
is no connection between object sets V and N\V since V is a macrovertex, and we
have two independent ranking subproblems, where the least squares ranking is unique
according to the extension of Definition 3, so MV A holds. On the other hand, if there
exists an object Xg ∈ N\V such that mkg = m�g > 0, then Δgk = 0 and Δg� = 0,
but Δk� = Δg� − Δgk > 0, which is a contradiction. Therefore q ′

i − qi = q ′
j − q j ,

the condition required by MV A, holds. ��
Lemma 3 leads to another possibility result.

Proposition 5 The generalized row sum and least squares methods are macrovertex
autonomous, macrovertex independent and self-consistent.

This statement turns out to be more general than the one obtained by restricting the
domain to round-robin ranking problems in Proposition 4.

Corollary 7 MV A or MV I implies I I M on the domain of round-robin ranking prob-
lems RR.

Proof Let (N , T ), (N , T ′) ∈ Rn
R be two ranking problems and Xi , X j , Xk, X� ∈ N

be four different objects such that (N , T ) and (N , T ′) are identical but t ′k� �= tk�.
Consider the macrovertex V = {Xi , X j }. Macrovertex autonomy means that

fi (N , T ) ≥ f j (N , T ) ⇒ fi (N , T ′) ≥ f j (N , T ′), the condition required by
I I M .

Consider the macrovertex V ′ = {Xk, X�}. Macrovertex independence means
that fi (N , T ) ≥ f j (N , T ) ⇒ fi (N , T ′) ≥ f j (N , T ′), the condition required by
I I M . ��

4.3 Weakening of self-consistency

We think self-consistency is more difficult to debate than independence of irrelevant
matches, but, on the basis of the motivation of SC in Sect. 3.2, there exists an obvious
way to soften it by being more tolerant in the case of opponents: Xi is not required to
be better than X j if it achieves the same result against stronger opponents.

Axiom 5 Weak self-consistency (W SC): A scoring procedure f : Rn → R
n is called

weakly self-consistent if the following implication holds for any ranking problem
(N , R, M) ∈ Rn and for any objects Xi , X j ∈ N: if there exists a decomposition of
the ranking problem (N , R, M) into m unweighted ranking problems—that is, R =∑m

p=1 R(p), M = ∑m
p=1 M (p), and (N , R(p), M (p)) ∈ Rn

U is an unweighted ranking

problem for all p = 1, 2, . . . , m—in a way that enables a one-to-one mapping g(p)

from O(p)
i onto O(p)

j such that r (p)
ik ≥ r (p)

jg(p)(k)
and fk(N , R, M) ≥ fg(p)(k)(N , R, M)

for all p = 1, 2, . . . , m and Xk ∈ O(p)
i , then fi (N , R, M) ≥ f j (N , R, M), further-

more, fi (N , R, M) > f j (N , R, M) if r (p)
ik > r (p)

jg(p)(k)
for at least one 1 ≤ p ≤ m

and Xk ∈ O(p)
i .
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It can be seen that self-consistency (Axiom 2) formalizes conditions�1–�6, while
weak self-consistency only requires the scoring procedure to satisfy�1,�2, and�4–
�6.

Corollary 8 SC implies W SC.

Lemma 4 The row sum method is weakly self-consistent.

Proof Let (N , R, M) ∈ Rn be a ranking problem such that R = ∑m
p=1 R(p), M =

∑m
p=1 M (p) and (N , R(p), M (p)) ∈ Rn

U is an unweighted ranking problem for all p =
1, 2, . . . , m. Let Xi , X j ∈ N be two objects and assume that for all p = 1, 2, . . . , m

there exists a one-to-one mapping g(p) from O(p)
i onto O(p)

j , where r (p)
ik ≥ r (p)

jg(p)(k)

and sk(N , R, M) ≥ sg(p)(k)(N , R, M).
Obviously, si (N , R, M) = ∑m

p=1
∑

Xk∈O(p)
i

rik ≥ ∑m
p=1

∑
Xk∈O(p)

j
r jg(p)(k) =

s j (N , R, M). Furthermore, si (N , R, M) > s j (N , R, M) if r (p)
ik > r (p)

jg(p)(k)
for at

least one p = 1, 2, . . . , m. ��
The last possibility result comes immediately.

Proposition 6 The row sum method is independent of irrelevant matches and weakly
self-consistent.

Proof It follows from Lemmata 1 and 4. ��
According to Lemma 4, the violation of self-consistency by row sum (see Corol-

lary 1) is a consequence of condition �3: the row sums of Xi and X j are the same
even if Xi achieves the same result as X j against stronger opponents.

It is a crucial argument against the use of row sum for ranking in tournaments which
are not organized in a round-robin format, supporting the empirical findings of Csató
(2017) for Swiss-system chess team tournaments.

5 Conclusions

The paper has discussed the problem of ranking objects in a paired comparison-
based setting, which allows for different preference intensities as well as incomplete
and multiple comparisons, from a theoretical perspective. We have used five axioms
for this purpose, and have analysed three scoring procedures with respect to them. Our
findings are presented in Table 1.

However, ourmain contribution is a basic impossibility result (Theorem1). The the-
orem involves two axioms, one—called independence of irrelevant matches—posing
a kind of independence concerning the order of two objects, and the other—self-
consistency—requiring to rank objects with an obviously better performance higher.

We have also aspired to get some positive results. Domain restriction is fruitful in
the case of round-robin tournaments (Proposition 4), whereas limiting the intensity and
the number of preferences does not eliminate impossibility if the number of objects is
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Table 1 Summary of the axioms

Axiom Abbreviation Definition

Independence of irrelevant matches I I M Axiom 1

Self-consistency SC Axiom 2

Macrovertex independence MV I Axiom 3

Macrovertex autonomy MV A Axiom 4

Weak self-consistency W SC Axiom 5

Axiom Is it satisfied by the particular method?

Row sum
(Definition 1)

Generalized row
sum (Definition 2)

Least squares
(Definition 3)

Independence of irrelevant matches ✔ ✗ ✗

Self-consistency ✗ ✔ ✔

Macrovertex independence ✔ ✔ ✔

Macrovertex autonomy ✔ ✔ ✔

Weak self-consistency ✔ ✔ ✔

meaningful (Proposition 3, but Proposition 2). Self-consistency has a natural weaken-
ing, satisfied by row sum besides independence of irrelevant matches (Proposition 6),
although SC seems to be the more plausible property than I I M . Independence of
irrelevant matches can be refined through the concept of macrovertex such that the
relative ranking of two objects should not depend on an outside comparison only if
the comparison multigraph have a special structure. The implied possibility theorem
(Proposition 5) is more general than the positive result in the case of round-robin
ranking problems (consider Corollary 7).

There remains an unexplored gap between our impossibility and possibility theo-
rems since the latter allows for more than one scoring procedure. Actually, generalized
row sum and least squares methods cannot be distinguished with respect to the
properties examined here, as illustrated by Table 1.3 The loss of independence of
irrelevant matches makes characterizations on the general domain complicated since
self-consistency is not an axiom easy to seize. Despite these challenges, axiomatic con-
struction of scoring procedures means a natural continuation of the current research.
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