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Abstract
In this article, the concept of conditioning in integer programming is extended to the
concept of a complexity index. A complexity index is a measure through which the
execution time of an exact algorithm can be predicted. We consider the multidimen-
sional knapsack problem with instances taken from the OR-library and MIPLIB. The
complexity indices we developed correspond to the eigenvalues of a Dikin matrix
placed in the center of a polyhedron defined by the constraints of the problem relaxed
from its binary variable formulation. The lower and higher eigenvalues, as well as
their ratio, which we have defined as the slenderness, are used as complexity indices.
The experiments performed show a good linear correlation between these indices and
a low execution time of the Branch and Bound algorithm using the standard version
of CPLEX® 12.2. The correlation coefficient obtained ranges between 39 and 60%
for the various data regressions, which proves a medium to strong correlation.

Keywords Multidimensional knapsack problem · Complexity index · Integer
programming

1 Introduction

The multidimensional knapsack problem (MKP) is known to be one of the most diffi-
cult problems in the knapsack problems class. Kellerer et al. (2004) developed a recent
and complete review of this problem. TheMKP applies to different applied areas such
as production planning, transportation or communications networks (Mansini and
Speranza 2002). The MKP specifies a set of elements that are placed in a container to
maximize its value, considering a set of restrictions that limit their placement.Although
the formulation of the problem is simple, complex real-world situations can be repre-
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sented. The MKP has been used extensively to solve classical operations management
problems such as stock reduction, budgeting, project selection and military commu-
nications problems (Song et al. 2008). In industrial applications, the MKP solution
has a direct impact on production efficiency. The problem becomes harder when it is
necessary to define a production schedule for the assembly of different models of the
same product in a production line. Bolat (2003) modeled such a situation as a MKP
and efficiently found the optimal solution for small problem instances. Cherbaka and
Meller (2008) considered an MKP to distribute the production of parts at different
plants of a company. However, these are applications in which only low-dimensional
problems can be solved.

The multidimensional knapsack problem can be formulated as follows. Let N �
{1, . . . , n} sets of items, eachwith an associate profit p j ≥ 0,where j � 1, . . . , n, and
the set of resources M � {1, . . . ,m} with availability ci ≥ 0, where i � 1, . . . ,m.

Each item j requires an amount wi j ≥ 0, of each resource i. The amount wi j can be
0 for any i, j, while

∑n
i�1 wi j ≥ 1 for every j � 1, . . . , n. Throughout the paper,

coefficients m and n will be referred to in terms of “size” as the number of variables
and number of constraints, respectively. Additionally, wi j < ci ; i � 1, . . . ,m; j �
1, . . . , n, and

∑n
j�1 wi j ≥ ci ; i � 1, . . . ,m. It is assumed that all pi , wi j and ci

values are integers. The MKP can be defined as a search problem of an A subset of
items whose sum of benefits is maximized without exceeding the available resources.

max
n∑

j�1

p j x j (1.1)

n∑

j�1

wi j x j ≤ c j , i ∈ M (1.2)

x j ∈ {0, 1} (1.3)

Despite the NP-hardness of the MKP, several attempts to obtain an exact solution
for every instance of the problem have appeared in the literature. James and Naka-
gawa (2005) developed a method that solves repeatedly arranged subproblems of the
MKP with exact solutions at the expense of intensive memory use. Boussier et al.
(2010) combined an arrangement method with the branch and cut method, finding
new optimal values of the public library OR-Library instances for the MKP with sizes
of 500 variables and 10 constraints; see Beasley (1990). Additionally, Mansini and
Speranza (2012) reported an exact algorithm based on the exploration of subproblems
constructed with subsets of variables. From the studied cases, it was determined that
as soon as the number of dimensions increases, the exact algorithms are unable to
provide an optimal solution for instances of moderate size in a reasonable amount of
time. For example, one of the versions of CPLEX® 6.5.2 could not solve problems
with 100 elements and 5 dimensions due to the memory requirements of the search
tree (Martello et al. 2000).

Several heuristic methods have been proposed for theMKP, with the aim of dealing
with larger instances than those that can be solved by exact methods with shorter
computational times. Senju and Toyoda (1968) proposed a heuristic that starts with
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an initial solution, x j , ∀ j , and successively sets the variables at zero, according to
an efficiency equation, until a feasible solution is found. This heuristic has also been
combined with an approach based on Lagrangian multipliers (Magazine and Oguz
1984). This method has also been improved by including more than one multiplier
value at each step, readjusting these values at the end of the algorithm and adding a
partial arrangement, yielding good results when compared with the previous approach
(Volgenant and Zwiers 2007). Other ideas that work on the core set or on the dynamic
fixing of variables have led to various ad hoc heuristic algorithms for the problem
(Wilbaut et al. 2009; Angelelli et al. 2010; Grandón and Derpich 2011; Lalami et al.,
2012). A pioneering public library of this problem and several others is the OR-library
introduced by Chu and Beasley (1998). There are some articles that have studied
measures of the computational complexity of the algorithms used in mathematical
programming; however, it has not been possible to find an analytical theory that allows
for estimating the running time of an inaccuracy in terms of CPU time or the number
of nodes used. Ko et al. (1986) and Reyck and Herroelen (1996) considered empirical
and theoretical approaches to obtain running time indices; however, a complete theory
of such phenomena is still lacking. A complexity index is a measure that can predict
the execution time of an exact algorithm for a given problem such as the MKP.

In this manuscript, we propose a measure of complexity for integer programming
that is based on the eigenvalues of an inner ellipsoid to the polyhedron given by linear
programming relaxation. For this approach, a Dikin ellipsoid is used, which maintains
the geometric shape of the polyhedron. The objective is to prove that the eigenvalues
of the ellipsoid, in particular the maximum and minimum eigenvalues, are related to
the execution time of the B&B algorithm for solving the multidimensional knapsack
problem.

2 Materials andmethods

2.1 Complexity index

A complexity index of the instance I of problem C using algorithm A is a real number
r by which the execution time of the algorithm can be effectively predicted and the
results are statistically significant (Cvetkovic 2012). The efficiency of the complexity
index of an algorithm can be estimated bymeasuring the linear correlation between the
value of the index and the execution time of the algorithm for the instances considered.
The linear correlation coefficient is given by the following expression:

ρ �
∑n

i�1

(
ti − t̄

)
(xi − x̄)

σ 2
t σ 2

x

(2.1)

The values of xi and ti correspond to the various complexity indices that are tested
in this manuscript. For instance, ti could be the execution time of the algorithm and
xi could correspond to a geometric measure of the polyhedron, such as the maximum
eigenvalue of a certain ellipsoid. In this manuscript, linear regressions between pro-
posed complexity indices will be performed, and measures of the natural difficulty of
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these problems, such as the processing times and the number of nodes executed by
the B&B algorithm, will be evaluated.

2.2 Conditioning in integer programming

Integer programming algorithms may have some sort of exponential running time in
the worst case. However, similar instances may have different running times when
solved by different computational algorithms. This fact shows that there is an intrinsic
difficulty, which can be measured, and such measurements could serve as predictors
for future cases. The notion of conditioning in integer programming developed byVera
and Derpich (2006) and Freund and Vera (2003) is based on the relationship between
this intrinsic difficulty and the shape of the polyhedron formed by the constraints of
the associated linear problem as well as the spatial orientation of the polyhedron. To
characterize the shape of the polyhedron, a Dikin ellipsoid will be used, since it has
the particular feature of tending to follow the shape of the polyhedron, thus rounding
the vertices. Therefore, the matrix associated with the interior ellipsoid can be used to
estimate the shape of the polyhedron. For this purpose, the eigenvalues of this matrix
will be used, which relate to the semi-axes of the ellipsoid. In the following section, the
mathematical form of the Dikin ellipsoid and two theorems that relate the eigenvalues
of a Dikin ellipsoid matrix to the respective polyhedron are presented.

2.3 Proposed complexity indices

Dikin ellipsoids will be used according to the following definition. Let P �{
x :

∑n
j�1 ai ji x ≤ bi , i � 1, . . . ,m

}
be a polyhedron associated with the gen-

eral integer problem, and let E and E’ be a pair of concentric ellipsoids
defined by the form: E � {

x ∈ R
n : (x − x0)T Q(x − x0) ≤ 1

}
and E ′ �

{
x ∈ R

n : (x − x0)T Q(x − x0) ≤ γ
}
, where x0 is the center of the ellipsoid, such that

E ⊂ P ⊂ E ′ and Q � ∇2ρ(x0) � AT D−2(x0)A, with D(x0) � diag
(
bi − Ai x0

)
.

Assuming a value of γ � m + 1 ensures that the ellipsoid E ′′ is external and includes
the polyhedron.

Where Ai is the row i of the matrix A, with i � 1, . . . ,m.
Several possible centers for the Dikin ellipsoid are tested, including the center

of maximum volume. The center of maximum volume is defined by the following
expression:

Max{r : Ai x0 + r Ai ≤ bi , ∀i, r ≥ 0}.

The 2n center corresponds to the following approach.
Solve 2n problems x j

max � max
{
x j : Ai x j ≤ bi , i � 1, . . . ,m

}
and x j

min �
min

{
x j : Ai x j ≤ bi , i � 1, . . . ,m

}
, ∀ j � 1, . . . , n. Then, x2n � (xmax−xmin)

n
Where Ai is the row i of the matrix A, with i � 1, . . . ,m.
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The expression of the analytical center corresponds to the following equation:

Minimize ρ � −
m∑

i�1

log(bi − Ai x0) (2.2)

From the experiments developed with the test problems taken from the OR-library,
the analytical center showed the best results, while in the experiments developed with
the problems of the MIPLIB public library, both the analytical center and the center
of maximum volume showed the best results.

Wefirst analyze the eigenvalues of amatrix of the form AT H−2A, where A ∈ R
m×n

and H ∈ R
m×m is a diagonalmatrixwith positive elements h1, . . . , hm . Letλ1, . . . , λn

be the eigenvalues that provide information about the intrinsic difficulty of this type of
problem. Let us start with a result that will provide information about the eigenvalues
of AT H−2A in terms of the elements of the matrix.

Theorem 1 (Vera and Derpich 2006) Let P be the following linear programming prob-
lem: P = max

{
cT x : Ax ≤ b

}
, in which c ∈ R

n, A ∈ R
m×n and b ∈ R

m. Let

hi (x0) � bi − Ai x, ∀i � 1 . . .m be the slacks corresponding to the constraints
of the problem P for the feasible point x0, where ai j are the coefficients of the matrix
A. Let λ1, . . . , λn be the eigenvalues of AT H(x0)−2A and λmin, λmax the mini-
mum and maximum eigenvalues of AT H(x0)−2A, respectively. Let βmin and βmax

be the minimum and maximum values of AT A, respectively. Let hmax � maxi {hi }
and hmin � mini {hi }. Then, it holds that

λmin ≥ βmin

h2max
(2.3)

and

λmax ≤ βmax

h2min

(2.4)

Proof We begin decomposing the term AT H(x0)−2A by its components:

AT H(x0)
−2A �

m∑

j�1

h−2
j

n∑

i�1

ai j a ji (2.5)

Next, we introduce h−2
min , and we have the next expression:

AT H(x0)
−2A � h−2

min

m∑

j�1

n∑

i�1

ai j a ji −
m∑

j�1

(
h−2
min − h−2

j

) n∑

i�1

ai j a ji (2.6)

Then, we define F1 and F2 in the next form:
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F1 � h−2
min

m∑

j�1

n∑

i�1

ai j a ji and F2 � −
m∑

j�1

(
h−2
min − h−2

j

) n∑

i�1

ai j a ji

Therefore, AT H(x0)−2A � F1 + F2
Since F2 is a negative semidefinite matrix, it holds that

λ ≤ λ(F1)

Therefore,

λmax ≤ λmax

⎛

⎝h−2
min

m∑

j�1

n∑

i�1

ai j a ji

⎞

⎠

and finally,

λmax ≤ λmax
(
AT A

)

h2min

� βmax

h2min

We have executed the first part of the proof corresponding to expression (2.4).
Following with the proof, we again use expression (2.3):

AT H(x0)
−2A �

m∑

j�1

h−2
j

n∑

i�1

ai j a ji

Again, we decompose the term AT H(x0)−2A by its components

AT H(x0)
−2A � h−2

max

m∑

j�1

n∑

i�1

ai j a ji −
m∑

j�1

(
h−2
max − h−2

j

) n∑

i�1

ai j a ji

Next, we define G1 and G2 in the next form:

G1 � h−2
max

m∑

j�1

n∑

i�1

ai j a ji

and

G2 � −
m∑

j�1

(
h−2
max − h−2

j

) n∑

i�1

ai j a ji

Therefore, AT H(x0)−2A � G1 + G2
Note that G2 is a positive semidefinite matrix; then, it holds that
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λmin � λmin(G1 + G2)

Therefore,

λmin ≥ λmin(G1) � h−2
maxβmin

and finally

λmin ≥ h−2
maxβmin .

We have executed the second part of the proof corresponding to expression (2.3),
and with this, the proof is concluded.�

These expressions show a relationship between the eigenvalues of matrix
AT H(x0)−2A and the maximum andminimum slacks. For this reason, it is reasonable
to believe that the maximum and minimum eigenvalues are related to the shape of the
polyhedron. In addition, other associated measures, such as the slenderness, defined
by the ratio between λmax and λmin , are related to the polyhedron.

Theorem 2 (From Vera and Derpich 2006) The number of sub-problems solved by the
B&B algorithm can be bounded by

2n(m + 1)nn
n/2

(
1√
λmin

)n

(2.7)

Proof Suppose we construct a pair of Ellipsoids, with center x0, of the form

E �
{
x ∈ �n : (x − x0)

T Q(x − x0) ≤ 1
}

and

E ′ �
{
x ∈ �n : (x − x0)

T Q(x − x0) ≤ γ 2
}

such that

E ⊂ {x : Ax ≤ b} ⊂ E ′

where Q is a positive-definite matrix.
Let w(μ, Ax ≤ b) be the width of the polyhedron Ax ≤ b according to a vector μ.

This is calculated as follows:

w(μ, Ax ≤ b) � max
{
μT x : Ax ≤ b

}
− min

{
μT x : Ax ≤ b

}

where μ ∈ �n and μ �� 0
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It is also known that the width of the ellipsoid E according to vector μ is bounded
by the expression

√
μT Q−1μ. Therefore, taking a value from γ 2 � m + 1 in order

to ensure an expansion of E that contains the polyhedron Ax ≤ b and considering
a vector μ such that the diameter of the ellipsoid E’ is given by twice the width
w(u, Ax ≤ b), it holds that w(μ, Ax ≤ b) ≤ 2(m + 1)

√
μT Q−1μ is the maximum

width of a polyhedron according to vectorμ. In (Vera and Derpich 2006) the following
expression was tested:

√

μT Q−1μ ≤ √
n

(
hmax

ρ(d)

)

(2.8)

where

ρ(d) � in f
{
‖�d‖ : P(d + �d) ∈ FC

}

which can be interpreted as the distance to ill conditioning and

σ̄ � max
x∈Ax≤b

b − Ax∞

which can be interpreted as the maximum distance from the point x to the constraints
defining the polyhedron. In our case,

σ̄ � hmax (2.9)

From Vera and Derpich (2006), ρ(d) can be bounded as ρ(d)2 ≤ βmin

From Theorem 1, it holds that

βmin ≤ h2maxλmin

Then, we have

ρ(d) ≤ √
βmin � hmax

√
λmin (2.10)

Finally, replacing (2.11) and (2.12) in (2.10), we have

√

μT Q−1μ ≤
√

n

λmin
(2.11)

Using the expansion of E to contain the polyhedron Ax ≤ b and considering
a vector μ such that the diameter of the ellipsoid E ′ is given by twice the width
w(u, Ax ≤ b), we have

w(u, Ax ≤ b) ≤ 2(m + 1)
√

μT Q−1μ ≤ 2(m + 1)

√
n

λmin
(2.12)
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The number of sub-problems solved by the B&B algorithm can bounded by the
width in every dimension of the problem. The dimension of the problem is n; therefore,
the number of sub-problems solved by the B&B algorithm can bounded by

[w(u, Ax ≤ b)]n

and this may be bounded by 2n(m + 1)nn
n/2

(
1√
λmin

)n
. Therefore, the proof is con-

cluded. �
This result shows a certain correlation between the eigenvalues of a Dikin ellip-

soid matrix associated with the polyhedron and the number of iterations of the B&B
algorithm.

3 Description of experiments

According to the theorems and their respective proofs presented in the previous section,
the maximum andminimum eigenvalues of a certain matrix AT H(x0)−2A, are related
to an innerDikin ellipsoid and thus are related to the geometric shape of the polyhedron
{x : Ax ≤ b}. Additionally, the ratio K between the two eigenvalues has also been
included, which we have defined as the slenderness. These measures are summarized
below:

• Minimum eigenvalue of the matrix AT H(x0)−2A associated with an inner Dikin
ellipsoid to the polyhedron Ax ≤ b.

• Maximum eigenvalue of the matrix AT H(x0)−2A associated with an inner Dikin
ellipsoid to the polyhedron Ax ≤ b.

• Slenderness, defined as the ratio between the maximum and minimum eigenvalue,
called K .

These variables were used as explanatory variables in regression models to eval-
uate their correlation. Two public libraries were used to create test instances of the
multidimensional knapsack problem. In all cases, the analytical center was used as
the center of the ellipsoid. To obtain the analytical center, an implementation of the
Newton method was used, using Python 2.7 and CPLEX® 12.2.

3.1 Regressionmodels estimated

The following regression models were estimated, and their respective regressors and
explanatory variables were as follows:

• Regressor: minimum eigenvalue of the matrix AT H(x0)−2A associated with the
Daikin ellipsoid versus the execution time of the B&B algorithm using CPLEX®

12.2 (response variable).
• Regressor: maximum eigenvalue of the matrix AT H(x0)−2A associated with the
Dikin ellipsoid versus the execution time of the B&B algorithm using CPLEX®

12.2 (response variable).
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• Regressor: slenderness (ratio between the maximum and minimum eigenvalue) of
the matrix AT H(x0)−2A associated with the Dikin ellipsoid versus the execution
time of the B&B algorithm using CPLEX® 12.2 (response variable).

• Regressors: maximum and minimum eigenvalues of the matrix AT H(x0)−2A asso-
ciated with the Dikin ellipsoid versus the execution time of the B&B algorithm
using CPLEX® 12.2 (response variable).

• Regressor: minimum eigenvalue of the matrix AT H(x0)−2A associated with the
Dikin ellipsoid versus the number of nodes visited by the B&B algorithm using
CPLEX® 12.2 (response variable).

• Regressor: maximum eigenvalue of the matrix AT H(x0)−2A associated with the
Dikin ellipsoid versus the number of nodes visited by the B&B algorithm using
CPLEX® 12.2 (response variable).

• Regressor: slenderness (ratio between the maximum and minimum eigenvalue) of
the matrix AT H(x0)−2A, related to the Dikin ellipsoid versus the number of nodes
visited by the B&B algorithm using CPLEX® 12.2 (response variable).

• Regressors: maximum and minimum eigenvalues of the matrix AT H(x0)−2A asso-
ciated with the Dikin ellipsoid versus the number of nodes visited of the B&B
algorithm using CPLEX® 12.2 (response variable).

3.2 Test instances

To test the relationship between the proposedmeasures of complexity and the response
variables (number of nodes and execution time), test instances of the MKP were used
from the OR-library and MIPLIB public libraries.

Instances taken from the OR-Library are in batches of 30 problems each, consisting
of 100×5 (variables×constraints), 100×5, 250×10, 100×10, 100×30 and 500×
5. These instances are characterized by being constructed using a complexity index
τ � τi ,∀i (the same coefficient for all constraints) which is defined by the following
equation:

τ �
∑n

j�1 wi j

pi
,∀i (3.1)

In the selected instances, this index takes three cases : τ � 0.25 for the first 10
values, τ � 0.5 for the second 10 values and τ � 0.75 for the last 10 values. The first
10 values are the most complex to solve because they have fewer values x j � 1; on
average, only 2.5 values of x j correspond to 1, and the rest correspond to 0. For the
second case, 5 values correspond to 1, and the rest correspond to 0. For the third case,
7.5 values correspond to 1, and the rest correspond to 0. Table 1 presents the selected
MKP instances of the MIPLIB library. These problems are of greater computational
complexity than those of the OR-library. In Table 2, we present the instances solved
of the OR-library.
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Table 1 Benchmarking instances taken from the MIPLIB 2010 library

No. Name No. of rows No. of
columns

No. of
non-zeros

Binary
variables

Optimal
solution
value

1 mine-90-10 6270 900 15,407 900 7.84302e+08

2 mine-166-5 8429 830 19,412 830 5.66396e+08

3 neos-1337307 5687 2840 30,799 2840 202,319

4 opm2-z7-s2 160,633 6250 371,243 6250 33,826

5 reblock67 2523 670 7495 670 3.46306e+07

6 pigeon-10 931 490 8150 400 9000

7 neos-1396125 1494 1161 5511 129 3000.5

8 ns1688347 44,121 10,000 220,859 10,000 13

9 sp98ir 1531 1680 71,704 871 2.19677e+8

Table 2 Benchmarking instances
taken from the OR-Library

File n m #Problems

Mknapcb1.txt 100 5 30

Mknapcb4.txt 100 10 30

Mknapcb7.txt 100 30 30

Mknapcb2.txt 250 5 30

Mknapcb3.txt 500 5 30

4 Computational results

The results are presented in the same order that the proposed regression models were
explained.

4.1 Model 1: T � ˇ0 + ˇ1�min

λmin : minimum eigenvalue of the matrix AT H(x0)−2A associated with the Dikin
ellipsoid.
T : execution time of the B&B algorithm using CPLEX® 12.2 (response variable) in
seconds.

4.1.1 Results for the OR-Library instances

The F-statistic of the ANOVA in Table 3 shows that the experiment performed is statis-
tically significant for an α of 5% for almost all cases. In addition, the best correlation
coefficient values ρ are 0.445; 0.383 and 0.439. These values show that in most of
the cases, there is a correlation between the λmin and the execution time of the B&B
algorithm.
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Table 3 Regression model between the minimum eigenvalue and the CPU time (Y )

N 100 100 100 250 500

M 5 10 30 5 5

ρ 0.237 0.4450 0.383 0.0175 0.439

F 1.677 6.927 4.802 0.0086 6.697

β0 −0.842 −3.254 −9.506 24.968 −1398.849

β1 0.224 0.984 8.394 −6.03E−01 195.737

Critical value F0.95;1;28 � 4.195

Table 4 Estimatedmodels for minimum eigenvalue versus CPU timewith 1, 4 and 12 CPLEX® 12.2 threads

λmin
1 thread

λmin
4 threads

λmin
12 threads

ρ 0.504 0.557 0.568

β0 126.350 54.534 42.561

β1 −0.0143 −0.0061 −0.0041

4.1.2 Results for the MIPLIB instances

It can be observed in Table 4 that the greater the number of threads, the greater the
correlation between the variables. The F-test was not applied since the sample size is
low and therefore gives non-significant values.

4.2 Model 2: T � ˇ0 + ˇ1�max

λmax : maximum eigenvalue of the matrix AT H(x0)−2A associated with the Dikin
ellipsoid.
T : execution time of the B&B algorithm using CPLEX® 12.2 (response variable), in
seconds.

4.2.1 Results for the OR-Library instances

The F-statistic of the ANOVA in Table 5 shows that the experiment performed is statis-
tically significant for an α of 5% for almost all cases. In addition, the best correlation
coefficient values ρ are 0.445; 0.400 and 0.622. These values show that in most cases,
there is a correlation between the λmax and the execution time of the B&B algorithm.

4.2.2 Results for the MIPLIB instances

As seen in Table 6, there are high correlation values for the different variables. It can
be observed that the greater the number of threads, the greater the correlation between
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Table 5 Regression model
between the maximum
eigenvalue and the CPU time (Y )

N 100 100 100 250 500

M 5 10 30 5 5

ρ 0.223 0.445 0.400 0.225 0.622

F 1.468 6.914 5.326 1.501 17.709

β0 0.934 4.281 45.273 16.579 125.279

β1 0.0025 0.038 1.338 0.0229 0.393
Critical value F0.95;1;28 � 4.195

Table 6 Estimatedmodels formaximum eigenvalue versus CPU timewith 1, 4 and 12CPLEX® 12.2 threads

λmax
1 thread

λmax
4 threads

λmax
12 threads

ρ 0.498 0.552 0.5670

β0 125.251 54.082 42.302

β1 −6.31E−08 −2.70E−08 −1.86E−08

Table 7 Regression model for the slenderness (X) versus CPU time (T )

n 100 100 100 250 500

m 5 10 30 5 5

r 0.217 0.448 0.441 0.256 0.634

F 1.384 7.014 6.743 1.972 18.838

β0 0.930 3.951 −5.882 16.088 122.911

β1 0.0262 0.517 40.937 0.234 3.580

Critical value F0.95;1;28 � 4.195

the variables. The F-test was not applied since the sample size is low and therefore
gives non-significant values.

4.3 Model 3: T � ˇ0 + ˇ1K

K: Slenderness (ratio between the maximum and minimum eigenvalue) of the matrix
AT H(x0)−2A.
T : Execution time of the B&B algorithm using CPLEX® 12.2.

4.3.1 Results for the OR-Library instances

The F-statistic of the ANOVA in Table 7 shows that the experiment performed is statis-
tically significant for an α of 5% for almost all cases. In addition, the best correlation
coefficient values ρ are 0.448; 0.441 and 0.634. These values show that in most of the
cases, there is a correlation between the value of K and the execution time of the B&B
algorithm.
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Table 8 Estimated models for the
slenderness versus CPU time
with 1, 4 and 12 CPLEX® 12.2
threads

K 1 thread K 4 threads K 12 threads

ρ 0.355 0.217 0.281

β0 141.367 53.304 43.446

β1 −0.00045 −0.000106 −9.27E−05

Table 9 Regression model between the maximum and the minimum eigenvalues CPU time (Y)

n 100 100 100 250 500

m 5 10 30 5 5

ρ 0.238 0.447 0.409 0.446 0.6618

F 0.810 3.386 2.725 3.366 10.526

β0 −1.121 0.328 140.175 212.998 1803.0058

β1 −0.00046 0.0187 3.417 0.0843 0.655

β2 0.26031 0.512 −13.777 −24.610 −210.012

Critical value F0.95;1;28 � 4.195

4.3.2 Results for the MIPLIB instances

As seen in Table 8, there are low correlation values for the different variables.

4.4 Model 4: T � ˇ0 + ˇ1�min + ˇ2�max

λmin : minimum eigenvalue of the matrix AT H(x0)−2A
λmax : maximum eigenvalue of the matrix AT H(x0)−2A
T : solving time of B&B using CPLEX® 12.2.

4.4.1 Results for the OR-Library instances

The F statistics of the ANOVA results presented in Table 9 show that the experiment is
statistically significant for almost all cases for anα of 5%. It only fails in the experiment
with 100 variables and 5 constraints. Similar to previous experiments, high values are
observed for the correlation coefficient ρ; these are 0.6618; 0.446; 0.447 and 0.409.
These values show that there is a correlation between the values of λmin and λmax and
the execution time of the B&B algorithm.

4.4.2 Results for the MIPLIB instances

As seen in Table 10, there are high correlation values for the different variables.

4.5 Model 5: N � ˇ0 + ˇ1 �min

λmin : minimum eigenvalue of the matrix AT H(x0)−2A associated with the Dikin
ellipsoid matrix.
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Table 10 Estimated models for maximum and minimum eigenvalues versus CPU time with 1, 4 and 12
CPLEX® 12.2 threads

λmin , λmax
1 thread

λmin , λmax
4 threads

λmin , λmax
12 threads

ρ 0.8666 0.87649 0.60665

β0 258.2467 103.4137 52.8159

β1 1.04E−05 3.87E−06 8.12E−07

β2 −2.35 −0.87 −0.19

Table 11 Regression model between the minimum eigenvalue and the number of nodes visited by the B&B
algorithm

n 100 100 100 250 500

m 5 10 30 5 5

ρ 0.227 0.433 0.329 0.0346 0.462

F 1.533 6.473 3.403 0.0335 7.600

β0 −28,847.497 −104,943.815 161,929.062 960,595.512 −29,581,948.2

β1 6421.272 2.57E+04 1.25E+05 −3.85E+04 4.17E+06

Critical value F0.95;1;28 � 4.195

N : number of nodes visited by the B&B algorithm using CPLEX® 12.2.

4.5.1 Results for the OR-Library instances

The F statistics of the ANOVA results presented in Table 11 show that the experiment
is statistically significant for almost all cases for an α of 5%. It fails in the experiment
with 100 variables and 5 constraints and in the experiment with 250 variables and 5
constraints. Similar to previous experiments, high values are observed for the corre-
lation coefficient ρ; these are 0.462; 0.433 and 0.329. These values show that there is
a correlation between the values of λmin and the number of nodes visited by the B&B
algorithm.

4.5.2 Results for the MIPLIB instances

As seen in Table 12, there are high correlation values for the different variables. It can
be observed that the greater the number of threads, the greater the correlation between
the variables. The F-test was not applied since the sample size is low and therefore
gives non-significant values.
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Table 12 Regression model between the minimum eigenvalue and the number of nodes visited by the B&B
algorithm

λmin
1 thread

λmin
4 threads

λmin
12 threads

ρ 0.504 0.557 0.568

β0 126.350 54.534 42.561

β1 −0.0143 −0.0061 −0.00419

Table 13 Regression model between the maximum eigenvalue and the number of nodes visited by the B&B
algorithm

n 100 100 100 250 500

m 5 10 30 5 5

ρ 0.207 0.431 0.344 0.197 0.645

F 1.26. 6.391 3.772 1.140 20.048

β0 22,086.329 92,125.601 974,520.391 543,699.071 2,892,667.64

β1 72,191 993.618 19,918.625 651.789 8264.706

Critical value F0.95;1;28 � 4.195

4.6 Model 6: N � ˇ0 + ˇ1 �max

λmax : maximum eigenvalue for the matrix AT H(x0)−2A associated with the Dikin
ellipsoid matrix.
N : number of nodes visited by the B&B algorithm using CPLEX® 12.2.

4.6.1 Results for the OR-Library instances

The F-statistics of the ANOVA results presented in Table 13 show that the experiment
is statistically significant for almost all cases for an α of 5%. It only fails in two
experiments, first in the experiment with 100 variables and 5 constraints, and then in
the experiment with 250 variables and 5 constraints. Similar to previous experiments,
high values are observed for the correlation coefficient ρ; these are 0.645; 0.431 and
0.344. These values show that there is a correlation between the values of λmax and
the number of nodes visited by the B&B algorithm.

4.6.2 Results for the MIPLIB instances

As seen in Table 14, there are high correlation values for the different variables. It can
be observed that the greater the number of threads, the greater the correlation between
the variables. The F-test was not applied since the sample size is low and therefore
gives non-significant values.
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Table 14 Regression model between the maximum eigenvalue and the number of nodes visited by the B&B
algorithm

λmax
1 thread

λmax
4 threads

λmax
12 threads

ρ 0.3446 0.55204 0.56700

β0 103,732.4845 54.0820 42.3024

β1 −5.48E−05 −2.70E−08 −1.86E−08

Table 15 Regression model for the slenderness (K) and the number of nodes visited by the B&B algorithm.
F0.95;1;28 � 4.195

n 100 100 100 250 500

m 5 10 30 5 5

ρ 0.2004 0.432 0.389 0.227 0.657

F 1.172 6.429 5.019 1.531 21.316

β0 22,037.810 83,769.025 169,638.720 528,407.441 2,845,316.28

β1 723.793 13,389.596 625,794.627 6.75E+03 75,123.805

Table 16 Regression model for the slenderness (K) and the number of threads used by the solver

K
1 thread

K
4 threads

K
12 threads

ρ 0.29333 0.21301 0.2811

β0 124,450.190 126,048.0706 43.446

β1 −0.4677 −0.34183 −9.27E−05

4.7 Model 7: N � ˇ0 + ˇ1 K

K : Slenderness (ratio between the maximum and minimum eigenvalues)
N : number of nodes visited by the B&B algorithm using CPLEX® 12.2

4.7.1 Results for the OR-Library instances

The F-statistic of the ANOVA in Table 15 shows that the experiment performed is sta-
tistically significant for anα of 5% for almost all cases. It only fails in two experiments,
first in the experiment with 100 variables and 5 constraints, and then in the experiment
with 250 variables and 5 constraints. In addition, the best correlation coefficient values
ρ are 0.657; 0.432 and 0.389. These values show that there is a correlation between
the value of K and the number of nodes visited by the B&B algorithm.

4.7.2 Results for the MIPLIB instances

See Table 16.
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Table 17 Regression model between the maximum and the minimum eigenvalues and the number of nodes
visited by the B&B algorithm

n 100 100 100 250 500

m 5 10 30 5 5

ρ 0.230 0.4349 0.3542 0.422 0.682

F 0.754 3.149 2.9367 2.9419 11.781268

β0 −50,940.771 −29,423.060 2,462,862.608 6,711,649.657 36,194,857.46

β1 −36.5454 395.245 52,533.77433 2579.1019 13,461.044

β2 9251.945 15,770.185 −216,069.393 −772,814.679 −4,168,652.661

Critical value F0.95;1;28 � 4.195

4.8 Model 8: N � ˇ0 + ˇ1�min + ˇ2�max

λmin : minimum eigenvalue of the matrix AT H(x0)−2A
λmax : maximum eigenvalue of the matrix AT H(x0)−2A
N : number of nodes visited by the B&B algorithm using CPLEX® 12.2

4.8.1 Results for the OR-Library instances

The F statistic of the ANOVA results presented in Table 17 show that the experiment
is statistically significant for almost all cases for an α of 10%. It only fails in the
experiment with 100 variables and 5 constraints. Similar to previous experiments,
high values are observed for the correlation coefficient ρ; these are 0.682; 0.4349;
0.422 and 0.3542. These values show that there is a correlation between the values of
λmin and λmax and the number of nodes for the B&B algorithm.

5 Discussion

A total of 40 experiments were performed, using instances of the OR-library, corre-
sponding to eight models and five instances for everymodel at 100×5, 250×5, 100×
10, 100×30 and 500×5. Each experiment consisted of calculating the eigenvalues
of a Dikin ellipsoid obtained based on a coefficient matrix A and the analytical center.
For each experiment, linear regressions were performed using one or two explanatory
variables. The majority of the results obtained from the experiments are statistically
significant at a 95% confidence interval according to the ANOVA tests performed. For
the test instances of the MIPLIB 2010 library, 17 problems corresponding to the MKP
were studied. The analytic center was obtained in only 12 instances; therefore, the
eigenvalues were calculated, and of these instances, only 9 were solved to optimality.
The correlation coefficients obtained for these problems are summarized in Table 18.
Good correlation coefficients were obtained in general, highlighting the 4th model,
which relates the slenderness with the CPU time of the B&B algorithm. The results
obtained for the OR-Library instances show good correlation coefficients in almost all
cases, all very similar and approximately 0.44. Instances where the experiments were
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Table 18 Regression model for the slenderness (K) and the number of nodes visited by the B&B algorithm
for the MIPLIB instances

Model λmax
1 thread

λmax
4 threads

λmax
12 threads

Model No.

T � β0 + β1λmin 0.5047 0.55784 0.5688 1

T � β0 + β1λmax 0.4986 0.5520 0.5670 2

T � β0 + β1K 0.3557 0.2179 0.2811 3

T � β0 +β1λmin +
β2λmax

0.8666 0.87649 0.60665 4

N � β0 + β1λmin 0.5047 0.5578 0.5688 5

N � β0 + β1λmax 0.3446 0.5520 0.5670 6

N � β0 + β1K 0.2933 0.2130 0.2811 7

Table 19 Summary of the regression correlation coefficients for the OR-library instances

n 100 100 100 250 500
m 5 10 30 5 5

Model

Model 1: T �
β0 + β1λmin

0.237 0.445 0.383 0.0175 0.439

Model 2: T �
β0 + β1λmax

0.223 0.445 0.400 0.225 0.622

Model 3: T �
β0 + β1K

0.217 0.448 0.441 0.256 0.634

Model 4: T �
β0 +β1λmin +
β2λmax

0.238 0.447 0.409 0.446 0.661

Model 5: N �
β0 + β1λmin

0.227 0.433 0.329 0.0346 0.462

Model 6: N �
β0 + β1λmax

0.207 0.431 0.344 0.197 0.645

Model 7: N �
β0 + β1K

0.200 0.432 0.389 0.227 0.657

Model 8: N �
β0 +β1λmin +
β2λmax

0.230 0.4349 0.3542 0.422 0.682

not statistically significant at 95% were included in the tables. These coefficients are
summarized in Table 19. These results suggest that the independent variable is a good
predictor.

6 Conclusion

The results of this manuscript suggest that it is possible to correlate certain complexity
measures of integer programming problems with the CPU time and the number of
nodes visited by the B&B algorithm. These measures were developed on the basis
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of geometric properties of the polyhedron, such as the eigenvalues and the relation
between the highest and lowest eigenvalue, which in this work was defined as the
slenderness. This suggests that these measures can be used to estimate the complexity
of such problems in the future. Future work should focus on finding simpler ways to
calculate these complexity measures. In particular, the calculation could be simplified
if we could avoid the calculation of the analytical center or use a simpler computational
method.
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