
CEJOR (2020) 28:5–23
https://doi.org/10.1007/s10100-018-0553-8

ORIGINAL PAPER

Mixed integer linear programming models for Flow
Shop Scheduling with a demand plan of job types

Joaquín Bautista-Valhondo1 · Rocío Alfaro-Pozo2

Published online: 29 May 2018
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract This paper presents two mixed integer linear programming (MILP) mod-
els that extend two basic Flow Shop Scheduling problems: Fm/prmu/Cmax and
Fm/block/Cmax. This extension incorporates the concept of an overall demand plan
for types of jobs or products. After using an example to illustrate the new problems
under study, we evaluated the new models and analyzed their behaviors when applied
to instances found in the literature and industrial instances of a case study from Nis-
san’s plant in Barcelona. CPLEX solver was used as a solution tool and obtained
acceptable results, allowing us to conclude that MILP can be used as a method for
solving Flow Shop Scheduling problems with an overall demand plan.

Keywords Flow Shop Scheduling problem · Mixed model sequencing problem ·
Mixed model assembly lines · Overall demand plan · Mixed integer linear
programming

1 Preliminaries

The Flow Shop Scheduling problem (FSP) is a sequencing problem that has received
considerable attention from professionals and researchers in recent decades due in part
to the wide range of production environments it can model (Pinedo 2016).
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In an FSP, a set of jobs or products J (D elements) needs to be processed in a group
of machines K (m elements) arranged in series. All jobs must proceed through all
machines in the same order, starting with machine 1 and ending with machine m.

Job j ∈ J ( j � 1, .., D) requires a processing time p j,k ≥ 0 in machine k ∈ K
(k � 1, ..,m). The overall goal of FSP is to determine a release sequence in which to
process the jobs that will optimize one or more efficiency criteria.

Aversion of FSP, the PermutationFlowShopProblem (PFSP), considers the storage
space between two consecutive machines to be unlimited and therefore assumes that
when operation ( j, k) of job j ∈ J in machine k > 1 (k ∈ K ) is completed, the
machine is able to process the next job in the sequence from the moment the job
is released by the previous machine k − 1. Using the notation proposed by Graham
et al. (1979), this problem is known as Fm/prmu/γ , where parameter γ symbolizes
the selected efficiency measure. The following efficiency metrics are among the most
common: (1) Makespan or the time required to complete all operations ( j, k) in the
workshop,Cmax , and (2) the average time required to complete such operations,Cmed .

There are production systems, also composed of machines arranged in series, in
which it is not advisable to separate products or jobswithin a process due to the product
size (e.g., chassis, buses), the nature of the jobs (e.g., chemical reactors), or a lack of
space. Under such circumstances, when the operation on a product of machine k < m
is completed, the operation will release the product to the next machine k + 1 in order
to process the next product in the sequence, but if machine k + 1 is busy, machine k
will be blocked even though it has completed its operation. Using again the notation of
Graham et al. (1979), this problem is called Fm/block/γ , where γ again symbolizes
the efficiency measure considered.

The nature of these problems is highly combinatorial and the minimization of the
makespan isNP-hard in the strong sense (Hoogeveen et al. 1996;Hall and Sriskandara-
jah 1996; Yu et al. 2004). For this reason, heuristic procedures have traditionally been
used to solve these problems in both permutation versions (Nawaz et al. 1983; Osman
and Potts 1989; Taillard 1990; Reeves 1995; Aggoune 2004; Ying and Liao 2004;
Fernandez-Viagas et al. 2017) and in versions with interruptions between machines
(Logendran and Sriskandarajah 1993; Caraffa et al. 2001; Ronconi 2004, 2005; Ribas
et al. 2011; Grabowski and Pempera 2007; Han et al. 2012; Pan and Wang 2012; Lin
and Ying 2013; Nouri and Ladhari 2017, Ozolins 2017; Tasgetiren et al. 2017).

After explaining the two problems of interest, we will consider the unrealistic
conditions that, in our view, affect the set of jobs J performed in some industrial
sectors.

• Traditionally in the various versions of FSP, the elements of the set of jobs J are
special, with unusual qualities or more specifically are unique jobs or products.

• If we consider some industrial sectors, such as the automotive sector, it is difficult
to find realistic problems whose purpose is to determine efficient sequences of 270
or more different products. In fact, it is absurd to think of a daily sequence of 270
engines or 300 car bodies or 500 chassis or 800 buses, all of which are entirely
different.

• Due to the above reasons and for practical purposes, it is reasonable to believe that
a typology can be naturally established on the set of jobs J (products, parts, etc.),
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Mixed integer linear programming models for Flow Shop… 7

and it is therefore possible to discuss types of engines or car bodies or chassis or
motors.

• In conclusion, in some industrial sectors, it makes sense to discuss types of jobs or
types of products or types of parts.

After these considerations, the remainder of this paper is structured as follows:
In Sect. 2, we formalize the natural extension of the FSP when jobs are replicated,
which for us means that there exists a demand plan for job types. In Sect. 3, we
propose using mixed integer linear programming to model these problems. In Sect. 4,
we illustrate the problems under study with an example. In Sect. 5, we perform a
computational experiment to analyze the behavior of the generated models. Finally,
Sect. 6 is dedicated to conclusions and proposals for future research.

2 Problems Fm/β/γ /di : Fm/β/γ with product types

Formalization:
Fm/β/γ /di is a family of sequencing problems that establishes a bijective appli-

cation between the elements of a set T of ordinals (T elements), which correspond
to positions in a sequence of releases to manufacturing: π (T ) � (π1, ., πT ), and the
elements of a set J of jobs or products (D elements, with D � T ).

The jobs or products in group J are classified into exclusive types or classes, Ji ,
that satisfy: J � ⋃

i∈I Ji and Ji ∩ Ji ′ � ∅,∀ {
i, i ′

} ∈ I ; where I is the set of job
types (i � 1, .., n). Parameter β can take the permutation (prmu) or blocking (block)
values, parameter γ represents the possible efficiency metrics (e.g., Cmax ,Cmed ),
vectord represents the demand plan for the considered job types, and di symbolizes the
number of jobs of type i ∈ I within J ; di � |Ji | ∀i ∈ I , satisfying:

∑
∀i di � D � T .

The units of J travel in order through a set K of m machines arranged in series.
We assume that the production of a job of type i ∈ I requires a processing time pi,k ,
measured under normal operation conditions, in machine k ∈ K (k � 1, . . . ,m), and
that these times are heterogeneous.

The differences between classes Ji (e.g., 4×4 s, vans, trucks) indicate the hetero-
geneity of the processing times pi,k , which results in natural decouplings between
the processors (operators and robots) assigned to machines. In some cases, operators
must wait for a product to be released from the previous machine before beginning
work, and in others, when storage between machines is not possible, the operator will
have to wait while “blocked” from the completion of the operation in progress in the
next machine, even if his operation on the product in progress is completed. Based on
the description above, in this paper we are not going to contemplate the possibility of
interrupting operations and will leave this option for future work.

The purpose of problems Fm/β/γ /di is to obtain a sequence of replicated jobs
or products (di ), in a line with m machines, with the possibility of blocking or not
according to β, and with the objective of optimizing the efficiency metric represented
by the γ value. To formalize this purpose, two mathematical models adapted to mixed
integer linear programming (MILP) are presented here.
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8 J. Bautista-Valhondo, R. Alfaro-Pozo

3 MILP models for problems Fm/β/γ /di

Parameters

J Set of jobs or products (Jobs): j � 1, ., D
T Set of positions in the production sequence of products: t � 1, ., T
I Set of types of jobs or products (Job Types): i � 1, ., n
Ji Set of jobs or products of type i ∈ I
d; di Demand plan of a job types vector and demand of the jobs or products of type

i (i � 1, ., n), with di � |Ji | ∀i ∈ I and satisfying:
∑

∀i di � D � T ≡ |T |
K Group of machines: k � 1, .,m
pi,k Processing time of a job or product of type i ∈ I in machine k ∈ K
C0
max Upper limit of the makespan or minimum completion time of all the jobs in

all machines. This can be calculated based on a reference sequence π0 (T )

obtained by a heuristic algorithm

Variables

xi,t Binary variable whose value is 1 if a job or product of type i ∈ I is released
to production in the t-th position (t � 1, ., T ), and 0 otherwise

π (·) Partial sequence, π (t) � (π1, ., πt ), and full sequence, π (T ) � (π1, ., πT ),
of production of jobs or products j ∈ J

ρk,t Processing time of the t-th job in production sequence π (T ) in machine k ∈ K
Ck,t Time of completion of the t-th job πt in production sequence π (T ) in machine

k ∈ K . If blocking is considered, Ck,t symbolizes the release time of job or
product πt ∈ π (T ) in the machine k ∈ K

Ci Time of completion of the last job or product of type i ∈ I in the last machine
(k � m); that is:Ci � max

t

{
Cm,t : xi,t � 1

}
. By convention, we will say that

Ci is the time of completion of the batch of parts of type i ∈ I , which is
equivalent to the time when all jobs in group Ji have been completed

Cmax Makespan: Time of completion of the last job or product πT of the production
sequence π (T ) in the last machine (k � m); that is: Cmax � Cm,T

Cmed Average time of completion of batches (∀i ∈ I ): Cmed � 1
n

∑
∀i Ci

MILP model for the problem Fm/prmu/Cmax /di

MILP-1 · Fm/prmu/Cmax/di : minCmax ≡ minCm,T (1)

Subject to:

n∑

i�1

xi,t � 1 ∀t � 1, . . . , T (2)

T∑

t�1

xi,t � di ∀i � 1, . . . , n (3)
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ρk,t �
n∑

i�1

pi,k xi,t ∀k � 1, . . . ,m ∀t � 1, . . . , T (4)

Ck,t ≥ Ck,t−1 + ρk,t ∀k � 1, . . . ,m ∀t � 1, . . . , T (5)

Ck,t ≥ Ck−1,t + ρk,t ∀k � 1, . . . ,m ∀t � 1, . . . , T (6)

xi,t ∈ {0, 1} ∀i � 1, . . . , n ∀t � 1, . . . , T (7)

Ck,0 � 0 ∀k � 1, . . . ,m (8)

C0,t � 0 ∀t � 1, . . . , T (9)

In model (MILP · Fm/prmu/Cmax /di ), objective function (1) represents the min-
imization of the makespan; equalities (2) help to ensure a position in the sequence
of every job or product; equalities (3) are used to ensure the demand plan (vector d)
is met; equalities (4) link the processing time of each type of product and machine
(pi,k) with the corresponding processing time of the t-th job of the sequence (ρk,t );
restrictions (5) and (6) serve to limit the minimum completion times of the jobs (Ck,t ),
according to the production sequence π (T ), in the machines of group K ; conditions
(7) force the decision variables (xi,t ) to be binary; and finally (8) and (9) set the start
of completion times.

MILP model for the problem Fm/block/Cmax /di

MILP-2 · Fm/block/Cmax/di : minCmax ≡ minCm,T (10)

Subject to:

n∑

i�1

xi,t � 1 ∀t � 1, . . . , T (11)

T∑

t�1

xi,t � di ∀i � 1, . . . , n (12)

ρk,t �
n∑

i�1

pi,k xi,t ∀k � 1, . . . ,m ∀t � 1, . . . , T (13)

Ck,t ≥ Ck,t−1 + ρk,t ∀k � 1, . . . ,m ∀t � 1, . . . , T (14)

Ck,t ≥ Ck−1,t + ρk,t ∀k � 1, . . . ,m ∀t � 1, . . . , T (15)

Ck,t ≥ Ck+1,t−1 ∀k � 1, . . . ,m ∀t � 1, . . . , T (16)

xi,t ∈ {0, 1} ∀i � 1, . . . , n ∀t � 1, . . . , T (17)

Ck,0 � 0 ∀k � 1, . . . ,m (18)

C0,t � 0 ∀t � 1, . . . , T (19)

Cm+1,t � 0 ∀t � 1, . . . , T (20)

In theMILPmodel Fm/block/Cmax /di , it is obvious that both the objective function
(10) and the constraint blocks (11–15) and (17–19) consecutivelymatch formulas (1–9)
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10 J. Bautista-Valhondo, R. Alfaro-Pozo

of the MILP model Fm/prmu/Cmax /di . The changes that are added by considering
possible blocking between machines are:

• Ck,t here represents the release time (compared to the time of completion) of the
t-th job πt of the production sequence π (T ) in machine k ∈ K .

• Restrictions (16) help limit the minimum release time Ck,t through the release time
of the previous job (πt−1) in the next machine (k + 1) .

• For convenience, equalities (20) are the release start times in virtual machine: k �
m + 1.

4 Illustrative example

An assembly line with 21 workstations produces 9 types of engines (M1–M9) grouped
into three families (4×4, VAN and Trucks). Figure 1 shows an M1 type engine that
belongs to the 4×4 family. Table 1 shows the processing times, measured in seconds
under normal operation conditions, for each engine type (i � 1, . . . , 9) in each work-
station (k � 1, . . . , 21); these times are heterogeneous and range between 89 and 185 s
(Bautista and Cano 2011). Considering a product-oriented online Flow Shop produc-
tion environment, the goal is to set production sequences of 9 and 18 total engines,
composed of 1 and 2 engines of each type, respectively, with the purpose of measuring
the economic impact of the elimination of spaces between consecutive workstations.

Fig. 1 Nissan Pathfinder Engine. Characteristics: (i) 747 parts and 330 references, (ii) 378 elemental assem-
bly tasks grouped in 140 production line tasks

123



Mixed integer linear programming models for Flow Shop… 11

Table 1 Processing time under
normal operation

(
pi,k

)
in

seconds of the 9 types of engines
(i ∈ I ) in the 21 workstations
(k ∈ K ) of the set of
Nissan-9Ing.I instances
(Bautista and Cano 2011)

k\i M1 M2 M3 M4 M5 M6 M7 M8 M9

1 104 100 97 92 100 94 103 109 101

2 103 103 105 107 101 108 106 102 110

3 165 156 164 161 148 156 154 164 155

4 166 175 172 167 168 167 168 156 173

5 111 114 114 115 117 117 115 111 111

6 126 121 122 124 127 130 120 121 134

7 97 96 96 93 96 89 94 101 92

8 100 97 95 106 94 102 103 102 100

9 179 174 173 178 178 171 177 171 174

10 178 172 172 177 178 177 175 173 175

11 161 152 168 167 167 166 172 157 177

12 96 106 105 97 101 100 96 104 96

13 99 101 102 101 99 101 96 102 99

14 147 155 142 154 146 143 154 153 155

15 163 152 156 152 153 152 154 156 156

16 163 185 183 178 169 173 172 182 171

17 173 179 178 169 173 178 174 175 175

18 176 167 181 180 172 173 173 168 184

19 162 150 152 152 160 151 155 148 167

20 164 161 157 159 162 160 162 158 157

21 177 161 154 168 172 170 167 149 169

The engine production sequences must meet the minimum Makespan goal, taking
into account two online production configurations in a Flow Shop environment:

• Line L1 with unlimited storage space between pairs of consecutive workstations
(problem Fm/prmu/Cmax )

• Line L2 without storage space between pairs of consecutive workstations, with the
possibility of blocking between stations (problem Fm/block/Cmax )

The 4 optimal sequences of this example were obtained with implementations of
theMILP-1 andMILP -2models using IBM ILOGCPLEX code (Optimization Studio
v.12.2, win-x86-64)

Table 2 shows the results for this example.
Table 2 shows that the elimination of storage space between the 21 workstations

(L1 vs. L2) causes slow-downs in production of 10 and 27 s when engines 9 and 18
are produced, respectively.

Considering that the cost of production loss (Bautista et al. 2018) is 137.14 euros
per production minute, the elimination of spaces in the assembly line results in an
additional cost of 22.86 euros with 9 engines, and 61.71 euros with 18 engines.

The assembly line was designed for a fixed cycle time of 175 s, and consequently,
the actual production times available for the manufacture of 9 and 18 engines are 1.42
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12 J. Bautista-Valhondo, R. Alfaro-Pozo

Table 2 Line (L1, L2) according to parameter β (prmu, block), engine demand plan (di � 1, 2∀i), optimal
production sequence π (T ),Cmax value (sec) and CPU time (sec) for the illustrative example with 9 engine
types

Line β di∀i Sequenece π (T ) Cmax CPU (s)

L1 prmu 1 [5 3 9 1 4 7 6 2 8] 4372 0.218

L2 block 1 [5 2 6 1 4 7 9 3 8] 4382 1.079

L1 prmu 2 [5 3 6 9 6 3 1 2 4 1 2 9 5 4
7 7 8 8]

5944 7.361

L2 block 2 [5 2 8 9 9 3 2 4 7 1 7 5 1 6
4 6 3 8]

5971 1648.594

and 1.85 h, respectively. Note that both times are greater than the corresponding Cmax

values in Table 2.

5 Computational experimentation

The computational experimentation proposed is focused on analyzing the behav-
ior of Mixed Integer Linear Programming (MILP) to solve sequencing problems in
Flow Shop production environments with extensive demand. We propose two experi-
ments. In Experiment-1 we used a selection of Taillard’s instances (Taillard 1993). For
Experiment-2 we have selected 7 categorical instances of the set of industrial instances
Nissan-9Eng.I (Bautista and Cano 2011).

5.1 Experiment-1

For the Experiment-1, we used Set-1 and Set-4 Taillard’s instances (E) from the lit-
erature that are related to the sequencing problems studied. We also adapted those
instances to industrial cases with general demand for types of jobs or products (E′).

In brief, the data included in this experiment are:

• Set-1 (Taillard 1993): instances ε � 1, ., 10 (ε ∈ E), number of job types |I | ≡ n �
20, number of machines |K | ≡ m � 5, and total demand of jobs T ≡ D � 20.

• Set-4 (Taillard 1993): instances ε � 31, ., 40 (ε ∈ E), number of job types |I | ≡
n � 50, number of machines |K | ≡ m � 5, and total demand of jobs T ≡ D � 50.

• Set-1d (Set-1 adapted to problem Fm/β/γ /di ): instances ε � 1, ., 10 (ε ∈ E′),
number of job types |I | ≡ n � 20, number of machines |K | ≡ m � 5, Demand
plan of job types di � 5 (∀i � 1, .., 20), and total demand of jobs T ≡ D � 100,
with identical processing times pi,k (∀i ∈ I,∀k ∈ K ), instance by instance, to those
of Set-1.

• Set-4d (Set-4 adapted to problem Fm/β/γ /di ): instances ε � 31, ., 40 (ε ∈ E′),
number of job types |I | ≡ n � 50, number of machines |K | ≡ m � 5, Demand
plan of job types di � 5 (∀i � 1, ., 20), and total demand of jobs T ≡ D � 250,
with identical processing times pi,k (∀i ∈ I,∀k ∈ K ), instance by instance, to Set-4.

123



Mixed integer linear programming models for Flow Shop… 13

The compiled codes for the procedures involvedwere executed on aDELL Inspiron-
13 (Intel(R) Core(TM) i7-7500U @ 2.70 GHz CPU 2.90 GHz, 16 GB of RAM, x64
Windows 10 Pro). The characteristics of the 2 procedures are:

• MILP-1:Model Fm/prmu/Cmax /di : (i) Objective function forminimizing theCmax

value of the production sequence; (ii) implementation for IBM ILOGCPLEX solver
(Optimization Studio v.12.2, win-x86-64); (iii) maximum CPU time of 7200 s. (40
instances) allowed for solving each instance.

• MILP-2:Model Fm/block/Cmax /di : (i) Objective function forminimizing theCmax

value of the production sequence; (ii) implementation for IBM ILOGCPLEX solver
(Optimization Studio v.12.2, win-x86-64); (iii) maximum CPU time of 7200 s. (40
instances) allowed for solving each instance.

Tables 3, 4, 5 and 6 show the results of the experiment obtained by CPLEX for
the two models implemented (Fm/prmu/Cmax /di , Fm/block/Cmax /di ). Table 3 cor-
responds to the instances of Set-1 (20 jobs), Table 4 corresponds to those of Set-4 (50
jobs), and Tables 5 and 6 correspond to those of Set-1d (100 jobs) and of Set-4d (250
jobs), respectively.

In the tables, the column headers represent the following characteristics:

ε ∈ E Identification number of the instances for Set-1 and Set-4
ε ∈ E′ Identification number of the instances for Set-1d and Set-4d
Cmax Best makespan value obtained for procedure MILP-1 or MILP-2
C∗
max Optimal value of makespan

C0
max Best known value of makespan

LB_p Cmax lower limit for problem Fm/prmu/Cmax /di obtained for MILP-1
LB_b Cmax lower limit for problem Fm/block/Cmax /di obtained for MILP-1/2
GapC∗ Relative gap between Cmax and C∗

max
GapC0 Relative gap between Cmax and C0

max
GapLB_p Relative gap between Cmax and LB_p
GapLB_b Relative gap between Cmax and LB_b

The relative gap values between Cmax and the other characteristics related to
makespan (C∗

max ,C
0
max , LB_p, LB_b) are calculated using (21).

GapX (ε) � Cmax (ε) − X (ε)

Cmax (ε)
X ∈

{
LBp, LBb,C

∗
max ,C

0
max

}
, ∀ε ∈ E, ∀ε ∈ E′

(21)

where the LB_p values for the problem Fm/prmu/Cmax /di are obtained directly
with procedure MILP-1, the LB_b values correspond to the maximum value between
LB_p and the lower limit from procedure MILP-2 for problem Fm/block/Cmax /di .
Meanwhile, the values of C∗

max are confirmed as optimal through procedure MILP-
1, and the C0

max value originates from the literature for problem Fm/block/Cmax

(Bautista et al. 2012).
An analysis of Tables 3, 4, 5 and 6 reveals the following:

• Procedure MILP-1 obtains and ensures optimal solutions in all instances with 20
jobs (Set-1), 50 jobs (Set-4) and 100 jobs (Set-1d).
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• Procedure MILP-1 obtains and ensures optimal solutions in 8 of the 10 instances
with 250 jobs (Set-4d). The solutions obtained with MILP-1 for instances #32 and
#39 of Set-4d have GapLB_p values equal to 0.12% and 0.14%, respectively. The
average GapLB_p value for Set-4d is approximately 0.03%.

• Procedure MILP-2 does not ensure optimal solutions in any of the four Sets (1, 4,
1d and 4d).

• In Set-1 (20 jobs), MILP-2 obtains 3 better solutions for 10 instances (instances #4,
#8 and #10) and offers a GapC0 average value of 0.5%. Meanwhile, in the instances
with 50 jobs (Set-4),MILP-2 obtains aGapC0 average value of approximately 3.5%
and is not able to match any better known value (C0

max ).
• For instances with 100 and 250 jobs (Set-1d and Set-4d) and with blocking between
machines, there is no information on the best known makespan value; therefore, to
measure the quality of the solutions provided by MILP-2, we used the makespan
lower limits offered by the procedure. Under such conditions, the average values of
GapLB_b are equal to 0.146 for Set-1d and to 0.202 for Set-4d.

• The average CPU times used by MILP-1 are approximately 29, 587, 37 and 1643 s
for each instance of 20, 50, 100 and 250 jobs, respectively. Note that these times
do not increase progressively with the number of jobs to be sequenced (T ≡ D),
but these times do appear to depend on the number of job types (|I | ≡ n) that
correspond to each instance.

• The average CPU times used by MILP-2 are approximately 7093, 6699, 7099 and
4444 s for each instance of 20, 50, 100 and 250 jobs, respectively. These times are
not related to the number of jobs to be sequenced (T ≡ D) or to the number of job
types (|I | ≡ n).

• In summary, considering the CPU time limitation of 7200 s for each instance,
the MILP-1 procedure oriented toward problem Fm/prmu/Cmax /di obtains and
ensures 38 optimal solutions for the 40 instances studied, while procedure MILP-2,
oriented toward problem Fm/block/Cmax/di , obtains 3 better solutions for a total
of 20 instances (Set-1 and Set-4).

5.2 Experiment-2

There are currently 23 production plans for the nine engines and one working day at
the Nissan Spanish Industrial Operations (Bautista and Cano 2011). Each program
corresponds to a set of operation times biased by the demand of each of the nine
products. We summarize here the characteristics of each of the 23 production plans.
We have grouped them into seven categories according to the type of engine demand.
One representative production plan is selected for each category to be used in the
computational experimentation developed in this subsection. As said, the total number
of engines assembled in a working day is 270 in two shifts:

• Category-1 (plan #1): identical demand for each of the nine products (balanced
demand) (30 engines per product type).

• Category-2 (plan #2): identical demand for each of the three engine families: 4x4,
VAN, and trucks (90 per product family).
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Table 7 Daily demands by product type and plan
(
di,ε

)
for the 7 instances categorical Nissan-9Eng.I

(ε ∈ E)

Plan#ε M1 M2 M3 M4 M5 M6 M7 M8 M9 4x4 Van Truck Total

1 30 30 30 30 30 30 30 30 30 90 60 120 270

2 30 30 30 45 45 23 23 22 22 90 90 90 270

3 10 10 10 60 60 30 30 30 30 30 120 120 270

6 50 50 50 30 30 15 15 15 15 150 60 60 270

9 70 70 70 15 15 8 8 7 7 210 30 30 270

12 24 23 23 45 45 28 28 27 27 70 90 110 270

18 60 60 60 30 30 8 8 7 7 180 60 30 270

• Category-3 (plan #3): one of the engine families has low demand while the demand
of the other two families is high and identical.

• Category-4 (plan #6): one of the engine families has high demand while the demand
of the other two families is medium and identical.

• Category-5 (plan #9): one of the engine families has high demand while the demand
of the other two families is low and identical.

• Category-6 (plan #12): the demand of the engine families follows an arithmetic
progression.

• Category-7 (plan #18): the demand of the engine families follows a geometric
progression.

Table 1 shows the processing times, measured in seconds under normal operation
conditions, for each engine type (i � 1, . . . , 9) in each workstation (k � 1, . . . , 21).
On the other hand, Table 7 shows daily demands by engine type and plan for the 7
instances categorical Nissan-9Eng.I.

The compiled codes for the procedures involvedwere executed on aDELL Inspiron-
13 (Intel(R) Core(TM) i7-7500U @ 2.70 GHz CPU 2.90 GHz, 16 GB of RAM, x64
Windows 10 Pro). The characteristics of procedures are:

• MILP-1: Model Fm/prmu/Cmax /di : (i) Objective function for minimizing the
Cmax value of the production sequence; (ii) implementation for IBM ILOGCPLEX
solver (Optimization Studio v.12.2, win-x86-64); (iii) maximum CPU time of 180 s
allowed for solving each instance (7 instances).

• MILP-2: Model Fm/block/Cmax/di : (i) Objective function for minimizing the
Cmax value of the production sequence; (ii) implementation for IBM ILOGCPLEX
solver (Optimization Studio v.12.2, win-x86-64); (iii) maximum CPU time of 180 s
allowed for solving each instance (7 instances).

Table 8 shows the results of the experiment obtained by CPLEX for the two models
implemented (MILP-1 Fm/prmu/Cmax /di , and MILP-2: Fm/block/Cmax/di ).

The analysis of Table 8 reveals the following:

• Procedure MILP-1 obtains and ensures optimal solutions in all instances
with 270 jobs (7 instances categorical Nissan-9Eng.I) when we resolve the
Fm/prmu/Cmax /di problem.
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Table 8 Results for 7 Nissan-9Eng.I instances categorical using procedures MILP-1 and MILP-2 (180 s.
CPU)

Plan#ε MILP-1 MILP-2

C∗
max C PU (s) LB_b Cmax GapLB_b C PU (s)

1 50,091 45.84 50,091 51,094 0.020 180.33

2 50,174 15.19 50,174 51,006 0.016 180.25

3 50,301 10.34 50,301 50,757 0.009 180.13

6 50,202 14.26 50,203 51,072 0.017 180.17

9 50,378 10.39 50,378 51,385 0.020 180.15

12 50,192 17.41 50,193 51,071 0.017 180.16

18 50,273 14.28 50,273 51,267 0.019 180.16

Average 50,230.14 18.24 50,230.43 51,093.14 0.017 180.19

Max 50,378 45.84 50,378 51,385 0.020 180.33

Min 50,091 10.34 50,091 50,757 0.009 180.13

• ProcedureMILP-2 does not ensure optimal solutions in any of the instanceswith 270
job (7 instances categorical Nissan-9Eng.I) in the Fm/block/Cmax/di problem.

• The average values of GapLB_b are equal to 1.69% for Set categorical Nissan-
9Eng.I.

• The average CPU times used byMILP-1 are approximately 18.24 s for each instance
of 270 jobs (7 instances categorical Nissan-9Eng.I).

• The average CPU times used by MILP-2 are approximately 180.19 s for each
instance of 270 jobs (7 instances categorical Nissan-9Eng.I) when we impose a
maximum CPU time of 180 s allowed for solving each instance.

• Considering that the cost of production loss (Bautista et al. 2018; Bautista-Valhondo
and Alfaro-Pozo 2018) is 137.14 euros per production minute, the elimination of
spaces in the assembly line (prmu vs. block) results in an additional cost average
of 1972.57 euros/day with 270 engines. However, the original assembly line was
designed for a fixed cycle time of 175 s, and consequently, the actual production
times available for the manufacture of 270 engines is 50,770 s.

6 Conclusions

In this study, we presented and justified a natural extension of two classic sequencing
problems: Fm/prmu/Cmax and Fm/block/Cmax . This extension is motivated by our
concern over adapting academic problems closer to reality in industrial environments
related to the automotive sector.

Our extension takes into account the type of jobs or products in such problems,
based on the fact that, in many highly standardized industrial sectors such as the auto-
motive sector, it is unlikely to find productive processes where all jobs or all products
(chassis, car bodies, engines, seats, etc.) are completely different. For this reason, we
incorporated the concept of a demand plan of job types (di∀i ∈ I ) into the original
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problems, which resulted in the problems Fm/prmu/Cmax /di and Fm/block/Cmax /di .
The concept of a demand plan of job (product) types can be extrapolated to other vari-
ants of Flow Shop and Job Shop problems, if the circumstances are appropriate.

We formulated Mixed Integer Linear Programming models, implemented in
CPLEX, for the two new problems and analyzed the quality of the procedures through
a computational experiment with instances collected and adapted from the literature.

Our computational experience is composed of two experiments. In Experiment-
1 we have used a selection of 20 instances (from the classic instances of Taillard),
whose dimensions we have adapted to the automotive industry. In Experiment-2 we
have selected 7 categorical instances (from the set of Nissan-9Eng.I instances) corre-
sponding to 7 engine production plans in the Nissan factory in Barcelona, and whose
dimensions are: 270 products, 9 types of engines and 21 work stations.

Taking into account the results of the first experiment, we conclude that it is not
prudent to discard Mixed Integer Linear Programming for solving sequencing prob-
lems in Flow Shop production environments, as MILP is a competitive technique with
which to solve problem Fm/prmu/Cmax /di for industrial instances of 250 jobs and
obtains and confirms the optimal solutions in most instances with an average CPU
time of less than 28 min. MILP is less effective with problem Fm/block/Cmax /di with
industrial instances, although its results are acceptable when compared to the best
solutions in the literature for problem Fm/block/Cmax .

Looking at the results of Experiment-2, that are more realistic for the automotive
industry,we conclude thatMILPhas offered very satisfactory solutions for the two new
problems proposed; in effect: (i) MILP gets the 7 optimal solutions for the problem
Fm/prmu/Cmax /di in an averageCPU timeof 18.24 s, and (ii)MILPgets solutions, for
the problem Fm/block/Cmax /di , with an average value that are 0.17% of the average
value of the optimal solutions, when we set a maximum CPU time of 3 min.

Therefore, we conclude that MILP should be incorporated into the set of tools
dedicated to solving sequencing problems in realistic production environments. The
role of MILP within the set of techniques for solving such problems can be a leading
role or as part of the metaheuristic procedures that combine a construction phase of
one or more initial solutions, with one or several phases of local improvement of such
solutions.

In futurework,we intend to apply the knowledge acquired in this experimental study
to various case studies related to sequencing problems of mixed models in product-
oriented production systems (assembly lines and workshops with regular flow). We
also intend to analyze the economic impact of the alternative of using afixed production
cycle time for all machines (processors, workstations) or allowing processors to have
cycle times that depend on both products and machines.
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