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Abstract In this paper we present an evolutionary heuristic for the 2D knapsack
problem with guillotine constraint. In this problem we have a set of rectangles and
there is a profit for each rectangle. The goal is to cut a subset of rectangles without
overlap from a rectangular strip of widthW and heightH, so that the total profit of the
rectangles from the subset is maximal. The sides of the rectangles are parallel to the
strip sides and every cutting is restricted by orthogonal guillotine-cuts. A guillotine-
cut is parallel to the horizontal or vertical side of the strip and cuts the strip into two
separated rectangular strips. Our algorithm is an estimation of distribution algorithm
(EDA), where recombination and mutation evolutionary operators are replaced by
probability estimation and sampling techniques. Our EDAworks with two probability
models. It improves the quality of the solutions with local search procedures. The
algorithm was tested on well-known benchmark instances from the literature.

Keywords Cutting-packing · Knapsack · Guillotine-cut · EDA

1 Introduction

In the two-dimensional rectangular knapsack problem (2DKP) with guillotine con-
straint we have a set of m types of rectangles with wi widths, hi heights and a profit pi
where i �1, 2,…, m. The jth type contains uj rectangles. The goal is to cut a selected
subset of the rectangles without overlap onto a rectangular strip of widthW and height
H, so that the total profit of the selected rectangles is maximal. All cuts are orthog-
onal guillotine-cuts and the rectangles have to be laid out orthogonally on the strip.
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A guillotine-cut is parallel to the horizontal or vertical side of the strip and cuts the
strip into two smaller separated rectangular strips. The problem can be specified with
rotation; we will regard the rectangles with fix orientation (notation: 2DKP-OG).

Based on the available number of rectangles in a type and based on the profit we
can classify 2DKP. The available number of rectangles can be limited or unlimited,
and the profit can be the area of the rectangle or independent from the area. In our
algorithm we work with two version of 2DKP:

• The constrained unweighted version: For each rectangle i, the available number ui
is limited and the profit pi is equal to its area. The number of types is m, n �u1 +
u2 + · · · +um.

• The constrained weighted version: For each rectangle i, the available number ui is
limited and the profit pi is independent of its area. The number of types is m, n �
u1 +u2 + · · · +um.
The 2DKP belongs to the cutting-packing problems. It is NP-hard (Beasley 2004).

Many exact, heuristic and meta-heuristic algorithms have been published to solve
the 2DKP and the versions with guillotine constraint. A possible new evolutionary
method for the 2DKP-OG is the estimation of distribution algorithm (EDA). The
EDAestimates a probability distribution from a set of solutions and usually updates the
estimated distribution in every generation. The new solutions are generated using the
probability distribution. The new solutions replace a portion of the former population,
or the population is fully replaced by the use of a probabilistic model. Therefore the
EDA generates descendants without the use of recombination andmutation operations
in the following two steps:

• According to selected individuals it creates, or updates a probabilistic model,
• Drawing new descendants from the distributions of the probability model (this is
the sampling).

In this paper, we are interested in the EDA for 2DKP-OG. Our motivation was to
build anEDAfor the 2DKP-OG,whichgives a better result than the earlier evolutionary
techniques. For 0/1 knapsack problem there is a successful EDA (Gao et al. 2014).
Our EDA for the 2DKP-OG has harder tasks: it has to select a subset of rectangles
and has to organize the guillotine cuts of the selected rectangles.

From the viewpoint of our EDA the difficulties of the 2DKP-OG are the following:

• We have to select a subset of rectangles for the knapsack.
• We want to divide the strip into layers with horizontal guillotine-cuts, where the
heights of the layers are not known and we do not know the best number of the
layers for the optimal solution.

• We have to choose the best rectangles for every layer from the selected subset of
the rectangles.

• In every layer we have to cut the rectangles with guillotine-cuts. For this we have
to give the guillotine-cuttable pattern of the rectangles.

Our EDA works with two probability models. Based on the best solutions this
EDA generates a probability model and based on the model it selects the subset of
rectangles for cutting. Parallel this probability model the EDA generates another,
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second probability model and based on the second model it divides the rectangles
from the subset into separated groups. Every group gets own layer that is cut by
horizontal guillotine-cuts from the strip. This second probability model shows how
good it is if the ith and the zth rectangles are placed into the same layer. Higher values
show better pairs of rectangles in a layer. To generate a group the EDA compares
pairs of rectangles based on the second model. At the end the algorithm gives the
guillotine-cuttable pattern of the rectangles for the layers; this is the solution.

To improve the quality of the solutions the algorithm applies local search procedures
and with given probability applies the generation of the descendent with selection and
with a new mutation operator based on the second probability model too.

Our contribution, therefore, is a new hybrid EDA for the 2DKP-OG (named
2DKEDA) and its key features are the following:

• The algorithm uses two probability models to generate a descendent.
• We give a new sampling technique to select the rectangles for the layers.
• The algorithm improves the quality of the solution with the generation of a descen-
dent with selection and a new mutation operator based on the second probability
model too.

The remainder of this paper is organized as follows: “Related works for 2DKP” sec-
tion describes the typical methods. “Preliminaries” section defines the elements of our
cutting procedure; “Probability models and their applications” section describes the
probability model and their applications. “The 2DKEDA algorithm” section gives the
main steps of the 2DKEDA. The computational results are reported in “Experimental
results” section and the conclusions are in “Conclusion” section.

2 Related works for 2DKP

2.1 Exact, heuristic and meta-heuristic methods

2.1.1 Exact methods

Some exact algorithms were published for the 2DKP and for the 2DKP-OG too. For
2DKP the exactmethods are for example tree search-based algorithms (Beasley 1985b;
Fekete and Schepers 1997; Fekete et al. 2007), and some authors used variants of the
branch and bound technique (Hadjiconstantinou and Christofides 1995; Arenales and
Morabito 1995; Caprara and Monaci 2004).

For 2DKP-OGwefind similarmethods: tree search-based algorithms (Viswanathan
and Bagchi 1993; Morabito and Arenales 1996; Hifi 1997), branch and bound tech-
niques (Hadjiconstantinou andChristofides 1995;Cung et al. 2000).Othermethods are
e.g. dynamic optimization methods (Christofides and Whitlock 1977; Beasley 1985a;
Cintra and Wakabayashi 2004) and a recursive procedure (Dolatabadi et al. 2012).

We can, however, only use these methods to solve small 2DKP cases within a
reasonable period of time.
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2.1.2 Heuristic, meta-heuristic methods

The heuristic methods are search algorithms that are able to find the global optimum
only with a high degree of probability. We find construction heuristics for the 2DKP
(e.g. Wu et al. 2002) and for the 2DKO-OG too (Wang 1983; Vasco 1989; Oliveira
and Ferreira 1990;Wei and Lim 2015). The heuristic ofWei and Lim (2015) combines
the top-down and bottom-up approaches and combines rectangles into blocks. Fayard
et al. (1998) published a heuristic for approximately solving the problem.

There are meta-heuristics for the problem too. There ware published for the 2DKP
more genetic algorithm (GA) versions (e.g. Lai and Chan 1997; Beasley 2004;
Gonçalves and Resende 2006), but there are simulates annealing, tabu search and
GRASP algorithms too (e.g. Chen 2008; Leung et al. 2012; Alvarez-Valdes et al.
2005; Egeblad and Pisinger 2009). For 2DKP-OG we find only a few meta-heuristics:
e.g. a tabu search (Alvarez-Valdes et al. 2002) and GA versions (Parada et al. 1995;
Bortfeldt and Winter 2009).

2.2 Estimation of distribution algorithm

The EDAs depending on the complexity of the probability models are divided into
three groups (Pelikan et al. 1999). The first group are the models without interaction
in which the variables of the individual are independent from each other. Pair-wise
interactions allow the secondgroupwhere interactions canoccur between eachvariable
pair; and the third, the case of multivariate interactions, complicated dependencies are
allowed among variables. The efficiency of the models also varies depending on the
interaction too: the linear problems can solve the models of the first group, in case
of the pair-wise interactions we can solve quadratic problems, while in case of the
multivariate interactions we can solve complex problems.

EDAs can be categorized into three categories based on the solution representation
of the problem too, i.e. discrete variables, permutation and real-valued variables. In all
categorieswe can use different probabilitymodels according to the interaction between
the variables. For example the most important models for the discrete variables are
the following:

• In the models without interactions the variables of the problem are independent.
Individuals may be finite bit strings, and the probability models use a probability
vector. The vector gives for each bit position an estimated probability. The prob-
ability gives the estimated probability of the value 1 on the given bit position. A
method in this group is the PBIL (population based incremental learning) (Baluja
1994).

• Some EDA algorithms allow pair-wise interactions among the variables. Their com-
mon feature is that the dependencies are represented with a sequence (chain) among
the variables, or a tree structure represents the relations of the variables. Such vari-
ations of the methods include the MIMIC (Mutual information maximizing input
clustering) (De Bonet et al. 1996), the COMIT (Combining Optimizers withMutual
Information Trees) (Baluja and Davies 1997) and BMDA (bivariate marginal dis-
tribution algorithm) (Pelikan et al. 1999).
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• Models with multivariate interactions represent dependencies using either directed
acyclic graphs or undirected graphs. Popular models are the Bayesian networks and
the Markov networks. An example is the ECGA (extended compact genetic algo-
rithm) (Harik 1999) that groups the variables into independent clusters. Another
group of methods learns Bayesian network during the evolution, which can describe
even more complex dependencies among the variables. Such methods are the BOA
(Bayesian optimization algorithm) (Pelikan et al. 1999), EBNA (estimation of
Bayesian Networks algorithm) (Etxeberria and Larranaga 1999) or LFDA (learning
factorized distribution algorithm) (Mühlenbein and Mahnig 1999).

There are techniques that grow the efficiency of the EDAs, too. The most important
techniques are the parallelization and the hybrid EADs. In the EDAs several compu-
tational tasks can be executed in parallel: the fitness evaluation, the model building
and the sampling process (see e.g. Ocenasek 2002). The hybrids EDAs usually apply
local search procedures. (Detailed descriptions of the EDAs are available in Pelikan
et al. 2012).

A lot of applications of the EDAs are available. Typical problems are the scalar
and multi-objective optimization, timetabling, scheduling. For packing and cutting
problems there are also a few applications: 3D bin packing with EDA (Cai et al.
2013), 3D strip packing with EDA (Pham 2011). For 0/1 knapsack problems there is
an EDA algorithm (Gao et al. 2014). To the best of our knowledge, there is not an
EDA for 2DKP with guillotine constraint.

3 Preliminaries

Our algorithm gives guillotine-cuttable pattern of rectangles and gives the cutting
commands for the patterns. The important elements of our algorithm are the rem
set, the layers, the regions with a selection procedure of the regions, the placement
heuristics and a placing-cutting procedure. Let us see the details.

3.1 The rem set

Our algorithm selects rectangles for the knapsack. The unselected rectangles will store
in the rem set.

3.2 The layers, regions and the selection of the regions

The layer is a shorter strip with the sameW width andwe can cut it with guillotine-cuts
from the strip. (Figure 1 shows an example with two layers on the strip). For a layer
our algorithm selects rectangles with the use of the second probability model. Let the
set of the selected rectangles be Q.

The first region is the layer itself. After placing a rectangle into the bottom left-hand
corner of the region there is more than one way to continue the placing process. If the
width or the height of the placed rectangle is equal to the width or the height of the
region, we can divide the remainder of the region horizontally or vertically and get the
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Fig. 1 Layers on the strip with patterns

Fig. 2 Two possible ways to construct the R1, R2 sub-regions. a dw is too small, b dw is good for packing

R1 or R2 sub-regions. Otherwise we can divide the remaining region horizontally and
vertically into R1 and R2 sub-regions (see Fig. 2). If the width of the R2 sub-region
is too small for other rectangle (see Fig. 2a), we cannot use the R2 sub-region, so we
only divide the region horizontally, and next we apply the recursive procedure on a
remaining region. Using the regions our process guarantees that the rectangles will
be placed without overlap and the guillotine constraint is satisfied.

3.3 Fit rectangle

If we can place a rectangle into the given region, it is a fit rectangle for the region. The
packlayer procedure searches the not-yet-placed, fit rectangles for the region (from
the Q set). It selects the fit rectangles and stores the first found fit rectangles into the
fit_list vector. The length of the vector is maximum imax (imax �min(n, 200)). If
there is no fit rectangle, the fit_list vector will empty and the region will empty.

A random-fit rectangle is a random element of the fit_list.

3.4 Best-fit rectangle

The packlayer procedure searches the best-fit rectangle for the region fromQ too. The
best-fit rectangle is a fit rectangle with the largest profit. For the best-fit rectangle it
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checks every rectangle from Q. If there are more best-fit rectangles it selects one of
them with the largest width.

3.5 Fit block

If the width of the packed rectangles is smaller than the width of the region, we can
apply the local search ImpLS. ImpLS works with the not-yet-packed element of fit_list.
It builds blocks combining one, two or three rectangles one after the other from the
fit_list. (The height of the block is the maximum height of the rectangles in the block).
If ImpLS finds fit blocks for the empty width part of the region, it selects the fit block
with the largest total profit.

3.6 Placement heuristics

We use two placement heuristics: HP1, HP2.

• HP1 it selects the best-fit rectangle for placing.
• HP2 it selects a random-fit rectangle for placing.

3.7 Placement strategy

Our placement strategy is the following: for packing it selects the HP1 heuristic with
probability pbf ; otherwise it selects the HP2 heuristic. Next it searches fit block with
probability pimp with the ImpLS local search.

3.8 The packlayer procedure

A recursive packing procedure (packlayer) packs rectangles on the area of the layer
and gives the cutting commands for the regions and rectangles. The procedure divides
the area of the layer into regions and it packs a rectangle into a region. (The packing
is similar to Wei and Lim 2015, but we use it with our placement strategy instead of
the best fit heuristic).

The Algorithm 1 shows the main steps of packlayer procedure. The procedure has
four parameters: vbw—the width of the region; vbh—the height of the region; x00,
y00—the bottom left-hand corner of the region. The procedure uses the Q set of the
rectangles, which have to pack, and the Q set is available for every recursive call of the
procedure. The packing is happening with placement heuristics. When the procedure
has completed the packing,we get the layer description. If there are remained unpacked
rectangles then the layer is too small for packing all rectangles from Q.
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Fig. 3 Strip with sub-regions and the tree representation

Algorithm 1. The packlayer procedure.
packlayer(vbw,vbh,x00,y00);

// The not-yet-packed rectangles are in Q.
If the fit_list vector is empty then return fi
Apply our placement_strategy.
Let the total width and height of the packed rectangle (and fit block) be plw, plh.
dw=vbw-plw.
If (dw is too small width for other rectangle) then

// placing into R1 sub-region.
vbh=vbh-plh;y00=plh+y00;
packlayer(vbw,vbh,x00,y00);

else
If (plw*(vbh-plh)<=(vbw-plw)*vbh) then
// placing into R1 sub-region.

vbh=vbh-plh;y00=plh+y00;m1=vbw;vbw=plw;
packlayer(vbw,vbh,x00,y00);

// placing into R2 sub-region
vbw=m1-plw;x00=plw+x00;vbh=plh+vbh;y00=y00-plh;
packlayer(vbw,vbh,x00,y00);

else
// placing into R2 sub-region

vbw=vbw-plw;x00=plw+x00;
packlayer(vbw,vbh,x00,y00);

// placing into R1 sub-region.
vbh=vbh-plh;vbw=plw;y00=plh+y00;x00=x00-plw;
packlayer(vbw,vbh,x00,y00);

fi
fi

The following example demonstrates thework of the packlayer procedure. Recently
the strip has two layers and the procedure generated 4 sub-regions in the first layer
and two sub-regions in the second layer. Figure 3a shows the strip with the two layers
and the sub-regions that are identified with number. The width and height of the ith
sub-region are (wi, hi) (i �1, 2,…, 6). Figure 3b shows with a tree representation the
working process with the region, sub-regions.
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We can generate the cutting commands based on this tree representation. Let H(x,
y) and V(x, y) be the guillotine-cut commands. H(x, y) cuts the strip horizontally in the
(x, y) point of the region (sub-region), V(x, y) cuts the strip vertically in the (x, y) point
of the region (sub-region). In this example the cutting commands are the following:

H(0, hl)/* cut the first layer */
V(w1, 0), H(0, h1)/*cut the 1. sub-region */
H(0, h2), V(w2, 0)/*cut the 2. sub-region */
H(0, h3)/*cut the 3. sub-region */
V(w4, 0)/*cut the 4. sub-region */
H(0, h5)/*cut the 5. sub-region */
H(0, h6)/*cut the 6. sub-region */

In every sub-region there are one, or more rectangles; so additional cuts would be
necessary to obtain the rectangles.

3.9 Repacking local search

Usually we can repack the rectangles of the layer into a less thick layer. If we reduce
the height of the layers and the packlayer tries to repack the rectangles, the packing can
be successful (the methods inWei et al. 2014; Cui et al. 2013; Bortfeldt and Jungmann
2012. try to reduce the height of the layers on the basis of a similar idea). Based on
this idea our local search tries to reduce the height of a layer.

3.10 Repair procedure

If the total height of the layers is too large (it is larger as H) the procedure deletes
a random rectangle of a random layer and applies the Repacking local search. The
deleted rectangles will store in the rem set. If the new total height is smaller as H,
the improving is ready. Otherwise the procedure repeats the process; deleting another
rectangle.

4 Probability models and their applications

Our EDA is different from the typical EDA methods that were showed in “Estimation
of distribution algorithm” section. It handles the interactions among the rectangles,
knapsack and layers in two levels: between the knapsack and the rectangles, and
among the rectangles and the layers. So for the generation of a descendant it uses two
probabilities model one after the other depending on the interactions.

4.1 Probability model for selecting rectangles for the knapsack

At every descendant the EDA selects a set of rectangles for the knapsack based on a
probability model. This model is a vector named M1 with n elements.
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Every rectangle has a position in M1 that stores the relative frequency of the rect-
angle in the knapsack. M1 is updated periodically throughout the evolution process
using some of the best performing individuals.

Let M1geni be the collected relative frequency of the ith rectangles until the genth
generation. We can update the elements of the M1 vector

M1gen+1i � (1 − α)M1geni + α ∗ �M1i

whereΔM1i is the relative frequency of the ith rectangles based on the best individuals
of the genth generation and α denotes some relaxation factor (e.g., α �0.2).We update
M1 periodically every knth generation (e.g., kn �10). The computation of ΔM1i
happens as follows:

• we take the 20% best individuals from the population;
• we count in ΔM1i how many times the ith rectangle is in the best individuals (i �
1, 2,…, n).

• we divide the ΔM1i vector by the number of best individuals.

4.1.1 Sampling M1

Sampling M1 selects a set of the rectangles for cutting from the knapsack. It selects
the rectangles where

a random probability < M1geni (i � 1, 2, . . . , n) .

Let the selected rectangles be the QK set. The unselected rectangles will store in
the rem set.

4.2 Probability model for selecting rectangles for the layers

With the first probability model we get the selected rectangles. Next we choose the
best pairs of rectangles for every layer from the selected set of the rectangles. The
pairs of rectangles are selected for a layer based on a second probability model. This
probability model shows how good it is if the ith and the zth rectangles are cut from
the same layer. Higher values show better pairs of rectangles for cutting from the same
layer.

For these we use the EVL technique (see the principle of EVL in Borgulya 2006).
Recently we have modified this technique the following way: we have to know the
frequency of every pair of rectangles—how often they are members of the same layer
in the best solutions. Let ECM (explicit collective memory) be an n ×n matrix that
stores and learns the relative frequencies of the different pairs. Every rectangle has
a row and a column in the matrix. This matrix is updated throughout the evolution
process using some of the best performing individuals.

Let ECMgen
i j be the collected relative frequency of the ith and the jth rectangle (a

pair) in common layers until the genth generation. We can update the elements of the
ECM matrix
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ECMgen+1
i j � (1 − α)ECMgen

i j + α�ECMi j

where ΔECMij is the relative frequency of the ith and the jth rectangles in common
layers based on the best individuals of the genth generation and α denotes some
relaxation factor (e.g., α �0.2). We update ECM periodically every knth generation
(e.g., kn �10). The computation of ΔECMij happens as follows:

• we take the 20% best individuals from the population;
• we count how many times the ith and jth rectangles are in common layers in the
best individuals (i �1, 2,…, n; j �1, 2,…, n)

• we divide the ΔECM matrix by the number of these ‘best’ individuals.

We use the ECM matrix to estimate the probability of the good pairs of rectangles.
The formula

pri j � ECMgen
i j

∑n
t�1 ECMgen

it

gives the probability that the ith and the jth rectangles are good pair in the same layer.

4.2.1 Sampling ECM

Sampling ECM selects rectangles for the layers of the descendant. For every layer it
selects a new Q set from the not yet selected rectangles of QK. The sampling is the
following:

1. If there are unselected rectangles in QK, first it chooses an unselected rectangle
randomly from QK; if there is not, go to step 3.

2. This rectangle will be the first element in Q. Let this be the ith rectangles. For the
other rectangles of Q the sampling selects the rectangles from QK, where

a random probability < pri j (the i th and j th rectangles from QK) .

If Q is ready then it calls the packlayer procedure, the Repacking procedure and
after the profitrepair local search procedure for the layer in this order. The profitre-
pair procedure selects all the unselected rectangles of QK and all the rectangles
of rem and checks them one after the other. The checked rectangle is swapped
with one rectangle from the layer and the Repacking procedure is applied. The
profitrepair accepts the move if the swap increases the total profit of the layer
without increasing the height of the layer.

3. If there are unselected rectangles in QK we repeat the layer generation for a new
layer (go to step 1).

4. The sampling is ready. If the total height of the layers is higher as H, it calls the
repair procedure.
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5 The 2DKEDA algorithm

5.1 The main steps of the algorithm

Our 2DKEDA generates only one descendent in every generation. First it generates
the initial population. Next, it generates descendents by sampling M1, ECM. After it
improves the layers of the descendent with local searches (LS).

For certain tasks, the algorithm might “get stuck” at one of the local optima. To
enable escape toward a potential global optimum, the algorithm generates new, addi-
tional individuals. A new individual is also a descendent and can help to improve
the capability and the speed of the algorithm to find the global optimum. Thus, new
descendants are periodically inserted in the population until the maximum size of the
population is reached.

Algorithm 2 shows the main steps of 2DKEDA. The parameters of the algorithm
are the following:

tmax—the maximal size of the population.
t—the first size of the population.
kn—the algorithm is controlled in every knth generation.
timeend—the limit of the running time.
gp, rp—parameters of the condition of the Restart procedure.
LSremn—parameter of the local searches.

Algorithm 2. The main steps of 2DKEDA
Input: the instance, the values of the parameters.
Initial block building
Every value of the probability models M1, ECM is 0.5.
Generate the initial population. 
Update the probability models M1, ECM.
Repeat

Do kn times
Generate the rectangles for the knapsack by sampling M1. 
Generate the layers by sampling ECM.
Apply local searches. Reinsertion.

od
If (t<tmax) then t=t+1fi
Apply local searches on the last descendent, reinsertion.
Apply local searches on the best individual, reinsertion.
Update the M1, ECM models. Restart.

until running time>timeend
end

The operations and features are:
Input The algorithm reads the instance and the values of the parameters (they are

described and given in “Parameter selection” section). Every rectangle gets different
identification number.

Individuals Every individual of population P contains the description of a solution:
the layers, the cutting commands and a rem set with rn elements. The rem set stores the
rectangles that are not element of the knapsack. The individual gives all the important
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Fig. 4 The structure of an
individual nl – numbers of layers

ht – the total height of all layers
for each layer i=1, …, nl

hi – height of the layer
npi – number of rectangles in the layer
for j=1, …, npi

tj – the type of rectangle j
idj – identification of rectangle j

endfor
endfor
the set of the cutting commands
rn – number of the elements in rem set
the rem set

data of the layers (similar way as in Bortfeldt 2006) the height of the layer, the number
of rectangles in the layer and the data of the rectangles: the identification number of
the rectangle and the type. Next the individual stores the generated cutting commands,
at end stores the element of the rem set (see Fig. 4).

Initial block building See “Details of the implementation” section.
Initial population See “Details of the implementation” section.
Fitness function The fitness function of the solution is the total profit of the rectan-

gles in the layers.
Local search The algorithm applies three LSs (LSrem1, LSrem2 and LSrem3). It

applies the LSs one after the other (see “Local search procedures” section).
Restart If the fittest solution did not change in the last gp generations, the Restart

procedure deletes the weakest solutions (rp proportion of the population).
Reinsertion This is a crowding technique that compares the descendent with the

parent. The descendent may replace the parent if the descendent is better. If the descen-
dent is an additional individual or if there are fewer individuals than the size of the
population (after Restart procedures), the new descendent is unconditionally inserted
into the population until the population size is reached.

Stopping criterion The algorithm is terminated if the running time limit is reached.

5.2 Local search procedures

These LSs insert rectangles from the rem set into the set of rectangles of the layers.
There are three LSs: LSrem1, LSrem2 and LSrem3.

LSrem1 inserts a random rectangle from rem into a layer. After insertion, LSrem1
gives the possible highest height to the layer and applies the Repacking procedure. If
the insertion improves the fitness value and the total height of the layers is not higher
as H, it accepts the move and modifies the layer descriptions and the rem set. LSrem1
makes these move on every layer.

LSrem2 and LSrem3 work similar way as LSrem1, but LSrem2 insert a random
group of rectangles from rem into a layer, and LSrem3 insert every rectangle from rem
into a layer. If after the use of the packlayer procedure the new elements of the layer
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improve the fitness value and the total height of the layers is not higher asH, it accepts
the moves and modifies the layer descriptions and the rem set.

We apply the LSs one after the other: LSrem1 +LSrem2 +LSrem3 and repeat the
group LSremn times.

5.3 Details of the implementation

When describing the algorithm, some heuristic solutions were not described. Let us
see them now one-by-one.

5.3.1 Initial block building

The algorithm can build blocks if there is a type with more rectangles. Using the initial
blocks the algorithm can run faster.

It works with the blocks as new rectangles and defines new rectangle-types for the
blocks (width and height). At every type with more elements the algorithm builds
blocks with pblock probability. The blocks can build from two or four rectangles of
the same type. After the initial block building an additional sub-type shows the block
structure (notation: btype�1, or 2, or 3, or 4) at every type. The values of the ith
sub-type are the following:

1. There is not block, the type reminds the initial input type. btype �1
2. If the number of rectangles of the ith type is more than three, it builds larger

rectangles with 2*wi width and 2*hi height if we can place the blocks onto the
strip. The algorithm builds all possible blocks and the blocks get a new number of
type. btype �4.

3. If there are remained elements after the second step and the number of remained
rectangles of the ith type is more than two, with 0.5 probability it builds larger
rectangles with 2*wi width and hi height (otherwise withwi width and 2*hi height)
if we can place the blocks onto the strip. The algorithm builds all possible blocks
and the blocks get a new number of type. btype �2 (or btype �3).

At the end the algorithm updates the number of the types and all rectangles get
identification numbers.

5.3.2 Initial population

The initial population we can generate by sampling M1 and ECM. But based on our
test results, we can improve the quality of the initial population the following random
generation:

For every individual we first give the set of all the rectangles and call the packlayer
procedure to pack the first layer, where the height of the layer is a random height from
the interval [H*0.3,H −1]. If there are remained unpacked rectangles, we generate the
next layer: we give the set of the remained rectangles and call the packlayer procedure
to pack the next layer with the same height. We repeat the process if the total height of
the layers is not higher as H. If it is necessary at end it applies the repair procedure.
The unselected rectangles will store in the rem set.
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5.3.3 Mutation based on the ECM model

With the use of the two probabilities models we can generate descendent in our EDA.
Recently we get the descendent in two steps: sampling M1 and sampling ECM. In
an evolutionary algorithm usually we generate the descendent in the following steps:
selection of the parents, with recombination of the parents we get the descendent and
afterwithmutationwemodify the newdescendent. Recentlywe propose that instead of
recombination and mutation we can use only mutation based on the ECM probability
model.

Let the newmutation be a swap of rectangles between two layers in the descendent.
The mutation is based on the ECM, so it selects the ith and the jth rectangles from the
given layer with the largest prij and selects randomly another kth rectangles from the
layer (the number of the rectangles in the layer ≥3). If the ith and kth rectangles are
in the same layer of the best individual it do not make swap. Otherwise it chooses the
zth rectangle from other layer with the largest priz probability and swaps the kth, zth
rectangles between the layers.

We can use this new mutation operator: we can generate the descendent with trun-
cation selection andmutation based on theECM. The quality of the descendent is good
(see the test results in “Parameter selection” section), so we generate the descendent
two different ways in our algorithm. With psamp probability the algorithm applies the
sampling M1 and ECM, otherwise it applies the selection and mutation:

• Selection operator The algorithm selects an individual based on truncation selection.
In this selection, only the best tp percentage of the population is considered a
potential parent.

• Mutation operators The mutation is swap of rectangles between two layers based
on the ECM model. It repeats the swaps three times and after applies packlayer,
repacking for the layers. If the total height of the layers is too large, it applies the
repair procedure.

6 Experimental results

The 2DKEDA algorithm was implemented in C++. It was executed on an iMAC with
an Intel Core i5 2.5 GHz processor with 16 GB of RAM, running the macOS Sierra
10.12.2 operating system.

We tested our algorithm with benchmark instances that are used generally in pub-
lications. The instance sets available e.g.: http://www.computational-logistics.org/orl
ib/topic/2dkpp-gcut/index.html.

The constrained unweighted instances are the following:

• set1 consists 46 instance. In these instances m ranges from 10 to 56 and n ranges
from 18 to 258. The names of the instances are: OF1, OF2, W, CU1-CU11, 2s, 3s,
A1s, A2s, CHL1s-CHL4s, CHL5-CHL7, Hchl3s-Hchl8s, A3-A5, APT30-APT39.

• set2 consists 13 instances. In these instances m ranges from 10 to 50 and n ranges
from 10 to 50. The names of the instances are: gcut1–gcut13.

• set3 with 21 instances. In these instances m and n range from 16 to 197. The names
of the instances are: C11–C73.
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The constrained weighted instances are:

• set5 consists 36 instances. In these instances m ranges from 10 to 60 and n ranges
from 19 to 325. The names of the instances are: CHW1, CHW2, CW1-CW11, 2, 3,
A1, A2, STS2, STS4, Hchl1, Hchl2, Hchl9, APT40-APT49.

• set6 consists 21 instances. In these instances m ranges from 5 to 33 and n ranges
from 7 to 97. The names of the instances are: ngcut–ngcut12, hccut03, hccut08,
wang20, cgcut03, okp1-okp5.

• set7 consists 630 instances. The name of the instance set is ngcutfs. There are tree
problem types (subsets in set7: ngcutfs1, ngcutfs2 and ngcutfs3). In these instances
m is varied m �40, 50, 100, 150, 250, 500, 1000 and n ranges from 40 to 4000. In
every problem type for every m the number of rectangles per instance is n �m*Q,
where Q�{1, 3, 4}.

6.1 Parameter selection

We analysed the process of 2DKEDA to determine how the parameter values affect
the convergence. From the 767 test instances we chose 30 instances for the parameter
selection. They are the first 5 instance groups of the set3, the first 10 instances of the
ngcutfs2 instance group and the APT40–APT44 instances of the set5 data set.

Because our algorithm has similar structure and parameters as our earlier algorithm
had in (Borgulya 2014),we could accept the earlier parameter values. These parameters
are the population size (t and tmax parameter), the frequency of checks (kn parameter),
the generation in the first stage (itt parameter), the parameters of theRestart procedures
(gp and rp) and of the truncation selection (tp). The accepted parameter values are the
following: t �5, tmax �30, itt �5, kn �5, gp �300, rp �0.7 and tp �0.1.

The parameter values of the initial block building, the fit block search, the LSs and
of the sampling are new parameters in 2DKEDA. These parameters are the pblock,
pimp, LSremn and psamp.

• For the value of the pblock we analyzed different values: 0, 0.1, 0.2,…, 0.9, 1. We
got the average best result at 0.5 probability.

• For the probability of the fit block search we analysed the 0, 0.25 and 0.5 values.
We got the average best result at pimp �0 or at pimp �0.25 probabilities depending
on the instances.

• LSremn is an important parameter: with the use of the LSs we can improve signifi-
cantly the quality of the result. The algorithm gives with more than 15–20% better
results if we use the LSs.
The LS parameter depends on the instances too. We analysed different values for
LSremn, and found more appropriate values based on the average best results. At
the end we choose the following values: if n is fewer than 100, LSremn �1000 or
2000; if it is bigger than 100, LSremn �20 or 200.

• 2DKEDAcangenerate the descendantwith sampling orwith selection andmutation.
For the value of the psamp we analyzed different values: 1, 0.75, 0.5, 0.25 and 0. We
can see the results in Table 1. The table gives the average best results and the average
results on the selected instances for the parameter selection. The best solutions are
highlighted with bold characters in Table 1.We got the best results of set5 at psamp �
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Table 1 Results (gap %) on the selected instances

psamp set5 set3 set7

Av. best Average Av. best Average Av. best Average

1 5.63 6.77 1.16 2.86 0.91 1.07

0.75 5.46 6.62 2.09 3.33 0.89 1.25

0.50 5.31 6.09 2.30 3.09 0.89 0.95

0.25 3.78 5.88 2.81 3.22 0.89 1.02

0 3.10 4.97 2.02 3.11 0.86 0.90

0 probability, and the best results of set3 at psamp �1 probability. So the application
of the selection and mutation improved the best result of set5 with 0.6–2.5%. At
set3 we got the second best result at psamp �0 probability, too. The best results of
set7 are also at psamp �0 probability, but the differences in the results are not large;
we can use other psamp probabilities as well.
Because the best psamp probability depends on the instances we decided to use both
psamp �1 and psamp �0. During the test the algorithm ran 10 times on each test
instance.Wemodified to use of the psamp parameter during the 10 runs the following
way: psamp �1 in 5 runs and psamp �0 in 5 runs.

For the time limit we found different values in the papers: the method of Wei and
Lim (2015) allowed duration of 120 CPU seconds for each test problem (except the
gcut13 from set2, where the time limit was 365 s), but the other methods (e.g. Bortfeldt
and Winter 2009) did not give a time limit. We allowed duration of 300 CPU seconds
for each test problem.

6.2 Computation experience

2DKEDA was run 10 times on each test instance of the test sets, and we provide
the best results for every instance or as gap %, which is the percentage gap to the
profit upper bound (or optimum) (notation UB), namely, gap %�100 *(UB–obtained
solution)/UB. The results on the test sets available in the “Appendix”.

The test results show that the average best results in gap % are fewer as 1% on set1,
set2, set5 and set6; in the case of set3 and set7 the gap % is 1.37 and 1.11 respectively.
The algorithm provided the best results on set2 and set6 and on the large instances
of set7. On set2 and set6 the gap % is 0.13 and 0.15 respectively and in both cases
there were only two instances where the algorithm did not find the optimal solutions.
On the set7 if m≥500 or n≥1000 the gap % is between 0 and 0.08 and in 75% of
these instances it managed to find the optimal solutions. The best results show that the
success of 2DKEDA is not instance-size dependent.

Figures 5 and 6 show the convergence behaviour of the algorithm. Figure 5 shows
the results of the C5, C6 and C7 instance groups from set3. They are medium and
large instances: 72<n<198. 2DKEDA ran 500 CPU seconds on each instance and
the figure shows the average best results (in gap %) at the end of 5, 10, 30, 60, 120,
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Fig. 5 Convergence behaviour of 2DKEDA on set3

Fig. 6 Convergence behaviour of 2DKEDA on set1

240, 360 and 500 CPU seconds. The curves show that 2DKEDA improves the results
continuously; so we can increase the likelihood of finding better solutions by choosing
longer running times.

Figure 6 shows the results of the ATP30, ATP31 and ATP32 instances from set1.
They are large instances: 191<n<259. The running time was 300 CPU seconds on
each instance and the figure shows the average best results (in gap %) at the end of
5, 10, 30, 70, 150, 230 and 300 CPU seconds. The algorithm is more effective with
these instances than the C5, C6 and C7 from set3. In the first 5 s the gap % are smaller
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Table 2 Comparison of the average best results (gap %) of the methods

sets #inst CLGAL 2DKEDA IBBA

#opt gap % #opt gap % #opt gap %

set1 46 – 15 0.43 46 0

set2 13 – 11 0.13 12 0.13

set3 21 5 1.21 6 1.37 7 0.54

set5 36 – 18 0.95 34 0.15

set6 21 14 1.25 19 0.15 21 0

set7 630 194 1.26 196 1.11 315 0.92

-ngcutfs1 210 63 1.23 71 1.01 – 0.92

-ngcutfs2 210 64 1.34 56 1.24 – 1.00

-ngcutfs3 210 67 1.21 69 1.09 – 0.83

than 1.4% and slowly descends to 0.3–0.8%. Because the improvement of the results
is very slow, a longer running time cannot help finding better solutions.

Our goal was to build an estimation of distribution algorithm for the problem, which
gives better result than the earlier evolutionary techniques. For 2DKP-OGwe find only
a fewmeta-heuristics, evolutionary methods. So for comparison we can chose only the
CLGAL from Bortfeldt and Winter (2009) that is a GA and one of the best heuristics
for the problem. The CLGAL was executed on Intel PC Core2 at 3 GHz processor
with 2 GB RAM. It was implemented in C, and the authors did not give a time limit.
In our comparison we give the results of IBBA from Wei and Lim (2015) too, that is
recently the best heuristic for the problem. The IBBA was executed on an Intel Xeon
E5430 clocked at 2.66 GHz (Quad Core) with 8 GB RAM running the CentOS 5 linux
operating system. It was implemented in C++ and the time limit is set to 120 s for
each instance.

For comparison we show the results based onWei and Lim (2015). The comparison
between CLGAL, IBBA and 2DKEDA is summarized in Table 2. This table gives the
average best result in gap%, the names of the sets, themethods, the number of instances
in the sets (#inst) and the number of instances where optimal solutions were found
(#opt). The best solution is highlighted with bold character in Table 2. On the set1, set2
and set5 the results of CLGAL were not published. In the comparison of 2DKEDA
and CLGAL, we see that CLGAL has only on the set3 better result with 0.16 gap %.
On the set6 2DKEDA is better with 1.1 gap% and on the subsets of set7 2DKEDA has
better results with 0.11–0.22 gap %. Comparing the number of the optimal solutions
found shows that 2DKEDA has better results on set3, set6 and set7 as well.

In the comparison of 2DKEDA and IBBAwe see that every result of IBBA is better.
IBBA has better results with 0.1–0.8 gap % and found more optimal solutions, too.
The results of the algorithms are similar only at set2. We can compare the running
times of IBBA and 2DKEDA, too. 2DKEDA use about two times more running times
than IBBA.

We can conclude that 2DKEDA is better evolutionary method for the problem as
CLGAL based on the comparison.
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7 Conclusion

In this paperwe have presented an estimation of distribution algorithm for the 2Dknap-
sack problem with guillotine constraint. Our algorithm uses two probability models
to generate a descendent. Based on the first model it selects the subset of rectangles
for cutting and based on the second model it divides the rectangles from the subset
into separated layers. We give a new sampling technique to select the rectangles for
the layers. The algorithm improves the quality of the solution with the generation of a
descendent with selection and a newmutation operator based on the second probability
model too.

Our goal was to build an estimation of distribution algorithm for the problem,
which gives better result than the earlier evolutionary technique. For comparison we
can choose only the CLGAL from Bortfeldt and Winter (2009), which is one of the
best heuristics for the problem. The comparison between CLGAL and our algorithm
show that our evolutionary algorithm has better results generally.

Appendix

In the appendix the tables give the results of the test sets. In the tables we see the names
of the instances or instance groups, the number of types of rectangles (m) the number
of rectangles (n), the optimum or upper bound (opt/upper), the number of instances
where the optimal solutions were found in an instance group (#opt) or the number of
optimal solutions found at an instance in 10 run (Hits), the average best result in gap
% of an instance group or the best profit found at an instance.

See Tables 3, 4, 5, 6, 7, 8, 9 and 10.
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Table 4 The results of 2DKEDA on set2

Inst. m n Opt/upper Hits Best profit

gcut01 10 10 48,368 8 48,368

gcut02 20 20 59,307 6 59,307

gcut03 30 30 60,241 1 60,241

gcut04 50 50 60,942 0 60,925

gcut05 10 10 195,582 10 195,582

gcut06 20 20 236,305 3 236,305

gcut07 30 30 238,974 5 238,974

gcut08 50 50 245,758 6 245,758

gcut09 10 10 919,476 6 919,476

gcut10 20 20 903,435 5 903,435

gcut11 30 30 955,389 7 955,389

gcut12 50 50 970,744 6 970,744

gcut13 32 32 8,736,757 0 8,591,332

Table 5 The results of
2DKEDA on set3

Inst. m n Opt/upper Hits Best
profit

C11 16 16 400 10 400

C12 16 16 400 2 400

C13 17 17 400 0 385

C21 25 25 600 2 600

C22 25 25 600 0 596

C23 25 25 600 5 600

C31 28 28 1800 2 1800

C32 28 28 1800 5 1800

C33 29 29 1800 0 1760

C41 49 49 3600 0 3541

C42 49 49 3600 0 3521

C43 49 49 3600 0 3563

C51 73 73 5400 0 5342

C52 73 73 5400 0 5301

C53 73 73 5400 0 5322

C61 97 97 9600 0 9395

C62 97 97 9600 0 9463

C63 97 97 9600 0 9451

C71 196 196 38,400 0 37,470

C72 196 196 38,400 0 37,442

C73 197 197 38,400 0 37,277
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Table 7 The results of 2DKEDA on set6

Inst. m n Opt/upper Hits Best profit

ngcut1 5 10 164 5 164

ngcut2 7 17 230 10 230

ngcut3 10 21 247 3 247

ngcut4 5 7 268 10 268

ngcut5 7 14 358 10 358

ngcut6 10 15 289 10 289

ngcut7 5 8 430 10 430

ngcut8 7 13 834 0 828

ngcut9 10 18 924 2 924

ngcut10 5 13 1452 10 1452

ngcut11 7 15 1688 2 1688

ngcut12 10 22 1865 4 1865

hccut03 7 7 1178 10 1178

hccut08 15 15 1270 10 1270

wang20 19 42 2721 3 2721

cgcut03 20 51 1860 1 1860

okp1 15 50 27,589 4 27,589

okp2 30 30 22,502 0 21,976

okp3 30 30 24,019 3 24,019

okp4 33 61 32,893 4 32,893

okp5 29 97 27,923 2 27,923

Table 8 The average best results
(gap %) of 2DKEDA on set7
(ngcutfs1)

m Q n #opt gap%

40 1 40 0 5.96

3 120 0 2.20

4 160 0 2.29

50 1 50 0 2.98

3 150 0 1.80

4 200 0 1.50

100 1 200 0 1.45

3 300 0 0.83

4 400 1 0.40

150 1 150 2 0.51

3 450 1 0.22

4 600 2 0.25

250 1 250 2 0.55

3 750 3 0.09
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Table 8 continued m Q n #opt gap%

4 1000 7 0.06

500 1 500 6 0.03

3 1500 9 0.02

4 2000 10 0.00

1000 1 1000 8 0.01

3 3000 10 0

4 4000 10 0

Table 9 The average best results
(gap %) of 2DKEDA on set7
(ngcutfs2)

m Q n #opt gap %

40 1 40 0 8.48

3 120 0 2.43

4 160 0 2.57

50 1 50 0 4.84

3 150 0 1.62

4 200 0 1.68

100 1 200 0 1.57

3 300 1 0.78

4 400 3 0.52

150 1 150 0 0.68

3 450 0 0.04

4 600 3 0.06

250 1 250 0 0.45

3 750 3 0.03

4 1000 2 0.08

500 1 500 1 0.05

3 1500 7 0.01

4 2000 8 0.05

1000 1 1000 8 0.02

3 3000 10 0

4 4000 10 0
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Table 10 The average best
results (gap %) of 2DKEDA on
set7 (ngcutfs3)

m Q n #opt gap %

40 1 40 0 8.08

3 120 0 1.80

4 160 0 2.14

50 1 50 0 4.99

3 150 0 1.40

4 200 2 0.97

100 1 200 1 1.34

3 300 1 0.40

4 400 2 0.13

150 1 150 0 0.19

3 450 5 0.42

4 600 0 0.47

250 1 250 1 0.31

3 750 6 0.12

4 1000 5 0.02

500 1 500 1 0.08

3 1500 10 0

4 2000 8 0.01

1000 1 1000 7 0.03

3 3000 10 0

4 4000 10 0
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